| 1 | //===-- lib/Evaluate/fold-implementation.h --------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #ifndef FORTRAN_EVALUATE_FOLD_IMPLEMENTATION_H_ |
| 10 | #define FORTRAN_EVALUATE_FOLD_IMPLEMENTATION_H_ |
| 11 | |
| 12 | #include "character.h" |
| 13 | #include "host.h" |
| 14 | #include "int-power.h" |
| 15 | #include "flang/Common/indirection.h" |
| 16 | #include "flang/Common/template.h" |
| 17 | #include "flang/Common/unwrap.h" |
| 18 | #include "flang/Evaluate/characteristics.h" |
| 19 | #include "flang/Evaluate/common.h" |
| 20 | #include "flang/Evaluate/constant.h" |
| 21 | #include "flang/Evaluate/expression.h" |
| 22 | #include "flang/Evaluate/fold.h" |
| 23 | #include "flang/Evaluate/formatting.h" |
| 24 | #include "flang/Evaluate/intrinsics-library.h" |
| 25 | #include "flang/Evaluate/intrinsics.h" |
| 26 | #include "flang/Evaluate/shape.h" |
| 27 | #include "flang/Evaluate/tools.h" |
| 28 | #include "flang/Evaluate/traverse.h" |
| 29 | #include "flang/Evaluate/type.h" |
| 30 | #include "flang/Parser/message.h" |
| 31 | #include "flang/Semantics/scope.h" |
| 32 | #include "flang/Semantics/symbol.h" |
| 33 | #include "flang/Semantics/tools.h" |
| 34 | #include <algorithm> |
| 35 | #include <cmath> |
| 36 | #include <complex> |
| 37 | #include <cstdio> |
| 38 | #include <optional> |
| 39 | #include <type_traits> |
| 40 | #include <variant> |
| 41 | |
| 42 | // Some environments, viz. glibc 2.17 and *BSD, allow the macro HUGE |
| 43 | // to leak out of <math.h>. |
| 44 | #undef HUGE |
| 45 | |
| 46 | namespace Fortran::evaluate { |
| 47 | |
| 48 | // Don't use Kahan extended precision summation any more when folding |
| 49 | // transformational intrinsic functions other than SUM, since it is |
| 50 | // not used in the runtime implementations of those functions and we |
| 51 | // want results to match. |
| 52 | static constexpr bool useKahanSummation{false}; |
| 53 | |
| 54 | // Utilities |
| 55 | template <typename T> class Folder { |
| 56 | public: |
| 57 | explicit Folder(FoldingContext &c, bool forOptionalArgument = false) |
| 58 | : context_{c}, forOptionalArgument_{forOptionalArgument} {} |
| 59 | std::optional<Constant<T>> GetNamedConstant(const Symbol &); |
| 60 | std::optional<Constant<T>> ApplySubscripts(const Constant<T> &array, |
| 61 | const std::vector<Constant<SubscriptInteger>> &subscripts); |
| 62 | std::optional<Constant<T>> ApplyComponent(Constant<SomeDerived> &&, |
| 63 | const Symbol &component, |
| 64 | const std::vector<Constant<SubscriptInteger>> * = nullptr); |
| 65 | std::optional<Constant<T>> GetConstantComponent( |
| 66 | Component &, const std::vector<Constant<SubscriptInteger>> * = nullptr); |
| 67 | std::optional<Constant<T>> Folding(ArrayRef &); |
| 68 | std::optional<Constant<T>> Folding(DataRef &); |
| 69 | Expr<T> Folding(Designator<T> &&); |
| 70 | Constant<T> *Folding(std::optional<ActualArgument> &); |
| 71 | |
| 72 | Expr<T> CSHIFT(FunctionRef<T> &&); |
| 73 | Expr<T> EOSHIFT(FunctionRef<T> &&); |
| 74 | Expr<T> MERGE(FunctionRef<T> &&); |
| 75 | Expr<T> PACK(FunctionRef<T> &&); |
| 76 | Expr<T> RESHAPE(FunctionRef<T> &&); |
| 77 | Expr<T> SPREAD(FunctionRef<T> &&); |
| 78 | Expr<T> TRANSPOSE(FunctionRef<T> &&); |
| 79 | Expr<T> UNPACK(FunctionRef<T> &&); |
| 80 | |
| 81 | Expr<T> TRANSFER(FunctionRef<T> &&); |
| 82 | |
| 83 | private: |
| 84 | FoldingContext &context_; |
| 85 | bool forOptionalArgument_{false}; |
| 86 | }; |
| 87 | |
| 88 | std::optional<Constant<SubscriptInteger>> GetConstantSubscript( |
| 89 | FoldingContext &, Subscript &, const NamedEntity &, int dim); |
| 90 | |
| 91 | // Helper to use host runtime on scalars for folding. |
| 92 | template <typename TR, typename... TA> |
| 93 | std::optional<std::function<Scalar<TR>(FoldingContext &, Scalar<TA>...)>> |
| 94 | GetHostRuntimeWrapper(const std::string &name) { |
| 95 | std::vector<DynamicType> argTypes{TA{}.GetType()...}; |
| 96 | if (auto hostWrapper{GetHostRuntimeWrapper(name, TR{}.GetType(), argTypes)}) { |
| 97 | return [hostWrapper]( |
| 98 | FoldingContext &context, Scalar<TA>... args) -> Scalar<TR> { |
| 99 | std::vector<Expr<SomeType>> genericArgs{ |
| 100 | AsGenericExpr(Constant<TA>{args})...}; |
| 101 | return GetScalarConstantValue<TR>( |
| 102 | (*hostWrapper)(context, std::move(genericArgs))) |
| 103 | .value(); |
| 104 | }; |
| 105 | } |
| 106 | return std::nullopt; |
| 107 | } |
| 108 | |
| 109 | // FoldOperation() rewrites expression tree nodes. |
| 110 | // If there is any possibility that the rewritten node will |
| 111 | // not have the same representation type, the result of |
| 112 | // FoldOperation() will be packaged in an Expr<> of the same |
| 113 | // specific type. |
| 114 | |
| 115 | // no-op base case |
| 116 | template <typename A> |
| 117 | common::IfNoLvalue<Expr<ResultType<A>>, A> FoldOperation( |
| 118 | FoldingContext &, A &&x) { |
| 119 | static_assert(!std::is_same_v<A, Expr<ResultType<A>>>, |
| 120 | "call Fold() instead for Expr<>" ); |
| 121 | return Expr<ResultType<A>>{std::move(x)}; |
| 122 | } |
| 123 | |
| 124 | Component FoldOperation(FoldingContext &, Component &&); |
| 125 | NamedEntity FoldOperation(FoldingContext &, NamedEntity &&); |
| 126 | Triplet FoldOperation(FoldingContext &, Triplet &&); |
| 127 | Subscript FoldOperation(FoldingContext &, Subscript &&); |
| 128 | ArrayRef FoldOperation(FoldingContext &, ArrayRef &&); |
| 129 | CoarrayRef FoldOperation(FoldingContext &, CoarrayRef &&); |
| 130 | DataRef FoldOperation(FoldingContext &, DataRef &&); |
| 131 | Substring FoldOperation(FoldingContext &, Substring &&); |
| 132 | ComplexPart FoldOperation(FoldingContext &, ComplexPart &&); |
| 133 | template <typename T> |
| 134 | Expr<T> FoldOperation(FoldingContext &, FunctionRef<T> &&); |
| 135 | template <typename T> |
| 136 | Expr<T> FoldOperation(FoldingContext &context, Designator<T> &&designator) { |
| 137 | return Folder<T>{context}.Folding(std::move(designator)); |
| 138 | } |
| 139 | Expr<TypeParamInquiry::Result> FoldOperation( |
| 140 | FoldingContext &, TypeParamInquiry &&); |
| 141 | Expr<ImpliedDoIndex::Result> FoldOperation( |
| 142 | FoldingContext &context, ImpliedDoIndex &&); |
| 143 | template <typename T> |
| 144 | Expr<T> FoldOperation(FoldingContext &, ArrayConstructor<T> &&); |
| 145 | Expr<SomeDerived> FoldOperation(FoldingContext &, StructureConstructor &&); |
| 146 | |
| 147 | template <typename T> |
| 148 | std::optional<Constant<T>> Folder<T>::GetNamedConstant(const Symbol &symbol0) { |
| 149 | const Symbol &symbol{ResolveAssociations(symbol0)}; |
| 150 | if (IsNamedConstant(symbol)) { |
| 151 | if (const auto *object{ |
| 152 | symbol.detailsIf<semantics::ObjectEntityDetails>()}) { |
| 153 | if (const auto *constant{UnwrapConstantValue<T>(object->init())}) { |
| 154 | return *constant; |
| 155 | } |
| 156 | } |
| 157 | } |
| 158 | return std::nullopt; |
| 159 | } |
| 160 | |
| 161 | template <typename T> |
| 162 | std::optional<Constant<T>> Folder<T>::Folding(ArrayRef &aRef) { |
| 163 | std::vector<Constant<SubscriptInteger>> subscripts; |
| 164 | int dim{0}; |
| 165 | for (Subscript &ss : aRef.subscript()) { |
| 166 | if (auto constant{GetConstantSubscript(context_, ss, aRef.base(), dim++)}) { |
| 167 | subscripts.emplace_back(std::move(*constant)); |
| 168 | } else { |
| 169 | return std::nullopt; |
| 170 | } |
| 171 | } |
| 172 | if (Component * component{aRef.base().UnwrapComponent()}) { |
| 173 | return GetConstantComponent(*component, &subscripts); |
| 174 | } else if (std::optional<Constant<T>> array{ |
| 175 | GetNamedConstant(aRef.base().GetLastSymbol())}) { |
| 176 | return ApplySubscripts(*array, subscripts); |
| 177 | } else { |
| 178 | return std::nullopt; |
| 179 | } |
| 180 | } |
| 181 | |
| 182 | template <typename T> |
| 183 | std::optional<Constant<T>> Folder<T>::Folding(DataRef &ref) { |
| 184 | return common::visit( |
| 185 | common::visitors{ |
| 186 | [this](SymbolRef &sym) { return GetNamedConstant(*sym); }, |
| 187 | [this](Component &comp) { |
| 188 | comp = FoldOperation(context_, std::move(comp)); |
| 189 | return GetConstantComponent(comp); |
| 190 | }, |
| 191 | [this](ArrayRef &aRef) { |
| 192 | aRef = FoldOperation(context_, std::move(aRef)); |
| 193 | return Folding(aRef); |
| 194 | }, |
| 195 | [](CoarrayRef &) { return std::optional<Constant<T>>{}; }, |
| 196 | }, |
| 197 | ref.u); |
| 198 | } |
| 199 | |
| 200 | // TODO: This would be more natural as a member function of Constant<T>. |
| 201 | template <typename T> |
| 202 | std::optional<Constant<T>> Folder<T>::ApplySubscripts(const Constant<T> &array, |
| 203 | const std::vector<Constant<SubscriptInteger>> &subscripts) { |
| 204 | const auto &shape{array.shape()}; |
| 205 | const auto &lbounds{array.lbounds()}; |
| 206 | int rank{GetRank(shape)}; |
| 207 | CHECK(rank == static_cast<int>(subscripts.size())); |
| 208 | std::size_t elements{1}; |
| 209 | ConstantSubscripts resultShape; |
| 210 | ConstantSubscripts ssLB; |
| 211 | for (const auto &ss : subscripts) { |
| 212 | if (ss.Rank() == 1) { |
| 213 | resultShape.push_back(static_cast<ConstantSubscript>(ss.size())); |
| 214 | elements *= ss.size(); |
| 215 | ssLB.push_back(ss.lbounds().front()); |
| 216 | } else if (ss.Rank() > 1) { |
| 217 | return std::nullopt; // error recovery |
| 218 | } |
| 219 | } |
| 220 | ConstantSubscripts ssAt(rank, 0), at(rank, 0), tmp(1, 0); |
| 221 | std::vector<Scalar<T>> values; |
| 222 | while (elements-- > 0) { |
| 223 | bool increment{true}; |
| 224 | int k{0}; |
| 225 | for (int j{0}; j < rank; ++j) { |
| 226 | if (subscripts[j].Rank() == 0) { |
| 227 | at[j] = subscripts[j].GetScalarValue().value().ToInt64(); |
| 228 | } else { |
| 229 | CHECK(k < GetRank(resultShape)); |
| 230 | tmp[0] = ssLB.at(k) + ssAt.at(k); |
| 231 | at[j] = subscripts[j].At(tmp).ToInt64(); |
| 232 | if (increment) { |
| 233 | if (++ssAt[k] == resultShape[k]) { |
| 234 | ssAt[k] = 0; |
| 235 | } else { |
| 236 | increment = false; |
| 237 | } |
| 238 | } |
| 239 | ++k; |
| 240 | } |
| 241 | if (at[j] < lbounds[j] || at[j] >= lbounds[j] + shape[j]) { |
| 242 | context_.messages().Say( |
| 243 | "Subscript value (%jd) is out of range on dimension %d in reference to a constant array value"_err_en_US , |
| 244 | at[j], j + 1); |
| 245 | return std::nullopt; |
| 246 | } |
| 247 | } |
| 248 | values.emplace_back(array.At(at)); |
| 249 | CHECK(!increment || elements == 0); |
| 250 | CHECK(k == GetRank(resultShape)); |
| 251 | } |
| 252 | if constexpr (T::category == TypeCategory::Character) { |
| 253 | return Constant<T>{array.LEN(), std::move(values), std::move(resultShape)}; |
| 254 | } else if constexpr (std::is_same_v<T, SomeDerived>) { |
| 255 | return Constant<T>{array.result().derivedTypeSpec(), std::move(values), |
| 256 | std::move(resultShape)}; |
| 257 | } else { |
| 258 | return Constant<T>{std::move(values), std::move(resultShape)}; |
| 259 | } |
| 260 | } |
| 261 | |
| 262 | template <typename T> |
| 263 | std::optional<Constant<T>> Folder<T>::ApplyComponent( |
| 264 | Constant<SomeDerived> &&structures, const Symbol &component, |
| 265 | const std::vector<Constant<SubscriptInteger>> *subscripts) { |
| 266 | if (auto scalar{structures.GetScalarValue()}) { |
| 267 | if (std::optional<Expr<SomeType>> expr{scalar->Find(component)}) { |
| 268 | if (const Constant<T> *value{UnwrapConstantValue<T>(*expr)}) { |
| 269 | if (subscripts) { |
| 270 | return ApplySubscripts(*value, *subscripts); |
| 271 | } else { |
| 272 | return *value; |
| 273 | } |
| 274 | } |
| 275 | } |
| 276 | } else { |
| 277 | // A(:)%scalar_component & A(:)%array_component(subscripts) |
| 278 | std::unique_ptr<ArrayConstructor<T>> array; |
| 279 | if (structures.empty()) { |
| 280 | return std::nullopt; |
| 281 | } |
| 282 | ConstantSubscripts at{structures.lbounds()}; |
| 283 | do { |
| 284 | StructureConstructor scalar{structures.At(at)}; |
| 285 | if (std::optional<Expr<SomeType>> expr{scalar.Find(component)}) { |
| 286 | if (const Constant<T> *value{UnwrapConstantValue<T>(expr.value())}) { |
| 287 | if (!array.get()) { |
| 288 | // This technique ensures that character length or derived type |
| 289 | // information is propagated to the array constructor. |
| 290 | auto *typedExpr{UnwrapExpr<Expr<T>>(expr.value())}; |
| 291 | CHECK(typedExpr); |
| 292 | array = std::make_unique<ArrayConstructor<T>>(*typedExpr); |
| 293 | if constexpr (T::category == TypeCategory::Character) { |
| 294 | array->set_LEN(Expr<SubscriptInteger>{value->LEN()}); |
| 295 | } |
| 296 | } |
| 297 | if (subscripts) { |
| 298 | if (auto element{ApplySubscripts(*value, *subscripts)}) { |
| 299 | CHECK(element->Rank() == 0); |
| 300 | array->Push(Expr<T>{std::move(*element)}); |
| 301 | } else { |
| 302 | return std::nullopt; |
| 303 | } |
| 304 | } else { |
| 305 | CHECK(value->Rank() == 0); |
| 306 | array->Push(Expr<T>{*value}); |
| 307 | } |
| 308 | } else { |
| 309 | return std::nullopt; |
| 310 | } |
| 311 | } |
| 312 | } while (structures.IncrementSubscripts(at)); |
| 313 | // Fold the ArrayConstructor<> into a Constant<>. |
| 314 | CHECK(array); |
| 315 | Expr<T> result{Fold(context_, Expr<T>{std::move(*array)})}; |
| 316 | if (auto *constant{UnwrapConstantValue<T>(result)}) { |
| 317 | return constant->Reshape(common::Clone(structures.shape())); |
| 318 | } |
| 319 | } |
| 320 | return std::nullopt; |
| 321 | } |
| 322 | |
| 323 | template <typename T> |
| 324 | std::optional<Constant<T>> Folder<T>::GetConstantComponent(Component &component, |
| 325 | const std::vector<Constant<SubscriptInteger>> *subscripts) { |
| 326 | if (std::optional<Constant<SomeDerived>> structures{common::visit( |
| 327 | common::visitors{ |
| 328 | [&](const Symbol &symbol) { |
| 329 | return Folder<SomeDerived>{context_}.GetNamedConstant(symbol); |
| 330 | }, |
| 331 | [&](ArrayRef &aRef) { |
| 332 | return Folder<SomeDerived>{context_}.Folding(aRef); |
| 333 | }, |
| 334 | [&](Component &base) { |
| 335 | return Folder<SomeDerived>{context_}.GetConstantComponent(base); |
| 336 | }, |
| 337 | [&](CoarrayRef &) { |
| 338 | return std::optional<Constant<SomeDerived>>{}; |
| 339 | }, |
| 340 | }, |
| 341 | component.base().u)}) { |
| 342 | return ApplyComponent( |
| 343 | std::move(*structures), component.GetLastSymbol(), subscripts); |
| 344 | } else { |
| 345 | return std::nullopt; |
| 346 | } |
| 347 | } |
| 348 | |
| 349 | template <typename T> Expr<T> Folder<T>::Folding(Designator<T> &&designator) { |
| 350 | if constexpr (T::category == TypeCategory::Character) { |
| 351 | if (auto *substring{common::Unwrap<Substring>(designator.u)}) { |
| 352 | if (std::optional<Expr<SomeCharacter>> folded{ |
| 353 | substring->Fold(context_)}) { |
| 354 | if (const auto *specific{std::get_if<Expr<T>>(&folded->u)}) { |
| 355 | return std::move(*specific); |
| 356 | } |
| 357 | } |
| 358 | // We used to fold zero-length substrings into zero-length |
| 359 | // constants here, but that led to problems in variable |
| 360 | // definition contexts. |
| 361 | } |
| 362 | } else if constexpr (T::category == TypeCategory::Real) { |
| 363 | if (auto *zPart{std::get_if<ComplexPart>(&designator.u)}) { |
| 364 | *zPart = FoldOperation(context_, std::move(*zPart)); |
| 365 | using ComplexT = Type<TypeCategory::Complex, T::kind>; |
| 366 | if (auto zConst{Folder<ComplexT>{context_}.Folding(zPart->complex())}) { |
| 367 | return Fold(context_, |
| 368 | Expr<T>{ComplexComponent<T::kind>{ |
| 369 | zPart->part() == ComplexPart::Part::IM, |
| 370 | Expr<ComplexT>{std::move(*zConst)}}}); |
| 371 | } else { |
| 372 | return Expr<T>{Designator<T>{std::move(*zPart)}}; |
| 373 | } |
| 374 | } |
| 375 | } |
| 376 | return common::visit( |
| 377 | common::visitors{ |
| 378 | [&](SymbolRef &&symbol) { |
| 379 | if (auto constant{GetNamedConstant(*symbol)}) { |
| 380 | return Expr<T>{std::move(*constant)}; |
| 381 | } |
| 382 | return Expr<T>{std::move(designator)}; |
| 383 | }, |
| 384 | [&](ArrayRef &&aRef) { |
| 385 | aRef = FoldOperation(context_, std::move(aRef)); |
| 386 | if (auto c{Folding(aRef)}) { |
| 387 | return Expr<T>{std::move(*c)}; |
| 388 | } else { |
| 389 | return Expr<T>{Designator<T>{std::move(aRef)}}; |
| 390 | } |
| 391 | }, |
| 392 | [&](Component &&component) { |
| 393 | component = FoldOperation(context_, std::move(component)); |
| 394 | if (auto c{GetConstantComponent(component)}) { |
| 395 | return Expr<T>{std::move(*c)}; |
| 396 | } else { |
| 397 | return Expr<T>{Designator<T>{std::move(component)}}; |
| 398 | } |
| 399 | }, |
| 400 | [&](auto &&x) { |
| 401 | return Expr<T>{ |
| 402 | Designator<T>{FoldOperation(context_, std::move(x))}}; |
| 403 | }, |
| 404 | }, |
| 405 | std::move(designator.u)); |
| 406 | } |
| 407 | |
| 408 | // Apply type conversion and re-folding if necessary. |
| 409 | // This is where BOZ arguments are converted. |
| 410 | template <typename T> |
| 411 | Constant<T> *Folder<T>::Folding(std::optional<ActualArgument> &arg) { |
| 412 | if (auto *expr{UnwrapExpr<Expr<SomeType>>(arg)}) { |
| 413 | *expr = Fold(context_, std::move(*expr)); |
| 414 | if constexpr (T::category != TypeCategory::Derived) { |
| 415 | if (!UnwrapExpr<Expr<T>>(*expr)) { |
| 416 | if (const Symbol * |
| 417 | var{forOptionalArgument_ |
| 418 | ? UnwrapWholeSymbolOrComponentDataRef(*expr) |
| 419 | : nullptr}; |
| 420 | var && (IsOptional(*var) || IsAllocatableOrObjectPointer(var))) { |
| 421 | // can't safely convert item that may not be present |
| 422 | } else if (auto converted{ |
| 423 | ConvertToType(T::GetType(), std::move(*expr))}) { |
| 424 | *expr = Fold(context_, std::move(*converted)); |
| 425 | } |
| 426 | } |
| 427 | } |
| 428 | return UnwrapConstantValue<T>(*expr); |
| 429 | } |
| 430 | return nullptr; |
| 431 | } |
| 432 | |
| 433 | template <typename... A, std::size_t... I> |
| 434 | std::optional<std::tuple<const Constant<A> *...>> GetConstantArgumentsHelper( |
| 435 | FoldingContext &context, ActualArguments &arguments, |
| 436 | bool hasOptionalArgument, std::index_sequence<I...>) { |
| 437 | static_assert(sizeof...(A) > 0); |
| 438 | std::tuple<const Constant<A> *...> args{ |
| 439 | Folder<A>{context, hasOptionalArgument}.Folding(arguments.at(I))...}; |
| 440 | if ((... && (std::get<I>(args)))) { |
| 441 | return args; |
| 442 | } else { |
| 443 | return std::nullopt; |
| 444 | } |
| 445 | } |
| 446 | |
| 447 | template <typename... A> |
| 448 | std::optional<std::tuple<const Constant<A> *...>> GetConstantArguments( |
| 449 | FoldingContext &context, ActualArguments &args, bool hasOptionalArgument) { |
| 450 | return GetConstantArgumentsHelper<A...>( |
| 451 | context, args, hasOptionalArgument, std::index_sequence_for<A...>{}); |
| 452 | } |
| 453 | |
| 454 | template <typename... A, std::size_t... I> |
| 455 | std::optional<std::tuple<Scalar<A>...>> GetScalarConstantArgumentsHelper( |
| 456 | FoldingContext &context, ActualArguments &args, bool hasOptionalArgument, |
| 457 | std::index_sequence<I...>) { |
| 458 | if (auto constArgs{ |
| 459 | GetConstantArguments<A...>(context, args, hasOptionalArgument)}) { |
| 460 | return std::tuple<Scalar<A>...>{ |
| 461 | std::get<I>(*constArgs)->GetScalarValue().value()...}; |
| 462 | } else { |
| 463 | return std::nullopt; |
| 464 | } |
| 465 | } |
| 466 | |
| 467 | template <typename... A> |
| 468 | std::optional<std::tuple<Scalar<A>...>> GetScalarConstantArguments( |
| 469 | FoldingContext &context, ActualArguments &args, bool hasOptionalArgument) { |
| 470 | return GetScalarConstantArgumentsHelper<A...>( |
| 471 | context, args, hasOptionalArgument, std::index_sequence_for<A...>{}); |
| 472 | } |
| 473 | |
| 474 | // helpers to fold intrinsic function references |
| 475 | // Define callable types used in a common utility that |
| 476 | // takes care of array and cast/conversion aspects for elemental intrinsics |
| 477 | |
| 478 | template <typename TR, typename... TArgs> |
| 479 | using ScalarFunc = std::function<Scalar<TR>(const Scalar<TArgs> &...)>; |
| 480 | template <typename TR, typename... TArgs> |
| 481 | using ScalarFuncWithContext = |
| 482 | std::function<Scalar<TR>(FoldingContext &, const Scalar<TArgs> &...)>; |
| 483 | |
| 484 | template <template <typename, typename...> typename WrapperType, typename TR, |
| 485 | typename... TA, std::size_t... I> |
| 486 | Expr<TR> FoldElementalIntrinsicHelper(FoldingContext &context, |
| 487 | FunctionRef<TR> &&funcRef, WrapperType<TR, TA...> func, |
| 488 | bool hasOptionalArgument, std::index_sequence<I...>) { |
| 489 | if (std::optional<std::tuple<const Constant<TA> *...>> args{ |
| 490 | GetConstantArguments<TA...>( |
| 491 | context, funcRef.arguments(), hasOptionalArgument)}) { |
| 492 | // Compute the shape of the result based on shapes of arguments |
| 493 | ConstantSubscripts shape; |
| 494 | int rank{0}; |
| 495 | const ConstantSubscripts *shapes[]{&std::get<I>(*args)->shape()...}; |
| 496 | const int ranks[]{std::get<I>(*args)->Rank()...}; |
| 497 | for (unsigned int i{0}; i < sizeof...(TA); ++i) { |
| 498 | if (ranks[i] > 0) { |
| 499 | if (rank == 0) { |
| 500 | rank = ranks[i]; |
| 501 | shape = *shapes[i]; |
| 502 | } else { |
| 503 | if (shape != *shapes[i]) { |
| 504 | // TODO: Rank compatibility was already checked but it seems to be |
| 505 | // the first place where the actual shapes are checked to be the |
| 506 | // same. Shouldn't this be checked elsewhere so that this is also |
| 507 | // checked for non constexpr call to elemental intrinsics function? |
| 508 | context.messages().Say( |
| 509 | "Arguments in elemental intrinsic function are not conformable"_err_en_US ); |
| 510 | return Expr<TR>{std::move(funcRef)}; |
| 511 | } |
| 512 | } |
| 513 | } |
| 514 | } |
| 515 | CHECK(rank == GetRank(shape)); |
| 516 | // Compute all the scalar values of the results |
| 517 | std::vector<Scalar<TR>> results; |
| 518 | std::optional<uint64_t> n{TotalElementCount(shape)}; |
| 519 | if (!n) { |
| 520 | context.messages().Say( |
| 521 | "Too many elements in elemental intrinsic function result"_err_en_US ); |
| 522 | return Expr<TR>{std::move(funcRef)}; |
| 523 | } |
| 524 | if (*n > 0) { |
| 525 | ConstantBounds bounds{shape}; |
| 526 | ConstantSubscripts resultIndex(rank, 1); |
| 527 | ConstantSubscripts argIndex[]{std::get<I>(*args)->lbounds()...}; |
| 528 | do { |
| 529 | if constexpr (std::is_same_v<WrapperType<TR, TA...>, |
| 530 | ScalarFuncWithContext<TR, TA...>>) { |
| 531 | results.emplace_back( |
| 532 | func(context, std::get<I>(*args)->At(argIndex[I])...)); |
| 533 | } else if constexpr (std::is_same_v<WrapperType<TR, TA...>, |
| 534 | ScalarFunc<TR, TA...>>) { |
| 535 | results.emplace_back(func(std::get<I>(*args)->At(argIndex[I])...)); |
| 536 | } |
| 537 | (std::get<I>(*args)->IncrementSubscripts(argIndex[I]), ...); |
| 538 | } while (bounds.IncrementSubscripts(resultIndex)); |
| 539 | } |
| 540 | // Build and return constant result |
| 541 | if constexpr (TR::category == TypeCategory::Character) { |
| 542 | auto len{static_cast<ConstantSubscript>( |
| 543 | results.empty() ? 0 : results[0].length())}; |
| 544 | return Expr<TR>{Constant<TR>{len, std::move(results), std::move(shape)}}; |
| 545 | } else if constexpr (TR::category == TypeCategory::Derived) { |
| 546 | if (!results.empty()) { |
| 547 | return Expr<TR>{rank == 0 |
| 548 | ? Constant<TR>{results.front()} |
| 549 | : Constant<TR>{results.front().derivedTypeSpec(), |
| 550 | std::move(results), std::move(shape)}}; |
| 551 | } |
| 552 | } else { |
| 553 | return Expr<TR>{Constant<TR>{std::move(results), std::move(shape)}}; |
| 554 | } |
| 555 | } |
| 556 | return Expr<TR>{std::move(funcRef)}; |
| 557 | } |
| 558 | |
| 559 | template <typename TR, typename... TA> |
| 560 | Expr<TR> FoldElementalIntrinsic(FoldingContext &context, |
| 561 | FunctionRef<TR> &&funcRef, ScalarFunc<TR, TA...> func, |
| 562 | bool hasOptionalArgument = false) { |
| 563 | return FoldElementalIntrinsicHelper<ScalarFunc, TR, TA...>(context, |
| 564 | std::move(funcRef), func, hasOptionalArgument, |
| 565 | std::index_sequence_for<TA...>{}); |
| 566 | } |
| 567 | template <typename TR, typename... TA> |
| 568 | Expr<TR> FoldElementalIntrinsic(FoldingContext &context, |
| 569 | FunctionRef<TR> &&funcRef, ScalarFuncWithContext<TR, TA...> func, |
| 570 | bool hasOptionalArgument = false) { |
| 571 | return FoldElementalIntrinsicHelper<ScalarFuncWithContext, TR, TA...>(context, |
| 572 | std::move(funcRef), func, hasOptionalArgument, |
| 573 | std::index_sequence_for<TA...>{}); |
| 574 | } |
| 575 | |
| 576 | std::optional<std::int64_t> GetInt64ArgOr( |
| 577 | const std::optional<ActualArgument> &, std::int64_t defaultValue); |
| 578 | |
| 579 | template <typename A, typename B> |
| 580 | std::optional<std::vector<A>> GetIntegerVector(const B &x) { |
| 581 | static_assert(std::is_integral_v<A>); |
| 582 | if (const auto *someInteger{UnwrapExpr<Expr<SomeInteger>>(x)}) { |
| 583 | return common::visit( |
| 584 | [](const auto &typedExpr) -> std::optional<std::vector<A>> { |
| 585 | using T = ResultType<decltype(typedExpr)>; |
| 586 | if (const auto *constant{UnwrapConstantValue<T>(typedExpr)}) { |
| 587 | if (constant->Rank() == 1) { |
| 588 | std::vector<A> result; |
| 589 | for (const auto &value : constant->values()) { |
| 590 | result.push_back(static_cast<A>(value.ToInt64())); |
| 591 | } |
| 592 | return result; |
| 593 | } |
| 594 | } |
| 595 | return std::nullopt; |
| 596 | }, |
| 597 | someInteger->u); |
| 598 | } |
| 599 | return std::nullopt; |
| 600 | } |
| 601 | |
| 602 | // Transform an intrinsic function reference that contains user errors |
| 603 | // into an intrinsic with the same characteristic but the "invalid" name. |
| 604 | // This to prevent generating warnings over and over if the expression |
| 605 | // gets re-folded. |
| 606 | template <typename T> Expr<T> MakeInvalidIntrinsic(FunctionRef<T> &&funcRef) { |
| 607 | SpecificIntrinsic invalid{std::get<SpecificIntrinsic>(funcRef.proc().u)}; |
| 608 | invalid.name = IntrinsicProcTable::InvalidName; |
| 609 | return Expr<T>{FunctionRef<T>{ProcedureDesignator{std::move(invalid)}, |
| 610 | ActualArguments{std::move(funcRef.arguments())}}}; |
| 611 | } |
| 612 | |
| 613 | template <typename T> Expr<T> Folder<T>::CSHIFT(FunctionRef<T> &&funcRef) { |
| 614 | auto args{funcRef.arguments()}; |
| 615 | CHECK(args.size() == 3); |
| 616 | const auto *array{UnwrapConstantValue<T>(args[0])}; |
| 617 | const auto *shiftExpr{UnwrapExpr<Expr<SomeInteger>>(args[1])}; |
| 618 | auto dim{GetInt64ArgOr(args[2], 1)}; |
| 619 | if (!array || !shiftExpr || !dim) { |
| 620 | return Expr<T>{std::move(funcRef)}; |
| 621 | } |
| 622 | auto convertedShift{Fold(context_, |
| 623 | ConvertToType<SubscriptInteger>(Expr<SomeInteger>{*shiftExpr}))}; |
| 624 | const auto *shift{UnwrapConstantValue<SubscriptInteger>(convertedShift)}; |
| 625 | if (!shift) { |
| 626 | return Expr<T>{std::move(funcRef)}; |
| 627 | } |
| 628 | // Arguments are constant |
| 629 | if (*dim < 1 || *dim > array->Rank()) { |
| 630 | context_.messages().Say("Invalid 'dim=' argument (%jd) in CSHIFT"_err_en_US , |
| 631 | static_cast<std::intmax_t>(*dim)); |
| 632 | } else if (shift->Rank() > 0 && shift->Rank() != array->Rank() - 1) { |
| 633 | // message already emitted from intrinsic look-up |
| 634 | } else { |
| 635 | int rank{array->Rank()}; |
| 636 | int zbDim{static_cast<int>(*dim) - 1}; |
| 637 | bool ok{true}; |
| 638 | if (shift->Rank() > 0) { |
| 639 | int k{0}; |
| 640 | for (int j{0}; j < rank; ++j) { |
| 641 | if (j != zbDim) { |
| 642 | if (array->shape()[j] != shift->shape()[k]) { |
| 643 | context_.messages().Say( |
| 644 | "Invalid 'shift=' argument in CSHIFT: extent on dimension %d is %jd but must be %jd"_err_en_US , |
| 645 | k + 1, static_cast<std::intmax_t>(shift->shape()[k]), |
| 646 | static_cast<std::intmax_t>(array->shape()[j])); |
| 647 | ok = false; |
| 648 | } |
| 649 | ++k; |
| 650 | } |
| 651 | } |
| 652 | } |
| 653 | if (ok) { |
| 654 | std::vector<Scalar<T>> resultElements; |
| 655 | ConstantSubscripts arrayLB{array->lbounds()}; |
| 656 | ConstantSubscripts arrayAt{arrayLB}; |
| 657 | ConstantSubscript &dimIndex{arrayAt[zbDim]}; |
| 658 | ConstantSubscript dimLB{dimIndex}; // initial value |
| 659 | ConstantSubscript dimExtent{array->shape()[zbDim]}; |
| 660 | ConstantSubscripts shiftLB{shift->lbounds()}; |
| 661 | for (auto n{GetSize(array->shape())}; n > 0; --n) { |
| 662 | ConstantSubscript origDimIndex{dimIndex}; |
| 663 | ConstantSubscripts shiftAt; |
| 664 | if (shift->Rank() > 0) { |
| 665 | int k{0}; |
| 666 | for (int j{0}; j < rank; ++j) { |
| 667 | if (j != zbDim) { |
| 668 | shiftAt.emplace_back(shiftLB[k++] + arrayAt[j] - arrayLB[j]); |
| 669 | } |
| 670 | } |
| 671 | } |
| 672 | ConstantSubscript shiftCount{shift->At(shiftAt).ToInt64()}; |
| 673 | dimIndex = dimLB + ((dimIndex - dimLB + shiftCount) % dimExtent); |
| 674 | if (dimIndex < dimLB) { |
| 675 | dimIndex += dimExtent; |
| 676 | } else if (dimIndex >= dimLB + dimExtent) { |
| 677 | dimIndex -= dimExtent; |
| 678 | } |
| 679 | resultElements.push_back(array->At(arrayAt)); |
| 680 | dimIndex = origDimIndex; |
| 681 | array->IncrementSubscripts(arrayAt); |
| 682 | } |
| 683 | return Expr<T>{PackageConstant<T>( |
| 684 | std::move(resultElements), *array, array->shape())}; |
| 685 | } |
| 686 | } |
| 687 | // Invalid, prevent re-folding |
| 688 | return MakeInvalidIntrinsic(std::move(funcRef)); |
| 689 | } |
| 690 | |
| 691 | template <typename T> Expr<T> Folder<T>::EOSHIFT(FunctionRef<T> &&funcRef) { |
| 692 | auto args{funcRef.arguments()}; |
| 693 | CHECK(args.size() == 4); |
| 694 | const auto *array{UnwrapConstantValue<T>(args[0])}; |
| 695 | const auto *shiftExpr{UnwrapExpr<Expr<SomeInteger>>(args[1])}; |
| 696 | auto dim{GetInt64ArgOr(args[3], 1)}; |
| 697 | if (!array || !shiftExpr || !dim) { |
| 698 | return Expr<T>{std::move(funcRef)}; |
| 699 | } |
| 700 | // Apply type conversions to the shift= and boundary= arguments. |
| 701 | auto convertedShift{Fold(context_, |
| 702 | ConvertToType<SubscriptInteger>(Expr<SomeInteger>{*shiftExpr}))}; |
| 703 | const auto *shift{UnwrapConstantValue<SubscriptInteger>(convertedShift)}; |
| 704 | if (!shift) { |
| 705 | return Expr<T>{std::move(funcRef)}; |
| 706 | } |
| 707 | const Constant<T> *boundary{nullptr}; |
| 708 | std::optional<Expr<SomeType>> convertedBoundary; |
| 709 | if (const auto *boundaryExpr{UnwrapExpr<Expr<SomeType>>(args[2])}) { |
| 710 | convertedBoundary = Fold(context_, |
| 711 | ConvertToType(array->GetType(), Expr<SomeType>{*boundaryExpr})); |
| 712 | boundary = UnwrapExpr<Constant<T>>(convertedBoundary); |
| 713 | if (!boundary) { |
| 714 | return Expr<T>{std::move(funcRef)}; |
| 715 | } |
| 716 | } |
| 717 | // Arguments are constant |
| 718 | if (*dim < 1 || *dim > array->Rank()) { |
| 719 | context_.messages().Say( |
| 720 | "Invalid 'dim=' argument (%jd) in EOSHIFT"_err_en_US , |
| 721 | static_cast<std::intmax_t>(*dim)); |
| 722 | } else if (shift->Rank() > 0 && shift->Rank() != array->Rank() - 1) { |
| 723 | // message already emitted from intrinsic look-up |
| 724 | } else if (boundary && boundary->Rank() > 0 && |
| 725 | boundary->Rank() != array->Rank() - 1) { |
| 726 | // ditto |
| 727 | } else { |
| 728 | int rank{array->Rank()}; |
| 729 | int zbDim{static_cast<int>(*dim) - 1}; |
| 730 | bool ok{true}; |
| 731 | if (shift->Rank() > 0) { |
| 732 | int k{0}; |
| 733 | for (int j{0}; j < rank; ++j) { |
| 734 | if (j != zbDim) { |
| 735 | if (array->shape()[j] != shift->shape()[k]) { |
| 736 | context_.messages().Say( |
| 737 | "Invalid 'shift=' argument in EOSHIFT: extent on dimension %d is %jd but must be %jd"_err_en_US , |
| 738 | k + 1, static_cast<std::intmax_t>(shift->shape()[k]), |
| 739 | static_cast<std::intmax_t>(array->shape()[j])); |
| 740 | ok = false; |
| 741 | } |
| 742 | ++k; |
| 743 | } |
| 744 | } |
| 745 | } |
| 746 | if (boundary && boundary->Rank() > 0) { |
| 747 | int k{0}; |
| 748 | for (int j{0}; j < rank; ++j) { |
| 749 | if (j != zbDim) { |
| 750 | if (array->shape()[j] != boundary->shape()[k]) { |
| 751 | context_.messages().Say( |
| 752 | "Invalid 'boundary=' argument in EOSHIFT: extent on dimension %d is %jd but must be %jd"_err_en_US , |
| 753 | k + 1, static_cast<std::intmax_t>(boundary->shape()[k]), |
| 754 | static_cast<std::intmax_t>(array->shape()[j])); |
| 755 | ok = false; |
| 756 | } |
| 757 | ++k; |
| 758 | } |
| 759 | } |
| 760 | } |
| 761 | if (ok) { |
| 762 | std::vector<Scalar<T>> resultElements; |
| 763 | ConstantSubscripts arrayLB{array->lbounds()}; |
| 764 | ConstantSubscripts arrayAt{arrayLB}; |
| 765 | ConstantSubscript &dimIndex{arrayAt[zbDim]}; |
| 766 | ConstantSubscript dimLB{dimIndex}; // initial value |
| 767 | ConstantSubscript dimExtent{array->shape()[zbDim]}; |
| 768 | ConstantSubscripts shiftLB{shift->lbounds()}; |
| 769 | ConstantSubscripts boundaryLB; |
| 770 | if (boundary) { |
| 771 | boundaryLB = boundary->lbounds(); |
| 772 | } |
| 773 | for (auto n{GetSize(array->shape())}; n > 0; --n) { |
| 774 | ConstantSubscript origDimIndex{dimIndex}; |
| 775 | ConstantSubscripts shiftAt; |
| 776 | if (shift->Rank() > 0) { |
| 777 | int k{0}; |
| 778 | for (int j{0}; j < rank; ++j) { |
| 779 | if (j != zbDim) { |
| 780 | shiftAt.emplace_back(shiftLB[k++] + arrayAt[j] - arrayLB[j]); |
| 781 | } |
| 782 | } |
| 783 | } |
| 784 | ConstantSubscript shiftCount{shift->At(shiftAt).ToInt64()}; |
| 785 | dimIndex += shiftCount; |
| 786 | if (dimIndex >= dimLB && dimIndex < dimLB + dimExtent) { |
| 787 | resultElements.push_back(array->At(arrayAt)); |
| 788 | } else if (boundary) { |
| 789 | ConstantSubscripts boundaryAt; |
| 790 | if (boundary->Rank() > 0) { |
| 791 | for (int j{0}; j < rank; ++j) { |
| 792 | int k{0}; |
| 793 | if (j != zbDim) { |
| 794 | boundaryAt.emplace_back( |
| 795 | boundaryLB[k++] + arrayAt[j] - arrayLB[j]); |
| 796 | } |
| 797 | } |
| 798 | } |
| 799 | resultElements.push_back(boundary->At(boundaryAt)); |
| 800 | } else if constexpr (T::category == TypeCategory::Integer || |
| 801 | T::category == TypeCategory::Unsigned || |
| 802 | T::category == TypeCategory::Real || |
| 803 | T::category == TypeCategory::Complex || |
| 804 | T::category == TypeCategory::Logical) { |
| 805 | resultElements.emplace_back(); |
| 806 | } else if constexpr (T::category == TypeCategory::Character) { |
| 807 | auto len{static_cast<std::size_t>(array->LEN())}; |
| 808 | typename Scalar<T>::value_type space{' '}; |
| 809 | resultElements.emplace_back(len, space); |
| 810 | } else { |
| 811 | DIE("no derived type boundary" ); |
| 812 | } |
| 813 | dimIndex = origDimIndex; |
| 814 | array->IncrementSubscripts(arrayAt); |
| 815 | } |
| 816 | return Expr<T>{PackageConstant<T>( |
| 817 | std::move(resultElements), *array, array->shape())}; |
| 818 | } |
| 819 | } |
| 820 | // Invalid, prevent re-folding |
| 821 | return MakeInvalidIntrinsic(std::move(funcRef)); |
| 822 | } |
| 823 | |
| 824 | template <typename T> Expr<T> Folder<T>::MERGE(FunctionRef<T> &&funcRef) { |
| 825 | return FoldElementalIntrinsic<T, T, T, LogicalResult>(context_, |
| 826 | std::move(funcRef), |
| 827 | ScalarFunc<T, T, T, LogicalResult>( |
| 828 | [](const Scalar<T> &ifTrue, const Scalar<T> &ifFalse, |
| 829 | const Scalar<LogicalResult> &predicate) -> Scalar<T> { |
| 830 | return predicate.IsTrue() ? ifTrue : ifFalse; |
| 831 | })); |
| 832 | } |
| 833 | |
| 834 | template <typename T> Expr<T> Folder<T>::PACK(FunctionRef<T> &&funcRef) { |
| 835 | auto args{funcRef.arguments()}; |
| 836 | CHECK(args.size() == 3); |
| 837 | const auto *array{UnwrapConstantValue<T>(args[0])}; |
| 838 | const auto *vector{UnwrapConstantValue<T>(args[2])}; |
| 839 | auto convertedMask{Fold(context_, |
| 840 | ConvertToType<LogicalResult>( |
| 841 | Expr<SomeLogical>{DEREF(UnwrapExpr<Expr<SomeLogical>>(args[1]))}))}; |
| 842 | const auto *mask{UnwrapConstantValue<LogicalResult>(convertedMask)}; |
| 843 | if (!array || !mask || (args[2] && !vector)) { |
| 844 | return Expr<T>{std::move(funcRef)}; |
| 845 | } |
| 846 | // Arguments are constant. |
| 847 | ConstantSubscript arrayElements{GetSize(array->shape())}; |
| 848 | ConstantSubscript truths{0}; |
| 849 | ConstantSubscripts maskAt{mask->lbounds()}; |
| 850 | if (mask->Rank() == 0) { |
| 851 | if (mask->At(maskAt).IsTrue()) { |
| 852 | truths = arrayElements; |
| 853 | } |
| 854 | } else if (array->shape() != mask->shape()) { |
| 855 | // Error already emitted from intrinsic processing |
| 856 | return MakeInvalidIntrinsic(std::move(funcRef)); |
| 857 | } else { |
| 858 | for (ConstantSubscript j{0}; j < arrayElements; |
| 859 | ++j, mask->IncrementSubscripts(maskAt)) { |
| 860 | if (mask->At(maskAt).IsTrue()) { |
| 861 | ++truths; |
| 862 | } |
| 863 | } |
| 864 | } |
| 865 | std::vector<Scalar<T>> resultElements; |
| 866 | ConstantSubscripts arrayAt{array->lbounds()}; |
| 867 | ConstantSubscript resultSize{truths}; |
| 868 | if (vector) { |
| 869 | resultSize = vector->shape().at(0); |
| 870 | if (resultSize < truths) { |
| 871 | context_.messages().Say( |
| 872 | "Invalid 'vector=' argument in PACK: the 'mask=' argument has %jd true elements, but the vector has only %jd elements"_err_en_US , |
| 873 | static_cast<std::intmax_t>(truths), |
| 874 | static_cast<std::intmax_t>(resultSize)); |
| 875 | return MakeInvalidIntrinsic(std::move(funcRef)); |
| 876 | } |
| 877 | } |
| 878 | for (ConstantSubscript j{0}; j < truths;) { |
| 879 | if (mask->At(maskAt).IsTrue()) { |
| 880 | resultElements.push_back(array->At(arrayAt)); |
| 881 | ++j; |
| 882 | } |
| 883 | array->IncrementSubscripts(arrayAt); |
| 884 | mask->IncrementSubscripts(maskAt); |
| 885 | } |
| 886 | if (vector) { |
| 887 | ConstantSubscripts vectorAt{vector->lbounds()}; |
| 888 | vectorAt.at(0) += truths; |
| 889 | for (ConstantSubscript j{truths}; j < resultSize; ++j) { |
| 890 | resultElements.push_back(vector->At(vectorAt)); |
| 891 | ++vectorAt[0]; |
| 892 | } |
| 893 | } |
| 894 | return Expr<T>{PackageConstant<T>(std::move(resultElements), *array, |
| 895 | ConstantSubscripts{static_cast<ConstantSubscript>(resultSize)})}; |
| 896 | } |
| 897 | |
| 898 | template <typename T> Expr<T> Folder<T>::RESHAPE(FunctionRef<T> &&funcRef) { |
| 899 | auto args{funcRef.arguments()}; |
| 900 | CHECK(args.size() == 4); |
| 901 | const auto *source{UnwrapConstantValue<T>(args[0])}; |
| 902 | const auto *pad{UnwrapConstantValue<T>(args[2])}; |
| 903 | std::optional<std::vector<ConstantSubscript>> shape{ |
| 904 | GetIntegerVector<ConstantSubscript>(args[1])}; |
| 905 | std::optional<std::vector<int>> order{GetIntegerVector<int>(args[3])}; |
| 906 | std::optional<uint64_t> optResultElement; |
| 907 | std::optional<std::vector<int>> dimOrder; |
| 908 | bool ok{true}; |
| 909 | if (shape) { |
| 910 | if (shape->size() > common::maxRank) { |
| 911 | context_.messages().Say( |
| 912 | "Size of 'shape=' argument (%zd) must not be greater than %d"_err_en_US , |
| 913 | shape->size(), common::maxRank); |
| 914 | ok = false; |
| 915 | } else if (HasNegativeExtent(*shape)) { |
| 916 | context_.messages().Say( |
| 917 | "'shape=' argument (%s) must not have a negative extent"_err_en_US , |
| 918 | DEREF(args[1]->UnwrapExpr()).AsFortran()); |
| 919 | ok = false; |
| 920 | } else { |
| 921 | optResultElement = TotalElementCount(*shape); |
| 922 | if (!optResultElement) { |
| 923 | context_.messages().Say( |
| 924 | "'shape=' argument (%s) specifies an array with too many elements"_err_en_US , |
| 925 | DEREF(args[1]->UnwrapExpr()).AsFortran()); |
| 926 | ok = false; |
| 927 | } |
| 928 | } |
| 929 | if (order) { |
| 930 | dimOrder = ValidateDimensionOrder(GetRank(*shape), *order); |
| 931 | if (!dimOrder) { |
| 932 | context_.messages().Say( |
| 933 | "Invalid 'order=' argument (%s) in RESHAPE"_err_en_US , |
| 934 | DEREF(args[3]->UnwrapExpr()).AsFortran()); |
| 935 | ok = false; |
| 936 | } |
| 937 | } |
| 938 | } |
| 939 | if (!ok) { |
| 940 | // convert into an invalid intrinsic procedure call below |
| 941 | } else if (!source || !shape || (args[2] && !pad) || (args[3] && !order)) { |
| 942 | return Expr<T>{std::move(funcRef)}; // Non-constant arguments |
| 943 | } else { |
| 944 | uint64_t resultElements{*optResultElement}; |
| 945 | std::vector<int> *dimOrderPtr{dimOrder ? &dimOrder.value() : nullptr}; |
| 946 | if (resultElements > source->size() && (!pad || pad->empty())) { |
| 947 | context_.messages().Say( |
| 948 | "Too few elements in 'source=' argument and 'pad=' " |
| 949 | "argument is not present or has null size"_err_en_US ); |
| 950 | ok = false; |
| 951 | } else { |
| 952 | Constant<T> result{!source->empty() || !pad |
| 953 | ? source->Reshape(std::move(shape.value())) |
| 954 | : pad->Reshape(std::move(shape.value()))}; |
| 955 | ConstantSubscripts subscripts{result.lbounds()}; |
| 956 | auto copied{result.CopyFrom(*source, |
| 957 | std::min(a: static_cast<uint64_t>(source->size()), b: resultElements), |
| 958 | subscripts, dimOrderPtr)}; |
| 959 | if (copied < resultElements) { |
| 960 | CHECK(pad); |
| 961 | copied += result.CopyFrom( |
| 962 | *pad, resultElements - copied, subscripts, dimOrderPtr); |
| 963 | } |
| 964 | CHECK(copied == resultElements); |
| 965 | return Expr<T>{std::move(result)}; |
| 966 | } |
| 967 | } |
| 968 | // Invalid, prevent re-folding |
| 969 | return MakeInvalidIntrinsic(std::move(funcRef)); |
| 970 | } |
| 971 | |
| 972 | template <typename T> Expr<T> Folder<T>::SPREAD(FunctionRef<T> &&funcRef) { |
| 973 | auto args{funcRef.arguments()}; |
| 974 | CHECK(args.size() == 3); |
| 975 | const Constant<T> *source{UnwrapConstantValue<T>(args[0])}; |
| 976 | auto dim{ToInt64(args[1])}; |
| 977 | auto ncopies{ToInt64(args[2])}; |
| 978 | if (!source || !dim) { |
| 979 | return Expr<T>{std::move(funcRef)}; |
| 980 | } |
| 981 | int sourceRank{source->Rank()}; |
| 982 | if (sourceRank >= common::maxRank) { |
| 983 | context_.messages().Say( |
| 984 | "SOURCE= argument to SPREAD has rank %d but must have rank less than %d"_err_en_US , |
| 985 | sourceRank, common::maxRank); |
| 986 | } else if (*dim < 1 || *dim > sourceRank + 1) { |
| 987 | context_.messages().Say( |
| 988 | "DIM=%d argument to SPREAD must be between 1 and %d"_err_en_US , *dim, |
| 989 | sourceRank + 1); |
| 990 | } else if (!ncopies) { |
| 991 | return Expr<T>{std::move(funcRef)}; |
| 992 | } else { |
| 993 | if (*ncopies < 0) { |
| 994 | ncopies = 0; |
| 995 | } |
| 996 | // TODO: Consider moving this implementation (after the user error |
| 997 | // checks), along with other transformational intrinsics, into |
| 998 | // constant.h (or a new header) so that the transformationals |
| 999 | // are available for all Constant<>s without needing to be packaged |
| 1000 | // as references to intrinsic functions for folding. |
| 1001 | ConstantSubscripts shape{source->shape()}; |
| 1002 | shape.insert(shape.begin() + *dim - 1, *ncopies); |
| 1003 | Constant<T> spread{source->Reshape(std::move(shape))}; |
| 1004 | std::optional<uint64_t> n{TotalElementCount(spread.shape())}; |
| 1005 | if (!n) { |
| 1006 | context_.messages().Say("Too many elements in SPREAD result"_err_en_US ); |
| 1007 | } else { |
| 1008 | std::vector<int> dimOrder; |
| 1009 | for (int j{0}; j < sourceRank; ++j) { |
| 1010 | dimOrder.push_back(j < *dim - 1 ? j : j + 1); |
| 1011 | } |
| 1012 | dimOrder.push_back(*dim - 1); |
| 1013 | ConstantSubscripts at{spread.lbounds()}; // all 1 |
| 1014 | spread.CopyFrom(*source, *n, at, &dimOrder); |
| 1015 | return Expr<T>{std::move(spread)}; |
| 1016 | } |
| 1017 | } |
| 1018 | // Invalid, prevent re-folding |
| 1019 | return MakeInvalidIntrinsic(std::move(funcRef)); |
| 1020 | } |
| 1021 | |
| 1022 | template <typename T> Expr<T> Folder<T>::TRANSPOSE(FunctionRef<T> &&funcRef) { |
| 1023 | auto args{funcRef.arguments()}; |
| 1024 | CHECK(args.size() == 1); |
| 1025 | const auto *matrix{UnwrapConstantValue<T>(args[0])}; |
| 1026 | if (!matrix) { |
| 1027 | return Expr<T>{std::move(funcRef)}; |
| 1028 | } |
| 1029 | // Argument is constant. Traverse its elements in transposed order. |
| 1030 | std::vector<Scalar<T>> resultElements; |
| 1031 | ConstantSubscripts at(2); |
| 1032 | for (ConstantSubscript j{0}; j < matrix->shape()[0]; ++j) { |
| 1033 | at[0] = matrix->lbounds()[0] + j; |
| 1034 | for (ConstantSubscript k{0}; k < matrix->shape()[1]; ++k) { |
| 1035 | at[1] = matrix->lbounds()[1] + k; |
| 1036 | resultElements.push_back(matrix->At(at)); |
| 1037 | } |
| 1038 | } |
| 1039 | at = matrix->shape(); |
| 1040 | std::swap(at[0], at[1]); |
| 1041 | return Expr<T>{PackageConstant<T>(std::move(resultElements), *matrix, at)}; |
| 1042 | } |
| 1043 | |
| 1044 | template <typename T> Expr<T> Folder<T>::UNPACK(FunctionRef<T> &&funcRef) { |
| 1045 | auto args{funcRef.arguments()}; |
| 1046 | CHECK(args.size() == 3); |
| 1047 | const auto *vector{UnwrapConstantValue<T>(args[0])}; |
| 1048 | auto convertedMask{Fold(context_, |
| 1049 | ConvertToType<LogicalResult>( |
| 1050 | Expr<SomeLogical>{DEREF(UnwrapExpr<Expr<SomeLogical>>(args[1]))}))}; |
| 1051 | const auto *mask{UnwrapConstantValue<LogicalResult>(convertedMask)}; |
| 1052 | const auto *field{UnwrapConstantValue<T>(args[2])}; |
| 1053 | if (!vector || !mask || !field) { |
| 1054 | return Expr<T>{std::move(funcRef)}; |
| 1055 | } |
| 1056 | // Arguments are constant. |
| 1057 | if (field->Rank() > 0 && field->shape() != mask->shape()) { |
| 1058 | // Error already emitted from intrinsic processing |
| 1059 | return MakeInvalidIntrinsic(std::move(funcRef)); |
| 1060 | } |
| 1061 | ConstantSubscript maskElements{GetSize(mask->shape())}; |
| 1062 | ConstantSubscript truths{0}; |
| 1063 | ConstantSubscripts maskAt{mask->lbounds()}; |
| 1064 | for (ConstantSubscript j{0}; j < maskElements; |
| 1065 | ++j, mask->IncrementSubscripts(maskAt)) { |
| 1066 | if (mask->At(maskAt).IsTrue()) { |
| 1067 | ++truths; |
| 1068 | } |
| 1069 | } |
| 1070 | if (truths > GetSize(vector->shape())) { |
| 1071 | context_.messages().Say( |
| 1072 | "Invalid 'vector=' argument in UNPACK: the 'mask=' argument has %jd true elements, but the vector has only %jd elements"_err_en_US , |
| 1073 | static_cast<std::intmax_t>(truths), |
| 1074 | static_cast<std::intmax_t>(GetSize(vector->shape()))); |
| 1075 | return MakeInvalidIntrinsic(std::move(funcRef)); |
| 1076 | } |
| 1077 | std::vector<Scalar<T>> resultElements; |
| 1078 | ConstantSubscripts vectorAt{vector->lbounds()}; |
| 1079 | ConstantSubscripts fieldAt{field->lbounds()}; |
| 1080 | for (ConstantSubscript j{0}; j < maskElements; ++j) { |
| 1081 | if (mask->At(maskAt).IsTrue()) { |
| 1082 | resultElements.push_back(vector->At(vectorAt)); |
| 1083 | vector->IncrementSubscripts(vectorAt); |
| 1084 | } else { |
| 1085 | resultElements.push_back(field->At(fieldAt)); |
| 1086 | } |
| 1087 | mask->IncrementSubscripts(maskAt); |
| 1088 | field->IncrementSubscripts(fieldAt); |
| 1089 | } |
| 1090 | return Expr<T>{ |
| 1091 | PackageConstant<T>(std::move(resultElements), *vector, mask->shape())}; |
| 1092 | } |
| 1093 | |
| 1094 | std::optional<Expr<SomeType>> FoldTransfer( |
| 1095 | FoldingContext &, const ActualArguments &); |
| 1096 | |
| 1097 | template <typename T> Expr<T> Folder<T>::TRANSFER(FunctionRef<T> &&funcRef) { |
| 1098 | if (auto folded{FoldTransfer(context_, funcRef.arguments())}) { |
| 1099 | return DEREF(UnwrapExpr<Expr<T>>(*folded)); |
| 1100 | } else { |
| 1101 | return Expr<T>{std::move(funcRef)}; |
| 1102 | } |
| 1103 | } |
| 1104 | |
| 1105 | template <typename T> |
| 1106 | Expr<T> FoldMINorMAX( |
| 1107 | FoldingContext &context, FunctionRef<T> &&funcRef, Ordering order) { |
| 1108 | static_assert(T::category == TypeCategory::Integer || |
| 1109 | T::category == TypeCategory::Unsigned || |
| 1110 | T::category == TypeCategory::Real || |
| 1111 | T::category == TypeCategory::Character); |
| 1112 | auto &args{funcRef.arguments()}; |
| 1113 | bool ok{true}; |
| 1114 | std::optional<Expr<T>> result; |
| 1115 | Folder<T> folder{context}; |
| 1116 | for (std::optional<ActualArgument> &arg : args) { |
| 1117 | // Call Folding on all arguments to make operand promotion explicit. |
| 1118 | if (!folder.Folding(arg)) { |
| 1119 | // TODO: Lowering can't handle having every FunctionRef for max and min |
| 1120 | // being converted into Extremum<T>. That needs fixing. Until that |
| 1121 | // is corrected, however, it is important that max and min references |
| 1122 | // in module files be converted into Extremum<T> even when not constant; |
| 1123 | // the Extremum<SubscriptInteger> operations created to normalize the |
| 1124 | // values of array bounds are formatted as max operations in the |
| 1125 | // declarations in modules, and need to be read back in as such in |
| 1126 | // order for expression comparison to not produce false inequalities |
| 1127 | // when checking function results for procedure interface compatibility. |
| 1128 | if (!context.moduleFileName()) { |
| 1129 | ok = false; |
| 1130 | } |
| 1131 | } |
| 1132 | Expr<SomeType> *argExpr{arg ? arg->UnwrapExpr() : nullptr}; |
| 1133 | if (argExpr) { |
| 1134 | *argExpr = Fold(context, std::move(*argExpr)); |
| 1135 | } |
| 1136 | if (Expr<T> * tExpr{UnwrapExpr<Expr<T>>(argExpr)}) { |
| 1137 | if (result) { |
| 1138 | result = FoldOperation( |
| 1139 | context, Extremum<T>{order, std::move(*result), Expr<T>{*tExpr}}); |
| 1140 | } else { |
| 1141 | result = Expr<T>{*tExpr}; |
| 1142 | } |
| 1143 | } else { |
| 1144 | ok = false; |
| 1145 | } |
| 1146 | } |
| 1147 | return ok && result ? std::move(*result) : Expr<T>{std::move(funcRef)}; |
| 1148 | } |
| 1149 | |
| 1150 | // For AMAX0, AMIN0, AMAX1, AMIN1, DMAX1, DMIN1, MAX0, MIN0, MAX1, and MIN1 |
| 1151 | // a special care has to be taken to insert the conversion on the result |
| 1152 | // of the MIN/MAX. This is made slightly more complex by the extension |
| 1153 | // supported by f18 that arguments may have different kinds. This implies |
| 1154 | // that the created MIN/MAX result type cannot be deduced from the standard but |
| 1155 | // has to be deduced from the arguments. |
| 1156 | // e.g. AMAX0(int8, int4) is rewritten to REAL(MAX(int8, INT(int4, 8)))). |
| 1157 | template <typename T> |
| 1158 | Expr<T> RewriteSpecificMINorMAX( |
| 1159 | FoldingContext &context, FunctionRef<T> &&funcRef) { |
| 1160 | ActualArguments &args{funcRef.arguments()}; |
| 1161 | auto &intrinsic{DEREF(std::get_if<SpecificIntrinsic>(&funcRef.proc().u))}; |
| 1162 | // Rewrite MAX1(args) to INT(MAX(args)) and fold. Same logic for MIN1. |
| 1163 | // Find result type for max/min based on the arguments. |
| 1164 | std::optional<DynamicType> resultType; |
| 1165 | ActualArgument *resultTypeArg{nullptr}; |
| 1166 | for (auto j{args.size()}; j-- > 0;) { |
| 1167 | if (args[j]) { |
| 1168 | DynamicType type{args[j]->GetType().value()}; |
| 1169 | // Handle mixed real/integer arguments: all the previous arguments were |
| 1170 | // integers and this one is real. The type of the MAX/MIN result will |
| 1171 | // be the one of the real argument. |
| 1172 | if (!resultType || |
| 1173 | (type.category() == resultType->category() && |
| 1174 | type.kind() > resultType->kind()) || |
| 1175 | resultType->category() == TypeCategory::Integer) { |
| 1176 | resultType = type; |
| 1177 | resultTypeArg = &*args[j]; |
| 1178 | } |
| 1179 | } |
| 1180 | } |
| 1181 | if (!resultType) { // error recovery |
| 1182 | return Expr<T>{std::move(funcRef)}; |
| 1183 | } |
| 1184 | intrinsic.name = |
| 1185 | intrinsic.name.find("max" ) != std::string::npos ? "max"s : "min"s ; |
| 1186 | intrinsic.characteristics.value().functionResult.value().SetType(*resultType); |
| 1187 | auto insertConversion{[&](const auto &x) -> Expr<T> { |
| 1188 | using TR = ResultType<decltype(x)>; |
| 1189 | FunctionRef<TR> maxRef{ |
| 1190 | ProcedureDesignator{funcRef.proc()}, ActualArguments{args}}; |
| 1191 | return Fold(context, ConvertToType<T>(AsCategoryExpr(std::move(maxRef)))); |
| 1192 | }}; |
| 1193 | if (auto *sx{UnwrapExpr<Expr<SomeReal>>(*resultTypeArg)}) { |
| 1194 | return common::visit(insertConversion, sx->u); |
| 1195 | } else if (auto *sx{UnwrapExpr<Expr<SomeInteger>>(*resultTypeArg)}) { |
| 1196 | return common::visit(insertConversion, sx->u); |
| 1197 | } else { |
| 1198 | return Expr<T>{std::move(funcRef)}; // error recovery |
| 1199 | } |
| 1200 | } |
| 1201 | |
| 1202 | // FoldIntrinsicFunction() |
| 1203 | template <int KIND> |
| 1204 | Expr<Type<TypeCategory::Integer, KIND>> FoldIntrinsicFunction( |
| 1205 | FoldingContext &context, FunctionRef<Type<TypeCategory::Integer, KIND>> &&); |
| 1206 | template <int KIND> |
| 1207 | Expr<Type<TypeCategory::Unsigned, KIND>> FoldIntrinsicFunction( |
| 1208 | FoldingContext &context, |
| 1209 | FunctionRef<Type<TypeCategory::Unsigned, KIND>> &&); |
| 1210 | template <int KIND> |
| 1211 | Expr<Type<TypeCategory::Real, KIND>> FoldIntrinsicFunction( |
| 1212 | FoldingContext &context, FunctionRef<Type<TypeCategory::Real, KIND>> &&); |
| 1213 | template <int KIND> |
| 1214 | Expr<Type<TypeCategory::Complex, KIND>> FoldIntrinsicFunction( |
| 1215 | FoldingContext &context, FunctionRef<Type<TypeCategory::Complex, KIND>> &&); |
| 1216 | template <int KIND> |
| 1217 | Expr<Type<TypeCategory::Logical, KIND>> FoldIntrinsicFunction( |
| 1218 | FoldingContext &context, FunctionRef<Type<TypeCategory::Logical, KIND>> &&); |
| 1219 | |
| 1220 | template <typename T> |
| 1221 | Expr<T> FoldOperation(FoldingContext &context, FunctionRef<T> &&funcRef) { |
| 1222 | ActualArguments &args{funcRef.arguments()}; |
| 1223 | const auto *intrinsic{std::get_if<SpecificIntrinsic>(&funcRef.proc().u)}; |
| 1224 | if (!intrinsic || intrinsic->name != "kind" ) { |
| 1225 | // Don't fold the argument to KIND(); it might be a TypeParamInquiry |
| 1226 | // with a forced result type that doesn't match the parameter. |
| 1227 | for (std::optional<ActualArgument> &arg : args) { |
| 1228 | if (auto *expr{UnwrapExpr<Expr<SomeType>>(arg)}) { |
| 1229 | *expr = Fold(context, std::move(*expr)); |
| 1230 | } |
| 1231 | } |
| 1232 | } |
| 1233 | if (intrinsic) { |
| 1234 | const std::string name{intrinsic->name}; |
| 1235 | if (name == "cshift" ) { |
| 1236 | return Folder<T>{context}.CSHIFT(std::move(funcRef)); |
| 1237 | } else if (name == "eoshift" ) { |
| 1238 | return Folder<T>{context}.EOSHIFT(std::move(funcRef)); |
| 1239 | } else if (name == "merge" ) { |
| 1240 | return Folder<T>{context}.MERGE(std::move(funcRef)); |
| 1241 | } else if (name == "pack" ) { |
| 1242 | return Folder<T>{context}.PACK(std::move(funcRef)); |
| 1243 | } else if (name == "reshape" ) { |
| 1244 | return Folder<T>{context}.RESHAPE(std::move(funcRef)); |
| 1245 | } else if (name == "spread" ) { |
| 1246 | return Folder<T>{context}.SPREAD(std::move(funcRef)); |
| 1247 | } else if (name == "transfer" ) { |
| 1248 | return Folder<T>{context}.TRANSFER(std::move(funcRef)); |
| 1249 | } else if (name == "transpose" ) { |
| 1250 | return Folder<T>{context}.TRANSPOSE(std::move(funcRef)); |
| 1251 | } else if (name == "unpack" ) { |
| 1252 | return Folder<T>{context}.UNPACK(std::move(funcRef)); |
| 1253 | } |
| 1254 | // TODO: extends_type_of, same_type_as |
| 1255 | if constexpr (!std::is_same_v<T, SomeDerived>) { |
| 1256 | return FoldIntrinsicFunction(context, std::move(funcRef)); |
| 1257 | } |
| 1258 | } |
| 1259 | return Expr<T>{std::move(funcRef)}; |
| 1260 | } |
| 1261 | |
| 1262 | Expr<ImpliedDoIndex::Result> FoldOperation(FoldingContext &, ImpliedDoIndex &&); |
| 1263 | |
| 1264 | // Array constructor folding |
| 1265 | template <typename T> class ArrayConstructorFolder { |
| 1266 | public: |
| 1267 | explicit ArrayConstructorFolder(FoldingContext &c) : context_{c} {} |
| 1268 | |
| 1269 | Expr<T> FoldArray(ArrayConstructor<T> &&array) { |
| 1270 | if constexpr (T::category == TypeCategory::Character) { |
| 1271 | if (const auto *len{array.LEN()}) { |
| 1272 | charLength_ = ToInt64(Fold(context_, common::Clone(*len))); |
| 1273 | knownCharLength_ = charLength_.has_value(); |
| 1274 | } |
| 1275 | } |
| 1276 | // Calls FoldArray(const ArrayConstructorValues<T> &) below |
| 1277 | if (FoldArray(array)) { |
| 1278 | auto n{static_cast<ConstantSubscript>(elements_.size())}; |
| 1279 | if constexpr (std::is_same_v<T, SomeDerived>) { |
| 1280 | return Expr<T>{Constant<T>{array.GetType().GetDerivedTypeSpec(), |
| 1281 | std::move(elements_), ConstantSubscripts{n}}}; |
| 1282 | } else if constexpr (T::category == TypeCategory::Character) { |
| 1283 | if (charLength_) { |
| 1284 | return Expr<T>{Constant<T>{ |
| 1285 | *charLength_, std::move(elements_), ConstantSubscripts{n}}}; |
| 1286 | } |
| 1287 | } else { |
| 1288 | return Expr<T>{ |
| 1289 | Constant<T>{std::move(elements_), ConstantSubscripts{n}}}; |
| 1290 | } |
| 1291 | } |
| 1292 | return Expr<T>{std::move(array)}; |
| 1293 | } |
| 1294 | |
| 1295 | private: |
| 1296 | bool FoldArray(const Expr<T> &expr) { |
| 1297 | Expr<T> folded{Fold(context_, common::Clone(expr))}; |
| 1298 | if (const auto *c{UnwrapConstantValue<T>(folded)}) { |
| 1299 | // Copy elements in Fortran array element order |
| 1300 | if (!c->empty()) { |
| 1301 | ConstantSubscripts index{c->lbounds()}; |
| 1302 | do { |
| 1303 | elements_.emplace_back(c->At(index)); |
| 1304 | } while (c->IncrementSubscripts(index)); |
| 1305 | } |
| 1306 | if constexpr (T::category == TypeCategory::Character) { |
| 1307 | if (!knownCharLength_) { |
| 1308 | charLength_ = std::max(c->LEN(), charLength_.value_or(-1)); |
| 1309 | } |
| 1310 | } |
| 1311 | return true; |
| 1312 | } else { |
| 1313 | return false; |
| 1314 | } |
| 1315 | } |
| 1316 | bool FoldArray(const common::CopyableIndirection<Expr<T>> &expr) { |
| 1317 | return FoldArray(expr.value()); |
| 1318 | } |
| 1319 | bool FoldArray(const ImpliedDo<T> &iDo) { |
| 1320 | Expr<SubscriptInteger> lower{ |
| 1321 | Fold(context_, Expr<SubscriptInteger>{iDo.lower()})}; |
| 1322 | Expr<SubscriptInteger> upper{ |
| 1323 | Fold(context_, Expr<SubscriptInteger>{iDo.upper()})}; |
| 1324 | Expr<SubscriptInteger> stride{ |
| 1325 | Fold(context_, Expr<SubscriptInteger>{iDo.stride()})}; |
| 1326 | std::optional<ConstantSubscript> start{ToInt64(lower)}, end{ToInt64(upper)}, |
| 1327 | step{ToInt64(stride)}; |
| 1328 | if (start && end && step && *step != 0) { |
| 1329 | bool result{true}; |
| 1330 | ConstantSubscript &j{context_.StartImpliedDo(iDo.name(), *start)}; |
| 1331 | if (*step > 0) { |
| 1332 | for (; j <= *end; j += *step) { |
| 1333 | result &= FoldArray(iDo.values()); |
| 1334 | } |
| 1335 | } else { |
| 1336 | for (; j >= *end; j += *step) { |
| 1337 | result &= FoldArray(iDo.values()); |
| 1338 | } |
| 1339 | } |
| 1340 | context_.EndImpliedDo(iDo.name()); |
| 1341 | return result; |
| 1342 | } else { |
| 1343 | return false; |
| 1344 | } |
| 1345 | } |
| 1346 | bool FoldArray(const ArrayConstructorValue<T> &x) { |
| 1347 | return common::visit([&](const auto &y) { return FoldArray(y); }, x.u); |
| 1348 | } |
| 1349 | bool FoldArray(const ArrayConstructorValues<T> &xs) { |
| 1350 | for (const auto &x : xs) { |
| 1351 | if (!FoldArray(x)) { |
| 1352 | return false; |
| 1353 | } |
| 1354 | } |
| 1355 | return true; |
| 1356 | } |
| 1357 | |
| 1358 | FoldingContext &context_; |
| 1359 | std::vector<Scalar<T>> elements_; |
| 1360 | std::optional<ConstantSubscript> charLength_; |
| 1361 | bool knownCharLength_{false}; |
| 1362 | }; |
| 1363 | |
| 1364 | template <typename T> |
| 1365 | Expr<T> FoldOperation(FoldingContext &context, ArrayConstructor<T> &&array) { |
| 1366 | return ArrayConstructorFolder<T>{context}.FoldArray(std::move(array)); |
| 1367 | } |
| 1368 | |
| 1369 | // Array operation elemental application: When all operands to an operation |
| 1370 | // are constant arrays, array constructors without any implied DO loops, |
| 1371 | // &/or expanded scalars, pull the operation "into" the array result by |
| 1372 | // applying it in an elementwise fashion. For example, [A,1]+[B,2] |
| 1373 | // is rewritten into [A+B,1+2] and then partially folded to [A+B,3]. |
| 1374 | |
| 1375 | // If possible, restructures an array expression into an array constructor |
| 1376 | // that comprises a "flat" ArrayConstructorValues with no implied DO loops. |
| 1377 | template <typename T> |
| 1378 | bool ArrayConstructorIsFlat(const ArrayConstructorValues<T> &values) { |
| 1379 | for (const ArrayConstructorValue<T> &x : values) { |
| 1380 | if (!std::holds_alternative<Expr<T>>(x.u)) { |
| 1381 | return false; |
| 1382 | } |
| 1383 | } |
| 1384 | return true; |
| 1385 | } |
| 1386 | |
| 1387 | template <typename T> |
| 1388 | std::optional<Expr<T>> AsFlatArrayConstructor(const Expr<T> &expr) { |
| 1389 | if (const auto *c{UnwrapConstantValue<T>(expr)}) { |
| 1390 | ArrayConstructor<T> result{expr}; |
| 1391 | if (!c->empty()) { |
| 1392 | ConstantSubscripts at{c->lbounds()}; |
| 1393 | do { |
| 1394 | result.Push(Expr<T>{Constant<T>{c->At(at)}}); |
| 1395 | } while (c->IncrementSubscripts(at)); |
| 1396 | } |
| 1397 | return std::make_optional<Expr<T>>(std::move(result)); |
| 1398 | } else if (const auto *a{UnwrapExpr<ArrayConstructor<T>>(expr)}) { |
| 1399 | if (ArrayConstructorIsFlat(*a)) { |
| 1400 | return std::make_optional<Expr<T>>(expr); |
| 1401 | } |
| 1402 | } else if (const auto *p{UnwrapExpr<Parentheses<T>>(expr)}) { |
| 1403 | return AsFlatArrayConstructor(Expr<T>{p->left()}); |
| 1404 | } |
| 1405 | return std::nullopt; |
| 1406 | } |
| 1407 | |
| 1408 | template <TypeCategory CAT> |
| 1409 | std::enable_if_t<CAT != TypeCategory::Derived, |
| 1410 | std::optional<Expr<SomeKind<CAT>>>> |
| 1411 | AsFlatArrayConstructor(const Expr<SomeKind<CAT>> &expr) { |
| 1412 | return common::visit( |
| 1413 | [&](const auto &kindExpr) -> std::optional<Expr<SomeKind<CAT>>> { |
| 1414 | if (auto flattened{AsFlatArrayConstructor(kindExpr)}) { |
| 1415 | return Expr<SomeKind<CAT>>{std::move(*flattened)}; |
| 1416 | } else { |
| 1417 | return std::nullopt; |
| 1418 | } |
| 1419 | }, |
| 1420 | expr.u); |
| 1421 | } |
| 1422 | |
| 1423 | // FromArrayConstructor is a subroutine for MapOperation() below. |
| 1424 | // Given a flat ArrayConstructor<T> and a shape, it wraps the array |
| 1425 | // into an Expr<T>, folds it, and returns the resulting wrapped |
| 1426 | // array constructor or constant array value. |
| 1427 | template <typename T> |
| 1428 | std::optional<Expr<T>> FromArrayConstructor( |
| 1429 | FoldingContext &context, ArrayConstructor<T> &&values, const Shape &shape) { |
| 1430 | if (auto constShape{AsConstantExtents(context, shape)}; |
| 1431 | constShape && !HasNegativeExtent(*constShape)) { |
| 1432 | Expr<T> result{Fold(context, Expr<T>{std::move(values)})}; |
| 1433 | if (auto *constant{UnwrapConstantValue<T>(result)}) { |
| 1434 | // Elements and shape are both constant. |
| 1435 | return Expr<T>{constant->Reshape(std::move(*constShape))}; |
| 1436 | } |
| 1437 | if (constShape->size() == 1) { |
| 1438 | if (auto elements{GetShape(context, result)}) { |
| 1439 | if (auto constElements{AsConstantExtents(context, *elements)}) { |
| 1440 | if (constElements->size() == 1 && |
| 1441 | constElements->at(0) == constShape->at(0)) { |
| 1442 | // Elements are not constant, but array constructor has |
| 1443 | // the right known shape and can be simply returned as is. |
| 1444 | return std::move(result); |
| 1445 | } |
| 1446 | } |
| 1447 | } |
| 1448 | } |
| 1449 | } |
| 1450 | return std::nullopt; |
| 1451 | } |
| 1452 | |
| 1453 | // MapOperation is a utility for various specializations of ApplyElementwise() |
| 1454 | // that follow. Given one or two flat ArrayConstructor<OPERAND> (wrapped in an |
| 1455 | // Expr<OPERAND>) for some specific operand type(s), apply a given function f |
| 1456 | // to each of their corresponding elements to produce a flat |
| 1457 | // ArrayConstructor<RESULT> (wrapped in an Expr<RESULT>). |
| 1458 | // Preserves shape. |
| 1459 | |
| 1460 | // Unary case |
| 1461 | template <typename RESULT, typename OPERAND> |
| 1462 | std::optional<Expr<RESULT>> MapOperation(FoldingContext &context, |
| 1463 | std::function<Expr<RESULT>(Expr<OPERAND> &&)> &&f, const Shape &shape, |
| 1464 | [[maybe_unused]] std::optional<Expr<SubscriptInteger>> &&length, |
| 1465 | Expr<OPERAND> &&values) { |
| 1466 | ArrayConstructor<RESULT> result{values}; |
| 1467 | if constexpr (common::HasMember<OPERAND, AllIntrinsicCategoryTypes>) { |
| 1468 | common::visit( |
| 1469 | [&](auto &&kindExpr) { |
| 1470 | using kindType = ResultType<decltype(kindExpr)>; |
| 1471 | auto &aConst{std::get<ArrayConstructor<kindType>>(kindExpr.u)}; |
| 1472 | for (auto &acValue : aConst) { |
| 1473 | auto &scalar{std::get<Expr<kindType>>(acValue.u)}; |
| 1474 | result.Push(Fold(context, f(Expr<OPERAND>{std::move(scalar)}))); |
| 1475 | } |
| 1476 | }, |
| 1477 | std::move(values.u)); |
| 1478 | } else { |
| 1479 | auto &aConst{std::get<ArrayConstructor<OPERAND>>(values.u)}; |
| 1480 | for (auto &acValue : aConst) { |
| 1481 | auto &scalar{std::get<Expr<OPERAND>>(acValue.u)}; |
| 1482 | result.Push(Fold(context, f(std::move(scalar)))); |
| 1483 | } |
| 1484 | } |
| 1485 | if constexpr (RESULT::category == TypeCategory::Character) { |
| 1486 | if (length) { |
| 1487 | result.set_LEN(std::move(*length)); |
| 1488 | } |
| 1489 | } |
| 1490 | return FromArrayConstructor(context, std::move(result), shape); |
| 1491 | } |
| 1492 | |
| 1493 | template <typename RESULT, typename A> |
| 1494 | ArrayConstructor<RESULT> ArrayConstructorFromMold( |
| 1495 | const A &prototype, std::optional<Expr<SubscriptInteger>> &&length) { |
| 1496 | ArrayConstructor<RESULT> result{prototype}; |
| 1497 | if constexpr (RESULT::category == TypeCategory::Character) { |
| 1498 | if (length) { |
| 1499 | result.set_LEN(std::move(*length)); |
| 1500 | } |
| 1501 | } |
| 1502 | return result; |
| 1503 | } |
| 1504 | |
| 1505 | template <typename LEFT, typename RIGHT> |
| 1506 | bool ShapesMatch(FoldingContext &context, |
| 1507 | const ArrayConstructor<LEFT> &leftArrConst, |
| 1508 | const ArrayConstructor<RIGHT> &rightArrConst) { |
| 1509 | auto rightIter{rightArrConst.begin()}; |
| 1510 | for (auto &leftValue : leftArrConst) { |
| 1511 | CHECK(rightIter != rightArrConst.end()); |
| 1512 | auto &leftExpr{std::get<Expr<LEFT>>(leftValue.u)}; |
| 1513 | auto &rightExpr{std::get<Expr<RIGHT>>(rightIter->u)}; |
| 1514 | if (leftExpr.Rank() != rightExpr.Rank()) { |
| 1515 | return false; |
| 1516 | } |
| 1517 | std::optional<Shape> leftShape{GetShape(context, leftExpr)}; |
| 1518 | std::optional<Shape> rightShape{GetShape(context, rightExpr)}; |
| 1519 | if (!leftShape || !rightShape || *leftShape != *rightShape) { |
| 1520 | return false; |
| 1521 | } |
| 1522 | ++rightIter; |
| 1523 | } |
| 1524 | return true; |
| 1525 | } |
| 1526 | |
| 1527 | // array * array case |
| 1528 | template <typename RESULT, typename LEFT, typename RIGHT> |
| 1529 | auto MapOperation(FoldingContext &context, |
| 1530 | std::function<Expr<RESULT>(Expr<LEFT> &&, Expr<RIGHT> &&)> &&f, |
| 1531 | const Shape &shape, std::optional<Expr<SubscriptInteger>> &&length, |
| 1532 | Expr<LEFT> &&leftValues, Expr<RIGHT> &&rightValues) |
| 1533 | -> std::optional<Expr<RESULT>> { |
| 1534 | auto result{ArrayConstructorFromMold<RESULT>(leftValues, std::move(length))}; |
| 1535 | auto &leftArrConst{std::get<ArrayConstructor<LEFT>>(leftValues.u)}; |
| 1536 | if constexpr (common::HasMember<RIGHT, AllIntrinsicCategoryTypes>) { |
| 1537 | bool mapped{common::visit( |
| 1538 | [&](auto &&kindExpr) -> bool { |
| 1539 | using kindType = ResultType<decltype(kindExpr)>; |
| 1540 | |
| 1541 | auto &rightArrConst{std::get<ArrayConstructor<kindType>>(kindExpr.u)}; |
| 1542 | if (!ShapesMatch(context, leftArrConst, rightArrConst)) { |
| 1543 | return false; |
| 1544 | } |
| 1545 | auto rightIter{rightArrConst.begin()}; |
| 1546 | for (auto &leftValue : leftArrConst) { |
| 1547 | CHECK(rightIter != rightArrConst.end()); |
| 1548 | auto &leftScalar{std::get<Expr<LEFT>>(leftValue.u)}; |
| 1549 | auto &rightScalar{std::get<Expr<kindType>>(rightIter->u)}; |
| 1550 | result.Push(Fold(context, |
| 1551 | f(std::move(leftScalar), Expr<RIGHT>{std::move(rightScalar)}))); |
| 1552 | ++rightIter; |
| 1553 | } |
| 1554 | return true; |
| 1555 | }, |
| 1556 | std::move(rightValues.u))}; |
| 1557 | if (!mapped) { |
| 1558 | return std::nullopt; |
| 1559 | } |
| 1560 | } else { |
| 1561 | auto &rightArrConst{std::get<ArrayConstructor<RIGHT>>(rightValues.u)}; |
| 1562 | if (!ShapesMatch(context, leftArrConst, rightArrConst)) { |
| 1563 | return std::nullopt; |
| 1564 | } |
| 1565 | auto rightIter{rightArrConst.begin()}; |
| 1566 | for (auto &leftValue : leftArrConst) { |
| 1567 | CHECK(rightIter != rightArrConst.end()); |
| 1568 | auto &leftScalar{std::get<Expr<LEFT>>(leftValue.u)}; |
| 1569 | auto &rightScalar{std::get<Expr<RIGHT>>(rightIter->u)}; |
| 1570 | result.Push( |
| 1571 | Fold(context, f(std::move(leftScalar), std::move(rightScalar)))); |
| 1572 | ++rightIter; |
| 1573 | } |
| 1574 | } |
| 1575 | return FromArrayConstructor(context, std::move(result), shape); |
| 1576 | } |
| 1577 | |
| 1578 | // array * scalar case |
| 1579 | template <typename RESULT, typename LEFT, typename RIGHT> |
| 1580 | auto MapOperation(FoldingContext &context, |
| 1581 | std::function<Expr<RESULT>(Expr<LEFT> &&, Expr<RIGHT> &&)> &&f, |
| 1582 | const Shape &shape, std::optional<Expr<SubscriptInteger>> &&length, |
| 1583 | Expr<LEFT> &&leftValues, const Expr<RIGHT> &rightScalar) |
| 1584 | -> std::optional<Expr<RESULT>> { |
| 1585 | auto result{ArrayConstructorFromMold<RESULT>(leftValues, std::move(length))}; |
| 1586 | auto &leftArrConst{std::get<ArrayConstructor<LEFT>>(leftValues.u)}; |
| 1587 | for (auto &leftValue : leftArrConst) { |
| 1588 | auto &leftScalar{std::get<Expr<LEFT>>(leftValue.u)}; |
| 1589 | result.Push( |
| 1590 | Fold(context, f(std::move(leftScalar), Expr<RIGHT>{rightScalar}))); |
| 1591 | } |
| 1592 | return FromArrayConstructor(context, std::move(result), shape); |
| 1593 | } |
| 1594 | |
| 1595 | // scalar * array case |
| 1596 | template <typename RESULT, typename LEFT, typename RIGHT> |
| 1597 | auto MapOperation(FoldingContext &context, |
| 1598 | std::function<Expr<RESULT>(Expr<LEFT> &&, Expr<RIGHT> &&)> &&f, |
| 1599 | const Shape &shape, std::optional<Expr<SubscriptInteger>> &&length, |
| 1600 | const Expr<LEFT> &leftScalar, Expr<RIGHT> &&rightValues) |
| 1601 | -> std::optional<Expr<RESULT>> { |
| 1602 | auto result{ArrayConstructorFromMold<RESULT>(leftScalar, std::move(length))}; |
| 1603 | if constexpr (common::HasMember<RIGHT, AllIntrinsicCategoryTypes>) { |
| 1604 | common::visit( |
| 1605 | [&](auto &&kindExpr) { |
| 1606 | using kindType = ResultType<decltype(kindExpr)>; |
| 1607 | auto &rightArrConst{std::get<ArrayConstructor<kindType>>(kindExpr.u)}; |
| 1608 | for (auto &rightValue : rightArrConst) { |
| 1609 | auto &rightScalar{std::get<Expr<kindType>>(rightValue.u)}; |
| 1610 | result.Push(Fold(context, |
| 1611 | f(Expr<LEFT>{leftScalar}, |
| 1612 | Expr<RIGHT>{std::move(rightScalar)}))); |
| 1613 | } |
| 1614 | }, |
| 1615 | std::move(rightValues.u)); |
| 1616 | } else { |
| 1617 | auto &rightArrConst{std::get<ArrayConstructor<RIGHT>>(rightValues.u)}; |
| 1618 | for (auto &rightValue : rightArrConst) { |
| 1619 | auto &rightScalar{std::get<Expr<RIGHT>>(rightValue.u)}; |
| 1620 | result.Push( |
| 1621 | Fold(context, f(Expr<LEFT>{leftScalar}, std::move(rightScalar)))); |
| 1622 | } |
| 1623 | } |
| 1624 | return FromArrayConstructor(context, std::move(result), shape); |
| 1625 | } |
| 1626 | |
| 1627 | template <typename DERIVED, typename RESULT, typename... OPD> |
| 1628 | std::optional<Expr<SubscriptInteger>> ComputeResultLength( |
| 1629 | Operation<DERIVED, RESULT, OPD...> &operation) { |
| 1630 | if constexpr (RESULT::category == TypeCategory::Character) { |
| 1631 | return Expr<RESULT>{operation.derived()}.LEN(); |
| 1632 | } |
| 1633 | return std::nullopt; |
| 1634 | } |
| 1635 | |
| 1636 | // ApplyElementwise() recursively folds the operand expression(s) of an |
| 1637 | // operation, then attempts to apply the operation to the (corresponding) |
| 1638 | // scalar element(s) of those operands. Returns std::nullopt for scalars |
| 1639 | // or unlinearizable operands. |
| 1640 | template <typename DERIVED, typename RESULT, typename OPERAND> |
| 1641 | auto ApplyElementwise(FoldingContext &context, |
| 1642 | Operation<DERIVED, RESULT, OPERAND> &operation, |
| 1643 | std::function<Expr<RESULT>(Expr<OPERAND> &&)> &&f) |
| 1644 | -> std::optional<Expr<RESULT>> { |
| 1645 | auto &expr{operation.left()}; |
| 1646 | expr = Fold(context, std::move(expr)); |
| 1647 | if (expr.Rank() > 0) { |
| 1648 | if (std::optional<Shape> shape{GetShape(context, expr)}) { |
| 1649 | if (auto values{AsFlatArrayConstructor(expr)}) { |
| 1650 | return MapOperation(context, std::move(f), *shape, |
| 1651 | ComputeResultLength(operation), std::move(*values)); |
| 1652 | } |
| 1653 | } |
| 1654 | } |
| 1655 | return std::nullopt; |
| 1656 | } |
| 1657 | |
| 1658 | template <typename DERIVED, typename RESULT, typename OPERAND> |
| 1659 | auto ApplyElementwise( |
| 1660 | FoldingContext &context, Operation<DERIVED, RESULT, OPERAND> &operation) |
| 1661 | -> std::optional<Expr<RESULT>> { |
| 1662 | return ApplyElementwise(context, operation, |
| 1663 | std::function<Expr<RESULT>(Expr<OPERAND> &&)>{ |
| 1664 | [](Expr<OPERAND> &&operand) { |
| 1665 | return Expr<RESULT>{DERIVED{std::move(operand)}}; |
| 1666 | }}); |
| 1667 | } |
| 1668 | |
| 1669 | template <typename DERIVED, typename RESULT, typename LEFT, typename RIGHT> |
| 1670 | auto ApplyElementwise(FoldingContext &context, |
| 1671 | Operation<DERIVED, RESULT, LEFT, RIGHT> &operation, |
| 1672 | std::function<Expr<RESULT>(Expr<LEFT> &&, Expr<RIGHT> &&)> &&f) |
| 1673 | -> std::optional<Expr<RESULT>> { |
| 1674 | auto resultLength{ComputeResultLength(operation)}; |
| 1675 | auto &leftExpr{operation.left()}; |
| 1676 | auto &rightExpr{operation.right()}; |
| 1677 | if (leftExpr.Rank() != rightExpr.Rank() && leftExpr.Rank() != 0 && |
| 1678 | rightExpr.Rank() != 0) { |
| 1679 | return std::nullopt; // error recovery |
| 1680 | } |
| 1681 | leftExpr = Fold(context, std::move(leftExpr)); |
| 1682 | rightExpr = Fold(context, std::move(rightExpr)); |
| 1683 | if (leftExpr.Rank() > 0) { |
| 1684 | if (std::optional<Shape> leftShape{GetShape(context, leftExpr)}) { |
| 1685 | if (auto left{AsFlatArrayConstructor(leftExpr)}) { |
| 1686 | if (rightExpr.Rank() > 0) { |
| 1687 | if (std::optional<Shape> rightShape{GetShape(context, rightExpr)}) { |
| 1688 | if (auto right{AsFlatArrayConstructor(rightExpr)}) { |
| 1689 | if (CheckConformance(context.messages(), *leftShape, *rightShape, |
| 1690 | CheckConformanceFlags::EitherScalarExpandable) |
| 1691 | .value_or(false /*fail if not known now to conform*/)) { |
| 1692 | return MapOperation(context, std::move(f), *leftShape, |
| 1693 | std::move(resultLength), std::move(*left), |
| 1694 | std::move(*right)); |
| 1695 | } else { |
| 1696 | return std::nullopt; |
| 1697 | } |
| 1698 | return MapOperation(context, std::move(f), *leftShape, |
| 1699 | std::move(resultLength), std::move(*left), std::move(*right)); |
| 1700 | } |
| 1701 | } |
| 1702 | } else if (IsExpandableScalar(rightExpr, context, *leftShape)) { |
| 1703 | return MapOperation(context, std::move(f), *leftShape, |
| 1704 | std::move(resultLength), std::move(*left), rightExpr); |
| 1705 | } |
| 1706 | } |
| 1707 | } |
| 1708 | } else if (rightExpr.Rank() > 0) { |
| 1709 | if (std::optional<Shape> rightShape{GetShape(context, rightExpr)}) { |
| 1710 | if (IsExpandableScalar(leftExpr, context, *rightShape)) { |
| 1711 | if (auto right{AsFlatArrayConstructor(rightExpr)}) { |
| 1712 | return MapOperation(context, std::move(f), *rightShape, |
| 1713 | std::move(resultLength), leftExpr, std::move(*right)); |
| 1714 | } |
| 1715 | } |
| 1716 | } |
| 1717 | } |
| 1718 | return std::nullopt; |
| 1719 | } |
| 1720 | |
| 1721 | template <typename DERIVED, typename RESULT, typename LEFT, typename RIGHT> |
| 1722 | auto ApplyElementwise( |
| 1723 | FoldingContext &context, Operation<DERIVED, RESULT, LEFT, RIGHT> &operation) |
| 1724 | -> std::optional<Expr<RESULT>> { |
| 1725 | return ApplyElementwise(context, operation, |
| 1726 | std::function<Expr<RESULT>(Expr<LEFT> &&, Expr<RIGHT> &&)>{ |
| 1727 | [](Expr<LEFT> &&left, Expr<RIGHT> &&right) { |
| 1728 | return Expr<RESULT>{DERIVED{std::move(left), std::move(right)}}; |
| 1729 | }}); |
| 1730 | } |
| 1731 | |
| 1732 | // Unary operations |
| 1733 | |
| 1734 | template <typename TO, typename FROM> |
| 1735 | common::IfNoLvalue<std::optional<TO>, FROM> ConvertString(FROM &&s) { |
| 1736 | if constexpr (std::is_same_v<TO, FROM>) { |
| 1737 | return std::make_optional<TO>(std::move(s)); |
| 1738 | } else { |
| 1739 | // Fortran character conversion is well defined between distinct kinds |
| 1740 | // only when the actual characters are valid 7-bit ASCII. |
| 1741 | TO str; |
| 1742 | for (auto iter{s.cbegin()}; iter != s.cend(); ++iter) { |
| 1743 | if (static_cast<std::uint64_t>(*iter) > 127) { |
| 1744 | return std::nullopt; |
| 1745 | } |
| 1746 | str.push_back(*iter); |
| 1747 | } |
| 1748 | return std::make_optional<TO>(std::move(str)); |
| 1749 | } |
| 1750 | } |
| 1751 | |
| 1752 | template <typename TO, TypeCategory FROMCAT> |
| 1753 | Expr<TO> FoldOperation( |
| 1754 | FoldingContext &context, Convert<TO, FROMCAT> &&convert) { |
| 1755 | if (auto array{ApplyElementwise(context, convert)}) { |
| 1756 | return *array; |
| 1757 | } |
| 1758 | struct { |
| 1759 | FoldingContext &context; |
| 1760 | Convert<TO, FROMCAT> &convert; |
| 1761 | } msvcWorkaround{context, convert}; |
| 1762 | return common::visit( |
| 1763 | [&msvcWorkaround](auto &kindExpr) -> Expr<TO> { |
| 1764 | using Operand = ResultType<decltype(kindExpr)>; |
| 1765 | // This variable is a workaround for msvc which emits an error when |
| 1766 | // using the FROMCAT template parameter below. |
| 1767 | TypeCategory constexpr FromCat{FROMCAT}; |
| 1768 | static_assert(FromCat == Operand::category); |
| 1769 | auto &convert{msvcWorkaround.convert}; |
| 1770 | if (auto value{GetScalarConstantValue<Operand>(kindExpr)}) { |
| 1771 | FoldingContext &ctx{msvcWorkaround.context}; |
| 1772 | if constexpr (TO::category == TypeCategory::Integer) { |
| 1773 | if constexpr (FromCat == TypeCategory::Integer) { |
| 1774 | auto converted{Scalar<TO>::ConvertSigned(*value)}; |
| 1775 | if (converted.overflow && |
| 1776 | msvcWorkaround.context.languageFeatures().ShouldWarn( |
| 1777 | common::UsageWarning::FoldingException)) { |
| 1778 | ctx.messages().Say(common::UsageWarning::FoldingException, |
| 1779 | "conversion of %s_%d to INTEGER(%d) overflowed; result is %s"_warn_en_US , |
| 1780 | value->SignedDecimal(), Operand::kind, TO::kind, |
| 1781 | converted.value.SignedDecimal()); |
| 1782 | } |
| 1783 | return ScalarConstantToExpr(std::move(converted.value)); |
| 1784 | } else if constexpr (FromCat == TypeCategory::Unsigned) { |
| 1785 | auto converted{Scalar<TO>::ConvertUnsigned(*value)}; |
| 1786 | if ((converted.overflow || converted.value.IsNegative()) && |
| 1787 | msvcWorkaround.context.languageFeatures().ShouldWarn( |
| 1788 | common::UsageWarning::FoldingException)) { |
| 1789 | ctx.messages().Say(common::UsageWarning::FoldingException, |
| 1790 | "conversion of %s_U%d to INTEGER(%d) overflowed; result is %s"_warn_en_US , |
| 1791 | value->UnsignedDecimal(), Operand::kind, TO::kind, |
| 1792 | converted.value.SignedDecimal()); |
| 1793 | } |
| 1794 | return ScalarConstantToExpr(std::move(converted.value)); |
| 1795 | } else if constexpr (FromCat == TypeCategory::Real) { |
| 1796 | auto converted{value->template ToInteger<Scalar<TO>>()}; |
| 1797 | if (msvcWorkaround.context.languageFeatures().ShouldWarn( |
| 1798 | common::UsageWarning::FoldingException)) { |
| 1799 | if (converted.flags.test(RealFlag::InvalidArgument)) { |
| 1800 | ctx.messages().Say(common::UsageWarning::FoldingException, |
| 1801 | "REAL(%d) to INTEGER(%d) conversion: invalid argument"_warn_en_US , |
| 1802 | Operand::kind, TO::kind); |
| 1803 | } else if (converted.flags.test(RealFlag::Overflow)) { |
| 1804 | ctx.messages().Say( |
| 1805 | "REAL(%d) to INTEGER(%d) conversion overflowed"_warn_en_US , |
| 1806 | Operand::kind, TO::kind); |
| 1807 | } |
| 1808 | } |
| 1809 | return ScalarConstantToExpr(std::move(converted.value)); |
| 1810 | } |
| 1811 | } else if constexpr (TO::category == TypeCategory::Unsigned) { |
| 1812 | if constexpr (FromCat == TypeCategory::Integer || |
| 1813 | FromCat == TypeCategory::Unsigned) { |
| 1814 | return Expr<TO>{ |
| 1815 | Constant<TO>{Scalar<TO>::ConvertUnsigned(*value).value}}; |
| 1816 | } else if constexpr (FromCat == TypeCategory::Real) { |
| 1817 | return Expr<TO>{ |
| 1818 | Constant<TO>{value->template ToInteger<Scalar<TO>>().value}}; |
| 1819 | } |
| 1820 | } else if constexpr (TO::category == TypeCategory::Real) { |
| 1821 | if constexpr (FromCat == TypeCategory::Integer || |
| 1822 | FromCat == TypeCategory::Unsigned) { |
| 1823 | auto converted{Scalar<TO>::FromInteger( |
| 1824 | *value, FromCat == TypeCategory::Unsigned)}; |
| 1825 | if (!converted.flags.empty()) { |
| 1826 | char buffer[64]; |
| 1827 | std::snprintf(buffer, sizeof buffer, |
| 1828 | "INTEGER(%d) to REAL(%d) conversion" , Operand::kind, |
| 1829 | TO::kind); |
| 1830 | RealFlagWarnings(ctx, converted.flags, buffer); |
| 1831 | } |
| 1832 | return ScalarConstantToExpr(std::move(converted.value)); |
| 1833 | } else if constexpr (FromCat == TypeCategory::Real) { |
| 1834 | auto converted{Scalar<TO>::Convert(*value)}; |
| 1835 | char buffer[64]; |
| 1836 | if (!converted.flags.empty()) { |
| 1837 | std::snprintf(buffer, sizeof buffer, |
| 1838 | "REAL(%d) to REAL(%d) conversion" , Operand::kind, TO::kind); |
| 1839 | RealFlagWarnings(ctx, converted.flags, buffer); |
| 1840 | } |
| 1841 | if (ctx.targetCharacteristics().areSubnormalsFlushedToZero()) { |
| 1842 | converted.value = converted.value.FlushSubnormalToZero(); |
| 1843 | } |
| 1844 | return ScalarConstantToExpr(std::move(converted.value)); |
| 1845 | } |
| 1846 | } else if constexpr (TO::category == TypeCategory::Complex) { |
| 1847 | if constexpr (FromCat == TypeCategory::Complex) { |
| 1848 | return FoldOperation(ctx, |
| 1849 | ComplexConstructor<TO::kind>{ |
| 1850 | AsExpr(Convert<typename TO::Part>{AsCategoryExpr( |
| 1851 | Constant<typename Operand::Part>{value->REAL()})}), |
| 1852 | AsExpr(Convert<typename TO::Part>{AsCategoryExpr( |
| 1853 | Constant<typename Operand::Part>{value->AIMAG()})})}); |
| 1854 | } |
| 1855 | } else if constexpr (TO::category == TypeCategory::Character && |
| 1856 | FromCat == TypeCategory::Character) { |
| 1857 | if (auto converted{ConvertString<Scalar<TO>>(std::move(*value))}) { |
| 1858 | return ScalarConstantToExpr(std::move(*converted)); |
| 1859 | } |
| 1860 | } else if constexpr (TO::category == TypeCategory::Logical && |
| 1861 | FromCat == TypeCategory::Logical) { |
| 1862 | return Expr<TO>{value->IsTrue()}; |
| 1863 | } |
| 1864 | } else if constexpr (TO::category == FromCat && |
| 1865 | FromCat != TypeCategory::Character) { |
| 1866 | // Conversion of non-constant in same type category |
| 1867 | if constexpr (std::is_same_v<Operand, TO>) { |
| 1868 | return std::move(kindExpr); // remove needless conversion |
| 1869 | } else if constexpr (TO::category == TypeCategory::Logical || |
| 1870 | TO::category == TypeCategory::Integer) { |
| 1871 | if (auto *innerConv{ |
| 1872 | std::get_if<Convert<Operand, TO::category>>(&kindExpr.u)}) { |
| 1873 | // Conversion of conversion of same category & kind |
| 1874 | if (auto *x{std::get_if<Expr<TO>>(&innerConv->left().u)}) { |
| 1875 | if constexpr (TO::category == TypeCategory::Logical || |
| 1876 | TO::kind <= Operand::kind) { |
| 1877 | return std::move(*x); // no-op Logical or Integer |
| 1878 | // widening/narrowing conversion pair |
| 1879 | } else if constexpr (std::is_same_v<TO, |
| 1880 | DescriptorInquiry::Result>) { |
| 1881 | if (std::holds_alternative<DescriptorInquiry>(x->u) || |
| 1882 | std::holds_alternative<TypeParamInquiry>(x->u)) { |
| 1883 | // int(int(size(...),kind=k),kind=8) -> size(...) |
| 1884 | return std::move(*x); |
| 1885 | } |
| 1886 | } |
| 1887 | } |
| 1888 | } |
| 1889 | } |
| 1890 | } |
| 1891 | return Expr<TO>{std::move(convert)}; |
| 1892 | }, |
| 1893 | convert.left().u); |
| 1894 | } |
| 1895 | |
| 1896 | template <typename T> |
| 1897 | Expr<T> FoldOperation(FoldingContext &context, Parentheses<T> &&x) { |
| 1898 | auto &operand{x.left()}; |
| 1899 | operand = Fold(context, std::move(operand)); |
| 1900 | if (auto value{GetScalarConstantValue<T>(operand)}) { |
| 1901 | // Preserve parentheses, even around constants. |
| 1902 | return Expr<T>{Parentheses<T>{Expr<T>{Constant<T>{*value}}}}; |
| 1903 | } else if (std::holds_alternative<Parentheses<T>>(operand.u)) { |
| 1904 | // ((x)) -> (x) |
| 1905 | return std::move(operand); |
| 1906 | } else { |
| 1907 | return Expr<T>{Parentheses<T>{std::move(operand)}}; |
| 1908 | } |
| 1909 | } |
| 1910 | |
| 1911 | template <typename T> |
| 1912 | Expr<T> FoldOperation(FoldingContext &context, Negate<T> &&x) { |
| 1913 | if (auto array{ApplyElementwise(context, x)}) { |
| 1914 | return *array; |
| 1915 | } |
| 1916 | auto &operand{x.left()}; |
| 1917 | if (auto *nn{std::get_if<Negate<T>>(&x.left().u)}) { |
| 1918 | // -(-x) -> (x) |
| 1919 | if (IsVariable(nn->left())) { |
| 1920 | return FoldOperation(context, Parentheses<T>{std::move(nn->left())}); |
| 1921 | } else { |
| 1922 | return std::move(nn->left()); |
| 1923 | } |
| 1924 | } else if (auto value{GetScalarConstantValue<T>(operand)}) { |
| 1925 | if constexpr (T::category == TypeCategory::Integer) { |
| 1926 | auto negated{value->Negate()}; |
| 1927 | if (negated.overflow && |
| 1928 | context.languageFeatures().ShouldWarn( |
| 1929 | common::UsageWarning::FoldingException)) { |
| 1930 | context.messages().Say(common::UsageWarning::FoldingException, |
| 1931 | "INTEGER(%d) negation overflowed"_warn_en_US , T::kind); |
| 1932 | } |
| 1933 | return Expr<T>{Constant<T>{std::move(negated.value)}}; |
| 1934 | } else if constexpr (T::category == TypeCategory::Unsigned) { |
| 1935 | return Expr<T>{Constant<T>{std::move(value->Negate().value)}}; |
| 1936 | } else { |
| 1937 | // REAL & COMPLEX negation: no exceptions possible |
| 1938 | return Expr<T>{Constant<T>{value->Negate()}}; |
| 1939 | } |
| 1940 | } |
| 1941 | return Expr<T>{std::move(x)}; |
| 1942 | } |
| 1943 | |
| 1944 | // Binary (dyadic) operations |
| 1945 | |
| 1946 | template <typename LEFT, typename RIGHT> |
| 1947 | std::optional<std::pair<Scalar<LEFT>, Scalar<RIGHT>>> OperandsAreConstants( |
| 1948 | const Expr<LEFT> &x, const Expr<RIGHT> &y) { |
| 1949 | if (auto xvalue{GetScalarConstantValue<LEFT>(x)}) { |
| 1950 | if (auto yvalue{GetScalarConstantValue<RIGHT>(y)}) { |
| 1951 | return {std::make_pair(*xvalue, *yvalue)}; |
| 1952 | } |
| 1953 | } |
| 1954 | return std::nullopt; |
| 1955 | } |
| 1956 | |
| 1957 | template <typename DERIVED, typename RESULT, typename LEFT, typename RIGHT> |
| 1958 | std::optional<std::pair<Scalar<LEFT>, Scalar<RIGHT>>> OperandsAreConstants( |
| 1959 | const Operation<DERIVED, RESULT, LEFT, RIGHT> &operation) { |
| 1960 | return OperandsAreConstants(operation.left(), operation.right()); |
| 1961 | } |
| 1962 | |
| 1963 | template <typename T> |
| 1964 | Expr<T> FoldOperation(FoldingContext &context, Add<T> &&x) { |
| 1965 | if (auto array{ApplyElementwise(context, x)}) { |
| 1966 | return *array; |
| 1967 | } |
| 1968 | if (auto folded{OperandsAreConstants(x)}) { |
| 1969 | if constexpr (T::category == TypeCategory::Integer) { |
| 1970 | auto sum{folded->first.AddSigned(folded->second)}; |
| 1971 | if (sum.overflow && |
| 1972 | context.languageFeatures().ShouldWarn( |
| 1973 | common::UsageWarning::FoldingException)) { |
| 1974 | context.messages().Say(common::UsageWarning::FoldingException, |
| 1975 | "INTEGER(%d) addition overflowed"_warn_en_US , T::kind); |
| 1976 | } |
| 1977 | return Expr<T>{Constant<T>{sum.value}}; |
| 1978 | } else if constexpr (T::category == TypeCategory::Unsigned) { |
| 1979 | return Expr<T>{ |
| 1980 | Constant<T>{folded->first.AddUnsigned(folded->second).value}}; |
| 1981 | } else { |
| 1982 | auto sum{folded->first.Add( |
| 1983 | folded->second, context.targetCharacteristics().roundingMode())}; |
| 1984 | RealFlagWarnings(context, sum.flags, "addition" ); |
| 1985 | if (context.targetCharacteristics().areSubnormalsFlushedToZero()) { |
| 1986 | sum.value = sum.value.FlushSubnormalToZero(); |
| 1987 | } |
| 1988 | return Expr<T>{Constant<T>{sum.value}}; |
| 1989 | } |
| 1990 | } |
| 1991 | return Expr<T>{std::move(x)}; |
| 1992 | } |
| 1993 | |
| 1994 | template <typename T> |
| 1995 | Expr<T> FoldOperation(FoldingContext &context, Subtract<T> &&x) { |
| 1996 | if (auto array{ApplyElementwise(context, x)}) { |
| 1997 | return *array; |
| 1998 | } |
| 1999 | if (auto folded{OperandsAreConstants(x)}) { |
| 2000 | if constexpr (T::category == TypeCategory::Integer) { |
| 2001 | auto difference{folded->first.SubtractSigned(folded->second)}; |
| 2002 | if (difference.overflow && |
| 2003 | context.languageFeatures().ShouldWarn( |
| 2004 | common::UsageWarning::FoldingException)) { |
| 2005 | context.messages().Say(common::UsageWarning::FoldingException, |
| 2006 | "INTEGER(%d) subtraction overflowed"_warn_en_US , T::kind); |
| 2007 | } |
| 2008 | return Expr<T>{Constant<T>{difference.value}}; |
| 2009 | } else if constexpr (T::category == TypeCategory::Unsigned) { |
| 2010 | return Expr<T>{ |
| 2011 | Constant<T>{folded->first.SubtractSigned(folded->second).value}}; |
| 2012 | } else { |
| 2013 | auto difference{folded->first.Subtract( |
| 2014 | folded->second, context.targetCharacteristics().roundingMode())}; |
| 2015 | RealFlagWarnings(context, difference.flags, "subtraction" ); |
| 2016 | if (context.targetCharacteristics().areSubnormalsFlushedToZero()) { |
| 2017 | difference.value = difference.value.FlushSubnormalToZero(); |
| 2018 | } |
| 2019 | return Expr<T>{Constant<T>{difference.value}}; |
| 2020 | } |
| 2021 | } |
| 2022 | return Expr<T>{std::move(x)}; |
| 2023 | } |
| 2024 | |
| 2025 | template <typename T> |
| 2026 | Expr<T> FoldOperation(FoldingContext &context, Multiply<T> &&x) { |
| 2027 | if (auto array{ApplyElementwise(context, x)}) { |
| 2028 | return *array; |
| 2029 | } |
| 2030 | if (auto folded{OperandsAreConstants(x)}) { |
| 2031 | if constexpr (T::category == TypeCategory::Integer) { |
| 2032 | auto product{folded->first.MultiplySigned(folded->second)}; |
| 2033 | if (product.SignedMultiplicationOverflowed() && |
| 2034 | context.languageFeatures().ShouldWarn( |
| 2035 | common::UsageWarning::FoldingException)) { |
| 2036 | context.messages().Say(common::UsageWarning::FoldingException, |
| 2037 | "INTEGER(%d) multiplication overflowed"_warn_en_US , T::kind); |
| 2038 | } |
| 2039 | return Expr<T>{Constant<T>{product.lower}}; |
| 2040 | } else if constexpr (T::category == TypeCategory::Unsigned) { |
| 2041 | return Expr<T>{ |
| 2042 | Constant<T>{folded->first.MultiplyUnsigned(folded->second).lower}}; |
| 2043 | } else { |
| 2044 | auto product{folded->first.Multiply( |
| 2045 | folded->second, context.targetCharacteristics().roundingMode())}; |
| 2046 | RealFlagWarnings(context, product.flags, "multiplication" ); |
| 2047 | if (context.targetCharacteristics().areSubnormalsFlushedToZero()) { |
| 2048 | product.value = product.value.FlushSubnormalToZero(); |
| 2049 | } |
| 2050 | return Expr<T>{Constant<T>{product.value}}; |
| 2051 | } |
| 2052 | } else if constexpr (T::category == TypeCategory::Integer) { |
| 2053 | if (auto c{GetScalarConstantValue<T>(x.right())}) { |
| 2054 | x.right() = std::move(x.left()); |
| 2055 | x.left() = Expr<T>{std::move(*c)}; |
| 2056 | } |
| 2057 | if (auto c{GetScalarConstantValue<T>(x.left())}) { |
| 2058 | if (c->IsZero() && x.right().Rank() == 0) { |
| 2059 | return std::move(x.left()); |
| 2060 | } else if (c->CompareSigned(Scalar<T>{1}) == Ordering::Equal) { |
| 2061 | if (IsVariable(x.right())) { |
| 2062 | return FoldOperation(context, Parentheses<T>{std::move(x.right())}); |
| 2063 | } else { |
| 2064 | return std::move(x.right()); |
| 2065 | } |
| 2066 | } else if (c->CompareSigned(Scalar<T>{-1}) == Ordering::Equal) { |
| 2067 | return FoldOperation(context, Negate<T>{std::move(x.right())}); |
| 2068 | } |
| 2069 | } |
| 2070 | } |
| 2071 | return Expr<T>{std::move(x)}; |
| 2072 | } |
| 2073 | |
| 2074 | template <typename T> |
| 2075 | Expr<T> FoldOperation(FoldingContext &context, Divide<T> &&x) { |
| 2076 | if (auto array{ApplyElementwise(context, x)}) { |
| 2077 | return *array; |
| 2078 | } |
| 2079 | if (auto folded{OperandsAreConstants(x)}) { |
| 2080 | if constexpr (T::category == TypeCategory::Integer) { |
| 2081 | auto quotAndRem{folded->first.DivideSigned(folded->second)}; |
| 2082 | if (quotAndRem.divisionByZero) { |
| 2083 | if (context.languageFeatures().ShouldWarn( |
| 2084 | common::UsageWarning::FoldingException)) { |
| 2085 | context.messages().Say(common::UsageWarning::FoldingException, |
| 2086 | "INTEGER(%d) division by zero"_warn_en_US , T::kind); |
| 2087 | } |
| 2088 | return Expr<T>{std::move(x)}; |
| 2089 | } |
| 2090 | if (quotAndRem.overflow && |
| 2091 | context.languageFeatures().ShouldWarn( |
| 2092 | common::UsageWarning::FoldingException)) { |
| 2093 | context.messages().Say(common::UsageWarning::FoldingException, |
| 2094 | "INTEGER(%d) division overflowed"_warn_en_US , T::kind); |
| 2095 | } |
| 2096 | return Expr<T>{Constant<T>{quotAndRem.quotient}}; |
| 2097 | } else if constexpr (T::category == TypeCategory::Unsigned) { |
| 2098 | auto quotAndRem{folded->first.DivideUnsigned(folded->second)}; |
| 2099 | if (quotAndRem.divisionByZero) { |
| 2100 | if (context.languageFeatures().ShouldWarn( |
| 2101 | common::UsageWarning::FoldingException)) { |
| 2102 | context.messages().Say(common::UsageWarning::FoldingException, |
| 2103 | "UNSIGNED(%d) division by zero"_warn_en_US , T::kind); |
| 2104 | } |
| 2105 | return Expr<T>{std::move(x)}; |
| 2106 | } |
| 2107 | return Expr<T>{Constant<T>{quotAndRem.quotient}}; |
| 2108 | } else { |
| 2109 | auto quotient{folded->first.Divide( |
| 2110 | folded->second, context.targetCharacteristics().roundingMode())}; |
| 2111 | // Don't warn about -1./0., 0./0., or 1./0. from a module file |
| 2112 | // they are interpreted as canonical Fortran representations of -Inf, |
| 2113 | // NaN, and Inf respectively. |
| 2114 | bool isCanonicalNaNOrInf{false}; |
| 2115 | if constexpr (T::category == TypeCategory::Real) { |
| 2116 | if (folded->second.IsZero() && context.moduleFileName().has_value()) { |
| 2117 | using IntType = typename T::Scalar::Word; |
| 2118 | auto intNumerator{folded->first.template ToInteger<IntType>()}; |
| 2119 | isCanonicalNaNOrInf = intNumerator.flags == RealFlags{} && |
| 2120 | intNumerator.value >= IntType{-1} && |
| 2121 | intNumerator.value <= IntType{1}; |
| 2122 | } |
| 2123 | } |
| 2124 | if (!isCanonicalNaNOrInf) { |
| 2125 | RealFlagWarnings(context, quotient.flags, "division" ); |
| 2126 | } |
| 2127 | if (context.targetCharacteristics().areSubnormalsFlushedToZero()) { |
| 2128 | quotient.value = quotient.value.FlushSubnormalToZero(); |
| 2129 | } |
| 2130 | return Expr<T>{Constant<T>{quotient.value}}; |
| 2131 | } |
| 2132 | } |
| 2133 | return Expr<T>{std::move(x)}; |
| 2134 | } |
| 2135 | |
| 2136 | template <typename T> |
| 2137 | Expr<T> FoldOperation(FoldingContext &context, Power<T> &&x) { |
| 2138 | if (auto array{ApplyElementwise(context, x)}) { |
| 2139 | return *array; |
| 2140 | } |
| 2141 | if (auto folded{OperandsAreConstants(x)}) { |
| 2142 | if constexpr (T::category == TypeCategory::Integer) { |
| 2143 | auto power{folded->first.Power(folded->second)}; |
| 2144 | if (context.languageFeatures().ShouldWarn( |
| 2145 | common::UsageWarning::FoldingException)) { |
| 2146 | if (power.divisionByZero) { |
| 2147 | context.messages().Say(common::UsageWarning::FoldingException, |
| 2148 | "INTEGER(%d) zero to negative power"_warn_en_US , T::kind); |
| 2149 | } else if (power.overflow) { |
| 2150 | context.messages().Say(common::UsageWarning::FoldingException, |
| 2151 | "INTEGER(%d) power overflowed"_warn_en_US , T::kind); |
| 2152 | } else if (power.zeroToZero) { |
| 2153 | context.messages().Say(common::UsageWarning::FoldingException, |
| 2154 | "INTEGER(%d) 0**0 is not defined"_warn_en_US , T::kind); |
| 2155 | } |
| 2156 | } |
| 2157 | return Expr<T>{Constant<T>{power.power}}; |
| 2158 | } else { |
| 2159 | if (auto callable{GetHostRuntimeWrapper<T, T, T>("pow" )}) { |
| 2160 | return Expr<T>{ |
| 2161 | Constant<T>{(*callable)(context, folded->first, folded->second)}}; |
| 2162 | } else if (context.languageFeatures().ShouldWarn( |
| 2163 | common::UsageWarning::FoldingFailure)) { |
| 2164 | context.messages().Say(common::UsageWarning::FoldingFailure, |
| 2165 | "Power for %s cannot be folded on host"_warn_en_US , |
| 2166 | T{}.AsFortran()); |
| 2167 | } |
| 2168 | } |
| 2169 | } |
| 2170 | return Expr<T>{std::move(x)}; |
| 2171 | } |
| 2172 | |
| 2173 | template <typename T> |
| 2174 | Expr<T> FoldOperation(FoldingContext &context, RealToIntPower<T> &&x) { |
| 2175 | if (auto array{ApplyElementwise(context, x)}) { |
| 2176 | return *array; |
| 2177 | } |
| 2178 | return common::visit( |
| 2179 | [&](auto &y) -> Expr<T> { |
| 2180 | if (auto folded{OperandsAreConstants(x.left(), y)}) { |
| 2181 | auto power{evaluate::IntPower(folded->first, folded->second)}; |
| 2182 | RealFlagWarnings(context, power.flags, "power with INTEGER exponent" ); |
| 2183 | if (context.targetCharacteristics().areSubnormalsFlushedToZero()) { |
| 2184 | power.value = power.value.FlushSubnormalToZero(); |
| 2185 | } |
| 2186 | return Expr<T>{Constant<T>{power.value}}; |
| 2187 | } else { |
| 2188 | return Expr<T>{std::move(x)}; |
| 2189 | } |
| 2190 | }, |
| 2191 | x.right().u); |
| 2192 | } |
| 2193 | |
| 2194 | template <typename T> |
| 2195 | Expr<T> FoldOperation(FoldingContext &context, Extremum<T> &&x) { |
| 2196 | if (auto array{ApplyElementwise(context, x, |
| 2197 | std::function<Expr<T>(Expr<T> &&, Expr<T> &&)>{[=](Expr<T> &&l, |
| 2198 | Expr<T> &&r) { |
| 2199 | return Expr<T>{Extremum<T>{x.ordering, std::move(l), std::move(r)}}; |
| 2200 | }})}) { |
| 2201 | return *array; |
| 2202 | } |
| 2203 | if (auto folded{OperandsAreConstants(x)}) { |
| 2204 | if constexpr (T::category == TypeCategory::Integer) { |
| 2205 | if (folded->first.CompareSigned(folded->second) == x.ordering) { |
| 2206 | return Expr<T>{Constant<T>{folded->first}}; |
| 2207 | } |
| 2208 | } else if constexpr (T::category == TypeCategory::Unsigned) { |
| 2209 | if (folded->first.CompareUnsigned(folded->second) == x.ordering) { |
| 2210 | return Expr<T>{Constant<T>{folded->first}}; |
| 2211 | } |
| 2212 | } else if constexpr (T::category == TypeCategory::Real) { |
| 2213 | if (folded->first.IsNotANumber() || |
| 2214 | (folded->first.Compare(folded->second) == Relation::Less) == |
| 2215 | (x.ordering == Ordering::Less)) { |
| 2216 | return Expr<T>{Constant<T>{folded->first}}; |
| 2217 | } |
| 2218 | } else { |
| 2219 | static_assert(T::category == TypeCategory::Character); |
| 2220 | // Result of MIN and MAX on character has the length of |
| 2221 | // the longest argument. |
| 2222 | auto maxLen{std::max(folded->first.length(), folded->second.length())}; |
| 2223 | bool isFirst{x.ordering == Compare(folded->first, folded->second)}; |
| 2224 | auto res{isFirst ? std::move(folded->first) : std::move(folded->second)}; |
| 2225 | res = res.length() == maxLen |
| 2226 | ? std::move(res) |
| 2227 | : CharacterUtils<T::kind>::Resize(res, maxLen); |
| 2228 | return Expr<T>{Constant<T>{std::move(res)}}; |
| 2229 | } |
| 2230 | return Expr<T>{Constant<T>{folded->second}}; |
| 2231 | } |
| 2232 | return Expr<T>{std::move(x)}; |
| 2233 | } |
| 2234 | |
| 2235 | template <int KIND> |
| 2236 | Expr<Type<TypeCategory::Real, KIND>> ToReal( |
| 2237 | FoldingContext &context, Expr<SomeType> &&expr) { |
| 2238 | using Result = Type<TypeCategory::Real, KIND>; |
| 2239 | std::optional<Expr<Result>> result; |
| 2240 | common::visit( |
| 2241 | [&](auto &&x) { |
| 2242 | using From = std::decay_t<decltype(x)>; |
| 2243 | if constexpr (std::is_same_v<From, BOZLiteralConstant>) { |
| 2244 | // Move the bits without any integer->real conversion |
| 2245 | From original{x}; |
| 2246 | result = ConvertToType<Result>(std::move(x)); |
| 2247 | const auto *constant{UnwrapExpr<Constant<Result>>(*result)}; |
| 2248 | CHECK(constant); |
| 2249 | Scalar<Result> real{constant->GetScalarValue().value()}; |
| 2250 | From converted{From::ConvertUnsigned(real.RawBits()).value}; |
| 2251 | if (original != converted && |
| 2252 | context.languageFeatures().ShouldWarn( |
| 2253 | common::UsageWarning::FoldingValueChecks)) { // C1601 |
| 2254 | context.messages().Say(common::UsageWarning::FoldingValueChecks, |
| 2255 | "Nonzero bits truncated from BOZ literal constant in REAL intrinsic"_warn_en_US ); |
| 2256 | } |
| 2257 | } else if constexpr (IsNumericCategoryExpr<From>()) { |
| 2258 | result = Fold(context, ConvertToType<Result>(std::move(x))); |
| 2259 | } else { |
| 2260 | common::die("ToReal: bad argument expression" ); |
| 2261 | } |
| 2262 | }, |
| 2263 | std::move(expr.u)); |
| 2264 | return result.value(); |
| 2265 | } |
| 2266 | |
| 2267 | // REAL(z) and AIMAG(z) |
| 2268 | template <int KIND> |
| 2269 | Expr<Type<TypeCategory::Real, KIND>> FoldOperation( |
| 2270 | FoldingContext &context, ComplexComponent<KIND> &&x) { |
| 2271 | using Operand = Type<TypeCategory::Complex, KIND>; |
| 2272 | using Result = Type<TypeCategory::Real, KIND>; |
| 2273 | if (auto array{ApplyElementwise(context, x, |
| 2274 | std::function<Expr<Result>(Expr<Operand> &&)>{ |
| 2275 | [=](Expr<Operand> &&operand) { |
| 2276 | return Expr<Result>{ComplexComponent<KIND>{ |
| 2277 | x.isImaginaryPart, std::move(operand)}}; |
| 2278 | }})}) { |
| 2279 | return *array; |
| 2280 | } |
| 2281 | auto &operand{x.left()}; |
| 2282 | if (auto value{GetScalarConstantValue<Operand>(operand)}) { |
| 2283 | if (x.isImaginaryPart) { |
| 2284 | return Expr<Result>{Constant<Result>{value->AIMAG()}}; |
| 2285 | } else { |
| 2286 | return Expr<Result>{Constant<Result>{value->REAL()}}; |
| 2287 | } |
| 2288 | } |
| 2289 | return Expr<Result>{std::move(x)}; |
| 2290 | } |
| 2291 | |
| 2292 | template <typename T> |
| 2293 | Expr<T> ExpressionBase<T>::Rewrite(FoldingContext &context, Expr<T> &&expr) { |
| 2294 | return common::visit( |
| 2295 | [&](auto &&x) -> Expr<T> { |
| 2296 | if constexpr (IsSpecificIntrinsicType<T>) { |
| 2297 | return FoldOperation(context, std::move(x)); |
| 2298 | } else if constexpr (std::is_same_v<T, SomeDerived>) { |
| 2299 | return FoldOperation(context, std::move(x)); |
| 2300 | } else if constexpr (common::HasMember<decltype(x), |
| 2301 | TypelessExpression>) { |
| 2302 | return std::move(expr); |
| 2303 | } else { |
| 2304 | return Expr<T>{Fold(context, std::move(x))}; |
| 2305 | } |
| 2306 | }, |
| 2307 | std::move(expr.u)); |
| 2308 | } |
| 2309 | |
| 2310 | FOR_EACH_TYPE_AND_KIND(extern template class ExpressionBase, ) |
| 2311 | } // namespace Fortran::evaluate |
| 2312 | #endif // FORTRAN_EVALUATE_FOLD_IMPLEMENTATION_H_ |
| 2313 | |