1 | //===-- lib/Evaluate/check-expression.cpp ---------------------------------===// |
---|---|
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "flang/Evaluate/check-expression.h" |
10 | #include "flang/Evaluate/characteristics.h" |
11 | #include "flang/Evaluate/intrinsics.h" |
12 | #include "flang/Evaluate/tools.h" |
13 | #include "flang/Evaluate/traverse.h" |
14 | #include "flang/Evaluate/type.h" |
15 | #include "flang/Semantics/semantics.h" |
16 | #include "flang/Semantics/symbol.h" |
17 | #include "flang/Semantics/tools.h" |
18 | #include <set> |
19 | #include <string> |
20 | |
21 | namespace Fortran::evaluate { |
22 | |
23 | // Constant expression predicates IsConstantExpr() & IsScopeInvariantExpr(). |
24 | // This code determines whether an expression is a "constant expression" |
25 | // in the sense of section 10.1.12. This is not the same thing as being |
26 | // able to fold it (yet) into a known constant value; specifically, |
27 | // the expression may reference derived type kind parameters whose values |
28 | // are not yet known. |
29 | // |
30 | // The variant form (IsScopeInvariantExpr()) also accepts symbols that are |
31 | // INTENT(IN) dummy arguments without the VALUE attribute. |
32 | template <bool INVARIANT> |
33 | class IsConstantExprHelper |
34 | : public AllTraverse<IsConstantExprHelper<INVARIANT>, true> { |
35 | public: |
36 | using Base = AllTraverse<IsConstantExprHelper, true>; |
37 | IsConstantExprHelper() : Base{*this} {} |
38 | using Base::operator(); |
39 | |
40 | // A missing expression is not considered to be constant. |
41 | template <typename A> bool operator()(const std::optional<A> &x) const { |
42 | return x && (*this)(*x); |
43 | } |
44 | |
45 | bool operator()(const TypeParamInquiry &inq) const { |
46 | return INVARIANT || semantics::IsKindTypeParameter(inq.parameter()); |
47 | } |
48 | bool operator()(const semantics::Symbol &symbol) const { |
49 | const auto &ultimate{GetAssociationRoot(symbol)}; |
50 | return IsNamedConstant(ultimate) || IsImpliedDoIndex(ultimate) || |
51 | IsInitialProcedureTarget(ultimate) || |
52 | ultimate.has<semantics::TypeParamDetails>() || |
53 | (INVARIANT && IsIntentIn(symbol) && !IsOptional(symbol) && |
54 | !symbol.attrs().test(semantics::Attr::VALUE)); |
55 | } |
56 | bool operator()(const CoarrayRef &) const { return false; } |
57 | bool operator()(const semantics::ParamValue ¶m) const { |
58 | return param.isExplicit() && (*this)(param.GetExplicit()); |
59 | } |
60 | bool operator()(const ProcedureRef &) const; |
61 | bool operator()(const StructureConstructor &constructor) const { |
62 | for (const auto &[symRef, expr] : constructor) { |
63 | if (!IsConstantStructureConstructorComponent(*symRef, expr.value())) { |
64 | return false; |
65 | } |
66 | } |
67 | return true; |
68 | } |
69 | bool operator()(const Component &component) const { |
70 | return (*this)(component.base()); |
71 | } |
72 | // Prevent integer division by known zeroes in constant expressions. |
73 | template <int KIND> |
74 | bool operator()( |
75 | const Divide<Type<TypeCategory::Integer, KIND>> &division) const { |
76 | using T = Type<TypeCategory::Integer, KIND>; |
77 | if ((*this)(division.left()) && (*this)(division.right())) { |
78 | const auto divisor{GetScalarConstantValue<T>(division.right())}; |
79 | return !divisor || !divisor->IsZero(); |
80 | } else { |
81 | return false; |
82 | } |
83 | } |
84 | |
85 | bool operator()(const Constant<SomeDerived> &) const { return true; } |
86 | bool operator()(const DescriptorInquiry &x) const { |
87 | const Symbol &sym{x.base().GetLastSymbol()}; |
88 | return INVARIANT && !IsAllocatable(sym) && |
89 | (!IsDummy(sym) || |
90 | (IsIntentIn(sym) && !IsOptional(sym) && |
91 | !sym.attrs().test(semantics::Attr::VALUE))); |
92 | } |
93 | |
94 | private: |
95 | bool IsConstantStructureConstructorComponent( |
96 | const Symbol &, const Expr<SomeType> &) const; |
97 | bool IsConstantExprShape(const Shape &) const; |
98 | }; |
99 | |
100 | template <bool INVARIANT> |
101 | bool IsConstantExprHelper<INVARIANT>::IsConstantStructureConstructorComponent( |
102 | const Symbol &component, const Expr<SomeType> &expr) const { |
103 | if (IsAllocatable(component)) { |
104 | return IsNullObjectPointer(&expr); |
105 | } else if (IsPointer(component)) { |
106 | return IsNullPointerOrAllocatable(&expr) || IsInitialDataTarget(expr) || |
107 | IsInitialProcedureTarget(expr); |
108 | } else { |
109 | return (*this)(expr); |
110 | } |
111 | } |
112 | |
113 | template <bool INVARIANT> |
114 | bool IsConstantExprHelper<INVARIANT>::operator()( |
115 | const ProcedureRef &call) const { |
116 | // LBOUND, UBOUND, and SIZE with truly constant DIM= arguments will have |
117 | // been rewritten into DescriptorInquiry operations. |
118 | if (const auto *intrinsic{std::get_if<SpecificIntrinsic>(&call.proc().u)}) { |
119 | const characteristics::Procedure &proc{intrinsic->characteristics.value()}; |
120 | if (intrinsic->name == "kind"|| |
121 | intrinsic->name == IntrinsicProcTable::InvalidName || |
122 | call.arguments().empty() || !call.arguments()[0]) { |
123 | // kind is always a constant, and we avoid cascading errors by considering |
124 | // invalid calls to intrinsics to be constant |
125 | return true; |
126 | } else if (intrinsic->name == "lbound") { |
127 | auto base{ExtractNamedEntity(call.arguments()[0]->UnwrapExpr())}; |
128 | return base && IsConstantExprShape(GetLBOUNDs(*base)); |
129 | } else if (intrinsic->name == "ubound") { |
130 | auto base{ExtractNamedEntity(call.arguments()[0]->UnwrapExpr())}; |
131 | return base && IsConstantExprShape(GetUBOUNDs(*base)); |
132 | } else if (intrinsic->name == "shape"|| intrinsic->name == "size") { |
133 | auto shape{GetShape(call.arguments()[0]->UnwrapExpr())}; |
134 | return shape && IsConstantExprShape(*shape); |
135 | } else if (proc.IsPure()) { |
136 | std::size_t j{0}; |
137 | for (const auto &arg : call.arguments()) { |
138 | if (const auto *dataDummy{j < proc.dummyArguments.size() |
139 | ? std::get_if<characteristics::DummyDataObject>( |
140 | &proc.dummyArguments[j].u) |
141 | : nullptr}; |
142 | dataDummy && |
143 | dataDummy->attrs.test( |
144 | characteristics::DummyDataObject::Attr::OnlyIntrinsicInquiry)) { |
145 | // The value of the argument doesn't matter |
146 | } else if (!arg) { |
147 | return false; |
148 | } else if (const auto *expr{arg->UnwrapExpr()}; |
149 | !expr || !(*this)(*expr)) { |
150 | return false; |
151 | } |
152 | ++j; |
153 | } |
154 | return true; |
155 | } |
156 | // TODO: STORAGE_SIZE |
157 | } |
158 | return false; |
159 | } |
160 | |
161 | template <bool INVARIANT> |
162 | bool IsConstantExprHelper<INVARIANT>::IsConstantExprShape( |
163 | const Shape &shape) const { |
164 | for (const auto &extent : shape) { |
165 | if (!(*this)(extent)) { |
166 | return false; |
167 | } |
168 | } |
169 | return true; |
170 | } |
171 | |
172 | template <typename A> bool IsConstantExpr(const A &x) { |
173 | return IsConstantExprHelper<false>{}(x); |
174 | } |
175 | template bool IsConstantExpr(const Expr<SomeType> &); |
176 | template bool IsConstantExpr(const Expr<SomeInteger> &); |
177 | template bool IsConstantExpr(const Expr<SubscriptInteger> &); |
178 | template bool IsConstantExpr(const StructureConstructor &); |
179 | |
180 | // IsScopeInvariantExpr() |
181 | template <typename A> bool IsScopeInvariantExpr(const A &x) { |
182 | return IsConstantExprHelper<true>{}(x); |
183 | } |
184 | template bool IsScopeInvariantExpr(const Expr<SomeType> &); |
185 | template bool IsScopeInvariantExpr(const Expr<SomeInteger> &); |
186 | template bool IsScopeInvariantExpr(const Expr<SubscriptInteger> &); |
187 | |
188 | // IsActuallyConstant() |
189 | struct IsActuallyConstantHelper { |
190 | template <typename A> bool operator()(const A &) { return false; } |
191 | template <typename T> bool operator()(const Constant<T> &) { return true; } |
192 | template <typename T> bool operator()(const Parentheses<T> &x) { |
193 | return (*this)(x.left()); |
194 | } |
195 | template <typename T> bool operator()(const Expr<T> &x) { |
196 | return common::visit([=](const auto &y) { return (*this)(y); }, x.u); |
197 | } |
198 | bool operator()(const Expr<SomeType> &x) { |
199 | return common::visit([this](const auto &y) { return (*this)(y); }, x.u); |
200 | } |
201 | bool operator()(const StructureConstructor &x) { |
202 | for (const auto &pair : x) { |
203 | const Expr<SomeType> &y{pair.second.value()}; |
204 | const auto sym{pair.first}; |
205 | const bool compIsConstant{(*this)(y)}; |
206 | // If an allocatable component is initialized by a constant, |
207 | // the structure constructor is not a constant. |
208 | if ((!compIsConstant && !IsNullPointerOrAllocatable(&y)) || |
209 | (compIsConstant && IsAllocatable(sym))) { |
210 | return false; |
211 | } |
212 | } |
213 | return true; |
214 | } |
215 | template <typename A> bool operator()(const A *x) { return x && (*this)(*x); } |
216 | template <typename A> bool operator()(const std::optional<A> &x) { |
217 | return x && (*this)(*x); |
218 | } |
219 | }; |
220 | |
221 | template <typename A> bool IsActuallyConstant(const A &x) { |
222 | return IsActuallyConstantHelper{}(x); |
223 | } |
224 | |
225 | template bool IsActuallyConstant(const Expr<SomeType> &); |
226 | template bool IsActuallyConstant(const Expr<SomeInteger> &); |
227 | template bool IsActuallyConstant(const Expr<SubscriptInteger> &); |
228 | template bool IsActuallyConstant(const std::optional<Expr<SubscriptInteger>> &); |
229 | |
230 | // Object pointer initialization checking predicate IsInitialDataTarget(). |
231 | // This code determines whether an expression is allowable as the static |
232 | // data address used to initialize a pointer with "=> x". See C765. |
233 | class IsInitialDataTargetHelper |
234 | : public AllTraverse<IsInitialDataTargetHelper, true> { |
235 | public: |
236 | using Base = AllTraverse<IsInitialDataTargetHelper, true>; |
237 | using Base::operator(); |
238 | explicit IsInitialDataTargetHelper(parser::ContextualMessages *m) |
239 | : Base{*this}, messages_{m} {} |
240 | |
241 | bool emittedMessage() const { return emittedMessage_; } |
242 | |
243 | bool operator()(const BOZLiteralConstant &) const { return false; } |
244 | bool operator()(const NullPointer &) const { return true; } |
245 | template <typename T> bool operator()(const Constant<T> &) const { |
246 | return false; |
247 | } |
248 | bool operator()(const semantics::Symbol &symbol) { |
249 | // This function checks only base symbols, not components. |
250 | const Symbol &ultimate{symbol.GetUltimate()}; |
251 | if (const auto *assoc{ |
252 | ultimate.detailsIf<semantics::AssocEntityDetails>()}) { |
253 | if (const auto &expr{assoc->expr()}) { |
254 | if (IsVariable(*expr)) { |
255 | return (*this)(*expr); |
256 | } else if (messages_) { |
257 | messages_->Say( |
258 | "An initial data target may not be an associated expression ('%s')"_err_en_US, |
259 | ultimate.name()); |
260 | emittedMessage_ = true; |
261 | } |
262 | } |
263 | return false; |
264 | } else if (!CheckVarOrComponent(ultimate)) { |
265 | return false; |
266 | } else if (!ultimate.attrs().test(semantics::Attr::TARGET)) { |
267 | if (messages_) { |
268 | messages_->Say( |
269 | "An initial data target may not be a reference to an object '%s' that lacks the TARGET attribute"_err_en_US, |
270 | ultimate.name()); |
271 | emittedMessage_ = true; |
272 | } |
273 | return false; |
274 | } else if (!IsSaved(ultimate)) { |
275 | if (messages_) { |
276 | messages_->Say( |
277 | "An initial data target may not be a reference to an object '%s' that lacks the SAVE attribute"_err_en_US, |
278 | ultimate.name()); |
279 | emittedMessage_ = true; |
280 | } |
281 | return false; |
282 | } else { |
283 | return true; |
284 | } |
285 | } |
286 | bool operator()(const StaticDataObject &) const { return false; } |
287 | bool operator()(const TypeParamInquiry &) const { return false; } |
288 | bool operator()(const Triplet &x) const { |
289 | return IsConstantExpr(x.lower()) && IsConstantExpr(x.upper()) && |
290 | IsConstantExpr(x.stride()); |
291 | } |
292 | bool operator()(const Subscript &x) const { |
293 | return common::visit(common::visitors{ |
294 | [&](const Triplet &t) { return (*this)(t); }, |
295 | [&](const auto &y) { |
296 | return y.value().Rank() == 0 && |
297 | IsConstantExpr(y.value()); |
298 | }, |
299 | }, |
300 | x.u); |
301 | } |
302 | bool operator()(const CoarrayRef &) const { return false; } |
303 | bool operator()(const Component &x) { |
304 | return CheckVarOrComponent(x.GetLastSymbol()) && (*this)(x.base()); |
305 | } |
306 | bool operator()(const Substring &x) const { |
307 | return IsConstantExpr(x.lower()) && IsConstantExpr(x.upper()) && |
308 | (*this)(x.parent()); |
309 | } |
310 | bool operator()(const DescriptorInquiry &) const { return false; } |
311 | template <typename T> bool operator()(const ArrayConstructor<T> &) const { |
312 | return false; |
313 | } |
314 | bool operator()(const StructureConstructor &) const { return false; } |
315 | template <typename D, typename R, typename... O> |
316 | bool operator()(const Operation<D, R, O...> &) const { |
317 | return false; |
318 | } |
319 | template <typename T> bool operator()(const Parentheses<T> &x) const { |
320 | return (*this)(x.left()); |
321 | } |
322 | bool operator()(const ProcedureRef &x) const { |
323 | if (const SpecificIntrinsic * intrinsic{x.proc().GetSpecificIntrinsic()}) { |
324 | return intrinsic->characteristics.value().attrs.test( |
325 | characteristics::Procedure::Attr::NullPointer) || |
326 | intrinsic->characteristics.value().attrs.test( |
327 | characteristics::Procedure::Attr::NullAllocatable); |
328 | } |
329 | return false; |
330 | } |
331 | bool operator()(const Relational<SomeType> &) const { return false; } |
332 | |
333 | private: |
334 | bool CheckVarOrComponent(const semantics::Symbol &symbol) { |
335 | const Symbol &ultimate{symbol.GetUltimate()}; |
336 | const char *unacceptable{nullptr}; |
337 | if (ultimate.Corank() > 0) { |
338 | unacceptable = "a coarray"; |
339 | } else if (IsAllocatable(ultimate)) { |
340 | unacceptable = "an ALLOCATABLE"; |
341 | } else if (IsPointer(ultimate)) { |
342 | unacceptable = "a POINTER"; |
343 | } else { |
344 | return true; |
345 | } |
346 | if (messages_) { |
347 | messages_->Say( |
348 | "An initial data target may not be a reference to %s '%s'"_err_en_US, |
349 | unacceptable, ultimate.name()); |
350 | emittedMessage_ = true; |
351 | } |
352 | return false; |
353 | } |
354 | |
355 | parser::ContextualMessages *messages_; |
356 | bool emittedMessage_{false}; |
357 | }; |
358 | |
359 | bool IsInitialDataTarget( |
360 | const Expr<SomeType> &x, parser::ContextualMessages *messages) { |
361 | IsInitialDataTargetHelper helper{messages}; |
362 | bool result{helper(x)}; |
363 | if (!result && messages && !helper.emittedMessage()) { |
364 | messages->Say( |
365 | "An initial data target must be a designator with constant subscripts"_err_en_US); |
366 | } |
367 | return result; |
368 | } |
369 | |
370 | bool IsInitialProcedureTarget(const semantics::Symbol &symbol) { |
371 | const auto &ultimate{symbol.GetUltimate()}; |
372 | return common::visit( |
373 | common::visitors{ |
374 | [&](const semantics::SubprogramDetails &subp) { |
375 | return !subp.isDummy() && !subp.stmtFunction() && |
376 | symbol.owner().kind() != semantics::Scope::Kind::MainProgram && |
377 | symbol.owner().kind() != semantics::Scope::Kind::Subprogram; |
378 | }, |
379 | [](const semantics::SubprogramNameDetails &x) { |
380 | return x.kind() != semantics::SubprogramKind::Internal; |
381 | }, |
382 | [&](const semantics::ProcEntityDetails &proc) { |
383 | return !semantics::IsPointer(ultimate) && !proc.isDummy(); |
384 | }, |
385 | [](const auto &) { return false; }, |
386 | }, |
387 | ultimate.details()); |
388 | } |
389 | |
390 | bool IsInitialProcedureTarget(const ProcedureDesignator &proc) { |
391 | if (const auto *intrin{proc.GetSpecificIntrinsic()}) { |
392 | return !intrin->isRestrictedSpecific; |
393 | } else if (proc.GetComponent()) { |
394 | return false; |
395 | } else { |
396 | return IsInitialProcedureTarget(DEREF(proc.GetSymbol())); |
397 | } |
398 | } |
399 | |
400 | bool IsInitialProcedureTarget(const Expr<SomeType> &expr) { |
401 | if (const auto *proc{std::get_if<ProcedureDesignator>(&expr.u)}) { |
402 | return IsInitialProcedureTarget(*proc); |
403 | } else { |
404 | return IsNullProcedurePointer(&expr); |
405 | } |
406 | } |
407 | |
408 | // Converts, folds, and then checks type, rank, and shape of an |
409 | // initialization expression for a named constant, a non-pointer |
410 | // variable static initialization, a component default initializer, |
411 | // a type parameter default value, or instantiated type parameter value. |
412 | std::optional<Expr<SomeType>> NonPointerInitializationExpr(const Symbol &symbol, |
413 | Expr<SomeType> &&x, FoldingContext &context, |
414 | const semantics::Scope *instantiation) { |
415 | CHECK(!IsPointer(symbol)); |
416 | if (auto symTS{ |
417 | characteristics::TypeAndShape::Characterize(symbol, context)}) { |
418 | auto xType{x.GetType()}; |
419 | auto converted{ConvertToType(symTS->type(), Expr<SomeType>{x})}; |
420 | if (!converted && |
421 | symbol.owner().context().IsEnabled( |
422 | common::LanguageFeature::LogicalIntegerAssignment)) { |
423 | converted = DataConstantConversionExtension(context, symTS->type(), x); |
424 | if (converted && |
425 | symbol.owner().context().ShouldWarn( |
426 | common::LanguageFeature::LogicalIntegerAssignment)) { |
427 | context.messages().Say( |
428 | common::LanguageFeature::LogicalIntegerAssignment, |
429 | "nonstandard usage: initialization of %s with %s"_port_en_US, |
430 | symTS->type().AsFortran(), x.GetType().value().AsFortran()); |
431 | } |
432 | } |
433 | if (converted) { |
434 | auto folded{Fold(context, std::move(*converted))}; |
435 | if (IsActuallyConstant(folded)) { |
436 | int symRank{symTS->Rank()}; |
437 | if (IsImpliedShape(symbol)) { |
438 | if (folded.Rank() == symRank) { |
439 | return ArrayConstantBoundChanger{ |
440 | std::move(*AsConstantExtents( |
441 | context, GetRawLowerBounds(context, NamedEntity{symbol})))} |
442 | .ChangeLbounds(std::move(folded)); |
443 | } else { |
444 | context.messages().Say( |
445 | "Implied-shape parameter '%s' has rank %d but its initializer has rank %d"_err_en_US, |
446 | symbol.name(), symRank, folded.Rank()); |
447 | } |
448 | } else if (auto extents{AsConstantExtents(context, symTS->shape())}; |
449 | extents && !HasNegativeExtent(*extents)) { |
450 | if (folded.Rank() == 0 && symRank == 0) { |
451 | // symbol and constant are both scalars |
452 | return {std::move(folded)}; |
453 | } else if (folded.Rank() == 0 && symRank > 0) { |
454 | // expand the scalar constant to an array |
455 | return ScalarConstantExpander{std::move(*extents), |
456 | AsConstantExtents( |
457 | context, GetRawLowerBounds(context, NamedEntity{symbol}))} |
458 | .Expand(std::move(folded)); |
459 | } else if (auto resultShape{GetShape(context, folded)}) { |
460 | CHECK(symTS->shape()); // Assumed-ranks cannot be initialized. |
461 | if (CheckConformance(context.messages(), *symTS->shape(), |
462 | *resultShape, CheckConformanceFlags::None, |
463 | "initialized object", "initialization expression") |
464 | .value_or(false /*fail if not known now to conform*/)) { |
465 | // make a constant array with adjusted lower bounds |
466 | return ArrayConstantBoundChanger{ |
467 | std::move(*AsConstantExtents(context, |
468 | GetRawLowerBounds(context, NamedEntity{symbol})))} |
469 | .ChangeLbounds(std::move(folded)); |
470 | } |
471 | } |
472 | } else if (IsNamedConstant(symbol)) { |
473 | if (IsExplicitShape(symbol)) { |
474 | context.messages().Say( |
475 | "Named constant '%s' array must have constant shape"_err_en_US, |
476 | symbol.name()); |
477 | } else { |
478 | // Declaration checking handles other cases |
479 | } |
480 | } else { |
481 | context.messages().Say( |
482 | "Shape of initialized object '%s' must be constant"_err_en_US, |
483 | symbol.name()); |
484 | } |
485 | } else if (IsErrorExpr(folded)) { |
486 | } else if (IsLenTypeParameter(symbol)) { |
487 | return {std::move(folded)}; |
488 | } else if (IsKindTypeParameter(symbol)) { |
489 | if (instantiation) { |
490 | context.messages().Say( |
491 | "Value of kind type parameter '%s' (%s) must be a scalar INTEGER constant"_err_en_US, |
492 | symbol.name(), folded.AsFortran()); |
493 | } else { |
494 | return {std::move(folded)}; |
495 | } |
496 | } else if (IsNamedConstant(symbol)) { |
497 | if (symbol.name() == "numeric_storage_size"&& |
498 | symbol.owner().IsModule() && |
499 | DEREF(symbol.owner().symbol()).name() == "iso_fortran_env") { |
500 | // Very special case: numeric_storage_size is not folded until |
501 | // it read from the iso_fortran_env module file, as its value |
502 | // depends on compilation options. |
503 | return {std::move(folded)}; |
504 | } |
505 | context.messages().Say( |
506 | "Value of named constant '%s' (%s) cannot be computed as a constant value"_err_en_US, |
507 | symbol.name(), folded.AsFortran()); |
508 | } else { |
509 | context.messages().Say( |
510 | "Initialization expression for '%s' (%s) cannot be computed as a constant value"_err_en_US, |
511 | symbol.name(), x.AsFortran()); |
512 | } |
513 | } else if (xType) { |
514 | context.messages().Say( |
515 | "Initialization expression cannot be converted to declared type of '%s' from %s"_err_en_US, |
516 | symbol.name(), xType->AsFortran()); |
517 | } else { |
518 | context.messages().Say( |
519 | "Initialization expression cannot be converted to declared type of '%s'"_err_en_US, |
520 | symbol.name()); |
521 | } |
522 | } |
523 | return std::nullopt; |
524 | } |
525 | |
526 | // Specification expression validation (10.1.11(2), C1010) |
527 | class CheckSpecificationExprHelper |
528 | : public AnyTraverse<CheckSpecificationExprHelper, |
529 | std::optional<std::string>> { |
530 | public: |
531 | using Result = std::optional<std::string>; |
532 | using Base = AnyTraverse<CheckSpecificationExprHelper, Result>; |
533 | explicit CheckSpecificationExprHelper(const semantics::Scope &s, |
534 | FoldingContext &context, bool forElementalFunctionResult) |
535 | : Base{*this}, scope_{s}, context_{context}, |
536 | forElementalFunctionResult_{forElementalFunctionResult} {} |
537 | using Base::operator(); |
538 | |
539 | Result operator()(const CoarrayRef &) const { return "coindexed reference"; } |
540 | |
541 | Result operator()(const semantics::Symbol &symbol) const { |
542 | const auto &ultimate{symbol.GetUltimate()}; |
543 | const auto *object{ultimate.detailsIf<semantics::ObjectEntityDetails>()}; |
544 | bool isInitialized{semantics::IsSaved(ultimate) && |
545 | !IsAllocatable(ultimate) && object && |
546 | (ultimate.test(Symbol::Flag::InDataStmt) || |
547 | object->init().has_value())}; |
548 | bool hasHostAssociation{ |
549 | &symbol.owner() != &scope_ || &ultimate.owner() != &scope_}; |
550 | if (const auto *assoc{ |
551 | ultimate.detailsIf<semantics::AssocEntityDetails>()}) { |
552 | return (*this)(assoc->expr()); |
553 | } else if (semantics::IsNamedConstant(ultimate) || |
554 | ultimate.owner().IsModule() || ultimate.owner().IsSubmodule()) { |
555 | return std::nullopt; |
556 | } else if (scope_.IsDerivedType() && |
557 | IsVariableName(ultimate)) { // C750, C754 |
558 | return "derived type component or type parameter value not allowed to " |
559 | "reference variable '"s+ |
560 | ultimate.name().ToString() + "'"; |
561 | } else if (IsDummy(ultimate)) { |
562 | if (!inInquiry_ && forElementalFunctionResult_) { |
563 | return "dependence on value of dummy argument '"s+ |
564 | ultimate.name().ToString() + "'"; |
565 | } else if (ultimate.attrs().test(semantics::Attr::OPTIONAL)) { |
566 | return "reference to OPTIONAL dummy argument '"s+ |
567 | ultimate.name().ToString() + "'"; |
568 | } else if (!inInquiry_ && !hasHostAssociation && |
569 | ultimate.attrs().test(semantics::Attr::INTENT_OUT)) { |
570 | return "reference to INTENT(OUT) dummy argument '"s+ |
571 | ultimate.name().ToString() + "'"; |
572 | } else if (!ultimate.has<semantics::ObjectEntityDetails>()) { |
573 | return "dummy procedure argument"; |
574 | } else { |
575 | // Sketchy case: some compilers allow an INTENT(OUT) dummy argument |
576 | // to be used in a specification expression if it is host-associated. |
577 | // The arguments raised in support this usage, however, depend on |
578 | // a reading of the standard that would also accept an OPTIONAL |
579 | // host-associated dummy argument, and that doesn't seem like a |
580 | // good idea. |
581 | if (!inInquiry_ && hasHostAssociation && |
582 | ultimate.attrs().test(semantics::Attr::INTENT_OUT) && |
583 | context_.languageFeatures().ShouldWarn( |
584 | common::UsageWarning::HostAssociatedIntentOutInSpecExpr)) { |
585 | context_.messages().Say( |
586 | "specification expression refers to host-associated INTENT(OUT) dummy argument '%s'"_port_en_US, |
587 | ultimate.name()); |
588 | } |
589 | return std::nullopt; |
590 | } |
591 | } else if (hasHostAssociation) { |
592 | return std::nullopt; // host association is in play |
593 | } else if (isInitialized && |
594 | context_.languageFeatures().IsEnabled( |
595 | common::LanguageFeature::SavedLocalInSpecExpr)) { |
596 | if (!scope_.IsModuleFile() && |
597 | context_.languageFeatures().ShouldWarn( |
598 | common::LanguageFeature::SavedLocalInSpecExpr)) { |
599 | context_.messages().Say(common::LanguageFeature::SavedLocalInSpecExpr, |
600 | "specification expression refers to local object '%s' (initialized and saved)"_port_en_US, |
601 | ultimate.name()); |
602 | } |
603 | return std::nullopt; |
604 | } else if (const auto *object{ |
605 | ultimate.detailsIf<semantics::ObjectEntityDetails>()}) { |
606 | if (object->commonBlock()) { |
607 | return std::nullopt; |
608 | } |
609 | } |
610 | if (inInquiry_) { |
611 | return std::nullopt; |
612 | } else { |
613 | return "reference to local entity '"s+ ultimate.name().ToString() + "'"; |
614 | } |
615 | } |
616 | |
617 | Result operator()(const Component &x) const { |
618 | // Don't look at the component symbol. |
619 | return (*this)(x.base()); |
620 | } |
621 | Result operator()(const ArrayRef &x) const { |
622 | if (auto result{(*this)(x.base())}) { |
623 | return result; |
624 | } |
625 | // The subscripts don't get special protection for being in a |
626 | // specification inquiry context; |
627 | auto restorer{common::ScopedSet(inInquiry_, false)}; |
628 | return (*this)(x.subscript()); |
629 | } |
630 | Result operator()(const Substring &x) const { |
631 | if (auto result{(*this)(x.parent())}) { |
632 | return result; |
633 | } |
634 | // The bounds don't get special protection for being in a |
635 | // specification inquiry context; |
636 | auto restorer{common::ScopedSet(inInquiry_, false)}; |
637 | if (auto result{(*this)(x.lower())}) { |
638 | return result; |
639 | } |
640 | return (*this)(x.upper()); |
641 | } |
642 | Result operator()(const DescriptorInquiry &x) const { |
643 | // Many uses of SIZE(), LBOUND(), &c. that are valid in specification |
644 | // expressions will have been converted to expressions over descriptor |
645 | // inquiries by Fold(). |
646 | // Catch REAL, ALLOCATABLE :: X(:); REAL :: Y(SIZE(X)) |
647 | if (IsPermissibleInquiry( |
648 | x.base().GetFirstSymbol(), x.base().GetLastSymbol(), x.field())) { |
649 | auto restorer{common::ScopedSet(inInquiry_, true)}; |
650 | return (*this)(x.base()); |
651 | } else if (IsConstantExpr(x)) { |
652 | return std::nullopt; |
653 | } else { |
654 | return "non-constant descriptor inquiry not allowed for local object"; |
655 | } |
656 | } |
657 | |
658 | Result operator()(const TypeParamInquiry &inq) const { |
659 | if (scope_.IsDerivedType()) { |
660 | if (!IsConstantExpr(inq) && |
661 | inq.base() /* X%T, not local T */) { // C750, C754 |
662 | return "non-constant reference to a type parameter inquiry not allowed " |
663 | "for derived type components or type parameter values"; |
664 | } |
665 | } else if (inq.base() && |
666 | IsInquiryAlwaysPermissible(inq.base()->GetFirstSymbol())) { |
667 | auto restorer{common::ScopedSet(inInquiry_, true)}; |
668 | return (*this)(inq.base()); |
669 | } else if (!IsConstantExpr(inq)) { |
670 | return "non-constant type parameter inquiry not allowed for local object"; |
671 | } |
672 | return std::nullopt; |
673 | } |
674 | |
675 | Result operator()(const ProcedureRef &x) const { |
676 | if (const auto *symbol{x.proc().GetSymbol()}) { |
677 | const Symbol &ultimate{symbol->GetUltimate()}; |
678 | if (!semantics::IsPureProcedure(ultimate)) { |
679 | return "reference to impure function '"s+ ultimate.name().ToString() + |
680 | "'"; |
681 | } |
682 | if (semantics::IsStmtFunction(ultimate)) { |
683 | return "reference to statement function '"s+ |
684 | ultimate.name().ToString() + "'"; |
685 | } |
686 | if (scope_.IsDerivedType()) { // C750, C754 |
687 | return "reference to function '"s+ ultimate.name().ToString() + |
688 | "' not allowed for derived type components or type parameter" |
689 | " values"; |
690 | } |
691 | if (auto procChars{characteristics::Procedure::Characterize( |
692 | x.proc(), context_, /*emitError=*/true)}) { |
693 | const auto iter{std::find_if(procChars->dummyArguments.begin(), |
694 | procChars->dummyArguments.end(), |
695 | [](const characteristics::DummyArgument &dummy) { |
696 | return std::holds_alternative<characteristics::DummyProcedure>( |
697 | dummy.u); |
698 | })}; |
699 | if (iter != procChars->dummyArguments.end() && |
700 | ultimate.name().ToString() != "__builtin_c_funloc") { |
701 | return "reference to function '"s+ ultimate.name().ToString() + |
702 | "' with dummy procedure argument '"+ iter->name + '\''; |
703 | } |
704 | } |
705 | // References to internal functions are caught in expression semantics. |
706 | // TODO: other checks for standard module procedures |
707 | auto restorer{common::ScopedSet(inInquiry_, false)}; |
708 | return (*this)(x.arguments()); |
709 | } else { // intrinsic |
710 | const SpecificIntrinsic &intrin{DEREF(x.proc().GetSpecificIntrinsic())}; |
711 | bool inInquiry{context_.intrinsics().GetIntrinsicClass(intrin.name) == |
712 | IntrinsicClass::inquiryFunction}; |
713 | if (scope_.IsDerivedType()) { // C750, C754 |
714 | if ((context_.intrinsics().IsIntrinsic(intrin.name) && |
715 | badIntrinsicsForComponents_.find(intrin.name) != |
716 | badIntrinsicsForComponents_.end())) { |
717 | return "reference to intrinsic '"s+ intrin.name + |
718 | "' not allowed for derived type components or type parameter" |
719 | " values"; |
720 | } |
721 | if (inInquiry && !IsConstantExpr(x)) { |
722 | return "non-constant reference to inquiry intrinsic '"s+ |
723 | intrin.name + |
724 | "' not allowed for derived type components or type" |
725 | " parameter values"; |
726 | } |
727 | } |
728 | // Type-determined inquiries (DIGITS, HUGE, &c.) will have already been |
729 | // folded and won't arrive here. Inquiries that are represented with |
730 | // DescriptorInquiry operations (LBOUND) are checked elsewhere. If a |
731 | // call that makes it to here satisfies the requirements of a constant |
732 | // expression (as Fortran defines it), it's fine. |
733 | if (IsConstantExpr(x)) { |
734 | return std::nullopt; |
735 | } |
736 | if (intrin.name == "present") { |
737 | return std::nullopt; // always ok |
738 | } |
739 | const auto &proc{intrin.characteristics.value()}; |
740 | std::size_t j{0}; |
741 | for (const auto &arg : x.arguments()) { |
742 | bool checkArg{true}; |
743 | if (const auto *dataDummy{j < proc.dummyArguments.size() |
744 | ? std::get_if<characteristics::DummyDataObject>( |
745 | &proc.dummyArguments[j].u) |
746 | : nullptr}) { |
747 | if (dataDummy->attrs.test(characteristics::DummyDataObject::Attr:: |
748 | OnlyIntrinsicInquiry)) { |
749 | checkArg = false; // value unused, e.g. IEEE_SUPPORT_FLAG(,,,. X) |
750 | } |
751 | } |
752 | if (arg && checkArg) { |
753 | // Catch CHARACTER(:), ALLOCATABLE :: X; CHARACTER(LEN(X)) :: Y |
754 | if (inInquiry) { |
755 | if (auto dataRef{ExtractDataRef(*arg, true, true)}) { |
756 | if (intrin.name == "allocated"|| intrin.name == "associated"|| |
757 | intrin.name == "is_contiguous") { // ok |
758 | } else if (intrin.name == "len"&& |
759 | IsPermissibleInquiry(dataRef->GetFirstSymbol(), |
760 | dataRef->GetLastSymbol(), |
761 | DescriptorInquiry::Field::Len)) { // ok |
762 | } else if (intrin.name == "lbound"&& |
763 | IsPermissibleInquiry(dataRef->GetFirstSymbol(), |
764 | dataRef->GetLastSymbol(), |
765 | DescriptorInquiry::Field::LowerBound)) { // ok |
766 | } else if ((intrin.name == "shape"|| intrin.name == "size"|| |
767 | intrin.name == "sizeof"|| |
768 | intrin.name == "storage_size"|| |
769 | intrin.name == "ubound") && |
770 | IsPermissibleInquiry(dataRef->GetFirstSymbol(), |
771 | dataRef->GetLastSymbol(), |
772 | DescriptorInquiry::Field::Extent)) { // ok |
773 | } else { |
774 | return "non-constant inquiry function '"s+ intrin.name + |
775 | "' not allowed for local object"; |
776 | } |
777 | } |
778 | } |
779 | auto restorer{common::ScopedSet(inInquiry_, inInquiry)}; |
780 | if (auto err{(*this)(*arg)}) { |
781 | return err; |
782 | } |
783 | } |
784 | ++j; |
785 | } |
786 | return std::nullopt; |
787 | } |
788 | } |
789 | |
790 | private: |
791 | const semantics::Scope &scope_; |
792 | FoldingContext &context_; |
793 | // Contextual information: this flag is true when in an argument to |
794 | // an inquiry intrinsic like SIZE(). |
795 | mutable bool inInquiry_{false}; |
796 | bool forElementalFunctionResult_{false}; // F'2023 C15121 |
797 | const std::set<std::string> badIntrinsicsForComponents_{ |
798 | "allocated", "associated", "extends_type_of", "present", "same_type_as"}; |
799 | |
800 | bool IsInquiryAlwaysPermissible(const semantics::Symbol &) const; |
801 | bool IsPermissibleInquiry(const semantics::Symbol &firstSymbol, |
802 | const semantics::Symbol &lastSymbol, |
803 | DescriptorInquiry::Field field) const; |
804 | }; |
805 | |
806 | bool CheckSpecificationExprHelper::IsInquiryAlwaysPermissible( |
807 | const semantics::Symbol &symbol) const { |
808 | if (&symbol.owner() != &scope_ || symbol.has<semantics::UseDetails>() || |
809 | symbol.owner().kind() == semantics::Scope::Kind::Module || |
810 | semantics::FindCommonBlockContaining(symbol) || |
811 | symbol.has<semantics::HostAssocDetails>()) { |
812 | return true; // it's nonlocal |
813 | } else if (semantics::IsDummy(symbol) && !forElementalFunctionResult_) { |
814 | return true; |
815 | } else { |
816 | return false; |
817 | } |
818 | } |
819 | |
820 | bool CheckSpecificationExprHelper::IsPermissibleInquiry( |
821 | const semantics::Symbol &firstSymbol, const semantics::Symbol &lastSymbol, |
822 | DescriptorInquiry::Field field) const { |
823 | if (IsInquiryAlwaysPermissible(firstSymbol)) { |
824 | return true; |
825 | } |
826 | // Inquiries on local objects may not access a deferred bound or length. |
827 | // (This code used to be a switch, but it proved impossible to write it |
828 | // thus without running afoul of bogus warnings from different C++ |
829 | // compilers.) |
830 | if (field == DescriptorInquiry::Field::Rank) { |
831 | return true; // always known |
832 | } |
833 | const auto *object{lastSymbol.detailsIf<semantics::ObjectEntityDetails>()}; |
834 | if (field == DescriptorInquiry::Field::LowerBound || |
835 | field == DescriptorInquiry::Field::Extent || |
836 | field == DescriptorInquiry::Field::Stride) { |
837 | return object && !object->shape().CanBeDeferredShape(); |
838 | } |
839 | if (field == DescriptorInquiry::Field::Len) { |
840 | return object && object->type() && |
841 | object->type()->category() == semantics::DeclTypeSpec::Character && |
842 | !object->type()->characterTypeSpec().length().isDeferred(); |
843 | } |
844 | return false; |
845 | } |
846 | |
847 | template <typename A> |
848 | void CheckSpecificationExpr(const A &x, const semantics::Scope &scope, |
849 | FoldingContext &context, bool forElementalFunctionResult) { |
850 | CheckSpecificationExprHelper errors{ |
851 | scope, context, forElementalFunctionResult}; |
852 | if (auto why{errors(x)}) { |
853 | context.messages().Say("Invalid specification expression%s: %s"_err_en_US, |
854 | forElementalFunctionResult ? " for elemental function result": "", |
855 | *why); |
856 | } |
857 | } |
858 | |
859 | template void CheckSpecificationExpr(const Expr<SomeType> &, |
860 | const semantics::Scope &, FoldingContext &, |
861 | bool forElementalFunctionResult); |
862 | template void CheckSpecificationExpr(const Expr<SomeInteger> &, |
863 | const semantics::Scope &, FoldingContext &, |
864 | bool forElementalFunctionResult); |
865 | template void CheckSpecificationExpr(const Expr<SubscriptInteger> &, |
866 | const semantics::Scope &, FoldingContext &, |
867 | bool forElementalFunctionResult); |
868 | template void CheckSpecificationExpr(const std::optional<Expr<SomeType>> &, |
869 | const semantics::Scope &, FoldingContext &, |
870 | bool forElementalFunctionResult); |
871 | template void CheckSpecificationExpr(const std::optional<Expr<SomeInteger>> &, |
872 | const semantics::Scope &, FoldingContext &, |
873 | bool forElementalFunctionResult); |
874 | template void CheckSpecificationExpr( |
875 | const std::optional<Expr<SubscriptInteger>> &, const semantics::Scope &, |
876 | FoldingContext &, bool forElementalFunctionResult); |
877 | |
878 | // IsContiguous() -- 9.5.4 |
879 | class IsContiguousHelper |
880 | : public AnyTraverse<IsContiguousHelper, std::optional<bool>> { |
881 | public: |
882 | using Result = std::optional<bool>; // tri-state |
883 | using Base = AnyTraverse<IsContiguousHelper, Result>; |
884 | explicit IsContiguousHelper(FoldingContext &c, |
885 | bool namedConstantSectionsAreContiguous, |
886 | bool firstDimensionStride1 = false) |
887 | : Base{*this}, context_{c}, |
888 | namedConstantSectionsAreContiguous_{namedConstantSectionsAreContiguous}, |
889 | firstDimensionStride1_{firstDimensionStride1} {} |
890 | using Base::operator(); |
891 | |
892 | template <typename T> Result operator()(const Constant<T> &) const { |
893 | return true; |
894 | } |
895 | Result operator()(const StaticDataObject &) const { return true; } |
896 | Result operator()(const semantics::Symbol &symbol) const { |
897 | const auto &ultimate{symbol.GetUltimate()}; |
898 | if (ultimate.attrs().test(semantics::Attr::CONTIGUOUS)) { |
899 | return true; |
900 | } else if (!IsVariable(symbol)) { |
901 | return true; |
902 | } else if (ultimate.Rank() == 0) { |
903 | // Extension: accept scalars as a degenerate case of |
904 | // simple contiguity to allow their use in contexts like |
905 | // data targets in pointer assignments with remapping. |
906 | return true; |
907 | } else if (const auto *details{ |
908 | ultimate.detailsIf<semantics::AssocEntityDetails>()}) { |
909 | // RANK(*) associating entity is contiguous. |
910 | if (details->IsAssumedSize()) { |
911 | return true; |
912 | } else if (!IsVariable(details->expr()) && |
913 | (namedConstantSectionsAreContiguous_ || |
914 | !ExtractDataRef(details->expr(), true, true))) { |
915 | // Selector is associated to an expression value. |
916 | return true; |
917 | } else { |
918 | return Base::operator()(ultimate); // use expr |
919 | } |
920 | } else if (semantics::IsPointer(ultimate) || |
921 | semantics::IsAssumedShape(ultimate) || IsAssumedRank(ultimate)) { |
922 | return std::nullopt; |
923 | } else if (ultimate.has<semantics::ObjectEntityDetails>()) { |
924 | return true; |
925 | } else { |
926 | return Base::operator()(ultimate); |
927 | } |
928 | } |
929 | |
930 | Result operator()(const ArrayRef &x) const { |
931 | if (x.Rank() == 0) { |
932 | return true; // scalars considered contiguous |
933 | } |
934 | int subscriptRank{0}; |
935 | auto baseLbounds{GetLBOUNDs(context_, x.base())}; |
936 | auto baseUbounds{GetUBOUNDs(context_, x.base())}; |
937 | auto subscripts{CheckSubscripts( |
938 | x.subscript(), subscriptRank, &baseLbounds, &baseUbounds)}; |
939 | if (!subscripts.value_or(false)) { |
940 | return subscripts; // subscripts not known to be contiguous |
941 | } else if (subscriptRank > 0) { |
942 | // a(1)%b(:,:) is contiguous if and only if a(1)%b is contiguous. |
943 | return (*this)(x.base()); |
944 | } else { |
945 | // a(:)%b(1,1) is (probably) not contiguous. |
946 | return std::nullopt; |
947 | } |
948 | } |
949 | Result operator()(const CoarrayRef &x) const { return (*this)(x.base()); } |
950 | Result operator()(const Component &x) const { |
951 | if (x.base().Rank() == 0) { |
952 | return (*this)(x.GetLastSymbol()); |
953 | } else { |
954 | if (Result baseIsContiguous{(*this)(x.base())}) { |
955 | if (!*baseIsContiguous) { |
956 | return false; |
957 | } |
958 | // TODO: should be true if base is contiguous and this is only |
959 | // component, or when the base has at most one element |
960 | } |
961 | return std::nullopt; |
962 | } |
963 | } |
964 | Result operator()(const ComplexPart &x) const { |
965 | // TODO: should be true when base is empty array, too |
966 | return x.complex().Rank() == 0; |
967 | } |
968 | Result operator()(const Substring &x) const { |
969 | if (x.Rank() == 0) { |
970 | return true; // scalar substring always contiguous |
971 | } |
972 | // Substrings with rank must have DataRefs as their parents |
973 | const DataRef &parentDataRef{DEREF(x.GetParentIf<DataRef>())}; |
974 | std::optional<std::int64_t> len; |
975 | if (auto lenExpr{parentDataRef.LEN()}) { |
976 | len = ToInt64(Fold(context_, std::move(*lenExpr))); |
977 | if (len) { |
978 | if (*len <= 0) { |
979 | return true; // empty substrings |
980 | } else if (*len == 1) { |
981 | // Substrings can't be incomplete; is base array contiguous? |
982 | return (*this)(parentDataRef); |
983 | } |
984 | } |
985 | } |
986 | std::optional<std::int64_t> upper; |
987 | bool upperIsLen{false}; |
988 | if (auto upperExpr{x.upper()}) { |
989 | upper = ToInt64(Fold(context_, common::Clone(*upperExpr))); |
990 | if (upper) { |
991 | if (*upper < 1) { |
992 | return true; // substring(n:0) empty |
993 | } |
994 | upperIsLen = len && *upper >= *len; |
995 | } else if (const auto *inquiry{ |
996 | UnwrapConvertedExpr<DescriptorInquiry>(*upperExpr)}; |
997 | inquiry && inquiry->field() == DescriptorInquiry::Field::Len) { |
998 | upperIsLen = |
999 | &parentDataRef.GetLastSymbol() == &inquiry->base().GetLastSymbol(); |
1000 | } |
1001 | } else { |
1002 | upperIsLen = true; // substring(n:) |
1003 | } |
1004 | if (auto lower{ToInt64(Fold(context_, x.lower()))}) { |
1005 | if (*lower == 1 && upperIsLen) { |
1006 | // known complete substring; is base contiguous? |
1007 | return (*this)(parentDataRef); |
1008 | } else if (upper) { |
1009 | if (*upper < *lower) { |
1010 | return true; // empty substring(3:2) |
1011 | } else if (*lower > 1) { |
1012 | return false; // known incomplete substring |
1013 | } else if (len && *upper < *len) { |
1014 | return false; // known incomplete substring |
1015 | } |
1016 | } |
1017 | } |
1018 | return std::nullopt; // contiguity not known |
1019 | } |
1020 | |
1021 | Result operator()(const ProcedureRef &x) const { |
1022 | if (auto chars{characteristics::Procedure::Characterize( |
1023 | x.proc(), context_, /*emitError=*/true)}) { |
1024 | if (chars->functionResult) { |
1025 | const auto &result{*chars->functionResult}; |
1026 | if (!result.IsProcedurePointer()) { |
1027 | if (result.attrs.test( |
1028 | characteristics::FunctionResult::Attr::Contiguous)) { |
1029 | return true; |
1030 | } |
1031 | if (!result.attrs.test( |
1032 | characteristics::FunctionResult::Attr::Pointer)) { |
1033 | return true; |
1034 | } |
1035 | if (const auto *type{result.GetTypeAndShape()}; |
1036 | type && type->Rank() == 0) { |
1037 | return true; // pointer to scalar |
1038 | } |
1039 | // Must be non-CONTIGUOUS pointer to array |
1040 | } |
1041 | } |
1042 | } |
1043 | return std::nullopt; |
1044 | } |
1045 | |
1046 | Result operator()(const NullPointer &) const { return true; } |
1047 | |
1048 | private: |
1049 | // Returns "true" for a provably empty or simply contiguous array section; |
1050 | // return "false" for a provably nonempty discontiguous section or for use |
1051 | // of a vector subscript. |
1052 | std::optional<bool> CheckSubscripts(const std::vector<Subscript> &subscript, |
1053 | int &rank, const Shape *baseLbounds = nullptr, |
1054 | const Shape *baseUbounds = nullptr) const { |
1055 | bool anyTriplet{false}; |
1056 | rank = 0; |
1057 | // Detect any provably empty dimension in this array section, which would |
1058 | // render the whole section empty and therefore vacuously contiguous. |
1059 | std::optional<bool> result; |
1060 | bool mayBeEmpty{false}; |
1061 | auto dims{subscript.size()}; |
1062 | std::vector<bool> knownPartialSlice(dims, false); |
1063 | for (auto j{dims}; j-- > 0;) { |
1064 | if (j == 0 && firstDimensionStride1_ && !result.value_or(true)) { |
1065 | result.reset(); // ignore problems on later dimensions |
1066 | } |
1067 | std::optional<ConstantSubscript> dimLbound; |
1068 | std::optional<ConstantSubscript> dimUbound; |
1069 | std::optional<ConstantSubscript> dimExtent; |
1070 | if (baseLbounds && j < baseLbounds->size()) { |
1071 | if (const auto &lb{baseLbounds->at(j)}) { |
1072 | dimLbound = ToInt64(Fold(context_, Expr<SubscriptInteger>{*lb})); |
1073 | } |
1074 | } |
1075 | if (baseUbounds && j < baseUbounds->size()) { |
1076 | if (const auto &ub{baseUbounds->at(j)}) { |
1077 | dimUbound = ToInt64(Fold(context_, Expr<SubscriptInteger>{*ub})); |
1078 | } |
1079 | } |
1080 | if (dimLbound && dimUbound) { |
1081 | if (*dimLbound <= *dimUbound) { |
1082 | dimExtent = *dimUbound - *dimLbound + 1; |
1083 | } else { |
1084 | // This is an empty dimension. |
1085 | result = true; |
1086 | dimExtent = 0; |
1087 | } |
1088 | } |
1089 | if (const auto *triplet{std::get_if<Triplet>(&subscript[j].u)}) { |
1090 | ++rank; |
1091 | const Expr<SubscriptInteger> *lowerBound{triplet->GetLower()}; |
1092 | const Expr<SubscriptInteger> *upperBound{triplet->GetUpper()}; |
1093 | std::optional<ConstantSubscript> lowerVal{lowerBound |
1094 | ? ToInt64(Fold(context_, Expr<SubscriptInteger>{*lowerBound})) |
1095 | : dimLbound}; |
1096 | std::optional<ConstantSubscript> upperVal{upperBound |
1097 | ? ToInt64(Fold(context_, Expr<SubscriptInteger>{*upperBound})) |
1098 | : dimUbound}; |
1099 | if (auto stride{ToInt64(triplet->stride())}) { |
1100 | if (j == 0 && *stride == 1 && firstDimensionStride1_) { |
1101 | result = *stride == 1; // contiguous or empty if so |
1102 | } |
1103 | if (lowerVal && upperVal) { |
1104 | if (*lowerVal < *upperVal) { |
1105 | if (*stride < 0) { |
1106 | result = true; // empty dimension |
1107 | } else if (!result && *stride > 1 && |
1108 | *lowerVal + *stride <= *upperVal) { |
1109 | result = false; // discontiguous if not empty |
1110 | } |
1111 | } else if (*lowerVal > *upperVal) { |
1112 | if (*stride > 0) { |
1113 | result = true; // empty dimension |
1114 | } else if (!result && *stride < 0 && |
1115 | *lowerVal + *stride >= *upperVal) { |
1116 | result = false; // discontiguous if not empty |
1117 | } |
1118 | } else { // bounds known and equal |
1119 | if (j == 0 && firstDimensionStride1_) { |
1120 | result = true; // stride doesn't matter |
1121 | } |
1122 | } |
1123 | } else { // bounds not both known |
1124 | mayBeEmpty = true; |
1125 | } |
1126 | } else { // stride not known |
1127 | if (lowerVal && upperVal && *lowerVal == *upperVal) { |
1128 | // stride doesn't matter when bounds are equal |
1129 | if (j == 0 && firstDimensionStride1_) { |
1130 | result = true; |
1131 | } |
1132 | } else { |
1133 | mayBeEmpty = true; |
1134 | } |
1135 | } |
1136 | } else if (subscript[j].Rank() > 0) { // vector subscript |
1137 | ++rank; |
1138 | if (!result) { |
1139 | result = false; |
1140 | } |
1141 | mayBeEmpty = true; |
1142 | } else { // scalar subscript |
1143 | if (dimExtent && *dimExtent > 1) { |
1144 | knownPartialSlice[j] = true; |
1145 | } |
1146 | } |
1147 | } |
1148 | if (rank == 0) { |
1149 | result = true; // scalar |
1150 | } |
1151 | if (result) { |
1152 | return result; |
1153 | } |
1154 | // Not provably contiguous or discontiguous at this point. |
1155 | // Return "true" if simply contiguous, otherwise nullopt. |
1156 | for (auto j{subscript.size()}; j-- > 0;) { |
1157 | if (const auto *triplet{std::get_if<Triplet>(&subscript[j].u)}) { |
1158 | auto stride{ToInt64(triplet->stride())}; |
1159 | if (!stride || stride != 1) { |
1160 | return std::nullopt; |
1161 | } else if (anyTriplet) { |
1162 | if (triplet->GetLower() || triplet->GetUpper()) { |
1163 | // all triplets before the last one must be just ":" for |
1164 | // simple contiguity |
1165 | return std::nullopt; |
1166 | } |
1167 | } else { |
1168 | anyTriplet = true; |
1169 | } |
1170 | ++rank; |
1171 | } else if (anyTriplet) { |
1172 | // If the section cannot be empty, and this dimension's |
1173 | // scalar subscript is known not to cover the whole |
1174 | // dimension, then the array section is provably |
1175 | // discontiguous. |
1176 | return (mayBeEmpty || !knownPartialSlice[j]) |
1177 | ? std::nullopt |
1178 | : std::make_optional(false); |
1179 | } |
1180 | } |
1181 | return true; // simply contiguous |
1182 | } |
1183 | |
1184 | FoldingContext &context_; |
1185 | bool namedConstantSectionsAreContiguous_{false}; |
1186 | bool firstDimensionStride1_{false}; |
1187 | }; |
1188 | |
1189 | template <typename A> |
1190 | std::optional<bool> IsContiguous(const A &x, FoldingContext &context, |
1191 | bool namedConstantSectionsAreContiguous, bool firstDimensionStride1) { |
1192 | if (!IsVariable(x) && |
1193 | (namedConstantSectionsAreContiguous || !ExtractDataRef(x, true, true))) { |
1194 | return true; |
1195 | } else { |
1196 | return IsContiguousHelper{ |
1197 | context, namedConstantSectionsAreContiguous, firstDimensionStride1}(x); |
1198 | } |
1199 | } |
1200 | |
1201 | template std::optional<bool> IsContiguous(const Expr<SomeType> &, |
1202 | FoldingContext &, bool namedConstantSectionsAreContiguous, |
1203 | bool firstDimensionStride1); |
1204 | template std::optional<bool> IsContiguous(const ArrayRef &, FoldingContext &, |
1205 | bool namedConstantSectionsAreContiguous, bool firstDimensionStride1); |
1206 | template std::optional<bool> IsContiguous(const Substring &, FoldingContext &, |
1207 | bool namedConstantSectionsAreContiguous, bool firstDimensionStride1); |
1208 | template std::optional<bool> IsContiguous(const Component &, FoldingContext &, |
1209 | bool namedConstantSectionsAreContiguous, bool firstDimensionStride1); |
1210 | template std::optional<bool> IsContiguous(const ComplexPart &, FoldingContext &, |
1211 | bool namedConstantSectionsAreContiguous, bool firstDimensionStride1); |
1212 | template std::optional<bool> IsContiguous(const CoarrayRef &, FoldingContext &, |
1213 | bool namedConstantSectionsAreContiguous, bool firstDimensionStride1); |
1214 | template std::optional<bool> IsContiguous(const Symbol &, FoldingContext &, |
1215 | bool namedConstantSectionsAreContiguous, bool firstDimensionStride1); |
1216 | |
1217 | // IsErrorExpr() |
1218 | struct IsErrorExprHelper : public AnyTraverse<IsErrorExprHelper, bool> { |
1219 | using Result = bool; |
1220 | using Base = AnyTraverse<IsErrorExprHelper, Result>; |
1221 | IsErrorExprHelper() : Base{*this} {} |
1222 | using Base::operator(); |
1223 | |
1224 | bool operator()(const SpecificIntrinsic &x) { |
1225 | return x.name == IntrinsicProcTable::InvalidName; |
1226 | } |
1227 | }; |
1228 | |
1229 | template <typename A> bool IsErrorExpr(const A &x) { |
1230 | return IsErrorExprHelper{}(x); |
1231 | } |
1232 | |
1233 | template bool IsErrorExpr(const Expr<SomeType> &); |
1234 | |
1235 | // C1577 |
1236 | // TODO: Also check C1579 & C1582 here |
1237 | class StmtFunctionChecker |
1238 | : public AnyTraverse<StmtFunctionChecker, std::optional<parser::Message>> { |
1239 | public: |
1240 | using Result = std::optional<parser::Message>; |
1241 | using Base = AnyTraverse<StmtFunctionChecker, Result>; |
1242 | |
1243 | static constexpr auto feature{ |
1244 | common::LanguageFeature::StatementFunctionExtensions}; |
1245 | |
1246 | StmtFunctionChecker(const Symbol &sf, FoldingContext &context) |
1247 | : Base{*this}, sf_{sf}, context_{context} { |
1248 | if (!context_.languageFeatures().IsEnabled(feature)) { |
1249 | severity_ = parser::Severity::Error; |
1250 | } else if (context_.languageFeatures().ShouldWarn(feature)) { |
1251 | severity_ = parser::Severity::Portability; |
1252 | } |
1253 | } |
1254 | using Base::operator(); |
1255 | |
1256 | Result Return(parser::Message &&msg) const { |
1257 | if (severity_) { |
1258 | msg.set_severity(*severity_); |
1259 | if (*severity_ != parser::Severity::Error) { |
1260 | msg.set_languageFeature(feature); |
1261 | } |
1262 | } |
1263 | return std::move(msg); |
1264 | } |
1265 | |
1266 | template <typename T> Result operator()(const ArrayConstructor<T> &) const { |
1267 | if (severity_) { |
1268 | return Return(parser::Message{sf_.name(), |
1269 | "Statement function '%s' should not contain an array constructor"_port_en_US, |
1270 | sf_.name()}); |
1271 | } else { |
1272 | return std::nullopt; |
1273 | } |
1274 | } |
1275 | Result operator()(const StructureConstructor &) const { |
1276 | if (severity_) { |
1277 | return Return(parser::Message{sf_.name(), |
1278 | "Statement function '%s' should not contain a structure constructor"_port_en_US, |
1279 | sf_.name()}); |
1280 | } else { |
1281 | return std::nullopt; |
1282 | } |
1283 | } |
1284 | Result operator()(const TypeParamInquiry &) const { |
1285 | if (severity_) { |
1286 | return Return(parser::Message{sf_.name(), |
1287 | "Statement function '%s' should not contain a type parameter inquiry"_port_en_US, |
1288 | sf_.name()}); |
1289 | } else { |
1290 | return std::nullopt; |
1291 | } |
1292 | } |
1293 | Result operator()(const ProcedureDesignator &proc) const { |
1294 | if (const Symbol * symbol{proc.GetSymbol()}) { |
1295 | const Symbol &ultimate{symbol->GetUltimate()}; |
1296 | if (const auto *subp{ |
1297 | ultimate.detailsIf<semantics::SubprogramDetails>()}) { |
1298 | if (subp->stmtFunction() && &ultimate.owner() == &sf_.owner()) { |
1299 | if (ultimate.name().begin() > sf_.name().begin()) { |
1300 | return parser::Message{sf_.name(), |
1301 | "Statement function '%s' may not reference another statement function '%s' that is defined later"_err_en_US, |
1302 | sf_.name(), ultimate.name()}; |
1303 | } |
1304 | } |
1305 | } |
1306 | if (auto chars{characteristics::Procedure::Characterize( |
1307 | proc, context_, /*emitError=*/true)}) { |
1308 | if (!chars->CanBeCalledViaImplicitInterface()) { |
1309 | if (severity_) { |
1310 | return Return(parser::Message{sf_.name(), |
1311 | "Statement function '%s' should not reference function '%s' that requires an explicit interface"_port_en_US, |
1312 | sf_.name(), symbol->name()}); |
1313 | } |
1314 | } |
1315 | } |
1316 | } |
1317 | if (proc.Rank() > 0) { |
1318 | if (severity_) { |
1319 | return Return(parser::Message{sf_.name(), |
1320 | "Statement function '%s' should not reference a function that returns an array"_port_en_US, |
1321 | sf_.name()}); |
1322 | } |
1323 | } |
1324 | return std::nullopt; |
1325 | } |
1326 | Result operator()(const ActualArgument &arg) const { |
1327 | if (const auto *expr{arg.UnwrapExpr()}) { |
1328 | if (auto result{(*this)(*expr)}) { |
1329 | return result; |
1330 | } |
1331 | if (expr->Rank() > 0 && !UnwrapWholeSymbolOrComponentDataRef(*expr)) { |
1332 | if (severity_) { |
1333 | return Return(parser::Message{sf_.name(), |
1334 | "Statement function '%s' should not pass an array argument that is not a whole array"_port_en_US, |
1335 | sf_.name()}); |
1336 | } |
1337 | } |
1338 | } |
1339 | return std::nullopt; |
1340 | } |
1341 | |
1342 | private: |
1343 | const Symbol &sf_; |
1344 | FoldingContext &context_; |
1345 | std::optional<parser::Severity> severity_; |
1346 | }; |
1347 | |
1348 | std::optional<parser::Message> CheckStatementFunction( |
1349 | const Symbol &sf, const Expr<SomeType> &expr, FoldingContext &context) { |
1350 | return StmtFunctionChecker{sf, context}(expr); |
1351 | } |
1352 | |
1353 | } // namespace Fortran::evaluate |
1354 |
Definitions
- IsConstantExprHelper
- IsConstantExprHelper
- operator()
- operator()
- operator()
- operator()
- operator()
- operator()
- operator()
- operator()
- operator()
- operator()
- IsConstantStructureConstructorComponent
- operator()
- IsConstantExprShape
- IsConstantExpr
- IsScopeInvariantExpr
- IsActuallyConstantHelper
- operator()
- operator()
- operator()
- operator()
- operator()
- operator()
- operator()
- operator()
- IsActuallyConstant
- IsInitialDataTargetHelper
- IsInitialDataTargetHelper
- emittedMessage
- operator()
- operator()
- operator()
- operator()
- operator()
- operator()
- operator()
- operator()
- operator()
- operator()
- operator()
- operator()
- operator()
- operator()
- operator()
- operator()
- operator()
- operator()
- CheckVarOrComponent
- IsInitialDataTarget
- IsInitialProcedureTarget
- IsInitialProcedureTarget
- IsInitialProcedureTarget
- NonPointerInitializationExpr
- CheckSpecificationExprHelper
- CheckSpecificationExprHelper
- operator()
- operator()
- operator()
- operator()
- operator()
- operator()
- operator()
- operator()
- IsInquiryAlwaysPermissible
- IsPermissibleInquiry
- CheckSpecificationExpr
- IsContiguousHelper
- IsContiguousHelper
- operator()
- operator()
- operator()
- operator()
- operator()
- operator()
- operator()
- operator()
- operator()
- operator()
- CheckSubscripts
- IsContiguous
- IsErrorExprHelper
- IsErrorExprHelper
- operator()
- IsErrorExpr
- StmtFunctionChecker
- feature
- StmtFunctionChecker
- Return
- operator()
- operator()
- operator()
- operator()
- operator()
Learn to use CMake with our Intro Training
Find out more