| 1 | //===-- lib/Evaluate/characteristics.cpp ----------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "flang/Evaluate/characteristics.h" |
| 10 | #include "flang/Common/indirection.h" |
| 11 | #include "flang/Evaluate/check-expression.h" |
| 12 | #include "flang/Evaluate/fold.h" |
| 13 | #include "flang/Evaluate/intrinsics.h" |
| 14 | #include "flang/Evaluate/tools.h" |
| 15 | #include "flang/Evaluate/type.h" |
| 16 | #include "flang/Parser/message.h" |
| 17 | #include "flang/Semantics/scope.h" |
| 18 | #include "flang/Semantics/symbol.h" |
| 19 | #include "flang/Semantics/tools.h" |
| 20 | #include "llvm/Support/raw_ostream.h" |
| 21 | #include <initializer_list> |
| 22 | |
| 23 | using namespace Fortran::parser::literals; |
| 24 | |
| 25 | namespace Fortran::evaluate::characteristics { |
| 26 | |
| 27 | // Copy attributes from a symbol to dst based on the mapping in pairs. |
| 28 | // An ASYNCHRONOUS attribute counts even if it is implied. |
| 29 | template <typename A, typename B> |
| 30 | static void CopyAttrs(const semantics::Symbol &src, A &dst, |
| 31 | const std::initializer_list<std::pair<semantics::Attr, B>> &pairs) { |
| 32 | for (const auto &pair : pairs) { |
| 33 | if (src.attrs().test(pair.first)) { |
| 34 | dst.attrs.set(pair.second); |
| 35 | } |
| 36 | } |
| 37 | } |
| 38 | |
| 39 | // Shapes of function results and dummy arguments have to have |
| 40 | // the same rank, the same deferred dimensions, and the same |
| 41 | // values for explicit dimensions when constant. |
| 42 | bool ShapesAreCompatible(const std::optional<Shape> &x, |
| 43 | const std::optional<Shape> &y, bool *possibleWarning) { |
| 44 | if (!x || !y) { |
| 45 | return !x && !y; |
| 46 | } |
| 47 | if (x->size() != y->size()) { |
| 48 | return false; |
| 49 | } |
| 50 | auto yIter{y->begin()}; |
| 51 | for (const auto &xDim : *x) { |
| 52 | const auto &yDim{*yIter++}; |
| 53 | if (xDim && yDim) { |
| 54 | if (auto equiv{AreEquivalentInInterface(*xDim, *yDim)}) { |
| 55 | if (!*equiv) { |
| 56 | return false; |
| 57 | } |
| 58 | } else if (possibleWarning) { |
| 59 | *possibleWarning = true; |
| 60 | } |
| 61 | } else if (xDim || yDim) { |
| 62 | return false; |
| 63 | } |
| 64 | } |
| 65 | return true; |
| 66 | } |
| 67 | |
| 68 | bool TypeAndShape::operator==(const TypeAndShape &that) const { |
| 69 | return type_.IsEquivalentTo(that.type_) && |
| 70 | ShapesAreCompatible(shape_, that.shape_) && attrs_ == that.attrs_ && |
| 71 | corank_ == that.corank_; |
| 72 | } |
| 73 | |
| 74 | TypeAndShape &TypeAndShape::Rewrite(FoldingContext &context) { |
| 75 | LEN_ = Fold(context, std::move(LEN_)); |
| 76 | if (LEN_) { |
| 77 | if (auto n{ToInt64(*LEN_)}) { |
| 78 | type_ = DynamicType{type_.kind(), *n}; |
| 79 | } |
| 80 | } |
| 81 | shape_ = Fold(context, std::move(shape_)); |
| 82 | return *this; |
| 83 | } |
| 84 | |
| 85 | std::optional<TypeAndShape> TypeAndShape::Characterize( |
| 86 | const semantics::Symbol &symbol, FoldingContext &context, |
| 87 | bool invariantOnly) { |
| 88 | const auto &ultimate{symbol.GetUltimate()}; |
| 89 | return common::visit( |
| 90 | common::visitors{ |
| 91 | [&](const semantics::ProcEntityDetails &proc) { |
| 92 | if (proc.procInterface()) { |
| 93 | return Characterize( |
| 94 | *proc.procInterface(), context, invariantOnly); |
| 95 | } else if (proc.type()) { |
| 96 | return Characterize(*proc.type(), context, invariantOnly); |
| 97 | } else { |
| 98 | return std::optional<TypeAndShape>{}; |
| 99 | } |
| 100 | }, |
| 101 | [&](const semantics::AssocEntityDetails &assoc) { |
| 102 | return Characterize(assoc, context, invariantOnly); |
| 103 | }, |
| 104 | [&](const semantics::ProcBindingDetails &binding) { |
| 105 | return Characterize(binding.symbol(), context, invariantOnly); |
| 106 | }, |
| 107 | [&](const auto &x) -> std::optional<TypeAndShape> { |
| 108 | using Ty = std::decay_t<decltype(x)>; |
| 109 | if constexpr (std::is_same_v<Ty, semantics::EntityDetails> || |
| 110 | std::is_same_v<Ty, semantics::ObjectEntityDetails> || |
| 111 | std::is_same_v<Ty, semantics::TypeParamDetails>) { |
| 112 | if (const semantics::DeclTypeSpec * type{ultimate.GetType()}) { |
| 113 | if (auto dyType{DynamicType::From(*type)}) { |
| 114 | TypeAndShape result{std::move(*dyType), |
| 115 | GetShape(context, ultimate, invariantOnly)}; |
| 116 | result.AcquireAttrs(ultimate); |
| 117 | result.AcquireLEN(ultimate); |
| 118 | return std::move(result.Rewrite(context)); |
| 119 | } |
| 120 | } |
| 121 | } |
| 122 | return std::nullopt; |
| 123 | }, |
| 124 | }, |
| 125 | // GetUltimate() used here, not ResolveAssociations(), because |
| 126 | // we need the type/rank of an associate entity from TYPE IS, |
| 127 | // CLASS IS, or RANK statement. |
| 128 | ultimate.details()); |
| 129 | } |
| 130 | |
| 131 | std::optional<TypeAndShape> TypeAndShape::Characterize( |
| 132 | const semantics::AssocEntityDetails &assoc, FoldingContext &context, |
| 133 | bool invariantOnly) { |
| 134 | std::optional<TypeAndShape> result; |
| 135 | if (auto type{DynamicType::From(assoc.type())}) { |
| 136 | if (auto rank{assoc.rank()}) { |
| 137 | if (*rank >= 0 && *rank <= common::maxRank) { |
| 138 | result = TypeAndShape{std::move(*type), Shape(*rank)}; |
| 139 | } |
| 140 | } else if (auto shape{GetShape(context, assoc.expr(), invariantOnly)}) { |
| 141 | result = TypeAndShape{std::move(*type), std::move(*shape)}; |
| 142 | } |
| 143 | if (result && type->category() == TypeCategory::Character) { |
| 144 | if (const auto *chExpr{UnwrapExpr<Expr<SomeCharacter>>(assoc.expr())}) { |
| 145 | if (auto len{chExpr->LEN()}) { |
| 146 | result->set_LEN(std::move(*len)); |
| 147 | } |
| 148 | } |
| 149 | } |
| 150 | } |
| 151 | return Fold(context, std::move(result)); |
| 152 | } |
| 153 | |
| 154 | std::optional<TypeAndShape> TypeAndShape::Characterize( |
| 155 | const semantics::DeclTypeSpec &spec, FoldingContext &context, |
| 156 | bool /*invariantOnly=*/) { |
| 157 | if (auto type{DynamicType::From(spec)}) { |
| 158 | return Fold(context, TypeAndShape{std::move(*type)}); |
| 159 | } else { |
| 160 | return std::nullopt; |
| 161 | } |
| 162 | } |
| 163 | |
| 164 | std::optional<TypeAndShape> TypeAndShape::Characterize( |
| 165 | const ActualArgument &arg, FoldingContext &context, bool invariantOnly) { |
| 166 | if (const auto *expr{arg.UnwrapExpr()}) { |
| 167 | return Characterize(*expr, context, invariantOnly); |
| 168 | } else if (const Symbol * assumed{arg.GetAssumedTypeDummy()}) { |
| 169 | return Characterize(*assumed, context, invariantOnly); |
| 170 | } else { |
| 171 | return std::nullopt; |
| 172 | } |
| 173 | } |
| 174 | |
| 175 | bool TypeAndShape::IsCompatibleWith(parser::ContextualMessages &messages, |
| 176 | const TypeAndShape &that, const char *thisIs, const char *thatIs, |
| 177 | bool omitShapeConformanceCheck, |
| 178 | enum CheckConformanceFlags::Flags flags) const { |
| 179 | if (!type_.IsTkCompatibleWith(that.type_)) { |
| 180 | messages.Say( |
| 181 | "%1$s type '%2$s' is not compatible with %3$s type '%4$s'"_err_en_US , |
| 182 | thatIs, that.AsFortran(), thisIs, AsFortran()); |
| 183 | return false; |
| 184 | } |
| 185 | return omitShapeConformanceCheck || (!shape_ && !that.shape_) || |
| 186 | (shape_ && that.shape_ && |
| 187 | CheckConformance( |
| 188 | messages, *shape_, *that.shape_, flags, thisIs, thatIs) |
| 189 | .value_or(true /*fail only when nonconformance is known now*/)); |
| 190 | } |
| 191 | |
| 192 | std::optional<Expr<SubscriptInteger>> TypeAndShape::MeasureElementSizeInBytes( |
| 193 | FoldingContext &foldingContext, bool align) const { |
| 194 | if (LEN_) { |
| 195 | CHECK(type_.category() == TypeCategory::Character); |
| 196 | return Fold(foldingContext, |
| 197 | Expr<SubscriptInteger>{ |
| 198 | foldingContext.targetCharacteristics().GetByteSize( |
| 199 | type_.category(), type_.kind())} * |
| 200 | Expr<SubscriptInteger>{*LEN_}); |
| 201 | } |
| 202 | if (auto elementBytes{type_.MeasureSizeInBytes(foldingContext, align)}) { |
| 203 | return Fold(foldingContext, std::move(*elementBytes)); |
| 204 | } |
| 205 | return std::nullopt; |
| 206 | } |
| 207 | |
| 208 | std::optional<Expr<SubscriptInteger>> TypeAndShape::MeasureSizeInBytes( |
| 209 | FoldingContext &foldingContext) const { |
| 210 | if (auto elements{GetSize(shape_)}) { |
| 211 | // Sizes of arrays (even with single elements) are multiples of |
| 212 | // their alignments. |
| 213 | if (auto elementBytes{ |
| 214 | MeasureElementSizeInBytes(foldingContext, Rank() > 0)}) { |
| 215 | return Fold( |
| 216 | foldingContext, std::move(*elements) * std::move(*elementBytes)); |
| 217 | } |
| 218 | } |
| 219 | return std::nullopt; |
| 220 | } |
| 221 | |
| 222 | void TypeAndShape::AcquireAttrs(const semantics::Symbol &symbol) { |
| 223 | if (IsAssumedShape(symbol)) { |
| 224 | attrs_.set(Attr::AssumedShape); |
| 225 | } else if (IsDeferredShape(symbol)) { |
| 226 | attrs_.set(Attr::DeferredShape); |
| 227 | } else if (semantics::IsAssumedSizeArray(symbol)) { |
| 228 | attrs_.set(Attr::AssumedSize); |
| 229 | } |
| 230 | if (int corank{GetCorank(symbol)}; corank > 0) { |
| 231 | corank_ = corank; |
| 232 | } |
| 233 | if (const auto *object{ |
| 234 | symbol.GetUltimate().detailsIf<semantics::ObjectEntityDetails>()}; |
| 235 | object && object->IsAssumedRank()) { |
| 236 | attrs_.set(Attr::AssumedRank); |
| 237 | } |
| 238 | } |
| 239 | |
| 240 | void TypeAndShape::AcquireLEN() { |
| 241 | if (auto len{type_.GetCharLength()}) { |
| 242 | LEN_ = std::move(len); |
| 243 | } |
| 244 | } |
| 245 | |
| 246 | void TypeAndShape::AcquireLEN(const semantics::Symbol &symbol) { |
| 247 | if (type_.category() == TypeCategory::Character) { |
| 248 | if (auto len{DataRef{symbol}.LEN()}) { |
| 249 | LEN_ = std::move(*len); |
| 250 | } |
| 251 | } |
| 252 | } |
| 253 | |
| 254 | std::string TypeAndShape::AsFortran() const { |
| 255 | return type_.AsFortran(LEN_ ? LEN_->AsFortran() : "" ); |
| 256 | } |
| 257 | |
| 258 | llvm::raw_ostream &TypeAndShape::Dump(llvm::raw_ostream &o) const { |
| 259 | o << type_.AsFortran(LEN_ ? LEN_->AsFortran() : "" ); |
| 260 | attrs_.Dump(o, EnumToString); |
| 261 | if (!shape_) { |
| 262 | o << " dimension(..)" ; |
| 263 | } else if (!shape_->empty()) { |
| 264 | o << " dimension" ; |
| 265 | char sep{'('}; |
| 266 | for (const auto &expr : *shape_) { |
| 267 | o << sep; |
| 268 | sep = ','; |
| 269 | if (expr) { |
| 270 | expr->AsFortran(o); |
| 271 | } else { |
| 272 | o << ':'; |
| 273 | } |
| 274 | } |
| 275 | o << ')'; |
| 276 | } |
| 277 | if (isPossibleSequenceAssociation_) { |
| 278 | o << " isPossibleSequenceAssociation" ; |
| 279 | } |
| 280 | return o; |
| 281 | } |
| 282 | |
| 283 | bool DummyDataObject::operator==(const DummyDataObject &that) const { |
| 284 | return type == that.type && attrs == that.attrs && intent == that.intent && |
| 285 | coshape == that.coshape && cudaDataAttr == that.cudaDataAttr; |
| 286 | } |
| 287 | |
| 288 | static bool IsOkWithSequenceAssociation( |
| 289 | const TypeAndShape &t1, const TypeAndShape &t2) { |
| 290 | return t1.isPossibleSequenceAssociation() && |
| 291 | (t2.isPossibleSequenceAssociation() || t2.CanBeSequenceAssociated()); |
| 292 | } |
| 293 | |
| 294 | bool DummyDataObject::IsCompatibleWith(const DummyDataObject &actual, |
| 295 | std::string *whyNot, std::optional<std::string> *warning) const { |
| 296 | if (!IsOkWithSequenceAssociation(type, actual.type) && |
| 297 | !IsOkWithSequenceAssociation(actual.type, type)) { |
| 298 | bool possibleWarning{false}; |
| 299 | if (!ShapesAreCompatible( |
| 300 | type.shape(), actual.type.shape(), &possibleWarning)) { |
| 301 | if (whyNot) { |
| 302 | *whyNot = "incompatible dummy data object shapes" ; |
| 303 | } |
| 304 | return false; |
| 305 | } else if (warning && possibleWarning) { |
| 306 | *warning = "distinct dummy data object shapes" ; |
| 307 | } |
| 308 | } |
| 309 | // Treat deduced dummy character type as if it were assumed-length character |
| 310 | // to avoid useless "implicit interfaces have distinct type" warnings from |
| 311 | // CALL FOO('abc'); CALL FOO('abcd'). |
| 312 | bool deducedAssumedLength{type.type().category() == TypeCategory::Character && |
| 313 | attrs.test(Attr::DeducedFromActual)}; |
| 314 | bool compatibleTypes{deducedAssumedLength |
| 315 | ? type.type().IsTkCompatibleWith(actual.type.type()) |
| 316 | : type.type().IsTkLenCompatibleWith(actual.type.type())}; |
| 317 | if (!compatibleTypes) { |
| 318 | if (whyNot) { |
| 319 | *whyNot = "incompatible dummy data object types: "s + |
| 320 | type.type().AsFortran() + " vs " + actual.type.type().AsFortran(); |
| 321 | } |
| 322 | return false; |
| 323 | } |
| 324 | if (type.type().IsPolymorphic() != actual.type.type().IsPolymorphic()) { |
| 325 | if (whyNot) { |
| 326 | *whyNot = "incompatible dummy data object polymorphism: "s + |
| 327 | type.type().AsFortran() + " vs " + actual.type.type().AsFortran(); |
| 328 | } |
| 329 | return false; |
| 330 | } |
| 331 | if (type.type().category() == TypeCategory::Character && |
| 332 | !deducedAssumedLength) { |
| 333 | if (actual.type.type().IsAssumedLengthCharacter() != |
| 334 | type.type().IsAssumedLengthCharacter()) { |
| 335 | if (whyNot) { |
| 336 | *whyNot = "assumed-length character vs explicit-length character" ; |
| 337 | } |
| 338 | return false; |
| 339 | } |
| 340 | if (!type.type().IsAssumedLengthCharacter() && type.LEN() && |
| 341 | actual.type.LEN()) { |
| 342 | auto len{ToInt64(*type.LEN())}; |
| 343 | auto actualLen{ToInt64(*actual.type.LEN())}; |
| 344 | if (len.has_value() != actualLen.has_value()) { |
| 345 | if (whyNot) { |
| 346 | *whyNot = "constant-length vs non-constant-length character dummy " |
| 347 | "arguments" ; |
| 348 | } |
| 349 | return false; |
| 350 | } else if (len && *len != *actualLen) { |
| 351 | if (whyNot) { |
| 352 | *whyNot = "character dummy arguments with distinct lengths" ; |
| 353 | } |
| 354 | return false; |
| 355 | } |
| 356 | } |
| 357 | } |
| 358 | if (!attrs.test(Attr::DeducedFromActual) && |
| 359 | !actual.attrs.test(Attr::DeducedFromActual) && |
| 360 | type.attrs() != actual.type.attrs()) { |
| 361 | if (whyNot) { |
| 362 | *whyNot = "incompatible dummy data object shape attributes" ; |
| 363 | auto differences{type.attrs() ^ actual.type.attrs()}; |
| 364 | auto sep{": "s }; |
| 365 | differences.IterateOverMembers([&](TypeAndShape::Attr x) { |
| 366 | *whyNot += sep + std::string{TypeAndShape::EnumToString(x)}; |
| 367 | sep = ", " ; |
| 368 | }); |
| 369 | } |
| 370 | return false; |
| 371 | } |
| 372 | if (!IdenticalSignificantAttrs(attrs, actual.attrs)) { |
| 373 | if (whyNot) { |
| 374 | *whyNot = "incompatible dummy data object attributes" ; |
| 375 | auto differences{attrs ^ actual.attrs}; |
| 376 | auto sep{": "s }; |
| 377 | differences.IterateOverMembers([&](DummyDataObject::Attr x) { |
| 378 | *whyNot += sep + std::string{EnumToString(x)}; |
| 379 | sep = ", " ; |
| 380 | }); |
| 381 | } |
| 382 | return false; |
| 383 | } |
| 384 | if (intent != actual.intent) { |
| 385 | if (whyNot) { |
| 386 | *whyNot = "incompatible dummy data object intents" ; |
| 387 | } |
| 388 | return false; |
| 389 | } |
| 390 | if (coshape != actual.coshape) { |
| 391 | if (whyNot) { |
| 392 | *whyNot = "incompatible dummy data object coshapes" ; |
| 393 | } |
| 394 | return false; |
| 395 | } |
| 396 | if (ignoreTKR != actual.ignoreTKR) { |
| 397 | if (whyNot) { |
| 398 | *whyNot = "incompatible !DIR$ IGNORE_TKR directives" ; |
| 399 | } |
| 400 | } |
| 401 | if (!attrs.test(Attr::Value) && |
| 402 | !common::AreCompatibleCUDADataAttrs(cudaDataAttr, actual.cudaDataAttr, |
| 403 | ignoreTKR, warning, |
| 404 | /*allowUnifiedMatchingRule=*/false, |
| 405 | /*=isHostDeviceProcedure*/ false)) { |
| 406 | if (whyNot) { |
| 407 | *whyNot = "incompatible CUDA data attributes" ; |
| 408 | } |
| 409 | } |
| 410 | return true; |
| 411 | } |
| 412 | |
| 413 | static common::Intent GetIntent(const semantics::Attrs &attrs) { |
| 414 | if (attrs.test(semantics::Attr::INTENT_IN)) { |
| 415 | return common::Intent::In; |
| 416 | } else if (attrs.test(semantics::Attr::INTENT_OUT)) { |
| 417 | return common::Intent::Out; |
| 418 | } else if (attrs.test(semantics::Attr::INTENT_INOUT)) { |
| 419 | return common::Intent::InOut; |
| 420 | } else { |
| 421 | return common::Intent::Default; |
| 422 | } |
| 423 | } |
| 424 | |
| 425 | std::optional<DummyDataObject> DummyDataObject::Characterize( |
| 426 | const semantics::Symbol &symbol, FoldingContext &context) { |
| 427 | if (const auto *object{symbol.detailsIf<semantics::ObjectEntityDetails>()}; |
| 428 | object || symbol.has<semantics::EntityDetails>()) { |
| 429 | if (auto type{TypeAndShape::Characterize( |
| 430 | symbol, context, /*invariantOnly=*/false)}) { |
| 431 | std::optional<DummyDataObject> result{std::move(*type)}; |
| 432 | using semantics::Attr; |
| 433 | CopyAttrs<DummyDataObject, DummyDataObject::Attr>(symbol, *result, |
| 434 | { |
| 435 | {Attr::OPTIONAL, DummyDataObject::Attr::Optional}, |
| 436 | {Attr::ALLOCATABLE, DummyDataObject::Attr::Allocatable}, |
| 437 | {Attr::ASYNCHRONOUS, DummyDataObject::Attr::Asynchronous}, |
| 438 | {Attr::CONTIGUOUS, DummyDataObject::Attr::Contiguous}, |
| 439 | {Attr::VALUE, DummyDataObject::Attr::Value}, |
| 440 | {Attr::VOLATILE, DummyDataObject::Attr::Volatile}, |
| 441 | {Attr::POINTER, DummyDataObject::Attr::Pointer}, |
| 442 | {Attr::TARGET, DummyDataObject::Attr::Target}, |
| 443 | }); |
| 444 | result->intent = GetIntent(symbol.attrs()); |
| 445 | result->ignoreTKR = GetIgnoreTKR(symbol); |
| 446 | if (object) { |
| 447 | result->cudaDataAttr = object->cudaDataAttr(); |
| 448 | if (!result->cudaDataAttr && |
| 449 | !result->attrs.test(DummyDataObject::Attr::Value) && |
| 450 | semantics::IsCUDADeviceContext(&symbol.owner())) { |
| 451 | result->cudaDataAttr = common::CUDADataAttr::Device; |
| 452 | } |
| 453 | } |
| 454 | return result; |
| 455 | } |
| 456 | } |
| 457 | return std::nullopt; |
| 458 | } |
| 459 | |
| 460 | bool DummyDataObject::CanBePassedViaImplicitInterface( |
| 461 | std::string *whyNot) const { |
| 462 | if ((attrs & |
| 463 | Attrs{Attr::Allocatable, Attr::Asynchronous, Attr::Optional, |
| 464 | Attr::Pointer, Attr::Target, Attr::Value, Attr::Volatile}) |
| 465 | .any()) { |
| 466 | if (whyNot) { |
| 467 | *whyNot = "a dummy argument has the allocatable, asynchronous, optional, " |
| 468 | "pointer, target, value, or volatile attribute" ; |
| 469 | } |
| 470 | return false; // 15.4.2.2(3)(a) |
| 471 | } else if ((type.attrs() & |
| 472 | TypeAndShape::Attrs{TypeAndShape::Attr::AssumedShape, |
| 473 | TypeAndShape::Attr::AssumedRank}) |
| 474 | .any() || |
| 475 | type.corank() > 0) { |
| 476 | if (whyNot) { |
| 477 | *whyNot = "a dummy argument is assumed-shape, assumed-rank, or a coarray" ; |
| 478 | } |
| 479 | return false; // 15.4.2.2(3)(b-d) |
| 480 | } else if (type.type().IsPolymorphic()) { |
| 481 | if (whyNot) { |
| 482 | *whyNot = "a dummy argument is polymorphic" ; |
| 483 | } |
| 484 | return false; // 15.4.2.2(3)(f) |
| 485 | } else if (cudaDataAttr) { |
| 486 | if (whyNot) { |
| 487 | *whyNot = "a dummy argument has a CUDA data attribute" ; |
| 488 | } |
| 489 | return false; |
| 490 | } else if (const auto *derived{GetDerivedTypeSpec(type.type())}) { |
| 491 | if (derived->parameters().empty()) { // 15.4.2.2(3)(e) |
| 492 | return true; |
| 493 | } else { |
| 494 | if (whyNot) { |
| 495 | *whyNot = "a dummy argument has derived type parameters" ; |
| 496 | } |
| 497 | return false; |
| 498 | } |
| 499 | } else { |
| 500 | return true; |
| 501 | } |
| 502 | } |
| 503 | |
| 504 | bool DummyDataObject::IsPassedByDescriptor(bool isBindC) const { |
| 505 | constexpr TypeAndShape::Attrs shapeRequiringBox{ |
| 506 | TypeAndShape::Attr::AssumedShape, TypeAndShape::Attr::DeferredShape, |
| 507 | TypeAndShape::Attr::AssumedRank}; |
| 508 | if ((attrs & Attrs{Attr::Allocatable, Attr::Pointer}).any()) { |
| 509 | return true; |
| 510 | } else if ((type.attrs() & shapeRequiringBox).any()) { |
| 511 | return true; // pass shape in descriptor |
| 512 | } else if (type.corank() > 0) { |
| 513 | return true; // pass coshape in descriptor |
| 514 | } else if (type.type().IsPolymorphic() && !type.type().IsAssumedType()) { |
| 515 | // Need to pass dynamic type info in a descriptor. |
| 516 | return true; |
| 517 | } else if (const auto *derived{GetDerivedTypeSpec(type.type())}) { |
| 518 | if (!derived->parameters().empty()) { |
| 519 | for (const auto ¶m : derived->parameters()) { |
| 520 | if (param.second.isLen()) { |
| 521 | // Need to pass length type parameters in a descriptor. |
| 522 | return true; |
| 523 | } |
| 524 | } |
| 525 | } |
| 526 | } else if (isBindC && type.type().IsAssumedLengthCharacter()) { |
| 527 | // Fortran 2018 18.3.6 point 2 (5) |
| 528 | return true; |
| 529 | } |
| 530 | return false; |
| 531 | } |
| 532 | |
| 533 | llvm::raw_ostream &DummyDataObject::Dump(llvm::raw_ostream &o) const { |
| 534 | attrs.Dump(o, EnumToString); |
| 535 | if (intent != common::Intent::Default) { |
| 536 | o << "INTENT(" << common::EnumToString(intent) << ')'; |
| 537 | } |
| 538 | type.Dump(o); |
| 539 | if (!coshape.empty()) { |
| 540 | char sep{'['}; |
| 541 | for (const auto &expr : coshape) { |
| 542 | expr.AsFortran(o << sep); |
| 543 | sep = ','; |
| 544 | } |
| 545 | } |
| 546 | if (cudaDataAttr) { |
| 547 | o << " cudaDataAttr: " << common::EnumToString(*cudaDataAttr); |
| 548 | } |
| 549 | if (!ignoreTKR.empty()) { |
| 550 | ignoreTKR.Dump(o << ' ', common::EnumToString); |
| 551 | } |
| 552 | return o; |
| 553 | } |
| 554 | |
| 555 | DummyProcedure::DummyProcedure(Procedure &&p) |
| 556 | : procedure{new Procedure{std::move(p)}} {} |
| 557 | |
| 558 | bool DummyProcedure::operator==(const DummyProcedure &that) const { |
| 559 | return attrs == that.attrs && intent == that.intent && |
| 560 | procedure.value() == that.procedure.value(); |
| 561 | } |
| 562 | |
| 563 | bool DummyProcedure::IsCompatibleWith( |
| 564 | const DummyProcedure &actual, std::string *whyNot) const { |
| 565 | if (attrs != actual.attrs) { |
| 566 | if (whyNot) { |
| 567 | *whyNot = "incompatible dummy procedure attributes" ; |
| 568 | } |
| 569 | return false; |
| 570 | } |
| 571 | if (intent != actual.intent) { |
| 572 | if (whyNot) { |
| 573 | *whyNot = "incompatible dummy procedure intents" ; |
| 574 | } |
| 575 | return false; |
| 576 | } |
| 577 | if (!procedure.value().IsCompatibleWith(actual.procedure.value(), |
| 578 | /*ignoreImplicitVsExplicit=*/false, whyNot)) { |
| 579 | if (whyNot) { |
| 580 | *whyNot = "incompatible dummy procedure interfaces: "s + *whyNot; |
| 581 | } |
| 582 | return false; |
| 583 | } |
| 584 | return true; |
| 585 | } |
| 586 | |
| 587 | bool DummyProcedure::CanBePassedViaImplicitInterface( |
| 588 | std::string *whyNot) const { |
| 589 | if ((attrs & Attrs{Attr::Optional, Attr::Pointer}).any()) { |
| 590 | if (whyNot) { |
| 591 | *whyNot = "a dummy procedure is optional or a pointer" ; |
| 592 | } |
| 593 | return false; // 15.4.2.2(3)(a) |
| 594 | } |
| 595 | return true; |
| 596 | } |
| 597 | |
| 598 | static std::string GetSeenProcs( |
| 599 | const semantics::UnorderedSymbolSet &seenProcs) { |
| 600 | // Sort the symbols so that they appear in the same order on all platforms |
| 601 | auto ordered{semantics::OrderBySourcePosition(seenProcs)}; |
| 602 | std::string result; |
| 603 | llvm::interleave( |
| 604 | ordered, |
| 605 | [&](const SymbolRef p) { result += '\'' + p->name().ToString() + '\''; }, |
| 606 | [&]() { result += ", " ; }); |
| 607 | return result; |
| 608 | } |
| 609 | |
| 610 | // These functions with arguments of type UnorderedSymbolSet are used with |
| 611 | // mutually recursive calls when characterizing a Procedure, a DummyArgument, |
| 612 | // or a DummyProcedure to detect circularly defined procedures as required by |
| 613 | // 15.4.3.6, paragraph 2. |
| 614 | static std::optional<DummyArgument> CharacterizeDummyArgument( |
| 615 | const semantics::Symbol &symbol, FoldingContext &context, |
| 616 | semantics::UnorderedSymbolSet seenProcs); |
| 617 | static std::optional<FunctionResult> CharacterizeFunctionResult( |
| 618 | const semantics::Symbol &symbol, FoldingContext &context, |
| 619 | semantics::UnorderedSymbolSet seenProcs, bool emitError); |
| 620 | |
| 621 | static std::optional<Procedure> CharacterizeProcedure( |
| 622 | const semantics::Symbol &original, FoldingContext &context, |
| 623 | semantics::UnorderedSymbolSet seenProcs, bool emitError) { |
| 624 | const auto &symbol{ResolveAssociations(original)}; |
| 625 | if (seenProcs.find(symbol) != seenProcs.end()) { |
| 626 | std::string procsList{GetSeenProcs(seenProcs)}; |
| 627 | context.messages().Say(symbol.name(), |
| 628 | "Procedure '%s' is recursively defined. Procedures in the cycle:" |
| 629 | " %s"_err_en_US , |
| 630 | symbol.name(), procsList); |
| 631 | return std::nullopt; |
| 632 | } |
| 633 | seenProcs.insert(symbol); |
| 634 | auto CheckForNested{[&](const Symbol &symbol) { |
| 635 | if (emitError) { |
| 636 | context.messages().Say( |
| 637 | "Procedure '%s' is referenced before being sufficiently defined in a context where it must be so"_err_en_US , |
| 638 | symbol.name()); |
| 639 | } |
| 640 | }}; |
| 641 | auto result{common::visit( |
| 642 | common::visitors{ |
| 643 | [&](const semantics::SubprogramDetails &subp) |
| 644 | -> std::optional<Procedure> { |
| 645 | Procedure result; |
| 646 | if (subp.isFunction()) { |
| 647 | if (auto fr{CharacterizeFunctionResult( |
| 648 | subp.result(), context, seenProcs, emitError)}) { |
| 649 | result.functionResult = std::move(fr); |
| 650 | } else { |
| 651 | return std::nullopt; |
| 652 | } |
| 653 | } else { |
| 654 | result.attrs.set(Procedure::Attr::Subroutine); |
| 655 | } |
| 656 | for (const semantics::Symbol *arg : subp.dummyArgs()) { |
| 657 | if (!arg) { |
| 658 | if (subp.isFunction()) { |
| 659 | return std::nullopt; |
| 660 | } else { |
| 661 | result.dummyArguments.emplace_back(AlternateReturn{}); |
| 662 | } |
| 663 | } else if (auto argCharacteristics{CharacterizeDummyArgument( |
| 664 | *arg, context, seenProcs)}) { |
| 665 | result.dummyArguments.emplace_back( |
| 666 | std::move(argCharacteristics.value())); |
| 667 | } else { |
| 668 | return std::nullopt; |
| 669 | } |
| 670 | } |
| 671 | result.cudaSubprogramAttrs = subp.cudaSubprogramAttrs(); |
| 672 | return std::move(result); |
| 673 | }, |
| 674 | [&](const semantics::ProcEntityDetails &proc) |
| 675 | -> std::optional<Procedure> { |
| 676 | if (symbol.attrs().test(semantics::Attr::INTRINSIC)) { |
| 677 | // Fails when the intrinsic is not a specific intrinsic function |
| 678 | // from F'2018 table 16.2. In order to handle forward references, |
| 679 | // attempts to use impermissible intrinsic procedures as the |
| 680 | // interfaces of procedure pointers are caught and flagged in |
| 681 | // declaration checking in Semantics. |
| 682 | auto intrinsic{context.intrinsics().IsSpecificIntrinsicFunction( |
| 683 | symbol.name().ToString())}; |
| 684 | if (intrinsic && intrinsic->isRestrictedSpecific) { |
| 685 | intrinsic.reset(); // Exclude intrinsics from table 16.3. |
| 686 | } |
| 687 | return intrinsic; |
| 688 | } |
| 689 | if (const semantics::Symbol * |
| 690 | interfaceSymbol{proc.procInterface()}) { |
| 691 | auto result{CharacterizeProcedure( |
| 692 | *interfaceSymbol, context, seenProcs, /*emitError=*/false)}; |
| 693 | if (result && (IsDummy(symbol) || IsPointer(symbol))) { |
| 694 | // Dummy procedures and procedure pointers may not be |
| 695 | // ELEMENTAL, but we do accept the use of elemental intrinsic |
| 696 | // functions as their interfaces. |
| 697 | result->attrs.reset(Procedure::Attr::Elemental); |
| 698 | } |
| 699 | return result; |
| 700 | } else { |
| 701 | Procedure result; |
| 702 | result.attrs.set(Procedure::Attr::ImplicitInterface); |
| 703 | const semantics::DeclTypeSpec *type{proc.type()}; |
| 704 | if (symbol.test(semantics::Symbol::Flag::Subroutine)) { |
| 705 | // ignore any implicit typing |
| 706 | result.attrs.set(Procedure::Attr::Subroutine); |
| 707 | if (proc.isCUDAKernel()) { |
| 708 | result.cudaSubprogramAttrs = |
| 709 | common::CUDASubprogramAttrs::Global; |
| 710 | } |
| 711 | } else if (type) { |
| 712 | if (auto resultType{DynamicType::From(*type)}) { |
| 713 | result.functionResult = FunctionResult{*resultType}; |
| 714 | } else { |
| 715 | return std::nullopt; |
| 716 | } |
| 717 | } else if (symbol.test(semantics::Symbol::Flag::Function)) { |
| 718 | return std::nullopt; |
| 719 | } |
| 720 | // The PASS name, if any, is not a characteristic. |
| 721 | return std::move(result); |
| 722 | } |
| 723 | }, |
| 724 | [&](const semantics::ProcBindingDetails &binding) { |
| 725 | if (auto result{CharacterizeProcedure(binding.symbol(), context, |
| 726 | seenProcs, /*emitError=*/false)}) { |
| 727 | if (binding.symbol().attrs().test(semantics::Attr::INTRINSIC)) { |
| 728 | result->attrs.reset(Procedure::Attr::Elemental); |
| 729 | } |
| 730 | if (!symbol.attrs().test(semantics::Attr::NOPASS)) { |
| 731 | auto passName{binding.passName()}; |
| 732 | for (auto &dummy : result->dummyArguments) { |
| 733 | if (!passName || dummy.name.c_str() == *passName) { |
| 734 | dummy.pass = true; |
| 735 | break; |
| 736 | } |
| 737 | } |
| 738 | } |
| 739 | return result; |
| 740 | } else { |
| 741 | return std::optional<Procedure>{}; |
| 742 | } |
| 743 | }, |
| 744 | [&](const semantics::UseDetails &use) { |
| 745 | return CharacterizeProcedure( |
| 746 | use.symbol(), context, seenProcs, /*emitError=*/false); |
| 747 | }, |
| 748 | [](const semantics::UseErrorDetails &) { |
| 749 | // Ambiguous use-association will be handled later during symbol |
| 750 | // checks, ignore UseErrorDetails here without actual symbol usage. |
| 751 | return std::optional<Procedure>{}; |
| 752 | }, |
| 753 | [&](const semantics::HostAssocDetails &assoc) { |
| 754 | return CharacterizeProcedure( |
| 755 | assoc.symbol(), context, seenProcs, /*emitError=*/false); |
| 756 | }, |
| 757 | [&](const semantics::GenericDetails &generic) { |
| 758 | if (const semantics::Symbol * specific{generic.specific()}) { |
| 759 | return CharacterizeProcedure( |
| 760 | *specific, context, seenProcs, emitError); |
| 761 | } else { |
| 762 | return std::optional<Procedure>{}; |
| 763 | } |
| 764 | }, |
| 765 | [&](const semantics::EntityDetails &x) { |
| 766 | CheckForNested(symbol); |
| 767 | return std::optional<Procedure>{}; |
| 768 | }, |
| 769 | [&](const semantics::SubprogramNameDetails &) { |
| 770 | if (const semantics::Symbol * |
| 771 | ancestor{FindAncestorModuleProcedure(&symbol)}) { |
| 772 | return CharacterizeProcedure( |
| 773 | *ancestor, context, seenProcs, emitError); |
| 774 | } |
| 775 | CheckForNested(symbol); |
| 776 | return std::optional<Procedure>{}; |
| 777 | }, |
| 778 | [&](const auto &) { |
| 779 | context.messages().Say( |
| 780 | "'%s' is not a procedure"_err_en_US , symbol.name()); |
| 781 | return std::optional<Procedure>{}; |
| 782 | }, |
| 783 | }, |
| 784 | symbol.details())}; |
| 785 | if (result && !symbol.has<semantics::ProcBindingDetails>()) { |
| 786 | CopyAttrs<Procedure, Procedure::Attr>(symbol, *result, |
| 787 | { |
| 788 | {semantics::Attr::BIND_C, Procedure::Attr::BindC}, |
| 789 | }); |
| 790 | CopyAttrs<Procedure, Procedure::Attr>(DEREF(GetMainEntry(&symbol)), *result, |
| 791 | { |
| 792 | {semantics::Attr::ELEMENTAL, Procedure::Attr::Elemental}, |
| 793 | }); |
| 794 | if (IsPureProcedure(symbol) || // works for ENTRY too |
| 795 | (!IsExplicitlyImpureProcedure(symbol) && |
| 796 | result->attrs.test(Procedure::Attr::Elemental))) { |
| 797 | result->attrs.set(Procedure::Attr::Pure); |
| 798 | } |
| 799 | } |
| 800 | return result; |
| 801 | } |
| 802 | |
| 803 | static std::optional<DummyProcedure> CharacterizeDummyProcedure( |
| 804 | const semantics::Symbol &symbol, FoldingContext &context, |
| 805 | semantics::UnorderedSymbolSet seenProcs) { |
| 806 | if (auto procedure{CharacterizeProcedure( |
| 807 | symbol, context, seenProcs, /*emitError=*/true)}) { |
| 808 | // Dummy procedures may not be elemental. Elemental dummy procedure |
| 809 | // interfaces are errors when the interface is not intrinsic, and that |
| 810 | // error is caught elsewhere. Elemental intrinsic interfaces are |
| 811 | // made non-elemental. |
| 812 | procedure->attrs.reset(Procedure::Attr::Elemental); |
| 813 | DummyProcedure result{std::move(procedure.value())}; |
| 814 | CopyAttrs<DummyProcedure, DummyProcedure::Attr>(symbol, result, |
| 815 | { |
| 816 | {semantics::Attr::OPTIONAL, DummyProcedure::Attr::Optional}, |
| 817 | {semantics::Attr::POINTER, DummyProcedure::Attr::Pointer}, |
| 818 | }); |
| 819 | result.intent = GetIntent(symbol.attrs()); |
| 820 | return result; |
| 821 | } else { |
| 822 | return std::nullopt; |
| 823 | } |
| 824 | } |
| 825 | |
| 826 | llvm::raw_ostream &DummyProcedure::Dump(llvm::raw_ostream &o) const { |
| 827 | attrs.Dump(o, EnumToString); |
| 828 | if (intent != common::Intent::Default) { |
| 829 | o << "INTENT(" << common::EnumToString(intent) << ')'; |
| 830 | } |
| 831 | procedure.value().Dump(o); |
| 832 | return o; |
| 833 | } |
| 834 | |
| 835 | llvm::raw_ostream &AlternateReturn::Dump(llvm::raw_ostream &o) const { |
| 836 | return o << '*'; |
| 837 | } |
| 838 | |
| 839 | DummyArgument::~DummyArgument() {} |
| 840 | |
| 841 | bool DummyArgument::operator==(const DummyArgument &that) const { |
| 842 | return u == that.u; // name and passed-object usage are not characteristics |
| 843 | } |
| 844 | |
| 845 | bool DummyArgument::IsCompatibleWith(const DummyArgument &actual, |
| 846 | std::string *whyNot, std::optional<std::string> *warning) const { |
| 847 | if (const auto *ifaceData{std::get_if<DummyDataObject>(&u)}) { |
| 848 | if (const auto *actualData{std::get_if<DummyDataObject>(&actual.u)}) { |
| 849 | return ifaceData->IsCompatibleWith(*actualData, whyNot, warning); |
| 850 | } |
| 851 | if (whyNot) { |
| 852 | *whyNot = "one dummy argument is an object, the other is not" ; |
| 853 | } |
| 854 | } else if (const auto *ifaceProc{std::get_if<DummyProcedure>(&u)}) { |
| 855 | if (const auto *actualProc{std::get_if<DummyProcedure>(&actual.u)}) { |
| 856 | return ifaceProc->IsCompatibleWith(*actualProc, whyNot); |
| 857 | } |
| 858 | if (whyNot) { |
| 859 | *whyNot = "one dummy argument is a procedure, the other is not" ; |
| 860 | } |
| 861 | } else { |
| 862 | CHECK(std::holds_alternative<AlternateReturn>(u)); |
| 863 | if (std::holds_alternative<AlternateReturn>(actual.u)) { |
| 864 | return true; |
| 865 | } |
| 866 | if (whyNot) { |
| 867 | *whyNot = "one dummy argument is an alternate return, the other is not" ; |
| 868 | } |
| 869 | } |
| 870 | return false; |
| 871 | } |
| 872 | |
| 873 | static std::optional<DummyArgument> CharacterizeDummyArgument( |
| 874 | const semantics::Symbol &symbol, FoldingContext &context, |
| 875 | semantics::UnorderedSymbolSet seenProcs) { |
| 876 | auto name{symbol.name().ToString()}; |
| 877 | if (symbol.has<semantics::ObjectEntityDetails>() || |
| 878 | symbol.has<semantics::EntityDetails>()) { |
| 879 | if (auto obj{DummyDataObject::Characterize(symbol, context)}) { |
| 880 | return DummyArgument{std::move(name), std::move(obj.value())}; |
| 881 | } |
| 882 | } else if (auto proc{ |
| 883 | CharacterizeDummyProcedure(symbol, context, seenProcs)}) { |
| 884 | return DummyArgument{std::move(name), std::move(proc.value())}; |
| 885 | } |
| 886 | return std::nullopt; |
| 887 | } |
| 888 | |
| 889 | std::optional<DummyArgument> DummyArgument::FromActual(std::string &&name, |
| 890 | const Expr<SomeType> &expr, FoldingContext &context, |
| 891 | bool forImplicitInterface) { |
| 892 | return common::visit( |
| 893 | common::visitors{ |
| 894 | [&](const BOZLiteralConstant &) { |
| 895 | DummyDataObject obj{ |
| 896 | TypeAndShape{DynamicType::TypelessIntrinsicArgument()}}; |
| 897 | obj.attrs.set(DummyDataObject::Attr::DeducedFromActual); |
| 898 | return std::make_optional<DummyArgument>( |
| 899 | std::move(name), std::move(obj)); |
| 900 | }, |
| 901 | [&](const NullPointer &) { |
| 902 | DummyDataObject obj{ |
| 903 | TypeAndShape{DynamicType::TypelessIntrinsicArgument()}}; |
| 904 | obj.attrs.set(DummyDataObject::Attr::DeducedFromActual); |
| 905 | return std::make_optional<DummyArgument>( |
| 906 | std::move(name), std::move(obj)); |
| 907 | }, |
| 908 | [&](const ProcedureDesignator &designator) { |
| 909 | if (auto proc{Procedure::Characterize( |
| 910 | designator, context, /*emitError=*/true)}) { |
| 911 | return std::make_optional<DummyArgument>( |
| 912 | std::move(name), DummyProcedure{std::move(*proc)}); |
| 913 | } else { |
| 914 | return std::optional<DummyArgument>{}; |
| 915 | } |
| 916 | }, |
| 917 | [&](const ProcedureRef &call) { |
| 918 | if (auto proc{Procedure::Characterize(call, context)}) { |
| 919 | return std::make_optional<DummyArgument>( |
| 920 | std::move(name), DummyProcedure{std::move(*proc)}); |
| 921 | } else { |
| 922 | return std::optional<DummyArgument>{}; |
| 923 | } |
| 924 | }, |
| 925 | [&](const auto &) { |
| 926 | if (auto type{TypeAndShape::Characterize(expr, context)}) { |
| 927 | if (forImplicitInterface && |
| 928 | !type->type().IsUnlimitedPolymorphic() && |
| 929 | type->type().IsPolymorphic()) { |
| 930 | // Pass the monomorphic declared type to an implicit interface |
| 931 | type->set_type(DynamicType{ |
| 932 | type->type().GetDerivedTypeSpec(), /*poly=*/false}); |
| 933 | } |
| 934 | if (type->type().category() == TypeCategory::Character && |
| 935 | type->type().kind() == 1) { |
| 936 | type->set_isPossibleSequenceAssociation(true); |
| 937 | } else if (const Symbol * array{IsArrayElement(expr)}) { |
| 938 | type->set_isPossibleSequenceAssociation( |
| 939 | IsContiguous(*array, context).value_or(false)); |
| 940 | } else { |
| 941 | type->set_isPossibleSequenceAssociation(expr.Rank() > 0); |
| 942 | } |
| 943 | DummyDataObject obj{std::move(*type)}; |
| 944 | obj.attrs.set(DummyDataObject::Attr::DeducedFromActual); |
| 945 | return std::make_optional<DummyArgument>( |
| 946 | std::move(name), std::move(obj)); |
| 947 | } else { |
| 948 | return std::optional<DummyArgument>{}; |
| 949 | } |
| 950 | }, |
| 951 | }, |
| 952 | expr.u); |
| 953 | } |
| 954 | |
| 955 | std::optional<DummyArgument> DummyArgument::FromActual(std::string &&name, |
| 956 | const ActualArgument &arg, FoldingContext &context, |
| 957 | bool forImplicitInterface) { |
| 958 | if (const auto *expr{arg.UnwrapExpr()}) { |
| 959 | return FromActual(std::move(name), *expr, context, forImplicitInterface); |
| 960 | } else if (arg.GetAssumedTypeDummy()) { |
| 961 | return std::nullopt; |
| 962 | } else { |
| 963 | return DummyArgument{AlternateReturn{}}; |
| 964 | } |
| 965 | } |
| 966 | |
| 967 | bool DummyArgument::IsOptional() const { |
| 968 | return common::visit( |
| 969 | common::visitors{ |
| 970 | [](const DummyDataObject &data) { |
| 971 | return data.attrs.test(DummyDataObject::Attr::Optional); |
| 972 | }, |
| 973 | [](const DummyProcedure &proc) { |
| 974 | return proc.attrs.test(DummyProcedure::Attr::Optional); |
| 975 | }, |
| 976 | [](const AlternateReturn &) { return false; }, |
| 977 | }, |
| 978 | u); |
| 979 | } |
| 980 | |
| 981 | void DummyArgument::SetOptional(bool value) { |
| 982 | common::visit(common::visitors{ |
| 983 | [value](DummyDataObject &data) { |
| 984 | data.attrs.set(DummyDataObject::Attr::Optional, value); |
| 985 | }, |
| 986 | [value](DummyProcedure &proc) { |
| 987 | proc.attrs.set(DummyProcedure::Attr::Optional, value); |
| 988 | }, |
| 989 | [](AlternateReturn &) { DIE("cannot set optional" ); }, |
| 990 | }, |
| 991 | u); |
| 992 | } |
| 993 | |
| 994 | void DummyArgument::SetIntent(common::Intent intent) { |
| 995 | common::visit(common::visitors{ |
| 996 | [intent](DummyDataObject &data) { data.intent = intent; }, |
| 997 | [intent](DummyProcedure &proc) { proc.intent = intent; }, |
| 998 | [](AlternateReturn &) { DIE("cannot set intent" ); }, |
| 999 | }, |
| 1000 | u); |
| 1001 | } |
| 1002 | |
| 1003 | common::Intent DummyArgument::GetIntent() const { |
| 1004 | return common::visit( |
| 1005 | common::visitors{ |
| 1006 | [](const DummyDataObject &data) { return data.intent; }, |
| 1007 | [](const DummyProcedure &proc) { return proc.intent; }, |
| 1008 | [](const AlternateReturn &) -> common::Intent { |
| 1009 | DIE("Alternate returns have no intent" ); |
| 1010 | }, |
| 1011 | }, |
| 1012 | u); |
| 1013 | } |
| 1014 | |
| 1015 | bool DummyArgument::CanBePassedViaImplicitInterface(std::string *whyNot) const { |
| 1016 | if (const auto *object{std::get_if<DummyDataObject>(&u)}) { |
| 1017 | return object->CanBePassedViaImplicitInterface(whyNot); |
| 1018 | } else if (const auto *proc{std::get_if<DummyProcedure>(&u)}) { |
| 1019 | return proc->CanBePassedViaImplicitInterface(whyNot); |
| 1020 | } else { |
| 1021 | return true; |
| 1022 | } |
| 1023 | } |
| 1024 | |
| 1025 | bool DummyArgument::IsTypelessIntrinsicDummy() const { |
| 1026 | const auto *argObj{std::get_if<characteristics::DummyDataObject>(&u)}; |
| 1027 | return argObj && argObj->type.type().IsTypelessIntrinsicArgument(); |
| 1028 | } |
| 1029 | |
| 1030 | llvm::raw_ostream &DummyArgument::Dump(llvm::raw_ostream &o) const { |
| 1031 | if (!name.empty()) { |
| 1032 | o << name << '='; |
| 1033 | } |
| 1034 | if (pass) { |
| 1035 | o << " PASS" ; |
| 1036 | } |
| 1037 | common::visit([&](const auto &x) { x.Dump(o); }, u); |
| 1038 | return o; |
| 1039 | } |
| 1040 | |
| 1041 | FunctionResult::FunctionResult(DynamicType t) : u{TypeAndShape{t}} {} |
| 1042 | FunctionResult::FunctionResult(TypeAndShape &&t) : u{std::move(t)} {} |
| 1043 | FunctionResult::FunctionResult(Procedure &&p) : u{std::move(p)} {} |
| 1044 | FunctionResult::~FunctionResult() {} |
| 1045 | |
| 1046 | bool FunctionResult::operator==(const FunctionResult &that) const { |
| 1047 | return attrs == that.attrs && cudaDataAttr == that.cudaDataAttr && |
| 1048 | u == that.u; |
| 1049 | } |
| 1050 | |
| 1051 | static std::optional<FunctionResult> CharacterizeFunctionResult( |
| 1052 | const semantics::Symbol &symbol, FoldingContext &context, |
| 1053 | semantics::UnorderedSymbolSet seenProcs, bool emitError) { |
| 1054 | if (const auto *object{symbol.detailsIf<semantics::ObjectEntityDetails>()}) { |
| 1055 | if (auto type{TypeAndShape::Characterize( |
| 1056 | symbol, context, /*invariantOnly=*/false)}) { |
| 1057 | FunctionResult result{std::move(*type)}; |
| 1058 | CopyAttrs<FunctionResult, FunctionResult::Attr>(symbol, result, |
| 1059 | { |
| 1060 | {semantics::Attr::ALLOCATABLE, FunctionResult::Attr::Allocatable}, |
| 1061 | {semantics::Attr::CONTIGUOUS, FunctionResult::Attr::Contiguous}, |
| 1062 | {semantics::Attr::POINTER, FunctionResult::Attr::Pointer}, |
| 1063 | }); |
| 1064 | result.cudaDataAttr = object->cudaDataAttr(); |
| 1065 | return result; |
| 1066 | } |
| 1067 | } else if (auto maybeProc{CharacterizeProcedure( |
| 1068 | symbol, context, seenProcs, emitError)}) { |
| 1069 | FunctionResult result{std::move(*maybeProc)}; |
| 1070 | result.attrs.set(FunctionResult::Attr::Pointer); |
| 1071 | return result; |
| 1072 | } |
| 1073 | return std::nullopt; |
| 1074 | } |
| 1075 | |
| 1076 | std::optional<FunctionResult> FunctionResult::Characterize( |
| 1077 | const Symbol &symbol, FoldingContext &context) { |
| 1078 | semantics::UnorderedSymbolSet seenProcs; |
| 1079 | return CharacterizeFunctionResult( |
| 1080 | symbol, context, seenProcs, /*emitError=*/false); |
| 1081 | } |
| 1082 | |
| 1083 | bool FunctionResult::IsAssumedLengthCharacter() const { |
| 1084 | if (const auto *ts{std::get_if<TypeAndShape>(&u)}) { |
| 1085 | return ts->type().IsAssumedLengthCharacter(); |
| 1086 | } else { |
| 1087 | return false; |
| 1088 | } |
| 1089 | } |
| 1090 | |
| 1091 | bool FunctionResult::CanBeReturnedViaImplicitInterface( |
| 1092 | std::string *whyNot) const { |
| 1093 | if (attrs.test(Attr::Pointer) || attrs.test(Attr::Allocatable)) { |
| 1094 | if (whyNot) { |
| 1095 | *whyNot = "the function result is a pointer or allocatable" ; |
| 1096 | } |
| 1097 | return false; // 15.4.2.2(4)(b) |
| 1098 | } else if (cudaDataAttr) { |
| 1099 | if (whyNot) { |
| 1100 | *whyNot = "the function result has CUDA attributes" ; |
| 1101 | } |
| 1102 | return false; |
| 1103 | } else if (const auto *typeAndShape{GetTypeAndShape()}) { |
| 1104 | if (typeAndShape->Rank() > 0) { |
| 1105 | if (whyNot) { |
| 1106 | *whyNot = "the function result is an array" ; |
| 1107 | } |
| 1108 | return false; // 15.4.2.2(4)(a) |
| 1109 | } else { |
| 1110 | const DynamicType &type{typeAndShape->type()}; |
| 1111 | switch (type.category()) { |
| 1112 | case TypeCategory::Character: |
| 1113 | if (type.knownLength()) { |
| 1114 | return true; |
| 1115 | } else if (const auto *param{type.charLengthParamValue()}) { |
| 1116 | if (const auto &expr{param->GetExplicit()}) { |
| 1117 | if (IsConstantExpr(*expr)) { // 15.4.2.2(4)(c) |
| 1118 | return true; |
| 1119 | } else { |
| 1120 | if (whyNot) { |
| 1121 | *whyNot = "the function result's length is not constant" ; |
| 1122 | } |
| 1123 | return false; |
| 1124 | } |
| 1125 | } else if (param->isAssumed()) { |
| 1126 | return true; |
| 1127 | } |
| 1128 | } |
| 1129 | if (whyNot) { |
| 1130 | *whyNot = "the function result's length is not known to the caller" ; |
| 1131 | } |
| 1132 | return false; |
| 1133 | case TypeCategory::Derived: |
| 1134 | if (type.IsPolymorphic()) { |
| 1135 | if (whyNot) { |
| 1136 | *whyNot = "the function result is polymorphic" ; |
| 1137 | } |
| 1138 | return false; |
| 1139 | } else { |
| 1140 | const auto &spec{type.GetDerivedTypeSpec()}; |
| 1141 | for (const auto &pair : spec.parameters()) { |
| 1142 | if (const auto &expr{pair.second.GetExplicit()}) { |
| 1143 | if (!IsConstantExpr(*expr)) { |
| 1144 | if (whyNot) { |
| 1145 | *whyNot = "the function result's derived type has a " |
| 1146 | "non-constant parameter" ; |
| 1147 | } |
| 1148 | return false; // 15.4.2.2(4)(c) |
| 1149 | } |
| 1150 | } |
| 1151 | } |
| 1152 | return true; |
| 1153 | } |
| 1154 | default: |
| 1155 | return true; |
| 1156 | } |
| 1157 | } |
| 1158 | } else { |
| 1159 | if (whyNot) { |
| 1160 | *whyNot = "the function result has unknown type or shape" ; |
| 1161 | } |
| 1162 | return false; // 15.4.2.2(4)(b) - procedure pointer? |
| 1163 | } |
| 1164 | } |
| 1165 | |
| 1166 | static std::optional<std::string> AreIncompatibleFunctionResultShapes( |
| 1167 | const Shape &x, const Shape &y) { |
| 1168 | // Function results cannot be assumed-rank, hence the non optional arguments. |
| 1169 | int rank{GetRank(x)}; |
| 1170 | if (int yrank{GetRank(y)}; yrank != rank) { |
| 1171 | return "rank "s + std::to_string(rank) + " vs " + std::to_string(yrank); |
| 1172 | } |
| 1173 | for (int j{0}; j < rank; ++j) { |
| 1174 | if (x[j] && y[j] && !(*x[j] == *y[j])) { |
| 1175 | return x[j]->AsFortran() + " vs " + y[j]->AsFortran(); |
| 1176 | } |
| 1177 | } |
| 1178 | return std::nullopt; |
| 1179 | } |
| 1180 | |
| 1181 | bool FunctionResult::IsCompatibleWith( |
| 1182 | const FunctionResult &actual, std::string *whyNot) const { |
| 1183 | Attrs actualAttrs{actual.attrs}; |
| 1184 | if (!attrs.test(Attr::Contiguous)) { |
| 1185 | actualAttrs.reset(Attr::Contiguous); |
| 1186 | } |
| 1187 | if (attrs != actualAttrs) { |
| 1188 | if (whyNot) { |
| 1189 | *whyNot = "function results have incompatible attributes" ; |
| 1190 | } |
| 1191 | } else if (cudaDataAttr != actual.cudaDataAttr) { |
| 1192 | if (whyNot) { |
| 1193 | *whyNot = "function results have incompatible CUDA data attributes" ; |
| 1194 | } |
| 1195 | } else if (const auto *ifaceTypeShape{std::get_if<TypeAndShape>(&u)}) { |
| 1196 | if (const auto *actualTypeShape{std::get_if<TypeAndShape>(&actual.u)}) { |
| 1197 | std::optional<std::string> details; |
| 1198 | if (ifaceTypeShape->Rank() != actualTypeShape->Rank()) { |
| 1199 | if (whyNot) { |
| 1200 | *whyNot = "function results have distinct ranks" ; |
| 1201 | } |
| 1202 | } else if (!attrs.test(Attr::Allocatable) && !attrs.test(Attr::Pointer) && |
| 1203 | (details = AreIncompatibleFunctionResultShapes( |
| 1204 | ifaceTypeShape->shape().value(), |
| 1205 | actualTypeShape->shape().value()))) { |
| 1206 | if (whyNot) { |
| 1207 | *whyNot = "function results have distinct extents (" + *details + ')'; |
| 1208 | } |
| 1209 | } else if (ifaceTypeShape->type() != actualTypeShape->type()) { |
| 1210 | if (ifaceTypeShape->type().category() != |
| 1211 | actualTypeShape->type().category()) { |
| 1212 | } else if (ifaceTypeShape->type().category() == |
| 1213 | TypeCategory::Character) { |
| 1214 | if (ifaceTypeShape->type().kind() == actualTypeShape->type().kind()) { |
| 1215 | if (IsAssumedLengthCharacter() || |
| 1216 | actual.IsAssumedLengthCharacter()) { |
| 1217 | return true; |
| 1218 | } else { |
| 1219 | auto len{ToInt64(ifaceTypeShape->LEN())}; |
| 1220 | auto actualLen{ToInt64(actualTypeShape->LEN())}; |
| 1221 | if (len.has_value() != actualLen.has_value()) { |
| 1222 | if (whyNot) { |
| 1223 | *whyNot = "constant-length vs non-constant-length character " |
| 1224 | "results" ; |
| 1225 | } |
| 1226 | } else if (len && *len != *actualLen) { |
| 1227 | if (whyNot) { |
| 1228 | *whyNot = "character results with distinct lengths" ; |
| 1229 | } |
| 1230 | } else { |
| 1231 | const auto *ifaceLenParam{ |
| 1232 | ifaceTypeShape->type().charLengthParamValue()}; |
| 1233 | const auto *actualLenParam{ |
| 1234 | actualTypeShape->type().charLengthParamValue()}; |
| 1235 | if (ifaceLenParam && actualLenParam && |
| 1236 | ifaceLenParam->isExplicit() != |
| 1237 | actualLenParam->isExplicit()) { |
| 1238 | if (whyNot) { |
| 1239 | *whyNot = |
| 1240 | "explicit-length vs deferred-length character results" ; |
| 1241 | } |
| 1242 | } else { |
| 1243 | return true; |
| 1244 | } |
| 1245 | } |
| 1246 | } |
| 1247 | } |
| 1248 | } else if (ifaceTypeShape->type().category() == TypeCategory::Derived) { |
| 1249 | if (ifaceTypeShape->type().IsPolymorphic() == |
| 1250 | actualTypeShape->type().IsPolymorphic() && |
| 1251 | !ifaceTypeShape->type().IsUnlimitedPolymorphic() && |
| 1252 | !actualTypeShape->type().IsUnlimitedPolymorphic() && |
| 1253 | AreSameDerivedType(ifaceTypeShape->type().GetDerivedTypeSpec(), |
| 1254 | actualTypeShape->type().GetDerivedTypeSpec())) { |
| 1255 | return true; |
| 1256 | } |
| 1257 | } |
| 1258 | if (whyNot) { |
| 1259 | *whyNot = "function results have distinct types: "s + |
| 1260 | ifaceTypeShape->type().AsFortran() + " vs "s + |
| 1261 | actualTypeShape->type().AsFortran(); |
| 1262 | } |
| 1263 | } else { |
| 1264 | return true; |
| 1265 | } |
| 1266 | } else { |
| 1267 | if (whyNot) { |
| 1268 | *whyNot = "function result type and shape are not known" ; |
| 1269 | } |
| 1270 | } |
| 1271 | } else { |
| 1272 | const auto *ifaceProc{std::get_if<CopyableIndirection<Procedure>>(&u)}; |
| 1273 | CHECK(ifaceProc != nullptr); |
| 1274 | if (const auto *actualProc{ |
| 1275 | std::get_if<CopyableIndirection<Procedure>>(&actual.u)}) { |
| 1276 | if (ifaceProc->value().IsCompatibleWith(actualProc->value(), |
| 1277 | /*ignoreImplicitVsExplicit=*/false, whyNot)) { |
| 1278 | return true; |
| 1279 | } |
| 1280 | if (whyNot) { |
| 1281 | *whyNot = |
| 1282 | "function results are incompatible procedure pointers: "s + *whyNot; |
| 1283 | } |
| 1284 | } else { |
| 1285 | if (whyNot) { |
| 1286 | *whyNot = |
| 1287 | "one function result is a procedure pointer, the other is not" ; |
| 1288 | } |
| 1289 | } |
| 1290 | } |
| 1291 | return false; |
| 1292 | } |
| 1293 | |
| 1294 | llvm::raw_ostream &FunctionResult::Dump(llvm::raw_ostream &o) const { |
| 1295 | attrs.Dump(o, EnumToString); |
| 1296 | common::visit(common::visitors{ |
| 1297 | [&](const TypeAndShape &ts) { ts.Dump(o); }, |
| 1298 | [&](const CopyableIndirection<Procedure> &p) { |
| 1299 | p.value().Dump(o << " procedure(" ) << ')'; |
| 1300 | }, |
| 1301 | }, |
| 1302 | u); |
| 1303 | if (cudaDataAttr) { |
| 1304 | o << " cudaDataAttr: " << common::EnumToString(*cudaDataAttr); |
| 1305 | } |
| 1306 | return o; |
| 1307 | } |
| 1308 | |
| 1309 | Procedure::Procedure(FunctionResult &&fr, DummyArguments &&args, Attrs a) |
| 1310 | : functionResult{std::move(fr)}, dummyArguments{std::move(args)}, attrs{a} { |
| 1311 | } |
| 1312 | Procedure::Procedure(DummyArguments &&args, Attrs a) |
| 1313 | : dummyArguments{std::move(args)}, attrs{a} {} |
| 1314 | Procedure::~Procedure() {} |
| 1315 | |
| 1316 | bool Procedure::operator==(const Procedure &that) const { |
| 1317 | return attrs == that.attrs && functionResult == that.functionResult && |
| 1318 | dummyArguments == that.dummyArguments && |
| 1319 | cudaSubprogramAttrs == that.cudaSubprogramAttrs; |
| 1320 | } |
| 1321 | |
| 1322 | bool Procedure::IsCompatibleWith(const Procedure &actual, |
| 1323 | bool ignoreImplicitVsExplicit, std::string *whyNot, |
| 1324 | const SpecificIntrinsic *specificIntrinsic, |
| 1325 | std::optional<std::string> *warning) const { |
| 1326 | // 15.5.2.9(1): if dummy is not pure, actual need not be. |
| 1327 | // Ditto with elemental. |
| 1328 | Attrs actualAttrs{actual.attrs}; |
| 1329 | if (!attrs.test(Attr::Pure)) { |
| 1330 | actualAttrs.reset(Attr::Pure); |
| 1331 | } |
| 1332 | if (!attrs.test(Attr::Elemental) && specificIntrinsic) { |
| 1333 | actualAttrs.reset(Attr::Elemental); |
| 1334 | } |
| 1335 | Attrs differences{attrs ^ actualAttrs}; |
| 1336 | differences.reset(Attr::Subroutine); // dealt with specifically later |
| 1337 | if (ignoreImplicitVsExplicit) { |
| 1338 | differences.reset(Attr::ImplicitInterface); |
| 1339 | } |
| 1340 | if (!differences.empty()) { |
| 1341 | if (whyNot) { |
| 1342 | auto sep{": "s }; |
| 1343 | *whyNot = "incompatible procedure attributes" ; |
| 1344 | differences.IterateOverMembers([&](Attr x) { |
| 1345 | *whyNot += sep + std::string{EnumToString(x)}; |
| 1346 | sep = ", " ; |
| 1347 | }); |
| 1348 | } |
| 1349 | } else if ((IsFunction() && actual.IsSubroutine()) || |
| 1350 | (IsSubroutine() && actual.IsFunction())) { |
| 1351 | if (whyNot) { |
| 1352 | *whyNot = |
| 1353 | "incompatible procedures: one is a function, the other a subroutine" ; |
| 1354 | } |
| 1355 | } else if (functionResult && actual.functionResult && |
| 1356 | !functionResult->IsCompatibleWith(*actual.functionResult, whyNot)) { |
| 1357 | } else if (cudaSubprogramAttrs != actual.cudaSubprogramAttrs) { |
| 1358 | if (whyNot) { |
| 1359 | *whyNot = "incompatible CUDA subprogram attributes" ; |
| 1360 | } |
| 1361 | } else if (dummyArguments.size() != actual.dummyArguments.size()) { |
| 1362 | if (whyNot) { |
| 1363 | *whyNot = "distinct numbers of dummy arguments" ; |
| 1364 | } |
| 1365 | } else { |
| 1366 | for (std::size_t j{0}; j < dummyArguments.size(); ++j) { |
| 1367 | // Subtlety: the dummy/actual distinction must be reversed for this |
| 1368 | // compatibility test in order to correctly check extended vs. |
| 1369 | // base types. Example: |
| 1370 | // subroutine s1(base); subroutine s2(extended) |
| 1371 | // procedure(s1), pointer :: p |
| 1372 | // p => s2 ! an error, s2 is more restricted, can't handle "base" |
| 1373 | std::optional<std::string> gotWarning; |
| 1374 | if (!actual.dummyArguments[j].IsCompatibleWith( |
| 1375 | dummyArguments[j], whyNot, warning ? &gotWarning : nullptr)) { |
| 1376 | if (whyNot) { |
| 1377 | *whyNot = "incompatible dummy argument #"s + std::to_string(j + 1) + |
| 1378 | ": "s + *whyNot; |
| 1379 | } |
| 1380 | return false; |
| 1381 | } else if (warning && !*warning && gotWarning) { |
| 1382 | *warning = "possibly incompatible dummy argument #"s + |
| 1383 | std::to_string(j + 1) + ": "s + std::move(*gotWarning); |
| 1384 | } |
| 1385 | } |
| 1386 | return true; |
| 1387 | } |
| 1388 | return false; |
| 1389 | } |
| 1390 | |
| 1391 | std::optional<int> Procedure::FindPassIndex( |
| 1392 | std::optional<parser::CharBlock> name) const { |
| 1393 | int argCount{static_cast<int>(dummyArguments.size())}; |
| 1394 | if (name) { |
| 1395 | for (int index{0}; index < argCount; ++index) { |
| 1396 | if (*name == dummyArguments[index].name.c_str()) { |
| 1397 | return index; |
| 1398 | } |
| 1399 | } |
| 1400 | return std::nullopt; |
| 1401 | } else if (argCount > 0) { |
| 1402 | return 0; |
| 1403 | } else { |
| 1404 | return std::nullopt; |
| 1405 | } |
| 1406 | } |
| 1407 | |
| 1408 | bool Procedure::CanOverride( |
| 1409 | const Procedure &that, std::optional<int> passIndex) const { |
| 1410 | // A pure procedure may override an impure one (7.5.7.3(2)) |
| 1411 | if ((that.attrs.test(Attr::Pure) && !attrs.test(Attr::Pure)) || |
| 1412 | that.attrs.test(Attr::Elemental) != attrs.test(Attr::Elemental) || |
| 1413 | functionResult != that.functionResult) { |
| 1414 | return false; |
| 1415 | } |
| 1416 | int argCount{static_cast<int>(dummyArguments.size())}; |
| 1417 | if (argCount != static_cast<int>(that.dummyArguments.size())) { |
| 1418 | return false; |
| 1419 | } |
| 1420 | for (int j{0}; j < argCount; ++j) { |
| 1421 | if (passIndex && j == *passIndex) { |
| 1422 | if (!that.dummyArguments[j].IsCompatibleWith(dummyArguments[j])) { |
| 1423 | return false; |
| 1424 | } |
| 1425 | } else if (dummyArguments[j] != that.dummyArguments[j]) { |
| 1426 | return false; |
| 1427 | } |
| 1428 | } |
| 1429 | return true; |
| 1430 | } |
| 1431 | |
| 1432 | std::optional<Procedure> Procedure::Characterize( |
| 1433 | const semantics::Symbol &symbol, FoldingContext &context) { |
| 1434 | semantics::UnorderedSymbolSet seenProcs; |
| 1435 | return CharacterizeProcedure(symbol, context, seenProcs, /*emitError=*/true); |
| 1436 | } |
| 1437 | |
| 1438 | std::optional<Procedure> Procedure::Characterize( |
| 1439 | const ProcedureDesignator &proc, FoldingContext &context, bool emitError) { |
| 1440 | if (const auto *symbol{proc.GetSymbol()}) { |
| 1441 | semantics::UnorderedSymbolSet seenProcs; |
| 1442 | return CharacterizeProcedure(*symbol, context, seenProcs, emitError); |
| 1443 | } else if (const auto *intrinsic{proc.GetSpecificIntrinsic()}) { |
| 1444 | return intrinsic->characteristics.value(); |
| 1445 | } else { |
| 1446 | return std::nullopt; |
| 1447 | } |
| 1448 | } |
| 1449 | |
| 1450 | std::optional<Procedure> Procedure::Characterize( |
| 1451 | const ProcedureRef &ref, FoldingContext &context) { |
| 1452 | if (auto callee{Characterize(ref.proc(), context, /*emitError=*/true)}) { |
| 1453 | if (callee->functionResult) { |
| 1454 | if (const Procedure * |
| 1455 | proc{callee->functionResult->IsProcedurePointer()}) { |
| 1456 | return {*proc}; |
| 1457 | } |
| 1458 | } |
| 1459 | } |
| 1460 | return std::nullopt; |
| 1461 | } |
| 1462 | |
| 1463 | std::optional<Procedure> Procedure::Characterize( |
| 1464 | const Expr<SomeType> &expr, FoldingContext &context) { |
| 1465 | if (const auto *procRef{UnwrapProcedureRef(expr)}) { |
| 1466 | return Characterize(*procRef, context); |
| 1467 | } else if (const auto *procDesignator{ |
| 1468 | std::get_if<ProcedureDesignator>(&expr.u)}) { |
| 1469 | return Characterize(*procDesignator, context, /*emitError=*/true); |
| 1470 | } else if (const Symbol * symbol{UnwrapWholeSymbolOrComponentDataRef(expr)}) { |
| 1471 | return Characterize(*symbol, context); |
| 1472 | } else { |
| 1473 | context.messages().Say( |
| 1474 | "Expression '%s' is not a procedure"_err_en_US , expr.AsFortran()); |
| 1475 | return std::nullopt; |
| 1476 | } |
| 1477 | } |
| 1478 | |
| 1479 | std::optional<Procedure> Procedure::FromActuals(const ProcedureDesignator &proc, |
| 1480 | const ActualArguments &args, FoldingContext &context) { |
| 1481 | auto callee{Characterize(proc, context, /*emitError=*/true)}; |
| 1482 | if (callee) { |
| 1483 | if (callee->dummyArguments.empty() && |
| 1484 | callee->attrs.test(Procedure::Attr::ImplicitInterface)) { |
| 1485 | int j{0}; |
| 1486 | for (const auto &arg : args) { |
| 1487 | ++j; |
| 1488 | if (arg) { |
| 1489 | if (auto dummy{DummyArgument::FromActual("x"s + std::to_string(j), |
| 1490 | *arg, context, |
| 1491 | /*forImplicitInterface=*/true)}) { |
| 1492 | callee->dummyArguments.emplace_back(std::move(*dummy)); |
| 1493 | continue; |
| 1494 | } |
| 1495 | } |
| 1496 | callee.reset(); |
| 1497 | break; |
| 1498 | } |
| 1499 | } |
| 1500 | } |
| 1501 | return callee; |
| 1502 | } |
| 1503 | |
| 1504 | bool Procedure::CanBeCalledViaImplicitInterface(std::string *whyNot) const { |
| 1505 | if (attrs.test(Attr::Elemental)) { |
| 1506 | if (whyNot) { |
| 1507 | *whyNot = "the procedure is elemental" ; |
| 1508 | } |
| 1509 | return false; // 15.4.2.2(5,6) |
| 1510 | } else if (attrs.test(Attr::BindC)) { |
| 1511 | if (whyNot) { |
| 1512 | *whyNot = "the procedure is BIND(C)" ; |
| 1513 | } |
| 1514 | return false; // 15.4.2.2(5,6) |
| 1515 | } else if (cudaSubprogramAttrs && |
| 1516 | *cudaSubprogramAttrs != common::CUDASubprogramAttrs::Host && |
| 1517 | *cudaSubprogramAttrs != common::CUDASubprogramAttrs::Global) { |
| 1518 | if (whyNot) { |
| 1519 | *whyNot = "the procedure is CUDA but neither HOST nor GLOBAL" ; |
| 1520 | } |
| 1521 | return false; |
| 1522 | } else if (IsFunction() && |
| 1523 | !functionResult->CanBeReturnedViaImplicitInterface(whyNot)) { |
| 1524 | return false; |
| 1525 | } else { |
| 1526 | for (const DummyArgument &arg : dummyArguments) { |
| 1527 | if (!arg.CanBePassedViaImplicitInterface(whyNot)) { |
| 1528 | return false; |
| 1529 | } |
| 1530 | } |
| 1531 | return true; |
| 1532 | } |
| 1533 | } |
| 1534 | |
| 1535 | llvm::raw_ostream &Procedure::Dump(llvm::raw_ostream &o) const { |
| 1536 | attrs.Dump(o, EnumToString); |
| 1537 | if (functionResult) { |
| 1538 | functionResult->Dump(o << "TYPE(" ) << ") FUNCTION" ; |
| 1539 | } else if (attrs.test(Attr::Subroutine)) { |
| 1540 | o << "SUBROUTINE" ; |
| 1541 | } else { |
| 1542 | o << "EXTERNAL" ; |
| 1543 | } |
| 1544 | char sep{'('}; |
| 1545 | for (const auto &dummy : dummyArguments) { |
| 1546 | dummy.Dump(o << sep); |
| 1547 | sep = ','; |
| 1548 | } |
| 1549 | o << (sep == '(' ? "()" : ")" ); |
| 1550 | if (cudaSubprogramAttrs) { |
| 1551 | o << " cudaSubprogramAttrs: " << common::EnumToString(*cudaSubprogramAttrs); |
| 1552 | } |
| 1553 | return o; |
| 1554 | } |
| 1555 | |
| 1556 | // Utility class to determine if Procedures, etc. are distinguishable |
| 1557 | class DistinguishUtils { |
| 1558 | public: |
| 1559 | explicit DistinguishUtils(const common::LanguageFeatureControl &features) |
| 1560 | : features_{features} {} |
| 1561 | |
| 1562 | // Are these procedures distinguishable for a generic name? |
| 1563 | std::optional<bool> Distinguishable( |
| 1564 | const Procedure &, const Procedure &) const; |
| 1565 | // Are these procedures distinguishable for a generic operator or assignment? |
| 1566 | std::optional<bool> DistinguishableOpOrAssign( |
| 1567 | const Procedure &, const Procedure &) const; |
| 1568 | |
| 1569 | private: |
| 1570 | struct CountDummyProcedures { |
| 1571 | CountDummyProcedures(const DummyArguments &args) { |
| 1572 | for (const DummyArgument &arg : args) { |
| 1573 | if (std::holds_alternative<DummyProcedure>(arg.u)) { |
| 1574 | total += 1; |
| 1575 | notOptional += !arg.IsOptional(); |
| 1576 | } |
| 1577 | } |
| 1578 | } |
| 1579 | int total{0}; |
| 1580 | int notOptional{0}; |
| 1581 | }; |
| 1582 | |
| 1583 | bool AnyOptionalData(const DummyArguments &) const; |
| 1584 | bool AnyUnlimitedPolymorphicData(const DummyArguments &) const; |
| 1585 | bool Rule3Distinguishable(const Procedure &, const Procedure &) const; |
| 1586 | const DummyArgument *Rule1DistinguishingArg( |
| 1587 | const DummyArguments &, const DummyArguments &) const; |
| 1588 | int FindFirstToDistinguishByPosition( |
| 1589 | const DummyArguments &, const DummyArguments &) const; |
| 1590 | int FindLastToDistinguishByName( |
| 1591 | const DummyArguments &, const DummyArguments &) const; |
| 1592 | int CountCompatibleWith(const DummyArgument &, const DummyArguments &) const; |
| 1593 | int CountNotDistinguishableFrom( |
| 1594 | const DummyArgument &, const DummyArguments &) const; |
| 1595 | bool Distinguishable(const DummyArgument &, const DummyArgument &) const; |
| 1596 | bool Distinguishable(const DummyDataObject &, const DummyDataObject &) const; |
| 1597 | bool Distinguishable(const DummyProcedure &, const DummyProcedure &) const; |
| 1598 | bool Distinguishable(const FunctionResult &, const FunctionResult &) const; |
| 1599 | bool Distinguishable( |
| 1600 | const TypeAndShape &, const TypeAndShape &, common::IgnoreTKRSet) const; |
| 1601 | bool IsTkrCompatible(const DummyArgument &, const DummyArgument &) const; |
| 1602 | bool IsTkCompatible(const DummyDataObject &, const DummyDataObject &) const; |
| 1603 | const DummyArgument *GetAtEffectivePosition( |
| 1604 | const DummyArguments &, int) const; |
| 1605 | const DummyArgument *GetPassArg(const Procedure &) const; |
| 1606 | |
| 1607 | const common::LanguageFeatureControl &features_; |
| 1608 | }; |
| 1609 | |
| 1610 | // Simpler distinguishability rules for operators and assignment |
| 1611 | std::optional<bool> DistinguishUtils::DistinguishableOpOrAssign( |
| 1612 | const Procedure &proc1, const Procedure &proc2) const { |
| 1613 | if ((proc1.IsFunction() && proc2.IsSubroutine()) || |
| 1614 | (proc1.IsSubroutine() && proc2.IsFunction())) { |
| 1615 | return true; |
| 1616 | } |
| 1617 | auto &args1{proc1.dummyArguments}; |
| 1618 | auto &args2{proc2.dummyArguments}; |
| 1619 | if (args1.size() != args2.size()) { |
| 1620 | return true; // C1511: distinguishable based on number of arguments |
| 1621 | } |
| 1622 | for (std::size_t i{0}; i < args1.size(); ++i) { |
| 1623 | if (Distinguishable(args1[i], args2[i])) { |
| 1624 | return true; // C1511, C1512: distinguishable based on this arg |
| 1625 | } |
| 1626 | } |
| 1627 | return false; |
| 1628 | } |
| 1629 | |
| 1630 | std::optional<bool> DistinguishUtils::Distinguishable( |
| 1631 | const Procedure &proc1, const Procedure &proc2) const { |
| 1632 | if ((proc1.IsFunction() && proc2.IsSubroutine()) || |
| 1633 | (proc1.IsSubroutine() && proc2.IsFunction())) { |
| 1634 | return true; |
| 1635 | } |
| 1636 | auto &args1{proc1.dummyArguments}; |
| 1637 | auto &args2{proc2.dummyArguments}; |
| 1638 | auto count1{CountDummyProcedures(args1)}; |
| 1639 | auto count2{CountDummyProcedures(args2)}; |
| 1640 | if (count1.notOptional > count2.total || count2.notOptional > count1.total) { |
| 1641 | return true; // distinguishable based on C1514 rule 2 |
| 1642 | } |
| 1643 | if (Rule3Distinguishable(proc1, proc2)) { |
| 1644 | return true; // distinguishable based on C1514 rule 3 |
| 1645 | } |
| 1646 | if (Rule1DistinguishingArg(args1, args2)) { |
| 1647 | return true; // distinguishable based on C1514 rule 1 |
| 1648 | } |
| 1649 | int pos1{FindFirstToDistinguishByPosition(args1, args2)}; |
| 1650 | int name1{FindLastToDistinguishByName(args1, args2)}; |
| 1651 | if (pos1 >= 0 && pos1 <= name1) { |
| 1652 | return true; // distinguishable based on C1514 rule 4 |
| 1653 | } |
| 1654 | int pos2{FindFirstToDistinguishByPosition(args2, args1)}; |
| 1655 | int name2{FindLastToDistinguishByName(args2, args1)}; |
| 1656 | if (pos2 >= 0 && pos2 <= name2) { |
| 1657 | return true; // distinguishable based on C1514 rule 4 |
| 1658 | } |
| 1659 | if (proc1.cudaSubprogramAttrs != proc2.cudaSubprogramAttrs) { |
| 1660 | return true; |
| 1661 | } |
| 1662 | // If there are no optional or unlimited polymorphic dummy arguments, |
| 1663 | // then we know the result for sure; otherwise, it's possible for |
| 1664 | // the procedures to be unambiguous. |
| 1665 | if ((AnyOptionalData(args1) || AnyUnlimitedPolymorphicData(args1)) && |
| 1666 | (AnyOptionalData(args2) || AnyUnlimitedPolymorphicData(args2))) { |
| 1667 | return std::nullopt; // meaning "maybe" |
| 1668 | } else { |
| 1669 | return false; |
| 1670 | } |
| 1671 | } |
| 1672 | |
| 1673 | bool DistinguishUtils::AnyOptionalData(const DummyArguments &args) const { |
| 1674 | for (const auto &arg : args) { |
| 1675 | if (std::holds_alternative<DummyDataObject>(arg.u) && arg.IsOptional()) { |
| 1676 | return true; |
| 1677 | } |
| 1678 | } |
| 1679 | return false; |
| 1680 | } |
| 1681 | |
| 1682 | bool DistinguishUtils::AnyUnlimitedPolymorphicData( |
| 1683 | const DummyArguments &args) const { |
| 1684 | for (const auto &arg : args) { |
| 1685 | if (const auto *object{std::get_if<DummyDataObject>(&arg.u)}) { |
| 1686 | if (object->type.type().IsUnlimitedPolymorphic()) { |
| 1687 | return true; |
| 1688 | } |
| 1689 | } |
| 1690 | } |
| 1691 | return false; |
| 1692 | } |
| 1693 | |
| 1694 | // C1514 rule 3: Procedures are distinguishable if both have a passed-object |
| 1695 | // dummy argument and those are distinguishable. |
| 1696 | bool DistinguishUtils::Rule3Distinguishable( |
| 1697 | const Procedure &proc1, const Procedure &proc2) const { |
| 1698 | const DummyArgument *pass1{GetPassArg(proc1)}; |
| 1699 | const DummyArgument *pass2{GetPassArg(proc2)}; |
| 1700 | return pass1 && pass2 && Distinguishable(*pass1, *pass2); |
| 1701 | } |
| 1702 | |
| 1703 | // Find a non-passed-object dummy data object in one of the argument lists |
| 1704 | // that satisfies C1514 rule 1. I.e. x such that: |
| 1705 | // - m is the number of dummy data objects in one that are nonoptional, |
| 1706 | // are not passed-object, that x is TKR compatible with |
| 1707 | // - n is the number of non-passed-object dummy data objects, in the other |
| 1708 | // that are not distinguishable from x |
| 1709 | // - m is greater than n |
| 1710 | const DummyArgument *DistinguishUtils::Rule1DistinguishingArg( |
| 1711 | const DummyArguments &args1, const DummyArguments &args2) const { |
| 1712 | auto size1{args1.size()}; |
| 1713 | auto size2{args2.size()}; |
| 1714 | for (std::size_t i{0}; i < size1 + size2; ++i) { |
| 1715 | const DummyArgument &x{i < size1 ? args1[i] : args2[i - size1]}; |
| 1716 | if (!x.pass && std::holds_alternative<DummyDataObject>(x.u)) { |
| 1717 | if (CountCompatibleWith(x, args1) > |
| 1718 | CountNotDistinguishableFrom(x, args2) || |
| 1719 | CountCompatibleWith(x, args2) > |
| 1720 | CountNotDistinguishableFrom(x, args1)) { |
| 1721 | return &x; |
| 1722 | } |
| 1723 | } |
| 1724 | } |
| 1725 | return nullptr; |
| 1726 | } |
| 1727 | |
| 1728 | // Find the index of the first nonoptional non-passed-object dummy argument |
| 1729 | // in args1 at an effective position such that either: |
| 1730 | // - args2 has no dummy argument at that effective position |
| 1731 | // - the dummy argument at that position is distinguishable from it |
| 1732 | int DistinguishUtils::FindFirstToDistinguishByPosition( |
| 1733 | const DummyArguments &args1, const DummyArguments &args2) const { |
| 1734 | int effective{0}; // position of arg1 in list, ignoring passed arg |
| 1735 | for (std::size_t i{0}; i < args1.size(); ++i) { |
| 1736 | const DummyArgument &arg1{args1.at(i)}; |
| 1737 | if (!arg1.pass && !arg1.IsOptional()) { |
| 1738 | const DummyArgument *arg2{GetAtEffectivePosition(args2, effective)}; |
| 1739 | if (!arg2 || Distinguishable(arg1, *arg2)) { |
| 1740 | return i; |
| 1741 | } |
| 1742 | } |
| 1743 | effective += !arg1.pass; |
| 1744 | } |
| 1745 | return -1; |
| 1746 | } |
| 1747 | |
| 1748 | // Find the index of the last nonoptional non-passed-object dummy argument |
| 1749 | // in args1 whose name is such that either: |
| 1750 | // - args2 has no dummy argument with that name |
| 1751 | // - the dummy argument with that name is distinguishable from it |
| 1752 | int DistinguishUtils::FindLastToDistinguishByName( |
| 1753 | const DummyArguments &args1, const DummyArguments &args2) const { |
| 1754 | std::map<std::string, const DummyArgument *> nameToArg; |
| 1755 | for (const auto &arg2 : args2) { |
| 1756 | nameToArg.emplace(arg2.name, &arg2); |
| 1757 | } |
| 1758 | for (int i = args1.size() - 1; i >= 0; --i) { |
| 1759 | const DummyArgument &arg1{args1.at(i)}; |
| 1760 | if (!arg1.pass && !arg1.IsOptional()) { |
| 1761 | auto it{nameToArg.find(arg1.name)}; |
| 1762 | if (it == nameToArg.end() || Distinguishable(arg1, *it->second)) { |
| 1763 | return i; |
| 1764 | } |
| 1765 | } |
| 1766 | } |
| 1767 | return -1; |
| 1768 | } |
| 1769 | |
| 1770 | // Count the dummy data objects in args that are nonoptional, are not |
| 1771 | // passed-object, and that x is TKR compatible with |
| 1772 | int DistinguishUtils::CountCompatibleWith( |
| 1773 | const DummyArgument &x, const DummyArguments &args) const { |
| 1774 | return llvm::count_if(args, [&](const DummyArgument &y) { |
| 1775 | return !y.pass && !y.IsOptional() && IsTkrCompatible(x, y); |
| 1776 | }); |
| 1777 | } |
| 1778 | |
| 1779 | // Return the number of dummy data objects in args that are not |
| 1780 | // distinguishable from x and not passed-object. |
| 1781 | int DistinguishUtils::CountNotDistinguishableFrom( |
| 1782 | const DummyArgument &x, const DummyArguments &args) const { |
| 1783 | return llvm::count_if(args, [&](const DummyArgument &y) { |
| 1784 | return !y.pass && std::holds_alternative<DummyDataObject>(y.u) && |
| 1785 | !Distinguishable(y, x); |
| 1786 | }); |
| 1787 | } |
| 1788 | |
| 1789 | bool DistinguishUtils::Distinguishable( |
| 1790 | const DummyArgument &x, const DummyArgument &y) const { |
| 1791 | if (x.u.index() != y.u.index()) { |
| 1792 | return true; // different kind: data/proc/alt-return |
| 1793 | } |
| 1794 | return common::visit( |
| 1795 | common::visitors{ |
| 1796 | [&](const DummyDataObject &z) { |
| 1797 | return Distinguishable(z, std::get<DummyDataObject>(y.u)); |
| 1798 | }, |
| 1799 | [&](const DummyProcedure &z) { |
| 1800 | return Distinguishable(z, std::get<DummyProcedure>(y.u)); |
| 1801 | }, |
| 1802 | [&](const AlternateReturn &) { return false; }, |
| 1803 | }, |
| 1804 | x.u); |
| 1805 | } |
| 1806 | |
| 1807 | bool DistinguishUtils::Distinguishable( |
| 1808 | const DummyDataObject &x, const DummyDataObject &y) const { |
| 1809 | using Attr = DummyDataObject::Attr; |
| 1810 | if (Distinguishable(x.type, y.type, x.ignoreTKR | y.ignoreTKR)) { |
| 1811 | return true; |
| 1812 | } else if (x.attrs.test(Attr::Allocatable) && y.attrs.test(Attr::Pointer) && |
| 1813 | y.intent != common::Intent::In) { |
| 1814 | return true; |
| 1815 | } else if (y.attrs.test(Attr::Allocatable) && x.attrs.test(Attr::Pointer) && |
| 1816 | x.intent != common::Intent::In) { |
| 1817 | return true; |
| 1818 | } else if (!common::AreCompatibleCUDADataAttrs(x.cudaDataAttr, y.cudaDataAttr, |
| 1819 | x.ignoreTKR | y.ignoreTKR, nullptr, |
| 1820 | /*allowUnifiedMatchingRule=*/false, |
| 1821 | /*=isHostDeviceProcedure*/ false)) { |
| 1822 | return true; |
| 1823 | } else if (features_.IsEnabled( |
| 1824 | common::LanguageFeature::DistinguishableSpecifics) && |
| 1825 | (x.attrs.test(Attr::Allocatable) || x.attrs.test(Attr::Pointer)) && |
| 1826 | (y.attrs.test(Attr::Allocatable) || y.attrs.test(Attr::Pointer)) && |
| 1827 | (x.type.type().IsUnlimitedPolymorphic() != |
| 1828 | y.type.type().IsUnlimitedPolymorphic() || |
| 1829 | x.type.type().IsPolymorphic() != y.type.type().IsPolymorphic())) { |
| 1830 | // Extension: Per 15.5.2.5(2), an allocatable/pointer dummy and its |
| 1831 | // corresponding actual argument must both or neither be polymorphic, |
| 1832 | // and must both or neither be unlimited polymorphic. So when exactly |
| 1833 | // one of two dummy arguments is polymorphic or unlimited polymorphic, |
| 1834 | // any actual argument that is admissible to one of them cannot also match |
| 1835 | // the other one. |
| 1836 | return true; |
| 1837 | } else { |
| 1838 | return false; |
| 1839 | } |
| 1840 | } |
| 1841 | |
| 1842 | bool DistinguishUtils::Distinguishable( |
| 1843 | const DummyProcedure &x, const DummyProcedure &y) const { |
| 1844 | const Procedure &xProc{x.procedure.value()}; |
| 1845 | const Procedure &yProc{y.procedure.value()}; |
| 1846 | if (Distinguishable(xProc, yProc).value_or(false)) { |
| 1847 | return true; |
| 1848 | } else { |
| 1849 | const std::optional<FunctionResult> &xResult{xProc.functionResult}; |
| 1850 | const std::optional<FunctionResult> &yResult{yProc.functionResult}; |
| 1851 | return xResult ? !yResult || Distinguishable(*xResult, *yResult) |
| 1852 | : yResult.has_value(); |
| 1853 | } |
| 1854 | } |
| 1855 | |
| 1856 | bool DistinguishUtils::Distinguishable( |
| 1857 | const FunctionResult &x, const FunctionResult &y) const { |
| 1858 | if (x.u.index() != y.u.index()) { |
| 1859 | return true; // one is data object, one is procedure |
| 1860 | } |
| 1861 | if (x.cudaDataAttr != y.cudaDataAttr) { |
| 1862 | return true; |
| 1863 | } |
| 1864 | return common::visit( |
| 1865 | common::visitors{ |
| 1866 | [&](const TypeAndShape &z) { |
| 1867 | return Distinguishable( |
| 1868 | z, std::get<TypeAndShape>(y.u), common::IgnoreTKRSet{}); |
| 1869 | }, |
| 1870 | [&](const CopyableIndirection<Procedure> &z) { |
| 1871 | return Distinguishable(z.value(), |
| 1872 | std::get<CopyableIndirection<Procedure>>(y.u).value()) |
| 1873 | .value_or(false); |
| 1874 | }, |
| 1875 | }, |
| 1876 | x.u); |
| 1877 | } |
| 1878 | |
| 1879 | bool DistinguishUtils::Distinguishable(const TypeAndShape &x, |
| 1880 | const TypeAndShape &y, common::IgnoreTKRSet ignoreTKR) const { |
| 1881 | if (!x.type().IsTkCompatibleWith(y.type(), ignoreTKR) && |
| 1882 | !y.type().IsTkCompatibleWith(x.type(), ignoreTKR)) { |
| 1883 | return true; |
| 1884 | } |
| 1885 | if (ignoreTKR.test(common::IgnoreTKR::Rank)) { |
| 1886 | } else if (x.attrs().test(TypeAndShape::Attr::AssumedRank) || |
| 1887 | y.attrs().test(TypeAndShape::Attr::AssumedRank)) { |
| 1888 | } else if (x.Rank() != y.Rank()) { |
| 1889 | return true; |
| 1890 | } |
| 1891 | return false; |
| 1892 | } |
| 1893 | |
| 1894 | // Compatibility based on type, kind, and rank |
| 1895 | |
| 1896 | bool DistinguishUtils::IsTkrCompatible( |
| 1897 | const DummyArgument &x, const DummyArgument &y) const { |
| 1898 | const auto *obj1{std::get_if<DummyDataObject>(&x.u)}; |
| 1899 | const auto *obj2{std::get_if<DummyDataObject>(&y.u)}; |
| 1900 | return obj1 && obj2 && IsTkCompatible(*obj1, *obj2) && |
| 1901 | (obj1->type.Rank() == obj2->type.Rank() || |
| 1902 | obj1->type.attrs().test(TypeAndShape::Attr::AssumedRank) || |
| 1903 | obj2->type.attrs().test(TypeAndShape::Attr::AssumedRank) || |
| 1904 | obj1->ignoreTKR.test(common::IgnoreTKR::Rank) || |
| 1905 | obj2->ignoreTKR.test(common::IgnoreTKR::Rank)); |
| 1906 | } |
| 1907 | |
| 1908 | bool DistinguishUtils::IsTkCompatible( |
| 1909 | const DummyDataObject &x, const DummyDataObject &y) const { |
| 1910 | return x.type.type().IsTkCompatibleWith( |
| 1911 | y.type.type(), x.ignoreTKR | y.ignoreTKR); |
| 1912 | } |
| 1913 | |
| 1914 | // Return the argument at the given index, ignoring the passed arg |
| 1915 | const DummyArgument *DistinguishUtils::GetAtEffectivePosition( |
| 1916 | const DummyArguments &args, int index) const { |
| 1917 | for (const DummyArgument &arg : args) { |
| 1918 | if (!arg.pass) { |
| 1919 | if (index == 0) { |
| 1920 | return &arg; |
| 1921 | } |
| 1922 | --index; |
| 1923 | } |
| 1924 | } |
| 1925 | return nullptr; |
| 1926 | } |
| 1927 | |
| 1928 | // Return the passed-object dummy argument of this procedure, if any |
| 1929 | const DummyArgument *DistinguishUtils::GetPassArg(const Procedure &proc) const { |
| 1930 | for (const auto &arg : proc.dummyArguments) { |
| 1931 | if (arg.pass) { |
| 1932 | return &arg; |
| 1933 | } |
| 1934 | } |
| 1935 | return nullptr; |
| 1936 | } |
| 1937 | |
| 1938 | std::optional<bool> Distinguishable( |
| 1939 | const common::LanguageFeatureControl &features, const Procedure &x, |
| 1940 | const Procedure &y) { |
| 1941 | return DistinguishUtils{features}.Distinguishable(x, y); |
| 1942 | } |
| 1943 | |
| 1944 | std::optional<bool> DistinguishableOpOrAssign( |
| 1945 | const common::LanguageFeatureControl &features, const Procedure &x, |
| 1946 | const Procedure &y) { |
| 1947 | return DistinguishUtils{features}.DistinguishableOpOrAssign(x, y); |
| 1948 | } |
| 1949 | |
| 1950 | DEFINE_DEFAULT_CONSTRUCTORS_AND_ASSIGNMENTS(DummyArgument) |
| 1951 | DEFINE_DEFAULT_CONSTRUCTORS_AND_ASSIGNMENTS(DummyProcedure) |
| 1952 | DEFINE_DEFAULT_CONSTRUCTORS_AND_ASSIGNMENTS(FunctionResult) |
| 1953 | DEFINE_DEFAULT_CONSTRUCTORS_AND_ASSIGNMENTS(Procedure) |
| 1954 | } // namespace Fortran::evaluate::characteristics |
| 1955 | |
| 1956 | template class Fortran::common::Indirection< |
| 1957 | Fortran::evaluate::characteristics::Procedure, true>; |
| 1958 | |