1 | //===-- lib/Evaluate/characteristics.cpp ----------------------------------===// |
---|---|
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "flang/Evaluate/characteristics.h" |
10 | #include "flang/Common/indirection.h" |
11 | #include "flang/Evaluate/check-expression.h" |
12 | #include "flang/Evaluate/fold.h" |
13 | #include "flang/Evaluate/intrinsics.h" |
14 | #include "flang/Evaluate/tools.h" |
15 | #include "flang/Evaluate/type.h" |
16 | #include "flang/Parser/message.h" |
17 | #include "flang/Semantics/scope.h" |
18 | #include "flang/Semantics/symbol.h" |
19 | #include "flang/Semantics/tools.h" |
20 | #include "llvm/Support/raw_ostream.h" |
21 | #include <initializer_list> |
22 | |
23 | using namespace Fortran::parser::literals; |
24 | |
25 | namespace Fortran::evaluate::characteristics { |
26 | |
27 | // Copy attributes from a symbol to dst based on the mapping in pairs. |
28 | // An ASYNCHRONOUS attribute counts even if it is implied. |
29 | template <typename A, typename B> |
30 | static void CopyAttrs(const semantics::Symbol &src, A &dst, |
31 | const std::initializer_list<std::pair<semantics::Attr, B>> &pairs) { |
32 | for (const auto &pair : pairs) { |
33 | if (src.attrs().test(pair.first)) { |
34 | dst.attrs.set(pair.second); |
35 | } |
36 | } |
37 | } |
38 | |
39 | // Shapes of function results and dummy arguments have to have |
40 | // the same rank, the same deferred dimensions, and the same |
41 | // values for explicit dimensions when constant. |
42 | bool ShapesAreCompatible(const std::optional<Shape> &x, |
43 | const std::optional<Shape> &y, bool *possibleWarning) { |
44 | if (!x || !y) { |
45 | return !x && !y; |
46 | } |
47 | if (x->size() != y->size()) { |
48 | return false; |
49 | } |
50 | auto yIter{y->begin()}; |
51 | for (const auto &xDim : *x) { |
52 | const auto &yDim{*yIter++}; |
53 | if (xDim && yDim) { |
54 | if (auto equiv{AreEquivalentInInterface(*xDim, *yDim)}) { |
55 | if (!*equiv) { |
56 | return false; |
57 | } |
58 | } else if (possibleWarning) { |
59 | *possibleWarning = true; |
60 | } |
61 | } else if (xDim || yDim) { |
62 | return false; |
63 | } |
64 | } |
65 | return true; |
66 | } |
67 | |
68 | bool TypeAndShape::operator==(const TypeAndShape &that) const { |
69 | return type_.IsEquivalentTo(that.type_) && |
70 | ShapesAreCompatible(shape_, that.shape_) && attrs_ == that.attrs_ && |
71 | corank_ == that.corank_; |
72 | } |
73 | |
74 | TypeAndShape &TypeAndShape::Rewrite(FoldingContext &context) { |
75 | LEN_ = Fold(context, std::move(LEN_)); |
76 | if (LEN_) { |
77 | if (auto n{ToInt64(*LEN_)}) { |
78 | type_ = DynamicType{type_.kind(), *n}; |
79 | } |
80 | } |
81 | shape_ = Fold(context, std::move(shape_)); |
82 | return *this; |
83 | } |
84 | |
85 | std::optional<TypeAndShape> TypeAndShape::Characterize( |
86 | const semantics::Symbol &symbol, FoldingContext &context, |
87 | bool invariantOnly) { |
88 | const auto &ultimate{symbol.GetUltimate()}; |
89 | return common::visit( |
90 | common::visitors{ |
91 | [&](const semantics::ProcEntityDetails &proc) { |
92 | if (proc.procInterface()) { |
93 | return Characterize( |
94 | *proc.procInterface(), context, invariantOnly); |
95 | } else if (proc.type()) { |
96 | return Characterize(*proc.type(), context, invariantOnly); |
97 | } else { |
98 | return std::optional<TypeAndShape>{}; |
99 | } |
100 | }, |
101 | [&](const semantics::AssocEntityDetails &assoc) { |
102 | return Characterize(assoc, context, invariantOnly); |
103 | }, |
104 | [&](const semantics::ProcBindingDetails &binding) { |
105 | return Characterize(binding.symbol(), context, invariantOnly); |
106 | }, |
107 | [&](const auto &x) -> std::optional<TypeAndShape> { |
108 | using Ty = std::decay_t<decltype(x)>; |
109 | if constexpr (std::is_same_v<Ty, semantics::EntityDetails> || |
110 | std::is_same_v<Ty, semantics::ObjectEntityDetails> || |
111 | std::is_same_v<Ty, semantics::TypeParamDetails>) { |
112 | if (const semantics::DeclTypeSpec * type{ultimate.GetType()}) { |
113 | if (auto dyType{DynamicType::From(*type)}) { |
114 | TypeAndShape result{std::move(*dyType), |
115 | GetShape(context, ultimate, invariantOnly)}; |
116 | result.AcquireAttrs(ultimate); |
117 | result.AcquireLEN(ultimate); |
118 | return std::move(result.Rewrite(context)); |
119 | } |
120 | } |
121 | } |
122 | return std::nullopt; |
123 | }, |
124 | }, |
125 | // GetUltimate() used here, not ResolveAssociations(), because |
126 | // we need the type/rank of an associate entity from TYPE IS, |
127 | // CLASS IS, or RANK statement. |
128 | ultimate.details()); |
129 | } |
130 | |
131 | std::optional<TypeAndShape> TypeAndShape::Characterize( |
132 | const semantics::AssocEntityDetails &assoc, FoldingContext &context, |
133 | bool invariantOnly) { |
134 | std::optional<TypeAndShape> result; |
135 | if (auto type{DynamicType::From(assoc.type())}) { |
136 | if (auto rank{assoc.rank()}) { |
137 | if (*rank >= 0 && *rank <= common::maxRank) { |
138 | result = TypeAndShape{std::move(*type), Shape(*rank)}; |
139 | } |
140 | } else if (auto shape{GetShape(context, assoc.expr(), invariantOnly)}) { |
141 | result = TypeAndShape{std::move(*type), std::move(*shape)}; |
142 | } |
143 | if (result && type->category() == TypeCategory::Character) { |
144 | if (const auto *chExpr{UnwrapExpr<Expr<SomeCharacter>>(assoc.expr())}) { |
145 | if (auto len{chExpr->LEN()}) { |
146 | result->set_LEN(std::move(*len)); |
147 | } |
148 | } |
149 | } |
150 | } |
151 | return Fold(context, std::move(result)); |
152 | } |
153 | |
154 | std::optional<TypeAndShape> TypeAndShape::Characterize( |
155 | const semantics::DeclTypeSpec &spec, FoldingContext &context, |
156 | bool /*invariantOnly=*/) { |
157 | if (auto type{DynamicType::From(spec)}) { |
158 | return Fold(context, TypeAndShape{std::move(*type)}); |
159 | } else { |
160 | return std::nullopt; |
161 | } |
162 | } |
163 | |
164 | std::optional<TypeAndShape> TypeAndShape::Characterize( |
165 | const ActualArgument &arg, FoldingContext &context, bool invariantOnly) { |
166 | if (const auto *expr{arg.UnwrapExpr()}) { |
167 | return Characterize(*expr, context, invariantOnly); |
168 | } else if (const Symbol * assumed{arg.GetAssumedTypeDummy()}) { |
169 | return Characterize(*assumed, context, invariantOnly); |
170 | } else { |
171 | return std::nullopt; |
172 | } |
173 | } |
174 | |
175 | bool TypeAndShape::IsCompatibleWith(parser::ContextualMessages &messages, |
176 | const TypeAndShape &that, const char *thisIs, const char *thatIs, |
177 | bool omitShapeConformanceCheck, |
178 | enum CheckConformanceFlags::Flags flags) const { |
179 | if (!type_.IsTkCompatibleWith(that.type_)) { |
180 | messages.Say( |
181 | "%1$s type '%2$s' is not compatible with %3$s type '%4$s'"_err_en_US, |
182 | thatIs, that.AsFortran(), thisIs, AsFortran()); |
183 | return false; |
184 | } |
185 | return omitShapeConformanceCheck || (!shape_ && !that.shape_) || |
186 | (shape_ && that.shape_ && |
187 | CheckConformance( |
188 | messages, *shape_, *that.shape_, flags, thisIs, thatIs) |
189 | .value_or(true /*fail only when nonconformance is known now*/)); |
190 | } |
191 | |
192 | std::optional<Expr<SubscriptInteger>> TypeAndShape::MeasureElementSizeInBytes( |
193 | FoldingContext &foldingContext, bool align) const { |
194 | if (LEN_) { |
195 | CHECK(type_.category() == TypeCategory::Character); |
196 | return Fold(foldingContext, |
197 | Expr<SubscriptInteger>{ |
198 | foldingContext.targetCharacteristics().GetByteSize( |
199 | type_.category(), type_.kind())} * |
200 | Expr<SubscriptInteger>{*LEN_}); |
201 | } |
202 | if (auto elementBytes{type_.MeasureSizeInBytes(foldingContext, align)}) { |
203 | return Fold(foldingContext, std::move(*elementBytes)); |
204 | } |
205 | return std::nullopt; |
206 | } |
207 | |
208 | std::optional<Expr<SubscriptInteger>> TypeAndShape::MeasureSizeInBytes( |
209 | FoldingContext &foldingContext) const { |
210 | if (auto elements{GetSize(shape_)}) { |
211 | // Sizes of arrays (even with single elements) are multiples of |
212 | // their alignments. |
213 | if (auto elementBytes{ |
214 | MeasureElementSizeInBytes(foldingContext, Rank() > 0)}) { |
215 | return Fold( |
216 | foldingContext, std::move(*elements) * std::move(*elementBytes)); |
217 | } |
218 | } |
219 | return std::nullopt; |
220 | } |
221 | |
222 | void TypeAndShape::AcquireAttrs(const semantics::Symbol &symbol) { |
223 | if (IsAssumedShape(symbol)) { |
224 | attrs_.set(Attr::AssumedShape); |
225 | } else if (IsDeferredShape(symbol)) { |
226 | attrs_.set(Attr::DeferredShape); |
227 | } else if (semantics::IsAssumedSizeArray(symbol)) { |
228 | attrs_.set(Attr::AssumedSize); |
229 | } |
230 | if (int corank{GetCorank(symbol)}; corank > 0) { |
231 | corank_ = corank; |
232 | } |
233 | if (const auto *object{ |
234 | symbol.GetUltimate().detailsIf<semantics::ObjectEntityDetails>()}; |
235 | object && object->IsAssumedRank()) { |
236 | attrs_.set(Attr::AssumedRank); |
237 | } |
238 | } |
239 | |
240 | void TypeAndShape::AcquireLEN() { |
241 | if (auto len{type_.GetCharLength()}) { |
242 | LEN_ = std::move(len); |
243 | } |
244 | } |
245 | |
246 | void TypeAndShape::AcquireLEN(const semantics::Symbol &symbol) { |
247 | if (type_.category() == TypeCategory::Character) { |
248 | if (auto len{DataRef{symbol}.LEN()}) { |
249 | LEN_ = std::move(*len); |
250 | } |
251 | } |
252 | } |
253 | |
254 | std::string TypeAndShape::AsFortran() const { |
255 | return type_.AsFortran(LEN_ ? LEN_->AsFortran() : ""); |
256 | } |
257 | |
258 | llvm::raw_ostream &TypeAndShape::Dump(llvm::raw_ostream &o) const { |
259 | o << type_.AsFortran(LEN_ ? LEN_->AsFortran() : ""); |
260 | attrs_.Dump(o, EnumToString); |
261 | if (!shape_) { |
262 | o << " dimension(..)"; |
263 | } else if (!shape_->empty()) { |
264 | o << " dimension"; |
265 | char sep{'('}; |
266 | for (const auto &expr : *shape_) { |
267 | o << sep; |
268 | sep = ','; |
269 | if (expr) { |
270 | expr->AsFortran(o); |
271 | } else { |
272 | o << ':'; |
273 | } |
274 | } |
275 | o << ')'; |
276 | } |
277 | if (isPossibleSequenceAssociation_) { |
278 | o << " isPossibleSequenceAssociation"; |
279 | } |
280 | return o; |
281 | } |
282 | |
283 | bool DummyDataObject::operator==(const DummyDataObject &that) const { |
284 | return type == that.type && attrs == that.attrs && intent == that.intent && |
285 | coshape == that.coshape && cudaDataAttr == that.cudaDataAttr; |
286 | } |
287 | |
288 | static bool IsOkWithSequenceAssociation( |
289 | const TypeAndShape &t1, const TypeAndShape &t2) { |
290 | return t1.isPossibleSequenceAssociation() && |
291 | (t2.isPossibleSequenceAssociation() || t2.CanBeSequenceAssociated()); |
292 | } |
293 | |
294 | bool DummyDataObject::IsCompatibleWith(const DummyDataObject &actual, |
295 | std::string *whyNot, std::optional<std::string> *warning) const { |
296 | if (!IsOkWithSequenceAssociation(type, actual.type) && |
297 | !IsOkWithSequenceAssociation(actual.type, type)) { |
298 | bool possibleWarning{false}; |
299 | if (!ShapesAreCompatible( |
300 | type.shape(), actual.type.shape(), &possibleWarning)) { |
301 | if (whyNot) { |
302 | *whyNot = "incompatible dummy data object shapes"; |
303 | } |
304 | return false; |
305 | } else if (warning && possibleWarning) { |
306 | *warning = "distinct dummy data object shapes"; |
307 | } |
308 | } |
309 | // Treat deduced dummy character type as if it were assumed-length character |
310 | // to avoid useless "implicit interfaces have distinct type" warnings from |
311 | // CALL FOO('abc'); CALL FOO('abcd'). |
312 | bool deducedAssumedLength{type.type().category() == TypeCategory::Character && |
313 | attrs.test(Attr::DeducedFromActual)}; |
314 | bool compatibleTypes{deducedAssumedLength |
315 | ? type.type().IsTkCompatibleWith(actual.type.type()) |
316 | : type.type().IsTkLenCompatibleWith(actual.type.type())}; |
317 | if (!compatibleTypes) { |
318 | if (whyNot) { |
319 | *whyNot = "incompatible dummy data object types: "s+ |
320 | type.type().AsFortran() + " vs "+ actual.type.type().AsFortran(); |
321 | } |
322 | return false; |
323 | } |
324 | if (type.type().IsPolymorphic() != actual.type.type().IsPolymorphic()) { |
325 | if (whyNot) { |
326 | *whyNot = "incompatible dummy data object polymorphism: "s+ |
327 | type.type().AsFortran() + " vs "+ actual.type.type().AsFortran(); |
328 | } |
329 | return false; |
330 | } |
331 | if (type.type().category() == TypeCategory::Character && |
332 | !deducedAssumedLength) { |
333 | if (actual.type.type().IsAssumedLengthCharacter() != |
334 | type.type().IsAssumedLengthCharacter()) { |
335 | if (whyNot) { |
336 | *whyNot = "assumed-length character vs explicit-length character"; |
337 | } |
338 | return false; |
339 | } |
340 | if (!type.type().IsAssumedLengthCharacter() && type.LEN() && |
341 | actual.type.LEN()) { |
342 | auto len{ToInt64(*type.LEN())}; |
343 | auto actualLen{ToInt64(*actual.type.LEN())}; |
344 | if (len.has_value() != actualLen.has_value()) { |
345 | if (whyNot) { |
346 | *whyNot = "constant-length vs non-constant-length character dummy " |
347 | "arguments"; |
348 | } |
349 | return false; |
350 | } else if (len && *len != *actualLen) { |
351 | if (whyNot) { |
352 | *whyNot = "character dummy arguments with distinct lengths"; |
353 | } |
354 | return false; |
355 | } |
356 | } |
357 | } |
358 | if (!attrs.test(Attr::DeducedFromActual) && |
359 | !actual.attrs.test(Attr::DeducedFromActual) && |
360 | type.attrs() != actual.type.attrs()) { |
361 | if (whyNot) { |
362 | *whyNot = "incompatible dummy data object shape attributes"; |
363 | auto differences{type.attrs() ^ actual.type.attrs()}; |
364 | auto sep{": "s}; |
365 | differences.IterateOverMembers([&](TypeAndShape::Attr x) { |
366 | *whyNot += sep + std::string{TypeAndShape::EnumToString(x)}; |
367 | sep = ", "; |
368 | }); |
369 | } |
370 | return false; |
371 | } |
372 | if (!IdenticalSignificantAttrs(attrs, actual.attrs)) { |
373 | if (whyNot) { |
374 | *whyNot = "incompatible dummy data object attributes"; |
375 | auto differences{attrs ^ actual.attrs}; |
376 | auto sep{": "s}; |
377 | differences.IterateOverMembers([&](DummyDataObject::Attr x) { |
378 | *whyNot += sep + std::string{EnumToString(x)}; |
379 | sep = ", "; |
380 | }); |
381 | } |
382 | return false; |
383 | } |
384 | if (intent != actual.intent) { |
385 | if (whyNot) { |
386 | *whyNot = "incompatible dummy data object intents"; |
387 | } |
388 | return false; |
389 | } |
390 | if (coshape != actual.coshape) { |
391 | if (whyNot) { |
392 | *whyNot = "incompatible dummy data object coshapes"; |
393 | } |
394 | return false; |
395 | } |
396 | if (ignoreTKR != actual.ignoreTKR) { |
397 | if (whyNot) { |
398 | *whyNot = "incompatible !DIR$ IGNORE_TKR directives"; |
399 | } |
400 | } |
401 | if (!attrs.test(Attr::Value) && |
402 | !common::AreCompatibleCUDADataAttrs(cudaDataAttr, actual.cudaDataAttr, |
403 | ignoreTKR, warning, |
404 | /*allowUnifiedMatchingRule=*/false, |
405 | /*=isHostDeviceProcedure*/ false)) { |
406 | if (whyNot) { |
407 | *whyNot = "incompatible CUDA data attributes"; |
408 | } |
409 | } |
410 | return true; |
411 | } |
412 | |
413 | static common::Intent GetIntent(const semantics::Attrs &attrs) { |
414 | if (attrs.test(semantics::Attr::INTENT_IN)) { |
415 | return common::Intent::In; |
416 | } else if (attrs.test(semantics::Attr::INTENT_OUT)) { |
417 | return common::Intent::Out; |
418 | } else if (attrs.test(semantics::Attr::INTENT_INOUT)) { |
419 | return common::Intent::InOut; |
420 | } else { |
421 | return common::Intent::Default; |
422 | } |
423 | } |
424 | |
425 | std::optional<DummyDataObject> DummyDataObject::Characterize( |
426 | const semantics::Symbol &symbol, FoldingContext &context) { |
427 | if (const auto *object{symbol.detailsIf<semantics::ObjectEntityDetails>()}; |
428 | object || symbol.has<semantics::EntityDetails>()) { |
429 | if (auto type{TypeAndShape::Characterize( |
430 | symbol, context, /*invariantOnly=*/false)}) { |
431 | std::optional<DummyDataObject> result{std::move(*type)}; |
432 | using semantics::Attr; |
433 | CopyAttrs<DummyDataObject, DummyDataObject::Attr>(symbol, *result, |
434 | { |
435 | {Attr::OPTIONAL, DummyDataObject::Attr::Optional}, |
436 | {Attr::ALLOCATABLE, DummyDataObject::Attr::Allocatable}, |
437 | {Attr::ASYNCHRONOUS, DummyDataObject::Attr::Asynchronous}, |
438 | {Attr::CONTIGUOUS, DummyDataObject::Attr::Contiguous}, |
439 | {Attr::VALUE, DummyDataObject::Attr::Value}, |
440 | {Attr::VOLATILE, DummyDataObject::Attr::Volatile}, |
441 | {Attr::POINTER, DummyDataObject::Attr::Pointer}, |
442 | {Attr::TARGET, DummyDataObject::Attr::Target}, |
443 | }); |
444 | result->intent = GetIntent(symbol.attrs()); |
445 | result->ignoreTKR = GetIgnoreTKR(symbol); |
446 | if (object) { |
447 | result->cudaDataAttr = object->cudaDataAttr(); |
448 | if (!result->cudaDataAttr && |
449 | !result->attrs.test(DummyDataObject::Attr::Value) && |
450 | semantics::IsCUDADeviceContext(&symbol.owner())) { |
451 | result->cudaDataAttr = common::CUDADataAttr::Device; |
452 | } |
453 | } |
454 | return result; |
455 | } |
456 | } |
457 | return std::nullopt; |
458 | } |
459 | |
460 | bool DummyDataObject::CanBePassedViaImplicitInterface( |
461 | std::string *whyNot) const { |
462 | if ((attrs & |
463 | Attrs{Attr::Allocatable, Attr::Asynchronous, Attr::Optional, |
464 | Attr::Pointer, Attr::Target, Attr::Value, Attr::Volatile}) |
465 | .any()) { |
466 | if (whyNot) { |
467 | *whyNot = "a dummy argument has the allocatable, asynchronous, optional, " |
468 | "pointer, target, value, or volatile attribute"; |
469 | } |
470 | return false; // 15.4.2.2(3)(a) |
471 | } else if ((type.attrs() & |
472 | TypeAndShape::Attrs{TypeAndShape::Attr::AssumedShape, |
473 | TypeAndShape::Attr::AssumedRank}) |
474 | .any() || |
475 | type.corank() > 0) { |
476 | if (whyNot) { |
477 | *whyNot = "a dummy argument is assumed-shape, assumed-rank, or a coarray"; |
478 | } |
479 | return false; // 15.4.2.2(3)(b-d) |
480 | } else if (type.type().IsPolymorphic()) { |
481 | if (whyNot) { |
482 | *whyNot = "a dummy argument is polymorphic"; |
483 | } |
484 | return false; // 15.4.2.2(3)(f) |
485 | } else if (cudaDataAttr) { |
486 | if (whyNot) { |
487 | *whyNot = "a dummy argument has a CUDA data attribute"; |
488 | } |
489 | return false; |
490 | } else if (const auto *derived{GetDerivedTypeSpec(type.type())}) { |
491 | if (derived->parameters().empty()) { // 15.4.2.2(3)(e) |
492 | return true; |
493 | } else { |
494 | if (whyNot) { |
495 | *whyNot = "a dummy argument has derived type parameters"; |
496 | } |
497 | return false; |
498 | } |
499 | } else { |
500 | return true; |
501 | } |
502 | } |
503 | |
504 | bool DummyDataObject::IsPassedByDescriptor(bool isBindC) const { |
505 | constexpr TypeAndShape::Attrs shapeRequiringBox{ |
506 | TypeAndShape::Attr::AssumedShape, TypeAndShape::Attr::DeferredShape, |
507 | TypeAndShape::Attr::AssumedRank}; |
508 | if ((attrs & Attrs{Attr::Allocatable, Attr::Pointer}).any()) { |
509 | return true; |
510 | } else if ((type.attrs() & shapeRequiringBox).any()) { |
511 | return true; // pass shape in descriptor |
512 | } else if (type.corank() > 0) { |
513 | return true; // pass coshape in descriptor |
514 | } else if (type.type().IsPolymorphic() && !type.type().IsAssumedType()) { |
515 | // Need to pass dynamic type info in a descriptor. |
516 | return true; |
517 | } else if (const auto *derived{GetDerivedTypeSpec(type.type())}) { |
518 | if (!derived->parameters().empty()) { |
519 | for (const auto ¶m : derived->parameters()) { |
520 | if (param.second.isLen()) { |
521 | // Need to pass length type parameters in a descriptor. |
522 | return true; |
523 | } |
524 | } |
525 | } |
526 | } else if (isBindC && type.type().IsAssumedLengthCharacter()) { |
527 | // Fortran 2018 18.3.6 point 2 (5) |
528 | return true; |
529 | } |
530 | return false; |
531 | } |
532 | |
533 | llvm::raw_ostream &DummyDataObject::Dump(llvm::raw_ostream &o) const { |
534 | attrs.Dump(o, EnumToString); |
535 | if (intent != common::Intent::Default) { |
536 | o << "INTENT("<< common::EnumToString(intent) << ')'; |
537 | } |
538 | type.Dump(o); |
539 | if (!coshape.empty()) { |
540 | char sep{'['}; |
541 | for (const auto &expr : coshape) { |
542 | expr.AsFortran(o << sep); |
543 | sep = ','; |
544 | } |
545 | } |
546 | if (cudaDataAttr) { |
547 | o << " cudaDataAttr: "<< common::EnumToString(*cudaDataAttr); |
548 | } |
549 | if (!ignoreTKR.empty()) { |
550 | ignoreTKR.Dump(o << ' ', common::EnumToString); |
551 | } |
552 | return o; |
553 | } |
554 | |
555 | DummyProcedure::DummyProcedure(Procedure &&p) |
556 | : procedure{new Procedure{std::move(p)}} {} |
557 | |
558 | bool DummyProcedure::operator==(const DummyProcedure &that) const { |
559 | return attrs == that.attrs && intent == that.intent && |
560 | procedure.value() == that.procedure.value(); |
561 | } |
562 | |
563 | bool DummyProcedure::IsCompatibleWith( |
564 | const DummyProcedure &actual, std::string *whyNot) const { |
565 | if (attrs != actual.attrs) { |
566 | if (whyNot) { |
567 | *whyNot = "incompatible dummy procedure attributes"; |
568 | } |
569 | return false; |
570 | } |
571 | if (intent != actual.intent) { |
572 | if (whyNot) { |
573 | *whyNot = "incompatible dummy procedure intents"; |
574 | } |
575 | return false; |
576 | } |
577 | if (!procedure.value().IsCompatibleWith(actual.procedure.value(), |
578 | /*ignoreImplicitVsExplicit=*/false, whyNot)) { |
579 | if (whyNot) { |
580 | *whyNot = "incompatible dummy procedure interfaces: "s+ *whyNot; |
581 | } |
582 | return false; |
583 | } |
584 | return true; |
585 | } |
586 | |
587 | bool DummyProcedure::CanBePassedViaImplicitInterface( |
588 | std::string *whyNot) const { |
589 | if ((attrs & Attrs{Attr::Optional, Attr::Pointer}).any()) { |
590 | if (whyNot) { |
591 | *whyNot = "a dummy procedure is optional or a pointer"; |
592 | } |
593 | return false; // 15.4.2.2(3)(a) |
594 | } |
595 | return true; |
596 | } |
597 | |
598 | static std::string GetSeenProcs( |
599 | const semantics::UnorderedSymbolSet &seenProcs) { |
600 | // Sort the symbols so that they appear in the same order on all platforms |
601 | auto ordered{semantics::OrderBySourcePosition(seenProcs)}; |
602 | std::string result; |
603 | llvm::interleave( |
604 | ordered, |
605 | [&](const SymbolRef p) { result += '\'' + p->name().ToString() + '\''; }, |
606 | [&]() { result += ", "; }); |
607 | return result; |
608 | } |
609 | |
610 | // These functions with arguments of type UnorderedSymbolSet are used with |
611 | // mutually recursive calls when characterizing a Procedure, a DummyArgument, |
612 | // or a DummyProcedure to detect circularly defined procedures as required by |
613 | // 15.4.3.6, paragraph 2. |
614 | static std::optional<DummyArgument> CharacterizeDummyArgument( |
615 | const semantics::Symbol &symbol, FoldingContext &context, |
616 | semantics::UnorderedSymbolSet seenProcs); |
617 | static std::optional<FunctionResult> CharacterizeFunctionResult( |
618 | const semantics::Symbol &symbol, FoldingContext &context, |
619 | semantics::UnorderedSymbolSet seenProcs, bool emitError); |
620 | |
621 | static std::optional<Procedure> CharacterizeProcedure( |
622 | const semantics::Symbol &original, FoldingContext &context, |
623 | semantics::UnorderedSymbolSet seenProcs, bool emitError) { |
624 | const auto &symbol{ResolveAssociations(original)}; |
625 | if (seenProcs.find(symbol) != seenProcs.end()) { |
626 | std::string procsList{GetSeenProcs(seenProcs)}; |
627 | context.messages().Say(symbol.name(), |
628 | "Procedure '%s' is recursively defined. Procedures in the cycle:" |
629 | " %s"_err_en_US, |
630 | symbol.name(), procsList); |
631 | return std::nullopt; |
632 | } |
633 | seenProcs.insert(symbol); |
634 | auto CheckForNested{[&](const Symbol &symbol) { |
635 | if (emitError) { |
636 | context.messages().Say( |
637 | "Procedure '%s' is referenced before being sufficiently defined in a context where it must be so"_err_en_US, |
638 | symbol.name()); |
639 | } |
640 | }}; |
641 | auto result{common::visit( |
642 | common::visitors{ |
643 | [&](const semantics::SubprogramDetails &subp) |
644 | -> std::optional<Procedure> { |
645 | Procedure result; |
646 | if (subp.isFunction()) { |
647 | if (auto fr{CharacterizeFunctionResult( |
648 | subp.result(), context, seenProcs, emitError)}) { |
649 | result.functionResult = std::move(fr); |
650 | } else { |
651 | return std::nullopt; |
652 | } |
653 | } else { |
654 | result.attrs.set(Procedure::Attr::Subroutine); |
655 | } |
656 | for (const semantics::Symbol *arg : subp.dummyArgs()) { |
657 | if (!arg) { |
658 | if (subp.isFunction()) { |
659 | return std::nullopt; |
660 | } else { |
661 | result.dummyArguments.emplace_back(AlternateReturn{}); |
662 | } |
663 | } else if (auto argCharacteristics{CharacterizeDummyArgument( |
664 | *arg, context, seenProcs)}) { |
665 | result.dummyArguments.emplace_back( |
666 | std::move(argCharacteristics.value())); |
667 | } else { |
668 | return std::nullopt; |
669 | } |
670 | } |
671 | result.cudaSubprogramAttrs = subp.cudaSubprogramAttrs(); |
672 | return std::move(result); |
673 | }, |
674 | [&](const semantics::ProcEntityDetails &proc) |
675 | -> std::optional<Procedure> { |
676 | if (symbol.attrs().test(semantics::Attr::INTRINSIC)) { |
677 | // Fails when the intrinsic is not a specific intrinsic function |
678 | // from F'2018 table 16.2. In order to handle forward references, |
679 | // attempts to use impermissible intrinsic procedures as the |
680 | // interfaces of procedure pointers are caught and flagged in |
681 | // declaration checking in Semantics. |
682 | auto intrinsic{context.intrinsics().IsSpecificIntrinsicFunction( |
683 | symbol.name().ToString())}; |
684 | if (intrinsic && intrinsic->isRestrictedSpecific) { |
685 | intrinsic.reset(); // Exclude intrinsics from table 16.3. |
686 | } |
687 | return intrinsic; |
688 | } |
689 | if (const semantics::Symbol * |
690 | interfaceSymbol{proc.procInterface()}) { |
691 | auto result{CharacterizeProcedure( |
692 | *interfaceSymbol, context, seenProcs, /*emitError=*/false)}; |
693 | if (result && (IsDummy(symbol) || IsPointer(symbol))) { |
694 | // Dummy procedures and procedure pointers may not be |
695 | // ELEMENTAL, but we do accept the use of elemental intrinsic |
696 | // functions as their interfaces. |
697 | result->attrs.reset(Procedure::Attr::Elemental); |
698 | } |
699 | return result; |
700 | } else { |
701 | Procedure result; |
702 | result.attrs.set(Procedure::Attr::ImplicitInterface); |
703 | const semantics::DeclTypeSpec *type{proc.type()}; |
704 | if (symbol.test(semantics::Symbol::Flag::Subroutine)) { |
705 | // ignore any implicit typing |
706 | result.attrs.set(Procedure::Attr::Subroutine); |
707 | if (proc.isCUDAKernel()) { |
708 | result.cudaSubprogramAttrs = |
709 | common::CUDASubprogramAttrs::Global; |
710 | } |
711 | } else if (type) { |
712 | if (auto resultType{DynamicType::From(*type)}) { |
713 | result.functionResult = FunctionResult{*resultType}; |
714 | } else { |
715 | return std::nullopt; |
716 | } |
717 | } else if (symbol.test(semantics::Symbol::Flag::Function)) { |
718 | return std::nullopt; |
719 | } |
720 | // The PASS name, if any, is not a characteristic. |
721 | return std::move(result); |
722 | } |
723 | }, |
724 | [&](const semantics::ProcBindingDetails &binding) { |
725 | if (auto result{CharacterizeProcedure(binding.symbol(), context, |
726 | seenProcs, /*emitError=*/false)}) { |
727 | if (binding.symbol().attrs().test(semantics::Attr::INTRINSIC)) { |
728 | result->attrs.reset(Procedure::Attr::Elemental); |
729 | } |
730 | if (!symbol.attrs().test(semantics::Attr::NOPASS)) { |
731 | auto passName{binding.passName()}; |
732 | for (auto &dummy : result->dummyArguments) { |
733 | if (!passName || dummy.name.c_str() == *passName) { |
734 | dummy.pass = true; |
735 | break; |
736 | } |
737 | } |
738 | } |
739 | return result; |
740 | } else { |
741 | return std::optional<Procedure>{}; |
742 | } |
743 | }, |
744 | [&](const semantics::UseDetails &use) { |
745 | return CharacterizeProcedure( |
746 | use.symbol(), context, seenProcs, /*emitError=*/false); |
747 | }, |
748 | [](const semantics::UseErrorDetails &) { |
749 | // Ambiguous use-association will be handled later during symbol |
750 | // checks, ignore UseErrorDetails here without actual symbol usage. |
751 | return std::optional<Procedure>{}; |
752 | }, |
753 | [&](const semantics::HostAssocDetails &assoc) { |
754 | return CharacterizeProcedure( |
755 | assoc.symbol(), context, seenProcs, /*emitError=*/false); |
756 | }, |
757 | [&](const semantics::GenericDetails &generic) { |
758 | if (const semantics::Symbol * specific{generic.specific()}) { |
759 | return CharacterizeProcedure( |
760 | *specific, context, seenProcs, emitError); |
761 | } else { |
762 | return std::optional<Procedure>{}; |
763 | } |
764 | }, |
765 | [&](const semantics::EntityDetails &x) { |
766 | CheckForNested(symbol); |
767 | return std::optional<Procedure>{}; |
768 | }, |
769 | [&](const semantics::SubprogramNameDetails &) { |
770 | if (const semantics::Symbol * |
771 | ancestor{FindAncestorModuleProcedure(&symbol)}) { |
772 | return CharacterizeProcedure( |
773 | *ancestor, context, seenProcs, emitError); |
774 | } |
775 | CheckForNested(symbol); |
776 | return std::optional<Procedure>{}; |
777 | }, |
778 | [&](const auto &) { |
779 | context.messages().Say( |
780 | "'%s' is not a procedure"_err_en_US, symbol.name()); |
781 | return std::optional<Procedure>{}; |
782 | }, |
783 | }, |
784 | symbol.details())}; |
785 | if (result && !symbol.has<semantics::ProcBindingDetails>()) { |
786 | CopyAttrs<Procedure, Procedure::Attr>(symbol, *result, |
787 | { |
788 | {semantics::Attr::BIND_C, Procedure::Attr::BindC}, |
789 | }); |
790 | CopyAttrs<Procedure, Procedure::Attr>(DEREF(GetMainEntry(&symbol)), *result, |
791 | { |
792 | {semantics::Attr::ELEMENTAL, Procedure::Attr::Elemental}, |
793 | }); |
794 | if (IsPureProcedure(symbol) || // works for ENTRY too |
795 | (!IsExplicitlyImpureProcedure(symbol) && |
796 | result->attrs.test(Procedure::Attr::Elemental))) { |
797 | result->attrs.set(Procedure::Attr::Pure); |
798 | } |
799 | } |
800 | return result; |
801 | } |
802 | |
803 | static std::optional<DummyProcedure> CharacterizeDummyProcedure( |
804 | const semantics::Symbol &symbol, FoldingContext &context, |
805 | semantics::UnorderedSymbolSet seenProcs) { |
806 | if (auto procedure{CharacterizeProcedure( |
807 | symbol, context, seenProcs, /*emitError=*/true)}) { |
808 | // Dummy procedures may not be elemental. Elemental dummy procedure |
809 | // interfaces are errors when the interface is not intrinsic, and that |
810 | // error is caught elsewhere. Elemental intrinsic interfaces are |
811 | // made non-elemental. |
812 | procedure->attrs.reset(Procedure::Attr::Elemental); |
813 | DummyProcedure result{std::move(procedure.value())}; |
814 | CopyAttrs<DummyProcedure, DummyProcedure::Attr>(symbol, result, |
815 | { |
816 | {semantics::Attr::OPTIONAL, DummyProcedure::Attr::Optional}, |
817 | {semantics::Attr::POINTER, DummyProcedure::Attr::Pointer}, |
818 | }); |
819 | result.intent = GetIntent(symbol.attrs()); |
820 | return result; |
821 | } else { |
822 | return std::nullopt; |
823 | } |
824 | } |
825 | |
826 | llvm::raw_ostream &DummyProcedure::Dump(llvm::raw_ostream &o) const { |
827 | attrs.Dump(o, EnumToString); |
828 | if (intent != common::Intent::Default) { |
829 | o << "INTENT("<< common::EnumToString(intent) << ')'; |
830 | } |
831 | procedure.value().Dump(o); |
832 | return o; |
833 | } |
834 | |
835 | llvm::raw_ostream &AlternateReturn::Dump(llvm::raw_ostream &o) const { |
836 | return o << '*'; |
837 | } |
838 | |
839 | DummyArgument::~DummyArgument() {} |
840 | |
841 | bool DummyArgument::operator==(const DummyArgument &that) const { |
842 | return u == that.u; // name and passed-object usage are not characteristics |
843 | } |
844 | |
845 | bool DummyArgument::IsCompatibleWith(const DummyArgument &actual, |
846 | std::string *whyNot, std::optional<std::string> *warning) const { |
847 | if (const auto *ifaceData{std::get_if<DummyDataObject>(&u)}) { |
848 | if (const auto *actualData{std::get_if<DummyDataObject>(&actual.u)}) { |
849 | return ifaceData->IsCompatibleWith(*actualData, whyNot, warning); |
850 | } |
851 | if (whyNot) { |
852 | *whyNot = "one dummy argument is an object, the other is not"; |
853 | } |
854 | } else if (const auto *ifaceProc{std::get_if<DummyProcedure>(&u)}) { |
855 | if (const auto *actualProc{std::get_if<DummyProcedure>(&actual.u)}) { |
856 | return ifaceProc->IsCompatibleWith(*actualProc, whyNot); |
857 | } |
858 | if (whyNot) { |
859 | *whyNot = "one dummy argument is a procedure, the other is not"; |
860 | } |
861 | } else { |
862 | CHECK(std::holds_alternative<AlternateReturn>(u)); |
863 | if (std::holds_alternative<AlternateReturn>(actual.u)) { |
864 | return true; |
865 | } |
866 | if (whyNot) { |
867 | *whyNot = "one dummy argument is an alternate return, the other is not"; |
868 | } |
869 | } |
870 | return false; |
871 | } |
872 | |
873 | static std::optional<DummyArgument> CharacterizeDummyArgument( |
874 | const semantics::Symbol &symbol, FoldingContext &context, |
875 | semantics::UnorderedSymbolSet seenProcs) { |
876 | auto name{symbol.name().ToString()}; |
877 | if (symbol.has<semantics::ObjectEntityDetails>() || |
878 | symbol.has<semantics::EntityDetails>()) { |
879 | if (auto obj{DummyDataObject::Characterize(symbol, context)}) { |
880 | return DummyArgument{std::move(name), std::move(obj.value())}; |
881 | } |
882 | } else if (auto proc{ |
883 | CharacterizeDummyProcedure(symbol, context, seenProcs)}) { |
884 | return DummyArgument{std::move(name), std::move(proc.value())}; |
885 | } |
886 | return std::nullopt; |
887 | } |
888 | |
889 | std::optional<DummyArgument> DummyArgument::FromActual(std::string &&name, |
890 | const Expr<SomeType> &expr, FoldingContext &context, |
891 | bool forImplicitInterface) { |
892 | return common::visit( |
893 | common::visitors{ |
894 | [&](const BOZLiteralConstant &) { |
895 | DummyDataObject obj{ |
896 | TypeAndShape{DynamicType::TypelessIntrinsicArgument()}}; |
897 | obj.attrs.set(DummyDataObject::Attr::DeducedFromActual); |
898 | return std::make_optional<DummyArgument>( |
899 | std::move(name), std::move(obj)); |
900 | }, |
901 | [&](const NullPointer &) { |
902 | DummyDataObject obj{ |
903 | TypeAndShape{DynamicType::TypelessIntrinsicArgument()}}; |
904 | obj.attrs.set(DummyDataObject::Attr::DeducedFromActual); |
905 | return std::make_optional<DummyArgument>( |
906 | std::move(name), std::move(obj)); |
907 | }, |
908 | [&](const ProcedureDesignator &designator) { |
909 | if (auto proc{Procedure::Characterize( |
910 | designator, context, /*emitError=*/true)}) { |
911 | return std::make_optional<DummyArgument>( |
912 | std::move(name), DummyProcedure{std::move(*proc)}); |
913 | } else { |
914 | return std::optional<DummyArgument>{}; |
915 | } |
916 | }, |
917 | [&](const ProcedureRef &call) { |
918 | if (auto proc{Procedure::Characterize(call, context)}) { |
919 | return std::make_optional<DummyArgument>( |
920 | std::move(name), DummyProcedure{std::move(*proc)}); |
921 | } else { |
922 | return std::optional<DummyArgument>{}; |
923 | } |
924 | }, |
925 | [&](const auto &) { |
926 | if (auto type{TypeAndShape::Characterize(expr, context)}) { |
927 | if (forImplicitInterface && |
928 | !type->type().IsUnlimitedPolymorphic() && |
929 | type->type().IsPolymorphic()) { |
930 | // Pass the monomorphic declared type to an implicit interface |
931 | type->set_type(DynamicType{ |
932 | type->type().GetDerivedTypeSpec(), /*poly=*/false}); |
933 | } |
934 | if (type->type().category() == TypeCategory::Character && |
935 | type->type().kind() == 1) { |
936 | type->set_isPossibleSequenceAssociation(true); |
937 | } else if (const Symbol * array{IsArrayElement(expr)}) { |
938 | type->set_isPossibleSequenceAssociation( |
939 | IsContiguous(*array, context).value_or(false)); |
940 | } else { |
941 | type->set_isPossibleSequenceAssociation(expr.Rank() > 0); |
942 | } |
943 | DummyDataObject obj{std::move(*type)}; |
944 | obj.attrs.set(DummyDataObject::Attr::DeducedFromActual); |
945 | return std::make_optional<DummyArgument>( |
946 | std::move(name), std::move(obj)); |
947 | } else { |
948 | return std::optional<DummyArgument>{}; |
949 | } |
950 | }, |
951 | }, |
952 | expr.u); |
953 | } |
954 | |
955 | std::optional<DummyArgument> DummyArgument::FromActual(std::string &&name, |
956 | const ActualArgument &arg, FoldingContext &context, |
957 | bool forImplicitInterface) { |
958 | if (const auto *expr{arg.UnwrapExpr()}) { |
959 | return FromActual(std::move(name), *expr, context, forImplicitInterface); |
960 | } else if (arg.GetAssumedTypeDummy()) { |
961 | return std::nullopt; |
962 | } else { |
963 | return DummyArgument{AlternateReturn{}}; |
964 | } |
965 | } |
966 | |
967 | bool DummyArgument::IsOptional() const { |
968 | return common::visit( |
969 | common::visitors{ |
970 | [](const DummyDataObject &data) { |
971 | return data.attrs.test(DummyDataObject::Attr::Optional); |
972 | }, |
973 | [](const DummyProcedure &proc) { |
974 | return proc.attrs.test(DummyProcedure::Attr::Optional); |
975 | }, |
976 | [](const AlternateReturn &) { return false; }, |
977 | }, |
978 | u); |
979 | } |
980 | |
981 | void DummyArgument::SetOptional(bool value) { |
982 | common::visit(common::visitors{ |
983 | [value](DummyDataObject &data) { |
984 | data.attrs.set(DummyDataObject::Attr::Optional, value); |
985 | }, |
986 | [value](DummyProcedure &proc) { |
987 | proc.attrs.set(DummyProcedure::Attr::Optional, value); |
988 | }, |
989 | [](AlternateReturn &) { DIE("cannot set optional"); }, |
990 | }, |
991 | u); |
992 | } |
993 | |
994 | void DummyArgument::SetIntent(common::Intent intent) { |
995 | common::visit(common::visitors{ |
996 | [intent](DummyDataObject &data) { data.intent = intent; }, |
997 | [intent](DummyProcedure &proc) { proc.intent = intent; }, |
998 | [](AlternateReturn &) { DIE("cannot set intent"); }, |
999 | }, |
1000 | u); |
1001 | } |
1002 | |
1003 | common::Intent DummyArgument::GetIntent() const { |
1004 | return common::visit( |
1005 | common::visitors{ |
1006 | [](const DummyDataObject &data) { return data.intent; }, |
1007 | [](const DummyProcedure &proc) { return proc.intent; }, |
1008 | [](const AlternateReturn &) -> common::Intent { |
1009 | DIE("Alternate returns have no intent"); |
1010 | }, |
1011 | }, |
1012 | u); |
1013 | } |
1014 | |
1015 | bool DummyArgument::CanBePassedViaImplicitInterface(std::string *whyNot) const { |
1016 | if (const auto *object{std::get_if<DummyDataObject>(&u)}) { |
1017 | return object->CanBePassedViaImplicitInterface(whyNot); |
1018 | } else if (const auto *proc{std::get_if<DummyProcedure>(&u)}) { |
1019 | return proc->CanBePassedViaImplicitInterface(whyNot); |
1020 | } else { |
1021 | return true; |
1022 | } |
1023 | } |
1024 | |
1025 | bool DummyArgument::IsTypelessIntrinsicDummy() const { |
1026 | const auto *argObj{std::get_if<characteristics::DummyDataObject>(&u)}; |
1027 | return argObj && argObj->type.type().IsTypelessIntrinsicArgument(); |
1028 | } |
1029 | |
1030 | llvm::raw_ostream &DummyArgument::Dump(llvm::raw_ostream &o) const { |
1031 | if (!name.empty()) { |
1032 | o << name << '='; |
1033 | } |
1034 | if (pass) { |
1035 | o << " PASS"; |
1036 | } |
1037 | common::visit([&](const auto &x) { x.Dump(o); }, u); |
1038 | return o; |
1039 | } |
1040 | |
1041 | FunctionResult::FunctionResult(DynamicType t) : u{TypeAndShape{t}} {} |
1042 | FunctionResult::FunctionResult(TypeAndShape &&t) : u{std::move(t)} {} |
1043 | FunctionResult::FunctionResult(Procedure &&p) : u{std::move(p)} {} |
1044 | FunctionResult::~FunctionResult() {} |
1045 | |
1046 | bool FunctionResult::operator==(const FunctionResult &that) const { |
1047 | return attrs == that.attrs && cudaDataAttr == that.cudaDataAttr && |
1048 | u == that.u; |
1049 | } |
1050 | |
1051 | static std::optional<FunctionResult> CharacterizeFunctionResult( |
1052 | const semantics::Symbol &symbol, FoldingContext &context, |
1053 | semantics::UnorderedSymbolSet seenProcs, bool emitError) { |
1054 | if (const auto *object{symbol.detailsIf<semantics::ObjectEntityDetails>()}) { |
1055 | if (auto type{TypeAndShape::Characterize( |
1056 | symbol, context, /*invariantOnly=*/false)}) { |
1057 | FunctionResult result{std::move(*type)}; |
1058 | CopyAttrs<FunctionResult, FunctionResult::Attr>(symbol, result, |
1059 | { |
1060 | {semantics::Attr::ALLOCATABLE, FunctionResult::Attr::Allocatable}, |
1061 | {semantics::Attr::CONTIGUOUS, FunctionResult::Attr::Contiguous}, |
1062 | {semantics::Attr::POINTER, FunctionResult::Attr::Pointer}, |
1063 | }); |
1064 | result.cudaDataAttr = object->cudaDataAttr(); |
1065 | return result; |
1066 | } |
1067 | } else if (auto maybeProc{CharacterizeProcedure( |
1068 | symbol, context, seenProcs, emitError)}) { |
1069 | FunctionResult result{std::move(*maybeProc)}; |
1070 | result.attrs.set(FunctionResult::Attr::Pointer); |
1071 | return result; |
1072 | } |
1073 | return std::nullopt; |
1074 | } |
1075 | |
1076 | std::optional<FunctionResult> FunctionResult::Characterize( |
1077 | const Symbol &symbol, FoldingContext &context) { |
1078 | semantics::UnorderedSymbolSet seenProcs; |
1079 | return CharacterizeFunctionResult( |
1080 | symbol, context, seenProcs, /*emitError=*/false); |
1081 | } |
1082 | |
1083 | bool FunctionResult::IsAssumedLengthCharacter() const { |
1084 | if (const auto *ts{std::get_if<TypeAndShape>(&u)}) { |
1085 | return ts->type().IsAssumedLengthCharacter(); |
1086 | } else { |
1087 | return false; |
1088 | } |
1089 | } |
1090 | |
1091 | bool FunctionResult::CanBeReturnedViaImplicitInterface( |
1092 | std::string *whyNot) const { |
1093 | if (attrs.test(Attr::Pointer) || attrs.test(Attr::Allocatable)) { |
1094 | if (whyNot) { |
1095 | *whyNot = "the function result is a pointer or allocatable"; |
1096 | } |
1097 | return false; // 15.4.2.2(4)(b) |
1098 | } else if (cudaDataAttr) { |
1099 | if (whyNot) { |
1100 | *whyNot = "the function result has CUDA attributes"; |
1101 | } |
1102 | return false; |
1103 | } else if (const auto *typeAndShape{GetTypeAndShape()}) { |
1104 | if (typeAndShape->Rank() > 0) { |
1105 | if (whyNot) { |
1106 | *whyNot = "the function result is an array"; |
1107 | } |
1108 | return false; // 15.4.2.2(4)(a) |
1109 | } else { |
1110 | const DynamicType &type{typeAndShape->type()}; |
1111 | switch (type.category()) { |
1112 | case TypeCategory::Character: |
1113 | if (type.knownLength()) { |
1114 | return true; |
1115 | } else if (const auto *param{type.charLengthParamValue()}) { |
1116 | if (const auto &expr{param->GetExplicit()}) { |
1117 | if (IsConstantExpr(*expr)) { // 15.4.2.2(4)(c) |
1118 | return true; |
1119 | } else { |
1120 | if (whyNot) { |
1121 | *whyNot = "the function result's length is not constant"; |
1122 | } |
1123 | return false; |
1124 | } |
1125 | } else if (param->isAssumed()) { |
1126 | return true; |
1127 | } |
1128 | } |
1129 | if (whyNot) { |
1130 | *whyNot = "the function result's length is not known to the caller"; |
1131 | } |
1132 | return false; |
1133 | case TypeCategory::Derived: |
1134 | if (type.IsPolymorphic()) { |
1135 | if (whyNot) { |
1136 | *whyNot = "the function result is polymorphic"; |
1137 | } |
1138 | return false; |
1139 | } else { |
1140 | const auto &spec{type.GetDerivedTypeSpec()}; |
1141 | for (const auto &pair : spec.parameters()) { |
1142 | if (const auto &expr{pair.second.GetExplicit()}) { |
1143 | if (!IsConstantExpr(*expr)) { |
1144 | if (whyNot) { |
1145 | *whyNot = "the function result's derived type has a " |
1146 | "non-constant parameter"; |
1147 | } |
1148 | return false; // 15.4.2.2(4)(c) |
1149 | } |
1150 | } |
1151 | } |
1152 | return true; |
1153 | } |
1154 | default: |
1155 | return true; |
1156 | } |
1157 | } |
1158 | } else { |
1159 | if (whyNot) { |
1160 | *whyNot = "the function result has unknown type or shape"; |
1161 | } |
1162 | return false; // 15.4.2.2(4)(b) - procedure pointer? |
1163 | } |
1164 | } |
1165 | |
1166 | static std::optional<std::string> AreIncompatibleFunctionResultShapes( |
1167 | const Shape &x, const Shape &y) { |
1168 | // Function results cannot be assumed-rank, hence the non optional arguments. |
1169 | int rank{GetRank(x)}; |
1170 | if (int yrank{GetRank(y)}; yrank != rank) { |
1171 | return "rank "s+ std::to_string(rank) + " vs "+ std::to_string(yrank); |
1172 | } |
1173 | for (int j{0}; j < rank; ++j) { |
1174 | if (x[j] && y[j] && !(*x[j] == *y[j])) { |
1175 | return x[j]->AsFortran() + " vs "+ y[j]->AsFortran(); |
1176 | } |
1177 | } |
1178 | return std::nullopt; |
1179 | } |
1180 | |
1181 | bool FunctionResult::IsCompatibleWith( |
1182 | const FunctionResult &actual, std::string *whyNot) const { |
1183 | Attrs actualAttrs{actual.attrs}; |
1184 | if (!attrs.test(Attr::Contiguous)) { |
1185 | actualAttrs.reset(Attr::Contiguous); |
1186 | } |
1187 | if (attrs != actualAttrs) { |
1188 | if (whyNot) { |
1189 | *whyNot = "function results have incompatible attributes"; |
1190 | } |
1191 | } else if (cudaDataAttr != actual.cudaDataAttr) { |
1192 | if (whyNot) { |
1193 | *whyNot = "function results have incompatible CUDA data attributes"; |
1194 | } |
1195 | } else if (const auto *ifaceTypeShape{std::get_if<TypeAndShape>(&u)}) { |
1196 | if (const auto *actualTypeShape{std::get_if<TypeAndShape>(&actual.u)}) { |
1197 | std::optional<std::string> details; |
1198 | if (ifaceTypeShape->Rank() != actualTypeShape->Rank()) { |
1199 | if (whyNot) { |
1200 | *whyNot = "function results have distinct ranks"; |
1201 | } |
1202 | } else if (!attrs.test(Attr::Allocatable) && !attrs.test(Attr::Pointer) && |
1203 | (details = AreIncompatibleFunctionResultShapes( |
1204 | ifaceTypeShape->shape().value(), |
1205 | actualTypeShape->shape().value()))) { |
1206 | if (whyNot) { |
1207 | *whyNot = "function results have distinct extents ("+ *details + ')'; |
1208 | } |
1209 | } else if (ifaceTypeShape->type() != actualTypeShape->type()) { |
1210 | if (ifaceTypeShape->type().category() != |
1211 | actualTypeShape->type().category()) { |
1212 | } else if (ifaceTypeShape->type().category() == |
1213 | TypeCategory::Character) { |
1214 | if (ifaceTypeShape->type().kind() == actualTypeShape->type().kind()) { |
1215 | if (IsAssumedLengthCharacter() || |
1216 | actual.IsAssumedLengthCharacter()) { |
1217 | return true; |
1218 | } else { |
1219 | auto len{ToInt64(ifaceTypeShape->LEN())}; |
1220 | auto actualLen{ToInt64(actualTypeShape->LEN())}; |
1221 | if (len.has_value() != actualLen.has_value()) { |
1222 | if (whyNot) { |
1223 | *whyNot = "constant-length vs non-constant-length character " |
1224 | "results"; |
1225 | } |
1226 | } else if (len && *len != *actualLen) { |
1227 | if (whyNot) { |
1228 | *whyNot = "character results with distinct lengths"; |
1229 | } |
1230 | } else { |
1231 | const auto *ifaceLenParam{ |
1232 | ifaceTypeShape->type().charLengthParamValue()}; |
1233 | const auto *actualLenParam{ |
1234 | actualTypeShape->type().charLengthParamValue()}; |
1235 | if (ifaceLenParam && actualLenParam && |
1236 | ifaceLenParam->isExplicit() != |
1237 | actualLenParam->isExplicit()) { |
1238 | if (whyNot) { |
1239 | *whyNot = |
1240 | "explicit-length vs deferred-length character results"; |
1241 | } |
1242 | } else { |
1243 | return true; |
1244 | } |
1245 | } |
1246 | } |
1247 | } |
1248 | } else if (ifaceTypeShape->type().category() == TypeCategory::Derived) { |
1249 | if (ifaceTypeShape->type().IsPolymorphic() == |
1250 | actualTypeShape->type().IsPolymorphic() && |
1251 | !ifaceTypeShape->type().IsUnlimitedPolymorphic() && |
1252 | !actualTypeShape->type().IsUnlimitedPolymorphic() && |
1253 | AreSameDerivedType(ifaceTypeShape->type().GetDerivedTypeSpec(), |
1254 | actualTypeShape->type().GetDerivedTypeSpec())) { |
1255 | return true; |
1256 | } |
1257 | } |
1258 | if (whyNot) { |
1259 | *whyNot = "function results have distinct types: "s+ |
1260 | ifaceTypeShape->type().AsFortran() + " vs "s+ |
1261 | actualTypeShape->type().AsFortran(); |
1262 | } |
1263 | } else { |
1264 | return true; |
1265 | } |
1266 | } else { |
1267 | if (whyNot) { |
1268 | *whyNot = "function result type and shape are not known"; |
1269 | } |
1270 | } |
1271 | } else { |
1272 | const auto *ifaceProc{std::get_if<CopyableIndirection<Procedure>>(&u)}; |
1273 | CHECK(ifaceProc != nullptr); |
1274 | if (const auto *actualProc{ |
1275 | std::get_if<CopyableIndirection<Procedure>>(&actual.u)}) { |
1276 | if (ifaceProc->value().IsCompatibleWith(actualProc->value(), |
1277 | /*ignoreImplicitVsExplicit=*/false, whyNot)) { |
1278 | return true; |
1279 | } |
1280 | if (whyNot) { |
1281 | *whyNot = |
1282 | "function results are incompatible procedure pointers: "s+ *whyNot; |
1283 | } |
1284 | } else { |
1285 | if (whyNot) { |
1286 | *whyNot = |
1287 | "one function result is a procedure pointer, the other is not"; |
1288 | } |
1289 | } |
1290 | } |
1291 | return false; |
1292 | } |
1293 | |
1294 | llvm::raw_ostream &FunctionResult::Dump(llvm::raw_ostream &o) const { |
1295 | attrs.Dump(o, EnumToString); |
1296 | common::visit(common::visitors{ |
1297 | [&](const TypeAndShape &ts) { ts.Dump(o); }, |
1298 | [&](const CopyableIndirection<Procedure> &p) { |
1299 | p.value().Dump(o << " procedure(") << ')'; |
1300 | }, |
1301 | }, |
1302 | u); |
1303 | if (cudaDataAttr) { |
1304 | o << " cudaDataAttr: "<< common::EnumToString(*cudaDataAttr); |
1305 | } |
1306 | return o; |
1307 | } |
1308 | |
1309 | Procedure::Procedure(FunctionResult &&fr, DummyArguments &&args, Attrs a) |
1310 | : functionResult{std::move(fr)}, dummyArguments{std::move(args)}, attrs{a} { |
1311 | } |
1312 | Procedure::Procedure(DummyArguments &&args, Attrs a) |
1313 | : dummyArguments{std::move(args)}, attrs{a} {} |
1314 | Procedure::~Procedure() {} |
1315 | |
1316 | bool Procedure::operator==(const Procedure &that) const { |
1317 | return attrs == that.attrs && functionResult == that.functionResult && |
1318 | dummyArguments == that.dummyArguments && |
1319 | cudaSubprogramAttrs == that.cudaSubprogramAttrs; |
1320 | } |
1321 | |
1322 | bool Procedure::IsCompatibleWith(const Procedure &actual, |
1323 | bool ignoreImplicitVsExplicit, std::string *whyNot, |
1324 | const SpecificIntrinsic *specificIntrinsic, |
1325 | std::optional<std::string> *warning) const { |
1326 | // 15.5.2.9(1): if dummy is not pure, actual need not be. |
1327 | // Ditto with elemental. |
1328 | Attrs actualAttrs{actual.attrs}; |
1329 | if (!attrs.test(Attr::Pure)) { |
1330 | actualAttrs.reset(Attr::Pure); |
1331 | } |
1332 | if (!attrs.test(Attr::Elemental) && specificIntrinsic) { |
1333 | actualAttrs.reset(Attr::Elemental); |
1334 | } |
1335 | Attrs differences{attrs ^ actualAttrs}; |
1336 | differences.reset(Attr::Subroutine); // dealt with specifically later |
1337 | if (ignoreImplicitVsExplicit) { |
1338 | differences.reset(Attr::ImplicitInterface); |
1339 | } |
1340 | if (!differences.empty()) { |
1341 | if (whyNot) { |
1342 | auto sep{": "s}; |
1343 | *whyNot = "incompatible procedure attributes"; |
1344 | differences.IterateOverMembers([&](Attr x) { |
1345 | *whyNot += sep + std::string{EnumToString(x)}; |
1346 | sep = ", "; |
1347 | }); |
1348 | } |
1349 | } else if ((IsFunction() && actual.IsSubroutine()) || |
1350 | (IsSubroutine() && actual.IsFunction())) { |
1351 | if (whyNot) { |
1352 | *whyNot = |
1353 | "incompatible procedures: one is a function, the other a subroutine"; |
1354 | } |
1355 | } else if (functionResult && actual.functionResult && |
1356 | !functionResult->IsCompatibleWith(*actual.functionResult, whyNot)) { |
1357 | } else if (cudaSubprogramAttrs != actual.cudaSubprogramAttrs) { |
1358 | if (whyNot) { |
1359 | *whyNot = "incompatible CUDA subprogram attributes"; |
1360 | } |
1361 | } else if (dummyArguments.size() != actual.dummyArguments.size()) { |
1362 | if (whyNot) { |
1363 | *whyNot = "distinct numbers of dummy arguments"; |
1364 | } |
1365 | } else { |
1366 | for (std::size_t j{0}; j < dummyArguments.size(); ++j) { |
1367 | // Subtlety: the dummy/actual distinction must be reversed for this |
1368 | // compatibility test in order to correctly check extended vs. |
1369 | // base types. Example: |
1370 | // subroutine s1(base); subroutine s2(extended) |
1371 | // procedure(s1), pointer :: p |
1372 | // p => s2 ! an error, s2 is more restricted, can't handle "base" |
1373 | std::optional<std::string> gotWarning; |
1374 | if (!actual.dummyArguments[j].IsCompatibleWith( |
1375 | dummyArguments[j], whyNot, warning ? &gotWarning : nullptr)) { |
1376 | if (whyNot) { |
1377 | *whyNot = "incompatible dummy argument #"s+ std::to_string(j + 1) + |
1378 | ": "s+ *whyNot; |
1379 | } |
1380 | return false; |
1381 | } else if (warning && !*warning && gotWarning) { |
1382 | *warning = "possibly incompatible dummy argument #"s+ |
1383 | std::to_string(j + 1) + ": "s+ std::move(*gotWarning); |
1384 | } |
1385 | } |
1386 | return true; |
1387 | } |
1388 | return false; |
1389 | } |
1390 | |
1391 | std::optional<int> Procedure::FindPassIndex( |
1392 | std::optional<parser::CharBlock> name) const { |
1393 | int argCount{static_cast<int>(dummyArguments.size())}; |
1394 | if (name) { |
1395 | for (int index{0}; index < argCount; ++index) { |
1396 | if (*name == dummyArguments[index].name.c_str()) { |
1397 | return index; |
1398 | } |
1399 | } |
1400 | return std::nullopt; |
1401 | } else if (argCount > 0) { |
1402 | return 0; |
1403 | } else { |
1404 | return std::nullopt; |
1405 | } |
1406 | } |
1407 | |
1408 | bool Procedure::CanOverride( |
1409 | const Procedure &that, std::optional<int> passIndex) const { |
1410 | // A pure procedure may override an impure one (7.5.7.3(2)) |
1411 | if ((that.attrs.test(Attr::Pure) && !attrs.test(Attr::Pure)) || |
1412 | that.attrs.test(Attr::Elemental) != attrs.test(Attr::Elemental) || |
1413 | functionResult != that.functionResult) { |
1414 | return false; |
1415 | } |
1416 | int argCount{static_cast<int>(dummyArguments.size())}; |
1417 | if (argCount != static_cast<int>(that.dummyArguments.size())) { |
1418 | return false; |
1419 | } |
1420 | for (int j{0}; j < argCount; ++j) { |
1421 | if (passIndex && j == *passIndex) { |
1422 | if (!that.dummyArguments[j].IsCompatibleWith(dummyArguments[j])) { |
1423 | return false; |
1424 | } |
1425 | } else if (dummyArguments[j] != that.dummyArguments[j]) { |
1426 | return false; |
1427 | } |
1428 | } |
1429 | return true; |
1430 | } |
1431 | |
1432 | std::optional<Procedure> Procedure::Characterize( |
1433 | const semantics::Symbol &symbol, FoldingContext &context) { |
1434 | semantics::UnorderedSymbolSet seenProcs; |
1435 | return CharacterizeProcedure(symbol, context, seenProcs, /*emitError=*/true); |
1436 | } |
1437 | |
1438 | std::optional<Procedure> Procedure::Characterize( |
1439 | const ProcedureDesignator &proc, FoldingContext &context, bool emitError) { |
1440 | if (const auto *symbol{proc.GetSymbol()}) { |
1441 | semantics::UnorderedSymbolSet seenProcs; |
1442 | return CharacterizeProcedure(*symbol, context, seenProcs, emitError); |
1443 | } else if (const auto *intrinsic{proc.GetSpecificIntrinsic()}) { |
1444 | return intrinsic->characteristics.value(); |
1445 | } else { |
1446 | return std::nullopt; |
1447 | } |
1448 | } |
1449 | |
1450 | std::optional<Procedure> Procedure::Characterize( |
1451 | const ProcedureRef &ref, FoldingContext &context) { |
1452 | if (auto callee{Characterize(ref.proc(), context, /*emitError=*/true)}) { |
1453 | if (callee->functionResult) { |
1454 | if (const Procedure * |
1455 | proc{callee->functionResult->IsProcedurePointer()}) { |
1456 | return {*proc}; |
1457 | } |
1458 | } |
1459 | } |
1460 | return std::nullopt; |
1461 | } |
1462 | |
1463 | std::optional<Procedure> Procedure::Characterize( |
1464 | const Expr<SomeType> &expr, FoldingContext &context) { |
1465 | if (const auto *procRef{UnwrapProcedureRef(expr)}) { |
1466 | return Characterize(*procRef, context); |
1467 | } else if (const auto *procDesignator{ |
1468 | std::get_if<ProcedureDesignator>(&expr.u)}) { |
1469 | return Characterize(*procDesignator, context, /*emitError=*/true); |
1470 | } else if (const Symbol * symbol{UnwrapWholeSymbolOrComponentDataRef(expr)}) { |
1471 | return Characterize(*symbol, context); |
1472 | } else { |
1473 | context.messages().Say( |
1474 | "Expression '%s' is not a procedure"_err_en_US, expr.AsFortran()); |
1475 | return std::nullopt; |
1476 | } |
1477 | } |
1478 | |
1479 | std::optional<Procedure> Procedure::FromActuals(const ProcedureDesignator &proc, |
1480 | const ActualArguments &args, FoldingContext &context) { |
1481 | auto callee{Characterize(proc, context, /*emitError=*/true)}; |
1482 | if (callee) { |
1483 | if (callee->dummyArguments.empty() && |
1484 | callee->attrs.test(Procedure::Attr::ImplicitInterface)) { |
1485 | int j{0}; |
1486 | for (const auto &arg : args) { |
1487 | ++j; |
1488 | if (arg) { |
1489 | if (auto dummy{DummyArgument::FromActual("x"s+ std::to_string(j), |
1490 | *arg, context, |
1491 | /*forImplicitInterface=*/true)}) { |
1492 | callee->dummyArguments.emplace_back(std::move(*dummy)); |
1493 | continue; |
1494 | } |
1495 | } |
1496 | callee.reset(); |
1497 | break; |
1498 | } |
1499 | } |
1500 | } |
1501 | return callee; |
1502 | } |
1503 | |
1504 | bool Procedure::CanBeCalledViaImplicitInterface(std::string *whyNot) const { |
1505 | if (attrs.test(Attr::Elemental)) { |
1506 | if (whyNot) { |
1507 | *whyNot = "the procedure is elemental"; |
1508 | } |
1509 | return false; // 15.4.2.2(5,6) |
1510 | } else if (attrs.test(Attr::BindC)) { |
1511 | if (whyNot) { |
1512 | *whyNot = "the procedure is BIND(C)"; |
1513 | } |
1514 | return false; // 15.4.2.2(5,6) |
1515 | } else if (cudaSubprogramAttrs && |
1516 | *cudaSubprogramAttrs != common::CUDASubprogramAttrs::Host && |
1517 | *cudaSubprogramAttrs != common::CUDASubprogramAttrs::Global) { |
1518 | if (whyNot) { |
1519 | *whyNot = "the procedure is CUDA but neither HOST nor GLOBAL"; |
1520 | } |
1521 | return false; |
1522 | } else if (IsFunction() && |
1523 | !functionResult->CanBeReturnedViaImplicitInterface(whyNot)) { |
1524 | return false; |
1525 | } else { |
1526 | for (const DummyArgument &arg : dummyArguments) { |
1527 | if (!arg.CanBePassedViaImplicitInterface(whyNot)) { |
1528 | return false; |
1529 | } |
1530 | } |
1531 | return true; |
1532 | } |
1533 | } |
1534 | |
1535 | llvm::raw_ostream &Procedure::Dump(llvm::raw_ostream &o) const { |
1536 | attrs.Dump(o, EnumToString); |
1537 | if (functionResult) { |
1538 | functionResult->Dump(o << "TYPE(") << ") FUNCTION"; |
1539 | } else if (attrs.test(Attr::Subroutine)) { |
1540 | o << "SUBROUTINE"; |
1541 | } else { |
1542 | o << "EXTERNAL"; |
1543 | } |
1544 | char sep{'('}; |
1545 | for (const auto &dummy : dummyArguments) { |
1546 | dummy.Dump(o << sep); |
1547 | sep = ','; |
1548 | } |
1549 | o << (sep == '(' ? "()": ")"); |
1550 | if (cudaSubprogramAttrs) { |
1551 | o << " cudaSubprogramAttrs: "<< common::EnumToString(*cudaSubprogramAttrs); |
1552 | } |
1553 | return o; |
1554 | } |
1555 | |
1556 | // Utility class to determine if Procedures, etc. are distinguishable |
1557 | class DistinguishUtils { |
1558 | public: |
1559 | explicit DistinguishUtils(const common::LanguageFeatureControl &features) |
1560 | : features_{features} {} |
1561 | |
1562 | // Are these procedures distinguishable for a generic name? |
1563 | std::optional<bool> Distinguishable( |
1564 | const Procedure &, const Procedure &) const; |
1565 | // Are these procedures distinguishable for a generic operator or assignment? |
1566 | std::optional<bool> DistinguishableOpOrAssign( |
1567 | const Procedure &, const Procedure &) const; |
1568 | |
1569 | private: |
1570 | struct CountDummyProcedures { |
1571 | CountDummyProcedures(const DummyArguments &args) { |
1572 | for (const DummyArgument &arg : args) { |
1573 | if (std::holds_alternative<DummyProcedure>(arg.u)) { |
1574 | total += 1; |
1575 | notOptional += !arg.IsOptional(); |
1576 | } |
1577 | } |
1578 | } |
1579 | int total{0}; |
1580 | int notOptional{0}; |
1581 | }; |
1582 | |
1583 | bool AnyOptionalData(const DummyArguments &) const; |
1584 | bool AnyUnlimitedPolymorphicData(const DummyArguments &) const; |
1585 | bool Rule3Distinguishable(const Procedure &, const Procedure &) const; |
1586 | const DummyArgument *Rule1DistinguishingArg( |
1587 | const DummyArguments &, const DummyArguments &) const; |
1588 | int FindFirstToDistinguishByPosition( |
1589 | const DummyArguments &, const DummyArguments &) const; |
1590 | int FindLastToDistinguishByName( |
1591 | const DummyArguments &, const DummyArguments &) const; |
1592 | int CountCompatibleWith(const DummyArgument &, const DummyArguments &) const; |
1593 | int CountNotDistinguishableFrom( |
1594 | const DummyArgument &, const DummyArguments &) const; |
1595 | bool Distinguishable(const DummyArgument &, const DummyArgument &) const; |
1596 | bool Distinguishable(const DummyDataObject &, const DummyDataObject &) const; |
1597 | bool Distinguishable(const DummyProcedure &, const DummyProcedure &) const; |
1598 | bool Distinguishable(const FunctionResult &, const FunctionResult &) const; |
1599 | bool Distinguishable( |
1600 | const TypeAndShape &, const TypeAndShape &, common::IgnoreTKRSet) const; |
1601 | bool IsTkrCompatible(const DummyArgument &, const DummyArgument &) const; |
1602 | bool IsTkCompatible(const DummyDataObject &, const DummyDataObject &) const; |
1603 | const DummyArgument *GetAtEffectivePosition( |
1604 | const DummyArguments &, int) const; |
1605 | const DummyArgument *GetPassArg(const Procedure &) const; |
1606 | |
1607 | const common::LanguageFeatureControl &features_; |
1608 | }; |
1609 | |
1610 | // Simpler distinguishability rules for operators and assignment |
1611 | std::optional<bool> DistinguishUtils::DistinguishableOpOrAssign( |
1612 | const Procedure &proc1, const Procedure &proc2) const { |
1613 | if ((proc1.IsFunction() && proc2.IsSubroutine()) || |
1614 | (proc1.IsSubroutine() && proc2.IsFunction())) { |
1615 | return true; |
1616 | } |
1617 | auto &args1{proc1.dummyArguments}; |
1618 | auto &args2{proc2.dummyArguments}; |
1619 | if (args1.size() != args2.size()) { |
1620 | return true; // C1511: distinguishable based on number of arguments |
1621 | } |
1622 | for (std::size_t i{0}; i < args1.size(); ++i) { |
1623 | if (Distinguishable(args1[i], args2[i])) { |
1624 | return true; // C1511, C1512: distinguishable based on this arg |
1625 | } |
1626 | } |
1627 | return false; |
1628 | } |
1629 | |
1630 | std::optional<bool> DistinguishUtils::Distinguishable( |
1631 | const Procedure &proc1, const Procedure &proc2) const { |
1632 | if ((proc1.IsFunction() && proc2.IsSubroutine()) || |
1633 | (proc1.IsSubroutine() && proc2.IsFunction())) { |
1634 | return true; |
1635 | } |
1636 | auto &args1{proc1.dummyArguments}; |
1637 | auto &args2{proc2.dummyArguments}; |
1638 | auto count1{CountDummyProcedures(args1)}; |
1639 | auto count2{CountDummyProcedures(args2)}; |
1640 | if (count1.notOptional > count2.total || count2.notOptional > count1.total) { |
1641 | return true; // distinguishable based on C1514 rule 2 |
1642 | } |
1643 | if (Rule3Distinguishable(proc1, proc2)) { |
1644 | return true; // distinguishable based on C1514 rule 3 |
1645 | } |
1646 | if (Rule1DistinguishingArg(args1, args2)) { |
1647 | return true; // distinguishable based on C1514 rule 1 |
1648 | } |
1649 | int pos1{FindFirstToDistinguishByPosition(args1, args2)}; |
1650 | int name1{FindLastToDistinguishByName(args1, args2)}; |
1651 | if (pos1 >= 0 && pos1 <= name1) { |
1652 | return true; // distinguishable based on C1514 rule 4 |
1653 | } |
1654 | int pos2{FindFirstToDistinguishByPosition(args2, args1)}; |
1655 | int name2{FindLastToDistinguishByName(args2, args1)}; |
1656 | if (pos2 >= 0 && pos2 <= name2) { |
1657 | return true; // distinguishable based on C1514 rule 4 |
1658 | } |
1659 | if (proc1.cudaSubprogramAttrs != proc2.cudaSubprogramAttrs) { |
1660 | return true; |
1661 | } |
1662 | // If there are no optional or unlimited polymorphic dummy arguments, |
1663 | // then we know the result for sure; otherwise, it's possible for |
1664 | // the procedures to be unambiguous. |
1665 | if ((AnyOptionalData(args1) || AnyUnlimitedPolymorphicData(args1)) && |
1666 | (AnyOptionalData(args2) || AnyUnlimitedPolymorphicData(args2))) { |
1667 | return std::nullopt; // meaning "maybe" |
1668 | } else { |
1669 | return false; |
1670 | } |
1671 | } |
1672 | |
1673 | bool DistinguishUtils::AnyOptionalData(const DummyArguments &args) const { |
1674 | for (const auto &arg : args) { |
1675 | if (std::holds_alternative<DummyDataObject>(arg.u) && arg.IsOptional()) { |
1676 | return true; |
1677 | } |
1678 | } |
1679 | return false; |
1680 | } |
1681 | |
1682 | bool DistinguishUtils::AnyUnlimitedPolymorphicData( |
1683 | const DummyArguments &args) const { |
1684 | for (const auto &arg : args) { |
1685 | if (const auto *object{std::get_if<DummyDataObject>(&arg.u)}) { |
1686 | if (object->type.type().IsUnlimitedPolymorphic()) { |
1687 | return true; |
1688 | } |
1689 | } |
1690 | } |
1691 | return false; |
1692 | } |
1693 | |
1694 | // C1514 rule 3: Procedures are distinguishable if both have a passed-object |
1695 | // dummy argument and those are distinguishable. |
1696 | bool DistinguishUtils::Rule3Distinguishable( |
1697 | const Procedure &proc1, const Procedure &proc2) const { |
1698 | const DummyArgument *pass1{GetPassArg(proc1)}; |
1699 | const DummyArgument *pass2{GetPassArg(proc2)}; |
1700 | return pass1 && pass2 && Distinguishable(*pass1, *pass2); |
1701 | } |
1702 | |
1703 | // Find a non-passed-object dummy data object in one of the argument lists |
1704 | // that satisfies C1514 rule 1. I.e. x such that: |
1705 | // - m is the number of dummy data objects in one that are nonoptional, |
1706 | // are not passed-object, that x is TKR compatible with |
1707 | // - n is the number of non-passed-object dummy data objects, in the other |
1708 | // that are not distinguishable from x |
1709 | // - m is greater than n |
1710 | const DummyArgument *DistinguishUtils::Rule1DistinguishingArg( |
1711 | const DummyArguments &args1, const DummyArguments &args2) const { |
1712 | auto size1{args1.size()}; |
1713 | auto size2{args2.size()}; |
1714 | for (std::size_t i{0}; i < size1 + size2; ++i) { |
1715 | const DummyArgument &x{i < size1 ? args1[i] : args2[i - size1]}; |
1716 | if (!x.pass && std::holds_alternative<DummyDataObject>(x.u)) { |
1717 | if (CountCompatibleWith(x, args1) > |
1718 | CountNotDistinguishableFrom(x, args2) || |
1719 | CountCompatibleWith(x, args2) > |
1720 | CountNotDistinguishableFrom(x, args1)) { |
1721 | return &x; |
1722 | } |
1723 | } |
1724 | } |
1725 | return nullptr; |
1726 | } |
1727 | |
1728 | // Find the index of the first nonoptional non-passed-object dummy argument |
1729 | // in args1 at an effective position such that either: |
1730 | // - args2 has no dummy argument at that effective position |
1731 | // - the dummy argument at that position is distinguishable from it |
1732 | int DistinguishUtils::FindFirstToDistinguishByPosition( |
1733 | const DummyArguments &args1, const DummyArguments &args2) const { |
1734 | int effective{0}; // position of arg1 in list, ignoring passed arg |
1735 | for (std::size_t i{0}; i < args1.size(); ++i) { |
1736 | const DummyArgument &arg1{args1.at(i)}; |
1737 | if (!arg1.pass && !arg1.IsOptional()) { |
1738 | const DummyArgument *arg2{GetAtEffectivePosition(args2, effective)}; |
1739 | if (!arg2 || Distinguishable(arg1, *arg2)) { |
1740 | return i; |
1741 | } |
1742 | } |
1743 | effective += !arg1.pass; |
1744 | } |
1745 | return -1; |
1746 | } |
1747 | |
1748 | // Find the index of the last nonoptional non-passed-object dummy argument |
1749 | // in args1 whose name is such that either: |
1750 | // - args2 has no dummy argument with that name |
1751 | // - the dummy argument with that name is distinguishable from it |
1752 | int DistinguishUtils::FindLastToDistinguishByName( |
1753 | const DummyArguments &args1, const DummyArguments &args2) const { |
1754 | std::map<std::string, const DummyArgument *> nameToArg; |
1755 | for (const auto &arg2 : args2) { |
1756 | nameToArg.emplace(arg2.name, &arg2); |
1757 | } |
1758 | for (int i = args1.size() - 1; i >= 0; --i) { |
1759 | const DummyArgument &arg1{args1.at(i)}; |
1760 | if (!arg1.pass && !arg1.IsOptional()) { |
1761 | auto it{nameToArg.find(arg1.name)}; |
1762 | if (it == nameToArg.end() || Distinguishable(arg1, *it->second)) { |
1763 | return i; |
1764 | } |
1765 | } |
1766 | } |
1767 | return -1; |
1768 | } |
1769 | |
1770 | // Count the dummy data objects in args that are nonoptional, are not |
1771 | // passed-object, and that x is TKR compatible with |
1772 | int DistinguishUtils::CountCompatibleWith( |
1773 | const DummyArgument &x, const DummyArguments &args) const { |
1774 | return llvm::count_if(args, [&](const DummyArgument &y) { |
1775 | return !y.pass && !y.IsOptional() && IsTkrCompatible(x, y); |
1776 | }); |
1777 | } |
1778 | |
1779 | // Return the number of dummy data objects in args that are not |
1780 | // distinguishable from x and not passed-object. |
1781 | int DistinguishUtils::CountNotDistinguishableFrom( |
1782 | const DummyArgument &x, const DummyArguments &args) const { |
1783 | return llvm::count_if(args, [&](const DummyArgument &y) { |
1784 | return !y.pass && std::holds_alternative<DummyDataObject>(y.u) && |
1785 | !Distinguishable(y, x); |
1786 | }); |
1787 | } |
1788 | |
1789 | bool DistinguishUtils::Distinguishable( |
1790 | const DummyArgument &x, const DummyArgument &y) const { |
1791 | if (x.u.index() != y.u.index()) { |
1792 | return true; // different kind: data/proc/alt-return |
1793 | } |
1794 | return common::visit( |
1795 | common::visitors{ |
1796 | [&](const DummyDataObject &z) { |
1797 | return Distinguishable(z, std::get<DummyDataObject>(y.u)); |
1798 | }, |
1799 | [&](const DummyProcedure &z) { |
1800 | return Distinguishable(z, std::get<DummyProcedure>(y.u)); |
1801 | }, |
1802 | [&](const AlternateReturn &) { return false; }, |
1803 | }, |
1804 | x.u); |
1805 | } |
1806 | |
1807 | bool DistinguishUtils::Distinguishable( |
1808 | const DummyDataObject &x, const DummyDataObject &y) const { |
1809 | using Attr = DummyDataObject::Attr; |
1810 | if (Distinguishable(x.type, y.type, x.ignoreTKR | y.ignoreTKR)) { |
1811 | return true; |
1812 | } else if (x.attrs.test(Attr::Allocatable) && y.attrs.test(Attr::Pointer) && |
1813 | y.intent != common::Intent::In) { |
1814 | return true; |
1815 | } else if (y.attrs.test(Attr::Allocatable) && x.attrs.test(Attr::Pointer) && |
1816 | x.intent != common::Intent::In) { |
1817 | return true; |
1818 | } else if (!common::AreCompatibleCUDADataAttrs(x.cudaDataAttr, y.cudaDataAttr, |
1819 | x.ignoreTKR | y.ignoreTKR, nullptr, |
1820 | /*allowUnifiedMatchingRule=*/false, |
1821 | /*=isHostDeviceProcedure*/ false)) { |
1822 | return true; |
1823 | } else if (features_.IsEnabled( |
1824 | common::LanguageFeature::DistinguishableSpecifics) && |
1825 | (x.attrs.test(Attr::Allocatable) || x.attrs.test(Attr::Pointer)) && |
1826 | (y.attrs.test(Attr::Allocatable) || y.attrs.test(Attr::Pointer)) && |
1827 | (x.type.type().IsUnlimitedPolymorphic() != |
1828 | y.type.type().IsUnlimitedPolymorphic() || |
1829 | x.type.type().IsPolymorphic() != y.type.type().IsPolymorphic())) { |
1830 | // Extension: Per 15.5.2.5(2), an allocatable/pointer dummy and its |
1831 | // corresponding actual argument must both or neither be polymorphic, |
1832 | // and must both or neither be unlimited polymorphic. So when exactly |
1833 | // one of two dummy arguments is polymorphic or unlimited polymorphic, |
1834 | // any actual argument that is admissible to one of them cannot also match |
1835 | // the other one. |
1836 | return true; |
1837 | } else { |
1838 | return false; |
1839 | } |
1840 | } |
1841 | |
1842 | bool DistinguishUtils::Distinguishable( |
1843 | const DummyProcedure &x, const DummyProcedure &y) const { |
1844 | const Procedure &xProc{x.procedure.value()}; |
1845 | const Procedure &yProc{y.procedure.value()}; |
1846 | if (Distinguishable(xProc, yProc).value_or(false)) { |
1847 | return true; |
1848 | } else { |
1849 | const std::optional<FunctionResult> &xResult{xProc.functionResult}; |
1850 | const std::optional<FunctionResult> &yResult{yProc.functionResult}; |
1851 | return xResult ? !yResult || Distinguishable(*xResult, *yResult) |
1852 | : yResult.has_value(); |
1853 | } |
1854 | } |
1855 | |
1856 | bool DistinguishUtils::Distinguishable( |
1857 | const FunctionResult &x, const FunctionResult &y) const { |
1858 | if (x.u.index() != y.u.index()) { |
1859 | return true; // one is data object, one is procedure |
1860 | } |
1861 | if (x.cudaDataAttr != y.cudaDataAttr) { |
1862 | return true; |
1863 | } |
1864 | return common::visit( |
1865 | common::visitors{ |
1866 | [&](const TypeAndShape &z) { |
1867 | return Distinguishable( |
1868 | z, std::get<TypeAndShape>(y.u), common::IgnoreTKRSet{}); |
1869 | }, |
1870 | [&](const CopyableIndirection<Procedure> &z) { |
1871 | return Distinguishable(z.value(), |
1872 | std::get<CopyableIndirection<Procedure>>(y.u).value()) |
1873 | .value_or(false); |
1874 | }, |
1875 | }, |
1876 | x.u); |
1877 | } |
1878 | |
1879 | bool DistinguishUtils::Distinguishable(const TypeAndShape &x, |
1880 | const TypeAndShape &y, common::IgnoreTKRSet ignoreTKR) const { |
1881 | if (!x.type().IsTkCompatibleWith(y.type(), ignoreTKR) && |
1882 | !y.type().IsTkCompatibleWith(x.type(), ignoreTKR)) { |
1883 | return true; |
1884 | } |
1885 | if (ignoreTKR.test(common::IgnoreTKR::Rank)) { |
1886 | } else if (x.attrs().test(TypeAndShape::Attr::AssumedRank) || |
1887 | y.attrs().test(TypeAndShape::Attr::AssumedRank)) { |
1888 | } else if (x.Rank() != y.Rank()) { |
1889 | return true; |
1890 | } |
1891 | return false; |
1892 | } |
1893 | |
1894 | // Compatibility based on type, kind, and rank |
1895 | |
1896 | bool DistinguishUtils::IsTkrCompatible( |
1897 | const DummyArgument &x, const DummyArgument &y) const { |
1898 | const auto *obj1{std::get_if<DummyDataObject>(&x.u)}; |
1899 | const auto *obj2{std::get_if<DummyDataObject>(&y.u)}; |
1900 | return obj1 && obj2 && IsTkCompatible(*obj1, *obj2) && |
1901 | (obj1->type.Rank() == obj2->type.Rank() || |
1902 | obj1->type.attrs().test(TypeAndShape::Attr::AssumedRank) || |
1903 | obj2->type.attrs().test(TypeAndShape::Attr::AssumedRank) || |
1904 | obj1->ignoreTKR.test(common::IgnoreTKR::Rank) || |
1905 | obj2->ignoreTKR.test(common::IgnoreTKR::Rank)); |
1906 | } |
1907 | |
1908 | bool DistinguishUtils::IsTkCompatible( |
1909 | const DummyDataObject &x, const DummyDataObject &y) const { |
1910 | return x.type.type().IsTkCompatibleWith( |
1911 | y.type.type(), x.ignoreTKR | y.ignoreTKR); |
1912 | } |
1913 | |
1914 | // Return the argument at the given index, ignoring the passed arg |
1915 | const DummyArgument *DistinguishUtils::GetAtEffectivePosition( |
1916 | const DummyArguments &args, int index) const { |
1917 | for (const DummyArgument &arg : args) { |
1918 | if (!arg.pass) { |
1919 | if (index == 0) { |
1920 | return &arg; |
1921 | } |
1922 | --index; |
1923 | } |
1924 | } |
1925 | return nullptr; |
1926 | } |
1927 | |
1928 | // Return the passed-object dummy argument of this procedure, if any |
1929 | const DummyArgument *DistinguishUtils::GetPassArg(const Procedure &proc) const { |
1930 | for (const auto &arg : proc.dummyArguments) { |
1931 | if (arg.pass) { |
1932 | return &arg; |
1933 | } |
1934 | } |
1935 | return nullptr; |
1936 | } |
1937 | |
1938 | std::optional<bool> Distinguishable( |
1939 | const common::LanguageFeatureControl &features, const Procedure &x, |
1940 | const Procedure &y) { |
1941 | return DistinguishUtils{features}.Distinguishable(x, y); |
1942 | } |
1943 | |
1944 | std::optional<bool> DistinguishableOpOrAssign( |
1945 | const common::LanguageFeatureControl &features, const Procedure &x, |
1946 | const Procedure &y) { |
1947 | return DistinguishUtils{features}.DistinguishableOpOrAssign(x, y); |
1948 | } |
1949 | |
1950 | DEFINE_DEFAULT_CONSTRUCTORS_AND_ASSIGNMENTS(DummyArgument) |
1951 | DEFINE_DEFAULT_CONSTRUCTORS_AND_ASSIGNMENTS(DummyProcedure) |
1952 | DEFINE_DEFAULT_CONSTRUCTORS_AND_ASSIGNMENTS(FunctionResult) |
1953 | DEFINE_DEFAULT_CONSTRUCTORS_AND_ASSIGNMENTS(Procedure) |
1954 | } // namespace Fortran::evaluate::characteristics |
1955 | |
1956 | template class Fortran::common::Indirection< |
1957 | Fortran::evaluate::characteristics::Procedure, true>; |
1958 |
Definitions
- CopyAttrs
- ShapesAreCompatible
- IsOkWithSequenceAssociation
- GetIntent
- GetSeenProcs
- CharacterizeProcedure
- CharacterizeDummyProcedure
- CharacterizeDummyArgument
- CharacterizeFunctionResult
- AreIncompatibleFunctionResultShapes
- DistinguishUtils
- DistinguishUtils
- CountDummyProcedures
- CountDummyProcedures
- DistinguishableOpOrAssign
- Distinguishable
- AnyOptionalData
- AnyUnlimitedPolymorphicData
- Rule3Distinguishable
- Rule1DistinguishingArg
- FindFirstToDistinguishByPosition
- FindLastToDistinguishByName
- CountCompatibleWith
- CountNotDistinguishableFrom
- Distinguishable
- Distinguishable
- Distinguishable
- Distinguishable
- Distinguishable
- IsTkrCompatible
- IsTkCompatible
- GetAtEffectivePosition
- GetPassArg
- Distinguishable
- DistinguishableOpOrAssign
Improve your Profiling and Debugging skills
Find out more