1 | //===-- lib/Evaluate/fold-implementation.h --------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #ifndef FORTRAN_EVALUATE_FOLD_IMPLEMENTATION_H_ |
10 | #define FORTRAN_EVALUATE_FOLD_IMPLEMENTATION_H_ |
11 | |
12 | #include "character.h" |
13 | #include "host.h" |
14 | #include "int-power.h" |
15 | #include "flang/Common/indirection.h" |
16 | #include "flang/Common/template.h" |
17 | #include "flang/Common/unwrap.h" |
18 | #include "flang/Evaluate/characteristics.h" |
19 | #include "flang/Evaluate/common.h" |
20 | #include "flang/Evaluate/constant.h" |
21 | #include "flang/Evaluate/expression.h" |
22 | #include "flang/Evaluate/fold.h" |
23 | #include "flang/Evaluate/formatting.h" |
24 | #include "flang/Evaluate/intrinsics-library.h" |
25 | #include "flang/Evaluate/intrinsics.h" |
26 | #include "flang/Evaluate/shape.h" |
27 | #include "flang/Evaluate/tools.h" |
28 | #include "flang/Evaluate/traverse.h" |
29 | #include "flang/Evaluate/type.h" |
30 | #include "flang/Parser/message.h" |
31 | #include "flang/Semantics/scope.h" |
32 | #include "flang/Semantics/symbol.h" |
33 | #include "flang/Semantics/tools.h" |
34 | #include <algorithm> |
35 | #include <cmath> |
36 | #include <complex> |
37 | #include <cstdio> |
38 | #include <optional> |
39 | #include <type_traits> |
40 | #include <variant> |
41 | |
42 | // Some environments, viz. glibc 2.17 and *BSD, allow the macro HUGE |
43 | // to leak out of <math.h>. |
44 | #undef HUGE |
45 | |
46 | namespace Fortran::evaluate { |
47 | |
48 | // Utilities |
49 | template <typename T> class Folder { |
50 | public: |
51 | explicit Folder(FoldingContext &c) : context_{c} {} |
52 | std::optional<Constant<T>> GetNamedConstant(const Symbol &); |
53 | std::optional<Constant<T>> ApplySubscripts(const Constant<T> &array, |
54 | const std::vector<Constant<SubscriptInteger>> &subscripts); |
55 | std::optional<Constant<T>> ApplyComponent(Constant<SomeDerived> &&, |
56 | const Symbol &component, |
57 | const std::vector<Constant<SubscriptInteger>> * = nullptr); |
58 | std::optional<Constant<T>> GetConstantComponent( |
59 | Component &, const std::vector<Constant<SubscriptInteger>> * = nullptr); |
60 | std::optional<Constant<T>> Folding(ArrayRef &); |
61 | std::optional<Constant<T>> Folding(DataRef &); |
62 | Expr<T> Folding(Designator<T> &&); |
63 | Constant<T> *Folding(std::optional<ActualArgument> &); |
64 | |
65 | Expr<T> CSHIFT(FunctionRef<T> &&); |
66 | Expr<T> EOSHIFT(FunctionRef<T> &&); |
67 | Expr<T> MERGE(FunctionRef<T> &&); |
68 | Expr<T> PACK(FunctionRef<T> &&); |
69 | Expr<T> RESHAPE(FunctionRef<T> &&); |
70 | Expr<T> SPREAD(FunctionRef<T> &&); |
71 | Expr<T> TRANSPOSE(FunctionRef<T> &&); |
72 | Expr<T> UNPACK(FunctionRef<T> &&); |
73 | |
74 | Expr<T> TRANSFER(FunctionRef<T> &&); |
75 | |
76 | private: |
77 | FoldingContext &context_; |
78 | }; |
79 | |
80 | std::optional<Constant<SubscriptInteger>> GetConstantSubscript( |
81 | FoldingContext &, Subscript &, const NamedEntity &, int dim); |
82 | |
83 | // Helper to use host runtime on scalars for folding. |
84 | template <typename TR, typename... TA> |
85 | std::optional<std::function<Scalar<TR>(FoldingContext &, Scalar<TA>...)>> |
86 | GetHostRuntimeWrapper(const std::string &name) { |
87 | std::vector<DynamicType> argTypes{TA{}.GetType()...}; |
88 | if (auto hostWrapper{GetHostRuntimeWrapper(name, TR{}.GetType(), argTypes)}) { |
89 | return [hostWrapper]( |
90 | FoldingContext &context, Scalar<TA>... args) -> Scalar<TR> { |
91 | std::vector<Expr<SomeType>> genericArgs{ |
92 | AsGenericExpr(Constant<TA>{args})...}; |
93 | return GetScalarConstantValue<TR>( |
94 | (*hostWrapper)(context, std::move(genericArgs))) |
95 | .value(); |
96 | }; |
97 | } |
98 | return std::nullopt; |
99 | } |
100 | |
101 | // FoldOperation() rewrites expression tree nodes. |
102 | // If there is any possibility that the rewritten node will |
103 | // not have the same representation type, the result of |
104 | // FoldOperation() will be packaged in an Expr<> of the same |
105 | // specific type. |
106 | |
107 | // no-op base case |
108 | template <typename A> |
109 | common::IfNoLvalue<Expr<ResultType<A>>, A> FoldOperation( |
110 | FoldingContext &, A &&x) { |
111 | static_assert(!std::is_same_v<A, Expr<ResultType<A>>>, |
112 | "call Fold() instead for Expr<>" ); |
113 | return Expr<ResultType<A>>{std::move(x)}; |
114 | } |
115 | |
116 | Component FoldOperation(FoldingContext &, Component &&); |
117 | NamedEntity FoldOperation(FoldingContext &, NamedEntity &&); |
118 | Triplet FoldOperation(FoldingContext &, Triplet &&); |
119 | Subscript FoldOperation(FoldingContext &, Subscript &&); |
120 | ArrayRef FoldOperation(FoldingContext &, ArrayRef &&); |
121 | CoarrayRef FoldOperation(FoldingContext &, CoarrayRef &&); |
122 | DataRef FoldOperation(FoldingContext &, DataRef &&); |
123 | Substring FoldOperation(FoldingContext &, Substring &&); |
124 | ComplexPart FoldOperation(FoldingContext &, ComplexPart &&); |
125 | template <typename T> |
126 | Expr<T> FoldOperation(FoldingContext &, FunctionRef<T> &&); |
127 | template <typename T> |
128 | Expr<T> FoldOperation(FoldingContext &context, Designator<T> &&designator) { |
129 | return Folder<T>{context}.Folding(std::move(designator)); |
130 | } |
131 | Expr<TypeParamInquiry::Result> FoldOperation( |
132 | FoldingContext &, TypeParamInquiry &&); |
133 | Expr<ImpliedDoIndex::Result> FoldOperation( |
134 | FoldingContext &context, ImpliedDoIndex &&); |
135 | template <typename T> |
136 | Expr<T> FoldOperation(FoldingContext &, ArrayConstructor<T> &&); |
137 | Expr<SomeDerived> FoldOperation(FoldingContext &, StructureConstructor &&); |
138 | |
139 | template <typename T> |
140 | std::optional<Constant<T>> Folder<T>::GetNamedConstant(const Symbol &symbol0) { |
141 | const Symbol &symbol{ResolveAssociations(symbol0)}; |
142 | if (IsNamedConstant(symbol)) { |
143 | if (const auto *object{ |
144 | symbol.detailsIf<semantics::ObjectEntityDetails>()}) { |
145 | if (const auto *constant{UnwrapConstantValue<T>(object->init())}) { |
146 | return *constant; |
147 | } |
148 | } |
149 | } |
150 | return std::nullopt; |
151 | } |
152 | |
153 | template <typename T> |
154 | std::optional<Constant<T>> Folder<T>::Folding(ArrayRef &aRef) { |
155 | std::vector<Constant<SubscriptInteger>> subscripts; |
156 | int dim{0}; |
157 | for (Subscript &ss : aRef.subscript()) { |
158 | if (auto constant{GetConstantSubscript(context_, ss, aRef.base(), dim++)}) { |
159 | subscripts.emplace_back(std::move(*constant)); |
160 | } else { |
161 | return std::nullopt; |
162 | } |
163 | } |
164 | if (Component * component{aRef.base().UnwrapComponent()}) { |
165 | return GetConstantComponent(*component, &subscripts); |
166 | } else if (std::optional<Constant<T>> array{ |
167 | GetNamedConstant(aRef.base().GetLastSymbol())}) { |
168 | return ApplySubscripts(*array, subscripts); |
169 | } else { |
170 | return std::nullopt; |
171 | } |
172 | } |
173 | |
174 | template <typename T> |
175 | std::optional<Constant<T>> Folder<T>::Folding(DataRef &ref) { |
176 | return common::visit( |
177 | common::visitors{ |
178 | [this](SymbolRef &sym) { return GetNamedConstant(*sym); }, |
179 | [this](Component &comp) { |
180 | comp = FoldOperation(context_, std::move(comp)); |
181 | return GetConstantComponent(comp); |
182 | }, |
183 | [this](ArrayRef &aRef) { |
184 | aRef = FoldOperation(context_, std::move(aRef)); |
185 | return Folding(aRef); |
186 | }, |
187 | [](CoarrayRef &) { return std::optional<Constant<T>>{}; }, |
188 | }, |
189 | ref.u); |
190 | } |
191 | |
192 | // TODO: This would be more natural as a member function of Constant<T>. |
193 | template <typename T> |
194 | std::optional<Constant<T>> Folder<T>::ApplySubscripts(const Constant<T> &array, |
195 | const std::vector<Constant<SubscriptInteger>> &subscripts) { |
196 | const auto &shape{array.shape()}; |
197 | const auto &lbounds{array.lbounds()}; |
198 | int rank{GetRank(shape)}; |
199 | CHECK(rank == static_cast<int>(subscripts.size())); |
200 | std::size_t elements{1}; |
201 | ConstantSubscripts resultShape; |
202 | ConstantSubscripts ssLB; |
203 | for (const auto &ss : subscripts) { |
204 | if (ss.Rank() == 1) { |
205 | resultShape.push_back(static_cast<ConstantSubscript>(ss.size())); |
206 | elements *= ss.size(); |
207 | ssLB.push_back(ss.lbounds().front()); |
208 | } else if (ss.Rank() > 1) { |
209 | return std::nullopt; // error recovery |
210 | } |
211 | } |
212 | ConstantSubscripts ssAt(rank, 0), at(rank, 0), tmp(1, 0); |
213 | std::vector<Scalar<T>> values; |
214 | while (elements-- > 0) { |
215 | bool increment{true}; |
216 | int k{0}; |
217 | for (int j{0}; j < rank; ++j) { |
218 | if (subscripts[j].Rank() == 0) { |
219 | at[j] = subscripts[j].GetScalarValue().value().ToInt64(); |
220 | } else { |
221 | CHECK(k < GetRank(resultShape)); |
222 | tmp[0] = ssLB.at(k) + ssAt.at(k); |
223 | at[j] = subscripts[j].At(tmp).ToInt64(); |
224 | if (increment) { |
225 | if (++ssAt[k] == resultShape[k]) { |
226 | ssAt[k] = 0; |
227 | } else { |
228 | increment = false; |
229 | } |
230 | } |
231 | ++k; |
232 | } |
233 | if (at[j] < lbounds[j] || at[j] >= lbounds[j] + shape[j]) { |
234 | context_.messages().Say( |
235 | "Subscript value (%jd) is out of range on dimension %d in reference to a constant array value"_err_en_US , |
236 | at[j], j + 1); |
237 | return std::nullopt; |
238 | } |
239 | } |
240 | values.emplace_back(array.At(at)); |
241 | CHECK(!increment || elements == 0); |
242 | CHECK(k == GetRank(resultShape)); |
243 | } |
244 | if constexpr (T::category == TypeCategory::Character) { |
245 | return Constant<T>{array.LEN(), std::move(values), std::move(resultShape)}; |
246 | } else if constexpr (std::is_same_v<T, SomeDerived>) { |
247 | return Constant<T>{array.result().derivedTypeSpec(), std::move(values), |
248 | std::move(resultShape)}; |
249 | } else { |
250 | return Constant<T>{std::move(values), std::move(resultShape)}; |
251 | } |
252 | } |
253 | |
254 | template <typename T> |
255 | std::optional<Constant<T>> Folder<T>::ApplyComponent( |
256 | Constant<SomeDerived> &&structures, const Symbol &component, |
257 | const std::vector<Constant<SubscriptInteger>> *subscripts) { |
258 | if (auto scalar{structures.GetScalarValue()}) { |
259 | if (std::optional<Expr<SomeType>> expr{scalar->Find(component)}) { |
260 | if (const Constant<T> *value{UnwrapConstantValue<T>(*expr)}) { |
261 | if (subscripts) { |
262 | return ApplySubscripts(*value, *subscripts); |
263 | } else { |
264 | return *value; |
265 | } |
266 | } |
267 | } |
268 | } else { |
269 | // A(:)%scalar_component & A(:)%array_component(subscripts) |
270 | std::unique_ptr<ArrayConstructor<T>> array; |
271 | if (structures.empty()) { |
272 | return std::nullopt; |
273 | } |
274 | ConstantSubscripts at{structures.lbounds()}; |
275 | do { |
276 | StructureConstructor scalar{structures.At(at)}; |
277 | if (std::optional<Expr<SomeType>> expr{scalar.Find(component)}) { |
278 | if (const Constant<T> *value{UnwrapConstantValue<T>(expr.value())}) { |
279 | if (!array.get()) { |
280 | // This technique ensures that character length or derived type |
281 | // information is propagated to the array constructor. |
282 | auto *typedExpr{UnwrapExpr<Expr<T>>(expr.value())}; |
283 | CHECK(typedExpr); |
284 | array = std::make_unique<ArrayConstructor<T>>(*typedExpr); |
285 | } |
286 | if (subscripts) { |
287 | if (auto element{ApplySubscripts(*value, *subscripts)}) { |
288 | CHECK(element->Rank() == 0); |
289 | array->Push(Expr<T>{std::move(*element)}); |
290 | } else { |
291 | return std::nullopt; |
292 | } |
293 | } else { |
294 | CHECK(value->Rank() == 0); |
295 | array->Push(Expr<T>{*value}); |
296 | } |
297 | } else { |
298 | return std::nullopt; |
299 | } |
300 | } |
301 | } while (structures.IncrementSubscripts(at)); |
302 | // Fold the ArrayConstructor<> into a Constant<>. |
303 | CHECK(array); |
304 | Expr<T> result{Fold(context_, Expr<T>{std::move(*array)})}; |
305 | if (auto *constant{UnwrapConstantValue<T>(result)}) { |
306 | return constant->Reshape(common::Clone(structures.shape())); |
307 | } |
308 | } |
309 | return std::nullopt; |
310 | } |
311 | |
312 | template <typename T> |
313 | std::optional<Constant<T>> Folder<T>::GetConstantComponent(Component &component, |
314 | const std::vector<Constant<SubscriptInteger>> *subscripts) { |
315 | if (std::optional<Constant<SomeDerived>> structures{common::visit( |
316 | common::visitors{ |
317 | [&](const Symbol &symbol) { |
318 | return Folder<SomeDerived>{context_}.GetNamedConstant(symbol); |
319 | }, |
320 | [&](ArrayRef &aRef) { |
321 | return Folder<SomeDerived>{context_}.Folding(aRef); |
322 | }, |
323 | [&](Component &base) { |
324 | return Folder<SomeDerived>{context_}.GetConstantComponent(base); |
325 | }, |
326 | [&](CoarrayRef &) { |
327 | return std::optional<Constant<SomeDerived>>{}; |
328 | }, |
329 | }, |
330 | component.base().u)}) { |
331 | return ApplyComponent( |
332 | std::move(*structures), component.GetLastSymbol(), subscripts); |
333 | } else { |
334 | return std::nullopt; |
335 | } |
336 | } |
337 | |
338 | template <typename T> Expr<T> Folder<T>::Folding(Designator<T> &&designator) { |
339 | if constexpr (T::category == TypeCategory::Character) { |
340 | if (auto *substring{common::Unwrap<Substring>(designator.u)}) { |
341 | if (std::optional<Expr<SomeCharacter>> folded{ |
342 | substring->Fold(context_)}) { |
343 | if (const auto *specific{std::get_if<Expr<T>>(&folded->u)}) { |
344 | return std::move(*specific); |
345 | } |
346 | } |
347 | // We used to fold zero-length substrings into zero-length |
348 | // constants here, but that led to problems in variable |
349 | // definition contexts. |
350 | } |
351 | } else if constexpr (T::category == TypeCategory::Real) { |
352 | if (auto *zPart{std::get_if<ComplexPart>(&designator.u)}) { |
353 | *zPart = FoldOperation(context_, std::move(*zPart)); |
354 | using ComplexT = Type<TypeCategory::Complex, T::kind>; |
355 | if (auto zConst{Folder<ComplexT>{context_}.Folding(zPart->complex())}) { |
356 | return Fold(context_, |
357 | Expr<T>{ComplexComponent<T::kind>{ |
358 | zPart->part() == ComplexPart::Part::IM, |
359 | Expr<ComplexT>{std::move(*zConst)}}}); |
360 | } else { |
361 | return Expr<T>{Designator<T>{std::move(*zPart)}}; |
362 | } |
363 | } |
364 | } |
365 | return common::visit( |
366 | common::visitors{ |
367 | [&](SymbolRef &&symbol) { |
368 | if (auto constant{GetNamedConstant(*symbol)}) { |
369 | return Expr<T>{std::move(*constant)}; |
370 | } |
371 | return Expr<T>{std::move(designator)}; |
372 | }, |
373 | [&](ArrayRef &&aRef) { |
374 | aRef = FoldOperation(context_, std::move(aRef)); |
375 | if (auto c{Folding(aRef)}) { |
376 | return Expr<T>{std::move(*c)}; |
377 | } else { |
378 | return Expr<T>{Designator<T>{std::move(aRef)}}; |
379 | } |
380 | }, |
381 | [&](Component &&component) { |
382 | component = FoldOperation(context_, std::move(component)); |
383 | if (auto c{GetConstantComponent(component)}) { |
384 | return Expr<T>{std::move(*c)}; |
385 | } else { |
386 | return Expr<T>{Designator<T>{std::move(component)}}; |
387 | } |
388 | }, |
389 | [&](auto &&x) { |
390 | return Expr<T>{ |
391 | Designator<T>{FoldOperation(context_, std::move(x))}}; |
392 | }, |
393 | }, |
394 | std::move(designator.u)); |
395 | } |
396 | |
397 | // Apply type conversion and re-folding if necessary. |
398 | // This is where BOZ arguments are converted. |
399 | template <typename T> |
400 | Constant<T> *Folder<T>::Folding(std::optional<ActualArgument> &arg) { |
401 | if (auto *expr{UnwrapExpr<Expr<SomeType>>(arg)}) { |
402 | if constexpr (T::category != TypeCategory::Derived) { |
403 | if (!UnwrapExpr<Expr<T>>(*expr)) { |
404 | if (auto converted{ConvertToType(T::GetType(), std::move(*expr))}) { |
405 | *expr = Fold(context_, std::move(*converted)); |
406 | } |
407 | } |
408 | } |
409 | return UnwrapConstantValue<T>(*expr); |
410 | } |
411 | return nullptr; |
412 | } |
413 | |
414 | template <typename... A, std::size_t... I> |
415 | std::optional<std::tuple<const Constant<A> *...>> GetConstantArgumentsHelper( |
416 | FoldingContext &context, ActualArguments &arguments, |
417 | std::index_sequence<I...>) { |
418 | static_assert(sizeof...(A) > 0); |
419 | std::tuple<const Constant<A> *...> args{ |
420 | Folder<A>{context}.Folding(arguments.at(I))...}; |
421 | if ((... && (std::get<I>(args)))) { |
422 | return args; |
423 | } else { |
424 | return std::nullopt; |
425 | } |
426 | } |
427 | |
428 | template <typename... A> |
429 | std::optional<std::tuple<const Constant<A> *...>> GetConstantArguments( |
430 | FoldingContext &context, ActualArguments &args) { |
431 | return GetConstantArgumentsHelper<A...>( |
432 | context, args, std::index_sequence_for<A...>{}); |
433 | } |
434 | |
435 | template <typename... A, std::size_t... I> |
436 | std::optional<std::tuple<Scalar<A>...>> GetScalarConstantArgumentsHelper( |
437 | FoldingContext &context, ActualArguments &args, std::index_sequence<I...>) { |
438 | if (auto constArgs{GetConstantArguments<A...>(context, args)}) { |
439 | return std::tuple<Scalar<A>...>{ |
440 | std::get<I>(*constArgs)->GetScalarValue().value()...}; |
441 | } else { |
442 | return std::nullopt; |
443 | } |
444 | } |
445 | |
446 | template <typename... A> |
447 | std::optional<std::tuple<Scalar<A>...>> GetScalarConstantArguments( |
448 | FoldingContext &context, ActualArguments &args) { |
449 | return GetScalarConstantArgumentsHelper<A...>( |
450 | context, args, std::index_sequence_for<A...>{}); |
451 | } |
452 | |
453 | // helpers to fold intrinsic function references |
454 | // Define callable types used in a common utility that |
455 | // takes care of array and cast/conversion aspects for elemental intrinsics |
456 | |
457 | template <typename TR, typename... TArgs> |
458 | using ScalarFunc = std::function<Scalar<TR>(const Scalar<TArgs> &...)>; |
459 | template <typename TR, typename... TArgs> |
460 | using ScalarFuncWithContext = |
461 | std::function<Scalar<TR>(FoldingContext &, const Scalar<TArgs> &...)>; |
462 | |
463 | template <template <typename, typename...> typename WrapperType, typename TR, |
464 | typename... TA, std::size_t... I> |
465 | Expr<TR> FoldElementalIntrinsicHelper(FoldingContext &context, |
466 | FunctionRef<TR> &&funcRef, WrapperType<TR, TA...> func, |
467 | std::index_sequence<I...>) { |
468 | if (std::optional<std::tuple<const Constant<TA> *...>> args{ |
469 | GetConstantArguments<TA...>(context, funcRef.arguments())}) { |
470 | // Compute the shape of the result based on shapes of arguments |
471 | ConstantSubscripts shape; |
472 | int rank{0}; |
473 | const ConstantSubscripts *shapes[]{&std::get<I>(*args)->shape()...}; |
474 | const int ranks[]{std::get<I>(*args)->Rank()...}; |
475 | for (unsigned int i{0}; i < sizeof...(TA); ++i) { |
476 | if (ranks[i] > 0) { |
477 | if (rank == 0) { |
478 | rank = ranks[i]; |
479 | shape = *shapes[i]; |
480 | } else { |
481 | if (shape != *shapes[i]) { |
482 | // TODO: Rank compatibility was already checked but it seems to be |
483 | // the first place where the actual shapes are checked to be the |
484 | // same. Shouldn't this be checked elsewhere so that this is also |
485 | // checked for non constexpr call to elemental intrinsics function? |
486 | context.messages().Say( |
487 | "Arguments in elemental intrinsic function are not conformable"_err_en_US ); |
488 | return Expr<TR>{std::move(funcRef)}; |
489 | } |
490 | } |
491 | } |
492 | } |
493 | CHECK(rank == GetRank(shape)); |
494 | // Compute all the scalar values of the results |
495 | std::vector<Scalar<TR>> results; |
496 | std::optional<uint64_t> n{TotalElementCount(shape)}; |
497 | if (!n) { |
498 | context.messages().Say( |
499 | "Too many elements in elemental intrinsic function result"_err_en_US ); |
500 | return Expr<TR>{std::move(funcRef)}; |
501 | } |
502 | if (*n > 0) { |
503 | ConstantBounds bounds{shape}; |
504 | ConstantSubscripts resultIndex(rank, 1); |
505 | ConstantSubscripts argIndex[]{std::get<I>(*args)->lbounds()...}; |
506 | do { |
507 | if constexpr (std::is_same_v<WrapperType<TR, TA...>, |
508 | ScalarFuncWithContext<TR, TA...>>) { |
509 | results.emplace_back( |
510 | func(context, std::get<I>(*args)->At(argIndex[I])...)); |
511 | } else if constexpr (std::is_same_v<WrapperType<TR, TA...>, |
512 | ScalarFunc<TR, TA...>>) { |
513 | results.emplace_back(func(std::get<I>(*args)->At(argIndex[I])...)); |
514 | } |
515 | (std::get<I>(*args)->IncrementSubscripts(argIndex[I]), ...); |
516 | } while (bounds.IncrementSubscripts(resultIndex)); |
517 | } |
518 | // Build and return constant result |
519 | if constexpr (TR::category == TypeCategory::Character) { |
520 | auto len{static_cast<ConstantSubscript>( |
521 | results.empty() ? 0 : results[0].length())}; |
522 | return Expr<TR>{Constant<TR>{len, std::move(results), std::move(shape)}}; |
523 | } else if constexpr (TR::category == TypeCategory::Derived) { |
524 | if (!results.empty()) { |
525 | return Expr<TR>{rank == 0 |
526 | ? Constant<TR>{results.front()} |
527 | : Constant<TR>{results.front().derivedTypeSpec(), |
528 | std::move(results), std::move(shape)}}; |
529 | } |
530 | } else { |
531 | return Expr<TR>{Constant<TR>{std::move(results), std::move(shape)}}; |
532 | } |
533 | } |
534 | return Expr<TR>{std::move(funcRef)}; |
535 | } |
536 | |
537 | template <typename TR, typename... TA> |
538 | Expr<TR> FoldElementalIntrinsic(FoldingContext &context, |
539 | FunctionRef<TR> &&funcRef, ScalarFunc<TR, TA...> func) { |
540 | return FoldElementalIntrinsicHelper<ScalarFunc, TR, TA...>( |
541 | context, std::move(funcRef), func, std::index_sequence_for<TA...>{}); |
542 | } |
543 | template <typename TR, typename... TA> |
544 | Expr<TR> FoldElementalIntrinsic(FoldingContext &context, |
545 | FunctionRef<TR> &&funcRef, ScalarFuncWithContext<TR, TA...> func) { |
546 | return FoldElementalIntrinsicHelper<ScalarFuncWithContext, TR, TA...>( |
547 | context, std::move(funcRef), func, std::index_sequence_for<TA...>{}); |
548 | } |
549 | |
550 | std::optional<std::int64_t> GetInt64ArgOr( |
551 | const std::optional<ActualArgument> &, std::int64_t defaultValue); |
552 | |
553 | template <typename A, typename B> |
554 | std::optional<std::vector<A>> GetIntegerVector(const B &x) { |
555 | static_assert(std::is_integral_v<A>); |
556 | if (const auto *someInteger{UnwrapExpr<Expr<SomeInteger>>(x)}) { |
557 | return common::visit( |
558 | [](const auto &typedExpr) -> std::optional<std::vector<A>> { |
559 | using T = ResultType<decltype(typedExpr)>; |
560 | if (const auto *constant{UnwrapConstantValue<T>(typedExpr)}) { |
561 | if (constant->Rank() == 1) { |
562 | std::vector<A> result; |
563 | for (const auto &value : constant->values()) { |
564 | result.push_back(static_cast<A>(value.ToInt64())); |
565 | } |
566 | return result; |
567 | } |
568 | } |
569 | return std::nullopt; |
570 | }, |
571 | someInteger->u); |
572 | } |
573 | return std::nullopt; |
574 | } |
575 | |
576 | // Transform an intrinsic function reference that contains user errors |
577 | // into an intrinsic with the same characteristic but the "invalid" name. |
578 | // This to prevent generating warnings over and over if the expression |
579 | // gets re-folded. |
580 | template <typename T> Expr<T> MakeInvalidIntrinsic(FunctionRef<T> &&funcRef) { |
581 | SpecificIntrinsic invalid{std::get<SpecificIntrinsic>(funcRef.proc().u)}; |
582 | invalid.name = IntrinsicProcTable::InvalidName; |
583 | return Expr<T>{FunctionRef<T>{ProcedureDesignator{std::move(invalid)}, |
584 | ActualArguments{std::move(funcRef.arguments())}}}; |
585 | } |
586 | |
587 | template <typename T> Expr<T> Folder<T>::CSHIFT(FunctionRef<T> &&funcRef) { |
588 | auto args{funcRef.arguments()}; |
589 | CHECK(args.size() == 3); |
590 | const auto *array{UnwrapConstantValue<T>(args[0])}; |
591 | const auto *shiftExpr{UnwrapExpr<Expr<SomeInteger>>(args[1])}; |
592 | auto dim{GetInt64ArgOr(args[2], 1)}; |
593 | if (!array || !shiftExpr || !dim) { |
594 | return Expr<T>{std::move(funcRef)}; |
595 | } |
596 | auto convertedShift{Fold(context_, |
597 | ConvertToType<SubscriptInteger>(Expr<SomeInteger>{*shiftExpr}))}; |
598 | const auto *shift{UnwrapConstantValue<SubscriptInteger>(convertedShift)}; |
599 | if (!shift) { |
600 | return Expr<T>{std::move(funcRef)}; |
601 | } |
602 | // Arguments are constant |
603 | if (*dim < 1 || *dim > array->Rank()) { |
604 | context_.messages().Say("Invalid 'dim=' argument (%jd) in CSHIFT"_err_en_US , |
605 | static_cast<std::intmax_t>(*dim)); |
606 | } else if (shift->Rank() > 0 && shift->Rank() != array->Rank() - 1) { |
607 | // message already emitted from intrinsic look-up |
608 | } else { |
609 | int rank{array->Rank()}; |
610 | int zbDim{static_cast<int>(*dim) - 1}; |
611 | bool ok{true}; |
612 | if (shift->Rank() > 0) { |
613 | int k{0}; |
614 | for (int j{0}; j < rank; ++j) { |
615 | if (j != zbDim) { |
616 | if (array->shape()[j] != shift->shape()[k]) { |
617 | context_.messages().Say( |
618 | "Invalid 'shift=' argument in CSHIFT: extent on dimension %d is %jd but must be %jd"_err_en_US , |
619 | k + 1, static_cast<std::intmax_t>(shift->shape()[k]), |
620 | static_cast<std::intmax_t>(array->shape()[j])); |
621 | ok = false; |
622 | } |
623 | ++k; |
624 | } |
625 | } |
626 | } |
627 | if (ok) { |
628 | std::vector<Scalar<T>> resultElements; |
629 | ConstantSubscripts arrayLB{array->lbounds()}; |
630 | ConstantSubscripts arrayAt{arrayLB}; |
631 | ConstantSubscript &dimIndex{arrayAt[zbDim]}; |
632 | ConstantSubscript dimLB{dimIndex}; // initial value |
633 | ConstantSubscript dimExtent{array->shape()[zbDim]}; |
634 | ConstantSubscripts shiftLB{shift->lbounds()}; |
635 | for (auto n{GetSize(array->shape())}; n > 0; --n) { |
636 | ConstantSubscript origDimIndex{dimIndex}; |
637 | ConstantSubscripts shiftAt; |
638 | if (shift->Rank() > 0) { |
639 | int k{0}; |
640 | for (int j{0}; j < rank; ++j) { |
641 | if (j != zbDim) { |
642 | shiftAt.emplace_back(shiftLB[k++] + arrayAt[j] - arrayLB[j]); |
643 | } |
644 | } |
645 | } |
646 | ConstantSubscript shiftCount{shift->At(shiftAt).ToInt64()}; |
647 | dimIndex = dimLB + ((dimIndex - dimLB + shiftCount) % dimExtent); |
648 | if (dimIndex < dimLB) { |
649 | dimIndex += dimExtent; |
650 | } else if (dimIndex >= dimLB + dimExtent) { |
651 | dimIndex -= dimExtent; |
652 | } |
653 | resultElements.push_back(array->At(arrayAt)); |
654 | dimIndex = origDimIndex; |
655 | array->IncrementSubscripts(arrayAt); |
656 | } |
657 | return Expr<T>{PackageConstant<T>( |
658 | std::move(resultElements), *array, array->shape())}; |
659 | } |
660 | } |
661 | // Invalid, prevent re-folding |
662 | return MakeInvalidIntrinsic(std::move(funcRef)); |
663 | } |
664 | |
665 | template <typename T> Expr<T> Folder<T>::EOSHIFT(FunctionRef<T> &&funcRef) { |
666 | auto args{funcRef.arguments()}; |
667 | CHECK(args.size() == 4); |
668 | const auto *array{UnwrapConstantValue<T>(args[0])}; |
669 | const auto *shiftExpr{UnwrapExpr<Expr<SomeInteger>>(args[1])}; |
670 | auto dim{GetInt64ArgOr(args[3], 1)}; |
671 | if (!array || !shiftExpr || !dim) { |
672 | return Expr<T>{std::move(funcRef)}; |
673 | } |
674 | // Apply type conversions to the shift= and boundary= arguments. |
675 | auto convertedShift{Fold(context_, |
676 | ConvertToType<SubscriptInteger>(Expr<SomeInteger>{*shiftExpr}))}; |
677 | const auto *shift{UnwrapConstantValue<SubscriptInteger>(convertedShift)}; |
678 | if (!shift) { |
679 | return Expr<T>{std::move(funcRef)}; |
680 | } |
681 | const Constant<T> *boundary{nullptr}; |
682 | std::optional<Expr<SomeType>> convertedBoundary; |
683 | if (const auto *boundaryExpr{UnwrapExpr<Expr<SomeType>>(args[2])}) { |
684 | convertedBoundary = Fold(context_, |
685 | ConvertToType(array->GetType(), Expr<SomeType>{*boundaryExpr})); |
686 | boundary = UnwrapExpr<Constant<T>>(convertedBoundary); |
687 | if (!boundary) { |
688 | return Expr<T>{std::move(funcRef)}; |
689 | } |
690 | } |
691 | // Arguments are constant |
692 | if (*dim < 1 || *dim > array->Rank()) { |
693 | context_.messages().Say( |
694 | "Invalid 'dim=' argument (%jd) in EOSHIFT"_err_en_US , |
695 | static_cast<std::intmax_t>(*dim)); |
696 | } else if (shift->Rank() > 0 && shift->Rank() != array->Rank() - 1) { |
697 | // message already emitted from intrinsic look-up |
698 | } else if (boundary && boundary->Rank() > 0 && |
699 | boundary->Rank() != array->Rank() - 1) { |
700 | // ditto |
701 | } else { |
702 | int rank{array->Rank()}; |
703 | int zbDim{static_cast<int>(*dim) - 1}; |
704 | bool ok{true}; |
705 | if (shift->Rank() > 0) { |
706 | int k{0}; |
707 | for (int j{0}; j < rank; ++j) { |
708 | if (j != zbDim) { |
709 | if (array->shape()[j] != shift->shape()[k]) { |
710 | context_.messages().Say( |
711 | "Invalid 'shift=' argument in EOSHIFT: extent on dimension %d is %jd but must be %jd"_err_en_US , |
712 | k + 1, static_cast<std::intmax_t>(shift->shape()[k]), |
713 | static_cast<std::intmax_t>(array->shape()[j])); |
714 | ok = false; |
715 | } |
716 | ++k; |
717 | } |
718 | } |
719 | } |
720 | if (boundary && boundary->Rank() > 0) { |
721 | int k{0}; |
722 | for (int j{0}; j < rank; ++j) { |
723 | if (j != zbDim) { |
724 | if (array->shape()[j] != boundary->shape()[k]) { |
725 | context_.messages().Say( |
726 | "Invalid 'boundary=' argument in EOSHIFT: extent on dimension %d is %jd but must be %jd"_err_en_US , |
727 | k + 1, static_cast<std::intmax_t>(boundary->shape()[k]), |
728 | static_cast<std::intmax_t>(array->shape()[j])); |
729 | ok = false; |
730 | } |
731 | ++k; |
732 | } |
733 | } |
734 | } |
735 | if (ok) { |
736 | std::vector<Scalar<T>> resultElements; |
737 | ConstantSubscripts arrayLB{array->lbounds()}; |
738 | ConstantSubscripts arrayAt{arrayLB}; |
739 | ConstantSubscript &dimIndex{arrayAt[zbDim]}; |
740 | ConstantSubscript dimLB{dimIndex}; // initial value |
741 | ConstantSubscript dimExtent{array->shape()[zbDim]}; |
742 | ConstantSubscripts shiftLB{shift->lbounds()}; |
743 | ConstantSubscripts boundaryLB; |
744 | if (boundary) { |
745 | boundaryLB = boundary->lbounds(); |
746 | } |
747 | for (auto n{GetSize(array->shape())}; n > 0; --n) { |
748 | ConstantSubscript origDimIndex{dimIndex}; |
749 | ConstantSubscripts shiftAt; |
750 | if (shift->Rank() > 0) { |
751 | int k{0}; |
752 | for (int j{0}; j < rank; ++j) { |
753 | if (j != zbDim) { |
754 | shiftAt.emplace_back(shiftLB[k++] + arrayAt[j] - arrayLB[j]); |
755 | } |
756 | } |
757 | } |
758 | ConstantSubscript shiftCount{shift->At(shiftAt).ToInt64()}; |
759 | dimIndex += shiftCount; |
760 | if (dimIndex >= dimLB && dimIndex < dimLB + dimExtent) { |
761 | resultElements.push_back(array->At(arrayAt)); |
762 | } else if (boundary) { |
763 | ConstantSubscripts boundaryAt; |
764 | if (boundary->Rank() > 0) { |
765 | for (int j{0}; j < rank; ++j) { |
766 | int k{0}; |
767 | if (j != zbDim) { |
768 | boundaryAt.emplace_back( |
769 | boundaryLB[k++] + arrayAt[j] - arrayLB[j]); |
770 | } |
771 | } |
772 | } |
773 | resultElements.push_back(boundary->At(boundaryAt)); |
774 | } else if constexpr (T::category == TypeCategory::Integer || |
775 | T::category == TypeCategory::Real || |
776 | T::category == TypeCategory::Complex || |
777 | T::category == TypeCategory::Logical) { |
778 | resultElements.emplace_back(); |
779 | } else if constexpr (T::category == TypeCategory::Character) { |
780 | auto len{static_cast<std::size_t>(array->LEN())}; |
781 | typename Scalar<T>::value_type space{' '}; |
782 | resultElements.emplace_back(len, space); |
783 | } else { |
784 | DIE("no derived type boundary" ); |
785 | } |
786 | dimIndex = origDimIndex; |
787 | array->IncrementSubscripts(arrayAt); |
788 | } |
789 | return Expr<T>{PackageConstant<T>( |
790 | std::move(resultElements), *array, array->shape())}; |
791 | } |
792 | } |
793 | // Invalid, prevent re-folding |
794 | return MakeInvalidIntrinsic(std::move(funcRef)); |
795 | } |
796 | |
797 | template <typename T> Expr<T> Folder<T>::MERGE(FunctionRef<T> &&funcRef) { |
798 | return FoldElementalIntrinsic<T, T, T, LogicalResult>(context_, |
799 | std::move(funcRef), |
800 | ScalarFunc<T, T, T, LogicalResult>( |
801 | [](const Scalar<T> &ifTrue, const Scalar<T> &ifFalse, |
802 | const Scalar<LogicalResult> &predicate) -> Scalar<T> { |
803 | return predicate.IsTrue() ? ifTrue : ifFalse; |
804 | })); |
805 | } |
806 | |
807 | template <typename T> Expr<T> Folder<T>::PACK(FunctionRef<T> &&funcRef) { |
808 | auto args{funcRef.arguments()}; |
809 | CHECK(args.size() == 3); |
810 | const auto *array{UnwrapConstantValue<T>(args[0])}; |
811 | const auto *vector{UnwrapConstantValue<T>(args[2])}; |
812 | auto convertedMask{Fold(context_, |
813 | ConvertToType<LogicalResult>( |
814 | Expr<SomeLogical>{DEREF(UnwrapExpr<Expr<SomeLogical>>(args[1]))}))}; |
815 | const auto *mask{UnwrapConstantValue<LogicalResult>(convertedMask)}; |
816 | if (!array || !mask || (args[2] && !vector)) { |
817 | return Expr<T>{std::move(funcRef)}; |
818 | } |
819 | // Arguments are constant. |
820 | ConstantSubscript arrayElements{GetSize(array->shape())}; |
821 | ConstantSubscript truths{0}; |
822 | ConstantSubscripts maskAt{mask->lbounds()}; |
823 | if (mask->Rank() == 0) { |
824 | if (mask->At(maskAt).IsTrue()) { |
825 | truths = arrayElements; |
826 | } |
827 | } else if (array->shape() != mask->shape()) { |
828 | // Error already emitted from intrinsic processing |
829 | return MakeInvalidIntrinsic(std::move(funcRef)); |
830 | } else { |
831 | for (ConstantSubscript j{0}; j < arrayElements; |
832 | ++j, mask->IncrementSubscripts(maskAt)) { |
833 | if (mask->At(maskAt).IsTrue()) { |
834 | ++truths; |
835 | } |
836 | } |
837 | } |
838 | std::vector<Scalar<T>> resultElements; |
839 | ConstantSubscripts arrayAt{array->lbounds()}; |
840 | ConstantSubscript resultSize{truths}; |
841 | if (vector) { |
842 | resultSize = vector->shape().at(0); |
843 | if (resultSize < truths) { |
844 | context_.messages().Say( |
845 | "Invalid 'vector=' argument in PACK: the 'mask=' argument has %jd true elements, but the vector has only %jd elements"_err_en_US , |
846 | static_cast<std::intmax_t>(truths), |
847 | static_cast<std::intmax_t>(resultSize)); |
848 | return MakeInvalidIntrinsic(std::move(funcRef)); |
849 | } |
850 | } |
851 | for (ConstantSubscript j{0}; j < truths;) { |
852 | if (mask->At(maskAt).IsTrue()) { |
853 | resultElements.push_back(array->At(arrayAt)); |
854 | ++j; |
855 | } |
856 | array->IncrementSubscripts(arrayAt); |
857 | mask->IncrementSubscripts(maskAt); |
858 | } |
859 | if (vector) { |
860 | ConstantSubscripts vectorAt{vector->lbounds()}; |
861 | vectorAt.at(0) += truths; |
862 | for (ConstantSubscript j{truths}; j < resultSize; ++j) { |
863 | resultElements.push_back(vector->At(vectorAt)); |
864 | ++vectorAt[0]; |
865 | } |
866 | } |
867 | return Expr<T>{PackageConstant<T>(std::move(resultElements), *array, |
868 | ConstantSubscripts{static_cast<ConstantSubscript>(resultSize)})}; |
869 | } |
870 | |
871 | template <typename T> Expr<T> Folder<T>::RESHAPE(FunctionRef<T> &&funcRef) { |
872 | auto args{funcRef.arguments()}; |
873 | CHECK(args.size() == 4); |
874 | const auto *source{UnwrapConstantValue<T>(args[0])}; |
875 | const auto *pad{UnwrapConstantValue<T>(args[2])}; |
876 | std::optional<std::vector<ConstantSubscript>> shape{ |
877 | GetIntegerVector<ConstantSubscript>(args[1])}; |
878 | std::optional<std::vector<int>> order{GetIntegerVector<int>(args[3])}; |
879 | if (!source || !shape || (args[2] && !pad) || (args[3] && !order)) { |
880 | return Expr<T>{std::move(funcRef)}; // Non-constant arguments |
881 | } else if (shape.value().size() > common::maxRank) { |
882 | context_.messages().Say( |
883 | "Size of 'shape=' argument must not be greater than %d"_err_en_US , |
884 | common::maxRank); |
885 | } else if (HasNegativeExtent(shape.value())) { |
886 | context_.messages().Say( |
887 | "'shape=' argument must not have a negative extent"_err_en_US ); |
888 | } else { |
889 | std::optional<uint64_t> optResultElement{TotalElementCount(shape.value())}; |
890 | if (!optResultElement) { |
891 | context_.messages().Say( |
892 | "'shape=' argument has too many elements"_err_en_US ); |
893 | } else { |
894 | int rank{GetRank(shape.value())}; |
895 | uint64_t resultElements{*optResultElement}; |
896 | std::optional<std::vector<int>> dimOrder; |
897 | if (order) { |
898 | dimOrder = ValidateDimensionOrder(rank, *order); |
899 | } |
900 | std::vector<int> *dimOrderPtr{dimOrder ? &dimOrder.value() : nullptr}; |
901 | if (order && !dimOrder) { |
902 | context_.messages().Say( |
903 | "Invalid 'order=' argument in RESHAPE"_err_en_US ); |
904 | } else if (resultElements > source->size() && (!pad || pad->empty())) { |
905 | context_.messages().Say( |
906 | "Too few elements in 'source=' argument and 'pad=' " |
907 | "argument is not present or has null size"_err_en_US ); |
908 | } else { |
909 | Constant<T> result{!source->empty() || !pad |
910 | ? source->Reshape(std::move(shape.value())) |
911 | : pad->Reshape(std::move(shape.value()))}; |
912 | ConstantSubscripts subscripts{result.lbounds()}; |
913 | auto copied{result.CopyFrom(*source, |
914 | std::min(a: static_cast<uint64_t>(source->size()), b: resultElements), |
915 | subscripts, dimOrderPtr)}; |
916 | if (copied < resultElements) { |
917 | CHECK(pad); |
918 | copied += result.CopyFrom( |
919 | *pad, resultElements - copied, subscripts, dimOrderPtr); |
920 | } |
921 | CHECK(copied == resultElements); |
922 | return Expr<T>{std::move(result)}; |
923 | } |
924 | } |
925 | } |
926 | // Invalid, prevent re-folding |
927 | return MakeInvalidIntrinsic(std::move(funcRef)); |
928 | } |
929 | |
930 | template <typename T> Expr<T> Folder<T>::SPREAD(FunctionRef<T> &&funcRef) { |
931 | auto args{funcRef.arguments()}; |
932 | CHECK(args.size() == 3); |
933 | const Constant<T> *source{UnwrapConstantValue<T>(args[0])}; |
934 | auto dim{ToInt64(args[1])}; |
935 | auto ncopies{ToInt64(args[2])}; |
936 | if (!source || !dim) { |
937 | return Expr<T>{std::move(funcRef)}; |
938 | } |
939 | int sourceRank{source->Rank()}; |
940 | if (sourceRank >= common::maxRank) { |
941 | context_.messages().Say( |
942 | "SOURCE= argument to SPREAD has rank %d but must have rank less than %d"_err_en_US , |
943 | sourceRank, common::maxRank); |
944 | } else if (*dim < 1 || *dim > sourceRank + 1) { |
945 | context_.messages().Say( |
946 | "DIM=%d argument to SPREAD must be between 1 and %d"_err_en_US , *dim, |
947 | sourceRank + 1); |
948 | } else if (!ncopies) { |
949 | return Expr<T>{std::move(funcRef)}; |
950 | } else { |
951 | if (*ncopies < 0) { |
952 | ncopies = 0; |
953 | } |
954 | // TODO: Consider moving this implementation (after the user error |
955 | // checks), along with other transformational intrinsics, into |
956 | // constant.h (or a new header) so that the transformationals |
957 | // are available for all Constant<>s without needing to be packaged |
958 | // as references to intrinsic functions for folding. |
959 | ConstantSubscripts shape{source->shape()}; |
960 | shape.insert(shape.begin() + *dim - 1, *ncopies); |
961 | Constant<T> spread{source->Reshape(std::move(shape))}; |
962 | std::optional<uint64_t> n{TotalElementCount(spread.shape())}; |
963 | if (!n) { |
964 | context_.messages().Say("Too many elements in SPREAD result"_err_en_US ); |
965 | } else { |
966 | std::vector<int> dimOrder; |
967 | for (int j{0}; j < sourceRank; ++j) { |
968 | dimOrder.push_back(j < *dim - 1 ? j : j + 1); |
969 | } |
970 | dimOrder.push_back(*dim - 1); |
971 | ConstantSubscripts at{spread.lbounds()}; // all 1 |
972 | spread.CopyFrom(*source, *n, at, &dimOrder); |
973 | return Expr<T>{std::move(spread)}; |
974 | } |
975 | } |
976 | // Invalid, prevent re-folding |
977 | return MakeInvalidIntrinsic(std::move(funcRef)); |
978 | } |
979 | |
980 | template <typename T> Expr<T> Folder<T>::TRANSPOSE(FunctionRef<T> &&funcRef) { |
981 | auto args{funcRef.arguments()}; |
982 | CHECK(args.size() == 1); |
983 | const auto *matrix{UnwrapConstantValue<T>(args[0])}; |
984 | if (!matrix) { |
985 | return Expr<T>{std::move(funcRef)}; |
986 | } |
987 | // Argument is constant. Traverse its elements in transposed order. |
988 | std::vector<Scalar<T>> resultElements; |
989 | ConstantSubscripts at(2); |
990 | for (ConstantSubscript j{0}; j < matrix->shape()[0]; ++j) { |
991 | at[0] = matrix->lbounds()[0] + j; |
992 | for (ConstantSubscript k{0}; k < matrix->shape()[1]; ++k) { |
993 | at[1] = matrix->lbounds()[1] + k; |
994 | resultElements.push_back(matrix->At(at)); |
995 | } |
996 | } |
997 | at = matrix->shape(); |
998 | std::swap(at[0], at[1]); |
999 | return Expr<T>{PackageConstant<T>(std::move(resultElements), *matrix, at)}; |
1000 | } |
1001 | |
1002 | template <typename T> Expr<T> Folder<T>::UNPACK(FunctionRef<T> &&funcRef) { |
1003 | auto args{funcRef.arguments()}; |
1004 | CHECK(args.size() == 3); |
1005 | const auto *vector{UnwrapConstantValue<T>(args[0])}; |
1006 | auto convertedMask{Fold(context_, |
1007 | ConvertToType<LogicalResult>( |
1008 | Expr<SomeLogical>{DEREF(UnwrapExpr<Expr<SomeLogical>>(args[1]))}))}; |
1009 | const auto *mask{UnwrapConstantValue<LogicalResult>(convertedMask)}; |
1010 | const auto *field{UnwrapConstantValue<T>(args[2])}; |
1011 | if (!vector || !mask || !field) { |
1012 | return Expr<T>{std::move(funcRef)}; |
1013 | } |
1014 | // Arguments are constant. |
1015 | if (field->Rank() > 0 && field->shape() != mask->shape()) { |
1016 | // Error already emitted from intrinsic processing |
1017 | return MakeInvalidIntrinsic(std::move(funcRef)); |
1018 | } |
1019 | ConstantSubscript maskElements{GetSize(mask->shape())}; |
1020 | ConstantSubscript truths{0}; |
1021 | ConstantSubscripts maskAt{mask->lbounds()}; |
1022 | for (ConstantSubscript j{0}; j < maskElements; |
1023 | ++j, mask->IncrementSubscripts(maskAt)) { |
1024 | if (mask->At(maskAt).IsTrue()) { |
1025 | ++truths; |
1026 | } |
1027 | } |
1028 | if (truths > GetSize(vector->shape())) { |
1029 | context_.messages().Say( |
1030 | "Invalid 'vector=' argument in UNPACK: the 'mask=' argument has %jd true elements, but the vector has only %jd elements"_err_en_US , |
1031 | static_cast<std::intmax_t>(truths), |
1032 | static_cast<std::intmax_t>(GetSize(vector->shape()))); |
1033 | return MakeInvalidIntrinsic(std::move(funcRef)); |
1034 | } |
1035 | std::vector<Scalar<T>> resultElements; |
1036 | ConstantSubscripts vectorAt{vector->lbounds()}; |
1037 | ConstantSubscripts fieldAt{field->lbounds()}; |
1038 | for (ConstantSubscript j{0}; j < maskElements; ++j) { |
1039 | if (mask->At(maskAt).IsTrue()) { |
1040 | resultElements.push_back(vector->At(vectorAt)); |
1041 | vector->IncrementSubscripts(vectorAt); |
1042 | } else { |
1043 | resultElements.push_back(field->At(fieldAt)); |
1044 | } |
1045 | mask->IncrementSubscripts(maskAt); |
1046 | field->IncrementSubscripts(fieldAt); |
1047 | } |
1048 | return Expr<T>{ |
1049 | PackageConstant<T>(std::move(resultElements), *vector, mask->shape())}; |
1050 | } |
1051 | |
1052 | std::optional<Expr<SomeType>> FoldTransfer( |
1053 | FoldingContext &, const ActualArguments &); |
1054 | |
1055 | template <typename T> Expr<T> Folder<T>::TRANSFER(FunctionRef<T> &&funcRef) { |
1056 | if (auto folded{FoldTransfer(context_, funcRef.arguments())}) { |
1057 | return DEREF(UnwrapExpr<Expr<T>>(*folded)); |
1058 | } else { |
1059 | return Expr<T>{std::move(funcRef)}; |
1060 | } |
1061 | } |
1062 | |
1063 | template <typename T> |
1064 | Expr<T> FoldMINorMAX( |
1065 | FoldingContext &context, FunctionRef<T> &&funcRef, Ordering order) { |
1066 | static_assert(T::category == TypeCategory::Integer || |
1067 | T::category == TypeCategory::Real || |
1068 | T::category == TypeCategory::Character); |
1069 | std::vector<Constant<T> *> constantArgs; |
1070 | // Call Folding on all arguments, even if some are not constant, |
1071 | // to make operand promotion explicit. |
1072 | for (auto &arg : funcRef.arguments()) { |
1073 | if (auto *cst{Folder<T>{context}.Folding(arg)}) { |
1074 | constantArgs.push_back(cst); |
1075 | } |
1076 | } |
1077 | if (constantArgs.size() != funcRef.arguments().size()) { |
1078 | return Expr<T>(std::move(funcRef)); |
1079 | } |
1080 | CHECK(!constantArgs.empty()); |
1081 | Expr<T> result{std::move(*constantArgs[0])}; |
1082 | for (std::size_t i{1}; i < constantArgs.size(); ++i) { |
1083 | Extremum<T> extremum{order, result, Expr<T>{std::move(*constantArgs[i])}}; |
1084 | result = FoldOperation(context, std::move(extremum)); |
1085 | } |
1086 | return result; |
1087 | } |
1088 | |
1089 | // For AMAX0, AMIN0, AMAX1, AMIN1, DMAX1, DMIN1, MAX0, MIN0, MAX1, and MIN1 |
1090 | // a special care has to be taken to insert the conversion on the result |
1091 | // of the MIN/MAX. This is made slightly more complex by the extension |
1092 | // supported by f18 that arguments may have different kinds. This implies |
1093 | // that the created MIN/MAX result type cannot be deduced from the standard but |
1094 | // has to be deduced from the arguments. |
1095 | // e.g. AMAX0(int8, int4) is rewritten to REAL(MAX(int8, INT(int4, 8)))). |
1096 | template <typename T> |
1097 | Expr<T> RewriteSpecificMINorMAX( |
1098 | FoldingContext &context, FunctionRef<T> &&funcRef) { |
1099 | ActualArguments &args{funcRef.arguments()}; |
1100 | auto &intrinsic{DEREF(std::get_if<SpecificIntrinsic>(&funcRef.proc().u))}; |
1101 | // Rewrite MAX1(args) to INT(MAX(args)) and fold. Same logic for MIN1. |
1102 | // Find result type for max/min based on the arguments. |
1103 | std::optional<DynamicType> resultType; |
1104 | ActualArgument *resultTypeArg{nullptr}; |
1105 | for (auto j{args.size()}; j-- > 0;) { |
1106 | if (args[j]) { |
1107 | DynamicType type{args[j]->GetType().value()}; |
1108 | // Handle mixed real/integer arguments: all the previous arguments were |
1109 | // integers and this one is real. The type of the MAX/MIN result will |
1110 | // be the one of the real argument. |
1111 | if (!resultType || |
1112 | (type.category() == resultType->category() && |
1113 | type.kind() > resultType->kind()) || |
1114 | resultType->category() == TypeCategory::Integer) { |
1115 | resultType = type; |
1116 | resultTypeArg = &*args[j]; |
1117 | } |
1118 | } |
1119 | } |
1120 | if (!resultType) { // error recovery |
1121 | return Expr<T>{std::move(funcRef)}; |
1122 | } |
1123 | intrinsic.name = |
1124 | intrinsic.name.find("max" ) != std::string::npos ? "max"s : "min"s ; |
1125 | intrinsic.characteristics.value().functionResult.value().SetType(*resultType); |
1126 | auto insertConversion{[&](const auto &x) -> Expr<T> { |
1127 | using TR = ResultType<decltype(x)>; |
1128 | FunctionRef<TR> maxRef{ |
1129 | ProcedureDesignator{funcRef.proc()}, ActualArguments{args}}; |
1130 | return Fold(context, ConvertToType<T>(AsCategoryExpr(std::move(maxRef)))); |
1131 | }}; |
1132 | if (auto *sx{UnwrapExpr<Expr<SomeReal>>(*resultTypeArg)}) { |
1133 | return common::visit(insertConversion, sx->u); |
1134 | } else if (auto *sx{UnwrapExpr<Expr<SomeInteger>>(*resultTypeArg)}) { |
1135 | return common::visit(insertConversion, sx->u); |
1136 | } else { |
1137 | return Expr<T>{std::move(funcRef)}; // error recovery |
1138 | } |
1139 | } |
1140 | |
1141 | // FoldIntrinsicFunction() |
1142 | template <int KIND> |
1143 | Expr<Type<TypeCategory::Integer, KIND>> FoldIntrinsicFunction( |
1144 | FoldingContext &context, FunctionRef<Type<TypeCategory::Integer, KIND>> &&); |
1145 | template <int KIND> |
1146 | Expr<Type<TypeCategory::Real, KIND>> FoldIntrinsicFunction( |
1147 | FoldingContext &context, FunctionRef<Type<TypeCategory::Real, KIND>> &&); |
1148 | template <int KIND> |
1149 | Expr<Type<TypeCategory::Complex, KIND>> FoldIntrinsicFunction( |
1150 | FoldingContext &context, FunctionRef<Type<TypeCategory::Complex, KIND>> &&); |
1151 | template <int KIND> |
1152 | Expr<Type<TypeCategory::Logical, KIND>> FoldIntrinsicFunction( |
1153 | FoldingContext &context, FunctionRef<Type<TypeCategory::Logical, KIND>> &&); |
1154 | |
1155 | template <typename T> |
1156 | Expr<T> FoldOperation(FoldingContext &context, FunctionRef<T> &&funcRef) { |
1157 | ActualArguments &args{funcRef.arguments()}; |
1158 | const auto *intrinsic{std::get_if<SpecificIntrinsic>(&funcRef.proc().u)}; |
1159 | if (!intrinsic || intrinsic->name != "kind" ) { |
1160 | // Don't fold the argument to KIND(); it might be a TypeParamInquiry |
1161 | // with a forced result type that doesn't match the parameter. |
1162 | for (std::optional<ActualArgument> &arg : args) { |
1163 | if (auto *expr{UnwrapExpr<Expr<SomeType>>(arg)}) { |
1164 | *expr = Fold(context, std::move(*expr)); |
1165 | } |
1166 | } |
1167 | } |
1168 | if (intrinsic) { |
1169 | const std::string name{intrinsic->name}; |
1170 | if (name == "cshift" ) { |
1171 | return Folder<T>{context}.CSHIFT(std::move(funcRef)); |
1172 | } else if (name == "eoshift" ) { |
1173 | return Folder<T>{context}.EOSHIFT(std::move(funcRef)); |
1174 | } else if (name == "merge" ) { |
1175 | return Folder<T>{context}.MERGE(std::move(funcRef)); |
1176 | } else if (name == "pack" ) { |
1177 | return Folder<T>{context}.PACK(std::move(funcRef)); |
1178 | } else if (name == "reshape" ) { |
1179 | return Folder<T>{context}.RESHAPE(std::move(funcRef)); |
1180 | } else if (name == "spread" ) { |
1181 | return Folder<T>{context}.SPREAD(std::move(funcRef)); |
1182 | } else if (name == "transfer" ) { |
1183 | return Folder<T>{context}.TRANSFER(std::move(funcRef)); |
1184 | } else if (name == "transpose" ) { |
1185 | return Folder<T>{context}.TRANSPOSE(std::move(funcRef)); |
1186 | } else if (name == "unpack" ) { |
1187 | return Folder<T>{context}.UNPACK(std::move(funcRef)); |
1188 | } |
1189 | // TODO: extends_type_of, same_type_as |
1190 | if constexpr (!std::is_same_v<T, SomeDerived>) { |
1191 | return FoldIntrinsicFunction(context, std::move(funcRef)); |
1192 | } |
1193 | } |
1194 | return Expr<T>{std::move(funcRef)}; |
1195 | } |
1196 | |
1197 | Expr<ImpliedDoIndex::Result> FoldOperation(FoldingContext &, ImpliedDoIndex &&); |
1198 | |
1199 | // Array constructor folding |
1200 | template <typename T> class ArrayConstructorFolder { |
1201 | public: |
1202 | explicit ArrayConstructorFolder(FoldingContext &c) : context_{c} {} |
1203 | |
1204 | Expr<T> FoldArray(ArrayConstructor<T> &&array) { |
1205 | // Calls FoldArray(const ArrayConstructorValues<T> &) below |
1206 | if (FoldArray(array)) { |
1207 | auto n{static_cast<ConstantSubscript>(elements_.size())}; |
1208 | if constexpr (std::is_same_v<T, SomeDerived>) { |
1209 | return Expr<T>{Constant<T>{array.GetType().GetDerivedTypeSpec(), |
1210 | std::move(elements_), ConstantSubscripts{n}}}; |
1211 | } else if constexpr (T::category == TypeCategory::Character) { |
1212 | if (const auto *len{array.LEN()}) { |
1213 | auto length{Fold(context_, common::Clone(*len))}; |
1214 | if (std::optional<ConstantSubscript> lengthValue{ToInt64(length)}) { |
1215 | return Expr<T>{Constant<T>{ |
1216 | *lengthValue, std::move(elements_), ConstantSubscripts{n}}}; |
1217 | } |
1218 | } |
1219 | } else { |
1220 | return Expr<T>{ |
1221 | Constant<T>{std::move(elements_), ConstantSubscripts{n}}}; |
1222 | } |
1223 | } |
1224 | return Expr<T>{std::move(array)}; |
1225 | } |
1226 | |
1227 | private: |
1228 | bool FoldArray(const Expr<T> &expr) { |
1229 | Expr<T> folded{Fold(context_, common::Clone(expr))}; |
1230 | if (const auto *c{UnwrapConstantValue<T>(folded)}) { |
1231 | // Copy elements in Fortran array element order |
1232 | if (!c->empty()) { |
1233 | ConstantSubscripts index{c->lbounds()}; |
1234 | do { |
1235 | elements_.emplace_back(c->At(index)); |
1236 | } while (c->IncrementSubscripts(index)); |
1237 | } |
1238 | return true; |
1239 | } else { |
1240 | return false; |
1241 | } |
1242 | } |
1243 | bool FoldArray(const common::CopyableIndirection<Expr<T>> &expr) { |
1244 | return FoldArray(expr.value()); |
1245 | } |
1246 | bool FoldArray(const ImpliedDo<T> &iDo) { |
1247 | Expr<SubscriptInteger> lower{ |
1248 | Fold(context_, Expr<SubscriptInteger>{iDo.lower()})}; |
1249 | Expr<SubscriptInteger> upper{ |
1250 | Fold(context_, Expr<SubscriptInteger>{iDo.upper()})}; |
1251 | Expr<SubscriptInteger> stride{ |
1252 | Fold(context_, Expr<SubscriptInteger>{iDo.stride()})}; |
1253 | std::optional<ConstantSubscript> start{ToInt64(lower)}, end{ToInt64(upper)}, |
1254 | step{ToInt64(stride)}; |
1255 | if (start && end && step && *step != 0) { |
1256 | bool result{true}; |
1257 | ConstantSubscript &j{context_.StartImpliedDo(iDo.name(), *start)}; |
1258 | if (*step > 0) { |
1259 | for (; j <= *end; j += *step) { |
1260 | result &= FoldArray(iDo.values()); |
1261 | } |
1262 | } else { |
1263 | for (; j >= *end; j += *step) { |
1264 | result &= FoldArray(iDo.values()); |
1265 | } |
1266 | } |
1267 | context_.EndImpliedDo(iDo.name()); |
1268 | return result; |
1269 | } else { |
1270 | return false; |
1271 | } |
1272 | } |
1273 | bool FoldArray(const ArrayConstructorValue<T> &x) { |
1274 | return common::visit([&](const auto &y) { return FoldArray(y); }, x.u); |
1275 | } |
1276 | bool FoldArray(const ArrayConstructorValues<T> &xs) { |
1277 | for (const auto &x : xs) { |
1278 | if (!FoldArray(x)) { |
1279 | return false; |
1280 | } |
1281 | } |
1282 | return true; |
1283 | } |
1284 | |
1285 | FoldingContext &context_; |
1286 | std::vector<Scalar<T>> elements_; |
1287 | }; |
1288 | |
1289 | template <typename T> |
1290 | Expr<T> FoldOperation(FoldingContext &context, ArrayConstructor<T> &&array) { |
1291 | return ArrayConstructorFolder<T>{context}.FoldArray(std::move(array)); |
1292 | } |
1293 | |
1294 | // Array operation elemental application: When all operands to an operation |
1295 | // are constant arrays, array constructors without any implied DO loops, |
1296 | // &/or expanded scalars, pull the operation "into" the array result by |
1297 | // applying it in an elementwise fashion. For example, [A,1]+[B,2] |
1298 | // is rewritten into [A+B,1+2] and then partially folded to [A+B,3]. |
1299 | |
1300 | // If possible, restructures an array expression into an array constructor |
1301 | // that comprises a "flat" ArrayConstructorValues with no implied DO loops. |
1302 | template <typename T> |
1303 | bool ArrayConstructorIsFlat(const ArrayConstructorValues<T> &values) { |
1304 | for (const ArrayConstructorValue<T> &x : values) { |
1305 | if (!std::holds_alternative<Expr<T>>(x.u)) { |
1306 | return false; |
1307 | } |
1308 | } |
1309 | return true; |
1310 | } |
1311 | |
1312 | template <typename T> |
1313 | std::optional<Expr<T>> AsFlatArrayConstructor(const Expr<T> &expr) { |
1314 | if (const auto *c{UnwrapConstantValue<T>(expr)}) { |
1315 | ArrayConstructor<T> result{expr}; |
1316 | if (!c->empty()) { |
1317 | ConstantSubscripts at{c->lbounds()}; |
1318 | do { |
1319 | result.Push(Expr<T>{Constant<T>{c->At(at)}}); |
1320 | } while (c->IncrementSubscripts(at)); |
1321 | } |
1322 | return std::make_optional<Expr<T>>(std::move(result)); |
1323 | } else if (const auto *a{UnwrapExpr<ArrayConstructor<T>>(expr)}) { |
1324 | if (ArrayConstructorIsFlat(*a)) { |
1325 | return std::make_optional<Expr<T>>(expr); |
1326 | } |
1327 | } else if (const auto *p{UnwrapExpr<Parentheses<T>>(expr)}) { |
1328 | return AsFlatArrayConstructor(Expr<T>{p->left()}); |
1329 | } |
1330 | return std::nullopt; |
1331 | } |
1332 | |
1333 | template <TypeCategory CAT> |
1334 | std::enable_if_t<CAT != TypeCategory::Derived, |
1335 | std::optional<Expr<SomeKind<CAT>>>> |
1336 | AsFlatArrayConstructor(const Expr<SomeKind<CAT>> &expr) { |
1337 | return common::visit( |
1338 | [&](const auto &kindExpr) -> std::optional<Expr<SomeKind<CAT>>> { |
1339 | if (auto flattened{AsFlatArrayConstructor(kindExpr)}) { |
1340 | return Expr<SomeKind<CAT>>{std::move(*flattened)}; |
1341 | } else { |
1342 | return std::nullopt; |
1343 | } |
1344 | }, |
1345 | expr.u); |
1346 | } |
1347 | |
1348 | // FromArrayConstructor is a subroutine for MapOperation() below. |
1349 | // Given a flat ArrayConstructor<T> and a shape, it wraps the array |
1350 | // into an Expr<T>, folds it, and returns the resulting wrapped |
1351 | // array constructor or constant array value. |
1352 | template <typename T> |
1353 | std::optional<Expr<T>> FromArrayConstructor( |
1354 | FoldingContext &context, ArrayConstructor<T> &&values, const Shape &shape) { |
1355 | if (auto constShape{AsConstantExtents(context, shape)}) { |
1356 | Expr<T> result{Fold(context, Expr<T>{std::move(values)})}; |
1357 | if (auto *constant{UnwrapConstantValue<T>(result)}) { |
1358 | // Elements and shape are both constant. |
1359 | return Expr<T>{constant->Reshape(std::move(*constShape))}; |
1360 | } |
1361 | if (constShape->size() == 1) { |
1362 | if (auto elements{GetShape(context, result)}) { |
1363 | if (auto constElements{AsConstantExtents(context, *elements)}) { |
1364 | if (constElements->size() == 1 && |
1365 | constElements->at(0) == constShape->at(0)) { |
1366 | // Elements are not constant, but array constructor has |
1367 | // the right known shape and can be simply returned as is. |
1368 | return std::move(result); |
1369 | } |
1370 | } |
1371 | } |
1372 | } |
1373 | } |
1374 | return std::nullopt; |
1375 | } |
1376 | |
1377 | // MapOperation is a utility for various specializations of ApplyElementwise() |
1378 | // that follow. Given one or two flat ArrayConstructor<OPERAND> (wrapped in an |
1379 | // Expr<OPERAND>) for some specific operand type(s), apply a given function f |
1380 | // to each of their corresponding elements to produce a flat |
1381 | // ArrayConstructor<RESULT> (wrapped in an Expr<RESULT>). |
1382 | // Preserves shape. |
1383 | |
1384 | // Unary case |
1385 | template <typename RESULT, typename OPERAND> |
1386 | std::optional<Expr<RESULT>> MapOperation(FoldingContext &context, |
1387 | std::function<Expr<RESULT>(Expr<OPERAND> &&)> &&f, const Shape &shape, |
1388 | [[maybe_unused]] std::optional<Expr<SubscriptInteger>> &&length, |
1389 | Expr<OPERAND> &&values) { |
1390 | ArrayConstructor<RESULT> result{values}; |
1391 | if constexpr (common::HasMember<OPERAND, AllIntrinsicCategoryTypes>) { |
1392 | common::visit( |
1393 | [&](auto &&kindExpr) { |
1394 | using kindType = ResultType<decltype(kindExpr)>; |
1395 | auto &aConst{std::get<ArrayConstructor<kindType>>(kindExpr.u)}; |
1396 | for (auto &acValue : aConst) { |
1397 | auto &scalar{std::get<Expr<kindType>>(acValue.u)}; |
1398 | result.Push(Fold(context, f(Expr<OPERAND>{std::move(scalar)}))); |
1399 | } |
1400 | }, |
1401 | std::move(values.u)); |
1402 | } else { |
1403 | auto &aConst{std::get<ArrayConstructor<OPERAND>>(values.u)}; |
1404 | for (auto &acValue : aConst) { |
1405 | auto &scalar{std::get<Expr<OPERAND>>(acValue.u)}; |
1406 | result.Push(Fold(context, f(std::move(scalar)))); |
1407 | } |
1408 | } |
1409 | if constexpr (RESULT::category == TypeCategory::Character) { |
1410 | if (length) { |
1411 | result.set_LEN(std::move(*length)); |
1412 | } |
1413 | } |
1414 | return FromArrayConstructor(context, std::move(result), shape); |
1415 | } |
1416 | |
1417 | template <typename RESULT, typename A> |
1418 | ArrayConstructor<RESULT> ArrayConstructorFromMold( |
1419 | const A &prototype, std::optional<Expr<SubscriptInteger>> &&length) { |
1420 | ArrayConstructor<RESULT> result{prototype}; |
1421 | if constexpr (RESULT::category == TypeCategory::Character) { |
1422 | if (length) { |
1423 | result.set_LEN(std::move(*length)); |
1424 | } |
1425 | } |
1426 | return result; |
1427 | } |
1428 | |
1429 | template <typename LEFT, typename RIGHT> |
1430 | bool ShapesMatch(FoldingContext &context, |
1431 | const ArrayConstructor<LEFT> &leftArrConst, |
1432 | const ArrayConstructor<RIGHT> &rightArrConst) { |
1433 | auto rightIter{rightArrConst.begin()}; |
1434 | for (auto &leftValue : leftArrConst) { |
1435 | CHECK(rightIter != rightArrConst.end()); |
1436 | auto &leftExpr{std::get<Expr<LEFT>>(leftValue.u)}; |
1437 | auto &rightExpr{std::get<Expr<RIGHT>>(rightIter->u)}; |
1438 | if (leftExpr.Rank() != rightExpr.Rank()) { |
1439 | return false; |
1440 | } |
1441 | std::optional<Shape> leftShape{GetShape(context, leftExpr)}; |
1442 | std::optional<Shape> rightShape{GetShape(context, rightExpr)}; |
1443 | if (!leftShape || !rightShape || *leftShape != *rightShape) { |
1444 | return false; |
1445 | } |
1446 | ++rightIter; |
1447 | } |
1448 | return true; |
1449 | } |
1450 | |
1451 | // array * array case |
1452 | template <typename RESULT, typename LEFT, typename RIGHT> |
1453 | auto MapOperation(FoldingContext &context, |
1454 | std::function<Expr<RESULT>(Expr<LEFT> &&, Expr<RIGHT> &&)> &&f, |
1455 | const Shape &shape, std::optional<Expr<SubscriptInteger>> &&length, |
1456 | Expr<LEFT> &&leftValues, Expr<RIGHT> &&rightValues) |
1457 | -> std::optional<Expr<RESULT>> { |
1458 | auto result{ArrayConstructorFromMold<RESULT>(leftValues, std::move(length))}; |
1459 | auto &leftArrConst{std::get<ArrayConstructor<LEFT>>(leftValues.u)}; |
1460 | if constexpr (common::HasMember<RIGHT, AllIntrinsicCategoryTypes>) { |
1461 | bool mapped{common::visit( |
1462 | [&](auto &&kindExpr) -> bool { |
1463 | using kindType = ResultType<decltype(kindExpr)>; |
1464 | |
1465 | auto &rightArrConst{std::get<ArrayConstructor<kindType>>(kindExpr.u)}; |
1466 | if (!ShapesMatch(context, leftArrConst, rightArrConst)) { |
1467 | return false; |
1468 | } |
1469 | auto rightIter{rightArrConst.begin()}; |
1470 | for (auto &leftValue : leftArrConst) { |
1471 | CHECK(rightIter != rightArrConst.end()); |
1472 | auto &leftScalar{std::get<Expr<LEFT>>(leftValue.u)}; |
1473 | auto &rightScalar{std::get<Expr<kindType>>(rightIter->u)}; |
1474 | result.Push(Fold(context, |
1475 | f(std::move(leftScalar), Expr<RIGHT>{std::move(rightScalar)}))); |
1476 | ++rightIter; |
1477 | } |
1478 | return true; |
1479 | }, |
1480 | std::move(rightValues.u))}; |
1481 | if (!mapped) { |
1482 | return std::nullopt; |
1483 | } |
1484 | } else { |
1485 | auto &rightArrConst{std::get<ArrayConstructor<RIGHT>>(rightValues.u)}; |
1486 | if (!ShapesMatch(context, leftArrConst, rightArrConst)) { |
1487 | return std::nullopt; |
1488 | } |
1489 | auto rightIter{rightArrConst.begin()}; |
1490 | for (auto &leftValue : leftArrConst) { |
1491 | CHECK(rightIter != rightArrConst.end()); |
1492 | auto &leftScalar{std::get<Expr<LEFT>>(leftValue.u)}; |
1493 | auto &rightScalar{std::get<Expr<RIGHT>>(rightIter->u)}; |
1494 | result.Push( |
1495 | Fold(context, f(std::move(leftScalar), std::move(rightScalar)))); |
1496 | ++rightIter; |
1497 | } |
1498 | } |
1499 | return FromArrayConstructor(context, std::move(result), shape); |
1500 | } |
1501 | |
1502 | // array * scalar case |
1503 | template <typename RESULT, typename LEFT, typename RIGHT> |
1504 | auto MapOperation(FoldingContext &context, |
1505 | std::function<Expr<RESULT>(Expr<LEFT> &&, Expr<RIGHT> &&)> &&f, |
1506 | const Shape &shape, std::optional<Expr<SubscriptInteger>> &&length, |
1507 | Expr<LEFT> &&leftValues, const Expr<RIGHT> &rightScalar) |
1508 | -> std::optional<Expr<RESULT>> { |
1509 | auto result{ArrayConstructorFromMold<RESULT>(leftValues, std::move(length))}; |
1510 | auto &leftArrConst{std::get<ArrayConstructor<LEFT>>(leftValues.u)}; |
1511 | for (auto &leftValue : leftArrConst) { |
1512 | auto &leftScalar{std::get<Expr<LEFT>>(leftValue.u)}; |
1513 | result.Push( |
1514 | Fold(context, f(std::move(leftScalar), Expr<RIGHT>{rightScalar}))); |
1515 | } |
1516 | return FromArrayConstructor(context, std::move(result), shape); |
1517 | } |
1518 | |
1519 | // scalar * array case |
1520 | template <typename RESULT, typename LEFT, typename RIGHT> |
1521 | auto MapOperation(FoldingContext &context, |
1522 | std::function<Expr<RESULT>(Expr<LEFT> &&, Expr<RIGHT> &&)> &&f, |
1523 | const Shape &shape, std::optional<Expr<SubscriptInteger>> &&length, |
1524 | const Expr<LEFT> &leftScalar, Expr<RIGHT> &&rightValues) |
1525 | -> std::optional<Expr<RESULT>> { |
1526 | auto result{ArrayConstructorFromMold<RESULT>(leftScalar, std::move(length))}; |
1527 | if constexpr (common::HasMember<RIGHT, AllIntrinsicCategoryTypes>) { |
1528 | common::visit( |
1529 | [&](auto &&kindExpr) { |
1530 | using kindType = ResultType<decltype(kindExpr)>; |
1531 | auto &rightArrConst{std::get<ArrayConstructor<kindType>>(kindExpr.u)}; |
1532 | for (auto &rightValue : rightArrConst) { |
1533 | auto &rightScalar{std::get<Expr<kindType>>(rightValue.u)}; |
1534 | result.Push(Fold(context, |
1535 | f(Expr<LEFT>{leftScalar}, |
1536 | Expr<RIGHT>{std::move(rightScalar)}))); |
1537 | } |
1538 | }, |
1539 | std::move(rightValues.u)); |
1540 | } else { |
1541 | auto &rightArrConst{std::get<ArrayConstructor<RIGHT>>(rightValues.u)}; |
1542 | for (auto &rightValue : rightArrConst) { |
1543 | auto &rightScalar{std::get<Expr<RIGHT>>(rightValue.u)}; |
1544 | result.Push( |
1545 | Fold(context, f(Expr<LEFT>{leftScalar}, std::move(rightScalar)))); |
1546 | } |
1547 | } |
1548 | return FromArrayConstructor(context, std::move(result), shape); |
1549 | } |
1550 | |
1551 | template <typename DERIVED, typename RESULT, typename... OPD> |
1552 | std::optional<Expr<SubscriptInteger>> ComputeResultLength( |
1553 | Operation<DERIVED, RESULT, OPD...> &operation) { |
1554 | if constexpr (RESULT::category == TypeCategory::Character) { |
1555 | return Expr<RESULT>{operation.derived()}.LEN(); |
1556 | } |
1557 | return std::nullopt; |
1558 | } |
1559 | |
1560 | // ApplyElementwise() recursively folds the operand expression(s) of an |
1561 | // operation, then attempts to apply the operation to the (corresponding) |
1562 | // scalar element(s) of those operands. Returns std::nullopt for scalars |
1563 | // or unlinearizable operands. |
1564 | template <typename DERIVED, typename RESULT, typename OPERAND> |
1565 | auto ApplyElementwise(FoldingContext &context, |
1566 | Operation<DERIVED, RESULT, OPERAND> &operation, |
1567 | std::function<Expr<RESULT>(Expr<OPERAND> &&)> &&f) |
1568 | -> std::optional<Expr<RESULT>> { |
1569 | auto &expr{operation.left()}; |
1570 | expr = Fold(context, std::move(expr)); |
1571 | if (expr.Rank() > 0) { |
1572 | if (std::optional<Shape> shape{GetShape(context, expr)}) { |
1573 | if (auto values{AsFlatArrayConstructor(expr)}) { |
1574 | return MapOperation(context, std::move(f), *shape, |
1575 | ComputeResultLength(operation), std::move(*values)); |
1576 | } |
1577 | } |
1578 | } |
1579 | return std::nullopt; |
1580 | } |
1581 | |
1582 | template <typename DERIVED, typename RESULT, typename OPERAND> |
1583 | auto ApplyElementwise( |
1584 | FoldingContext &context, Operation<DERIVED, RESULT, OPERAND> &operation) |
1585 | -> std::optional<Expr<RESULT>> { |
1586 | return ApplyElementwise(context, operation, |
1587 | std::function<Expr<RESULT>(Expr<OPERAND> &&)>{ |
1588 | [](Expr<OPERAND> &&operand) { |
1589 | return Expr<RESULT>{DERIVED{std::move(operand)}}; |
1590 | }}); |
1591 | } |
1592 | |
1593 | template <typename DERIVED, typename RESULT, typename LEFT, typename RIGHT> |
1594 | auto ApplyElementwise(FoldingContext &context, |
1595 | Operation<DERIVED, RESULT, LEFT, RIGHT> &operation, |
1596 | std::function<Expr<RESULT>(Expr<LEFT> &&, Expr<RIGHT> &&)> &&f) |
1597 | -> std::optional<Expr<RESULT>> { |
1598 | auto resultLength{ComputeResultLength(operation)}; |
1599 | auto &leftExpr{operation.left()}; |
1600 | leftExpr = Fold(context, std::move(leftExpr)); |
1601 | auto &rightExpr{operation.right()}; |
1602 | rightExpr = Fold(context, std::move(rightExpr)); |
1603 | if (leftExpr.Rank() > 0) { |
1604 | if (std::optional<Shape> leftShape{GetShape(context, leftExpr)}) { |
1605 | if (auto left{AsFlatArrayConstructor(leftExpr)}) { |
1606 | if (rightExpr.Rank() > 0) { |
1607 | if (std::optional<Shape> rightShape{GetShape(context, rightExpr)}) { |
1608 | if (auto right{AsFlatArrayConstructor(rightExpr)}) { |
1609 | if (CheckConformance(context.messages(), *leftShape, *rightShape, |
1610 | CheckConformanceFlags::EitherScalarExpandable) |
1611 | .value_or(false /*fail if not known now to conform*/)) { |
1612 | return MapOperation(context, std::move(f), *leftShape, |
1613 | std::move(resultLength), std::move(*left), |
1614 | std::move(*right)); |
1615 | } else { |
1616 | return std::nullopt; |
1617 | } |
1618 | return MapOperation(context, std::move(f), *leftShape, |
1619 | std::move(resultLength), std::move(*left), std::move(*right)); |
1620 | } |
1621 | } |
1622 | } else if (IsExpandableScalar(rightExpr, context, *leftShape)) { |
1623 | return MapOperation(context, std::move(f), *leftShape, |
1624 | std::move(resultLength), std::move(*left), rightExpr); |
1625 | } |
1626 | } |
1627 | } |
1628 | } else if (rightExpr.Rank() > 0) { |
1629 | if (std::optional<Shape> rightShape{GetShape(context, rightExpr)}) { |
1630 | if (IsExpandableScalar(leftExpr, context, *rightShape)) { |
1631 | if (auto right{AsFlatArrayConstructor(rightExpr)}) { |
1632 | return MapOperation(context, std::move(f), *rightShape, |
1633 | std::move(resultLength), leftExpr, std::move(*right)); |
1634 | } |
1635 | } |
1636 | } |
1637 | } |
1638 | return std::nullopt; |
1639 | } |
1640 | |
1641 | template <typename DERIVED, typename RESULT, typename LEFT, typename RIGHT> |
1642 | auto ApplyElementwise( |
1643 | FoldingContext &context, Operation<DERIVED, RESULT, LEFT, RIGHT> &operation) |
1644 | -> std::optional<Expr<RESULT>> { |
1645 | return ApplyElementwise(context, operation, |
1646 | std::function<Expr<RESULT>(Expr<LEFT> &&, Expr<RIGHT> &&)>{ |
1647 | [](Expr<LEFT> &&left, Expr<RIGHT> &&right) { |
1648 | return Expr<RESULT>{DERIVED{std::move(left), std::move(right)}}; |
1649 | }}); |
1650 | } |
1651 | |
1652 | // Unary operations |
1653 | |
1654 | template <typename TO, typename FROM> |
1655 | common::IfNoLvalue<std::optional<TO>, FROM> ConvertString(FROM &&s) { |
1656 | if constexpr (std::is_same_v<TO, FROM>) { |
1657 | return std::make_optional<TO>(std::move(s)); |
1658 | } else { |
1659 | // Fortran character conversion is well defined between distinct kinds |
1660 | // only when the actual characters are valid 7-bit ASCII. |
1661 | TO str; |
1662 | for (auto iter{s.cbegin()}; iter != s.cend(); ++iter) { |
1663 | if (static_cast<std::uint64_t>(*iter) > 127) { |
1664 | return std::nullopt; |
1665 | } |
1666 | str.push_back(*iter); |
1667 | } |
1668 | return std::make_optional<TO>(std::move(str)); |
1669 | } |
1670 | } |
1671 | |
1672 | template <typename TO, TypeCategory FROMCAT> |
1673 | Expr<TO> FoldOperation( |
1674 | FoldingContext &context, Convert<TO, FROMCAT> &&convert) { |
1675 | if (auto array{ApplyElementwise(context, convert)}) { |
1676 | return *array; |
1677 | } |
1678 | struct { |
1679 | FoldingContext &context; |
1680 | Convert<TO, FROMCAT> &convert; |
1681 | } msvcWorkaround{context, convert}; |
1682 | return common::visit( |
1683 | [&msvcWorkaround](auto &kindExpr) -> Expr<TO> { |
1684 | using Operand = ResultType<decltype(kindExpr)>; |
1685 | // This variable is a workaround for msvc which emits an error when |
1686 | // using the FROMCAT template parameter below. |
1687 | TypeCategory constexpr FromCat{FROMCAT}; |
1688 | static_assert(FromCat == Operand::category); |
1689 | auto &convert{msvcWorkaround.convert}; |
1690 | if (auto value{GetScalarConstantValue<Operand>(kindExpr)}) { |
1691 | FoldingContext &ctx{msvcWorkaround.context}; |
1692 | if constexpr (TO::category == TypeCategory::Integer) { |
1693 | if constexpr (FromCat == TypeCategory::Integer) { |
1694 | auto converted{Scalar<TO>::ConvertSigned(*value)}; |
1695 | if (converted.overflow) { |
1696 | ctx.messages().Say( |
1697 | "INTEGER(%d) to INTEGER(%d) conversion overflowed"_warn_en_US , |
1698 | Operand::kind, TO::kind); |
1699 | } |
1700 | return ScalarConstantToExpr(std::move(converted.value)); |
1701 | } else if constexpr (FromCat == TypeCategory::Real) { |
1702 | auto converted{value->template ToInteger<Scalar<TO>>()}; |
1703 | if (converted.flags.test(RealFlag::InvalidArgument)) { |
1704 | ctx.messages().Say( |
1705 | "REAL(%d) to INTEGER(%d) conversion: invalid argument"_warn_en_US , |
1706 | Operand::kind, TO::kind); |
1707 | } else if (converted.flags.test(RealFlag::Overflow)) { |
1708 | ctx.messages().Say( |
1709 | "REAL(%d) to INTEGER(%d) conversion overflowed"_warn_en_US , |
1710 | Operand::kind, TO::kind); |
1711 | } |
1712 | return ScalarConstantToExpr(std::move(converted.value)); |
1713 | } |
1714 | } else if constexpr (TO::category == TypeCategory::Real) { |
1715 | if constexpr (FromCat == TypeCategory::Integer) { |
1716 | auto converted{Scalar<TO>::FromInteger(*value)}; |
1717 | if (!converted.flags.empty()) { |
1718 | char buffer[64]; |
1719 | std::snprintf(buffer, sizeof buffer, |
1720 | "INTEGER(%d) to REAL(%d) conversion" , Operand::kind, |
1721 | TO::kind); |
1722 | RealFlagWarnings(ctx, converted.flags, buffer); |
1723 | } |
1724 | return ScalarConstantToExpr(std::move(converted.value)); |
1725 | } else if constexpr (FromCat == TypeCategory::Real) { |
1726 | auto converted{Scalar<TO>::Convert(*value)}; |
1727 | char buffer[64]; |
1728 | if (!converted.flags.empty()) { |
1729 | std::snprintf(buffer, sizeof buffer, |
1730 | "REAL(%d) to REAL(%d) conversion" , Operand::kind, TO::kind); |
1731 | RealFlagWarnings(ctx, converted.flags, buffer); |
1732 | } |
1733 | if (ctx.targetCharacteristics().areSubnormalsFlushedToZero()) { |
1734 | converted.value = converted.value.FlushSubnormalToZero(); |
1735 | } |
1736 | return ScalarConstantToExpr(std::move(converted.value)); |
1737 | } |
1738 | } else if constexpr (TO::category == TypeCategory::Complex) { |
1739 | if constexpr (FromCat == TypeCategory::Complex) { |
1740 | return FoldOperation(ctx, |
1741 | ComplexConstructor<TO::kind>{ |
1742 | AsExpr(Convert<typename TO::Part>{AsCategoryExpr( |
1743 | Constant<typename Operand::Part>{value->REAL()})}), |
1744 | AsExpr(Convert<typename TO::Part>{AsCategoryExpr( |
1745 | Constant<typename Operand::Part>{value->AIMAG()})})}); |
1746 | } |
1747 | } else if constexpr (TO::category == TypeCategory::Character && |
1748 | FromCat == TypeCategory::Character) { |
1749 | if (auto converted{ConvertString<Scalar<TO>>(std::move(*value))}) { |
1750 | return ScalarConstantToExpr(std::move(*converted)); |
1751 | } |
1752 | } else if constexpr (TO::category == TypeCategory::Logical && |
1753 | FromCat == TypeCategory::Logical) { |
1754 | return Expr<TO>{value->IsTrue()}; |
1755 | } |
1756 | } else if constexpr (TO::category == FromCat && |
1757 | FromCat != TypeCategory::Character) { |
1758 | // Conversion of non-constant in same type category |
1759 | if constexpr (std::is_same_v<Operand, TO>) { |
1760 | return std::move(kindExpr); // remove needless conversion |
1761 | } else if constexpr (TO::category == TypeCategory::Logical || |
1762 | TO::category == TypeCategory::Integer) { |
1763 | if (auto *innerConv{ |
1764 | std::get_if<Convert<Operand, TO::category>>(&kindExpr.u)}) { |
1765 | // Conversion of conversion of same category & kind |
1766 | if (auto *x{std::get_if<Expr<TO>>(&innerConv->left().u)}) { |
1767 | if constexpr (TO::category == TypeCategory::Logical || |
1768 | TO::kind <= Operand::kind) { |
1769 | return std::move(*x); // no-op Logical or Integer |
1770 | // widening/narrowing conversion pair |
1771 | } else if constexpr (std::is_same_v<TO, |
1772 | DescriptorInquiry::Result>) { |
1773 | if (std::holds_alternative<DescriptorInquiry>(x->u) || |
1774 | std::holds_alternative<TypeParamInquiry>(x->u)) { |
1775 | // int(int(size(...),kind=k),kind=8) -> size(...) |
1776 | return std::move(*x); |
1777 | } |
1778 | } |
1779 | } |
1780 | } |
1781 | } |
1782 | } |
1783 | return Expr<TO>{std::move(convert)}; |
1784 | }, |
1785 | convert.left().u); |
1786 | } |
1787 | |
1788 | template <typename T> |
1789 | Expr<T> FoldOperation(FoldingContext &context, Parentheses<T> &&x) { |
1790 | auto &operand{x.left()}; |
1791 | operand = Fold(context, std::move(operand)); |
1792 | if (auto value{GetScalarConstantValue<T>(operand)}) { |
1793 | // Preserve parentheses, even around constants. |
1794 | return Expr<T>{Parentheses<T>{Expr<T>{Constant<T>{*value}}}}; |
1795 | } else if (std::holds_alternative<Parentheses<T>>(operand.u)) { |
1796 | // ((x)) -> (x) |
1797 | return std::move(operand); |
1798 | } else { |
1799 | return Expr<T>{Parentheses<T>{std::move(operand)}}; |
1800 | } |
1801 | } |
1802 | |
1803 | template <typename T> |
1804 | Expr<T> FoldOperation(FoldingContext &context, Negate<T> &&x) { |
1805 | if (auto array{ApplyElementwise(context, x)}) { |
1806 | return *array; |
1807 | } |
1808 | auto &operand{x.left()}; |
1809 | if (auto *nn{std::get_if<Negate<T>>(&x.left().u)}) { |
1810 | // -(-x) -> (x) |
1811 | if (IsVariable(nn->left())) { |
1812 | return FoldOperation(context, Parentheses<T>{std::move(nn->left())}); |
1813 | } else { |
1814 | return std::move(nn->left()); |
1815 | } |
1816 | } else if (auto value{GetScalarConstantValue<T>(operand)}) { |
1817 | if constexpr (T::category == TypeCategory::Integer) { |
1818 | auto negated{value->Negate()}; |
1819 | if (negated.overflow) { |
1820 | context.messages().Say( |
1821 | "INTEGER(%d) negation overflowed"_warn_en_US , T::kind); |
1822 | } |
1823 | return Expr<T>{Constant<T>{std::move(negated.value)}}; |
1824 | } else { |
1825 | // REAL & COMPLEX negation: no exceptions possible |
1826 | return Expr<T>{Constant<T>{value->Negate()}}; |
1827 | } |
1828 | } |
1829 | return Expr<T>{std::move(x)}; |
1830 | } |
1831 | |
1832 | // Binary (dyadic) operations |
1833 | |
1834 | template <typename LEFT, typename RIGHT> |
1835 | std::optional<std::pair<Scalar<LEFT>, Scalar<RIGHT>>> OperandsAreConstants( |
1836 | const Expr<LEFT> &x, const Expr<RIGHT> &y) { |
1837 | if (auto xvalue{GetScalarConstantValue<LEFT>(x)}) { |
1838 | if (auto yvalue{GetScalarConstantValue<RIGHT>(y)}) { |
1839 | return {std::make_pair(*xvalue, *yvalue)}; |
1840 | } |
1841 | } |
1842 | return std::nullopt; |
1843 | } |
1844 | |
1845 | template <typename DERIVED, typename RESULT, typename LEFT, typename RIGHT> |
1846 | std::optional<std::pair<Scalar<LEFT>, Scalar<RIGHT>>> OperandsAreConstants( |
1847 | const Operation<DERIVED, RESULT, LEFT, RIGHT> &operation) { |
1848 | return OperandsAreConstants(operation.left(), operation.right()); |
1849 | } |
1850 | |
1851 | template <typename T> |
1852 | Expr<T> FoldOperation(FoldingContext &context, Add<T> &&x) { |
1853 | if (auto array{ApplyElementwise(context, x)}) { |
1854 | return *array; |
1855 | } |
1856 | if (auto folded{OperandsAreConstants(x)}) { |
1857 | if constexpr (T::category == TypeCategory::Integer) { |
1858 | auto sum{folded->first.AddSigned(folded->second)}; |
1859 | if (sum.overflow) { |
1860 | context.messages().Say( |
1861 | "INTEGER(%d) addition overflowed"_warn_en_US , T::kind); |
1862 | } |
1863 | return Expr<T>{Constant<T>{sum.value}}; |
1864 | } else { |
1865 | auto sum{folded->first.Add( |
1866 | folded->second, context.targetCharacteristics().roundingMode())}; |
1867 | RealFlagWarnings(context, sum.flags, "addition" ); |
1868 | if (context.targetCharacteristics().areSubnormalsFlushedToZero()) { |
1869 | sum.value = sum.value.FlushSubnormalToZero(); |
1870 | } |
1871 | return Expr<T>{Constant<T>{sum.value}}; |
1872 | } |
1873 | } |
1874 | return Expr<T>{std::move(x)}; |
1875 | } |
1876 | |
1877 | template <typename T> |
1878 | Expr<T> FoldOperation(FoldingContext &context, Subtract<T> &&x) { |
1879 | if (auto array{ApplyElementwise(context, x)}) { |
1880 | return *array; |
1881 | } |
1882 | if (auto folded{OperandsAreConstants(x)}) { |
1883 | if constexpr (T::category == TypeCategory::Integer) { |
1884 | auto difference{folded->first.SubtractSigned(folded->second)}; |
1885 | if (difference.overflow) { |
1886 | context.messages().Say( |
1887 | "INTEGER(%d) subtraction overflowed"_warn_en_US , T::kind); |
1888 | } |
1889 | return Expr<T>{Constant<T>{difference.value}}; |
1890 | } else { |
1891 | auto difference{folded->first.Subtract( |
1892 | folded->second, context.targetCharacteristics().roundingMode())}; |
1893 | RealFlagWarnings(context, difference.flags, "subtraction" ); |
1894 | if (context.targetCharacteristics().areSubnormalsFlushedToZero()) { |
1895 | difference.value = difference.value.FlushSubnormalToZero(); |
1896 | } |
1897 | return Expr<T>{Constant<T>{difference.value}}; |
1898 | } |
1899 | } |
1900 | return Expr<T>{std::move(x)}; |
1901 | } |
1902 | |
1903 | template <typename T> |
1904 | Expr<T> FoldOperation(FoldingContext &context, Multiply<T> &&x) { |
1905 | if (auto array{ApplyElementwise(context, x)}) { |
1906 | return *array; |
1907 | } |
1908 | if (auto folded{OperandsAreConstants(x)}) { |
1909 | if constexpr (T::category == TypeCategory::Integer) { |
1910 | auto product{folded->first.MultiplySigned(folded->second)}; |
1911 | if (product.SignedMultiplicationOverflowed()) { |
1912 | context.messages().Say( |
1913 | "INTEGER(%d) multiplication overflowed"_warn_en_US , T::kind); |
1914 | } |
1915 | return Expr<T>{Constant<T>{product.lower}}; |
1916 | } else { |
1917 | auto product{folded->first.Multiply( |
1918 | folded->second, context.targetCharacteristics().roundingMode())}; |
1919 | RealFlagWarnings(context, product.flags, "multiplication" ); |
1920 | if (context.targetCharacteristics().areSubnormalsFlushedToZero()) { |
1921 | product.value = product.value.FlushSubnormalToZero(); |
1922 | } |
1923 | return Expr<T>{Constant<T>{product.value}}; |
1924 | } |
1925 | } else if constexpr (T::category == TypeCategory::Integer) { |
1926 | if (auto c{GetScalarConstantValue<T>(x.right())}) { |
1927 | x.right() = std::move(x.left()); |
1928 | x.left() = Expr<T>{std::move(*c)}; |
1929 | } |
1930 | if (auto c{GetScalarConstantValue<T>(x.left())}) { |
1931 | if (c->IsZero() && x.right().Rank() == 0) { |
1932 | return std::move(x.left()); |
1933 | } else if (c->CompareSigned(Scalar<T>{1}) == Ordering::Equal) { |
1934 | if (IsVariable(x.right())) { |
1935 | return FoldOperation(context, Parentheses<T>{std::move(x.right())}); |
1936 | } else { |
1937 | return std::move(x.right()); |
1938 | } |
1939 | } else if (c->CompareSigned(Scalar<T>{-1}) == Ordering::Equal) { |
1940 | return FoldOperation(context, Negate<T>{std::move(x.right())}); |
1941 | } |
1942 | } |
1943 | } |
1944 | return Expr<T>{std::move(x)}; |
1945 | } |
1946 | |
1947 | template <typename T> |
1948 | Expr<T> FoldOperation(FoldingContext &context, Divide<T> &&x) { |
1949 | if (auto array{ApplyElementwise(context, x)}) { |
1950 | return *array; |
1951 | } |
1952 | if (auto folded{OperandsAreConstants(x)}) { |
1953 | if constexpr (T::category == TypeCategory::Integer) { |
1954 | auto quotAndRem{folded->first.DivideSigned(folded->second)}; |
1955 | if (quotAndRem.divisionByZero) { |
1956 | context.messages().Say( |
1957 | "INTEGER(%d) division by zero"_warn_en_US , T::kind); |
1958 | return Expr<T>{std::move(x)}; |
1959 | } |
1960 | if (quotAndRem.overflow) { |
1961 | context.messages().Say( |
1962 | "INTEGER(%d) division overflowed"_warn_en_US , T::kind); |
1963 | } |
1964 | return Expr<T>{Constant<T>{quotAndRem.quotient}}; |
1965 | } else { |
1966 | auto quotient{folded->first.Divide( |
1967 | folded->second, context.targetCharacteristics().roundingMode())}; |
1968 | // Don't warn about -1./0., 0./0., or 1./0. from a module file |
1969 | // they are interpreted as canonical Fortran representations of -Inf, |
1970 | // NaN, and Inf respectively. |
1971 | bool isCanonicalNaNOrInf{false}; |
1972 | if constexpr (T::category == TypeCategory::Real) { |
1973 | if (folded->second.IsZero() && context.moduleFileName().has_value()) { |
1974 | using IntType = typename T::Scalar::Word; |
1975 | auto intNumerator{folded->first.template ToInteger<IntType>()}; |
1976 | isCanonicalNaNOrInf = intNumerator.flags == RealFlags{} && |
1977 | intNumerator.value >= IntType{-1} && |
1978 | intNumerator.value <= IntType{1}; |
1979 | } |
1980 | } |
1981 | if (!isCanonicalNaNOrInf) { |
1982 | RealFlagWarnings(context, quotient.flags, "division" ); |
1983 | } |
1984 | if (context.targetCharacteristics().areSubnormalsFlushedToZero()) { |
1985 | quotient.value = quotient.value.FlushSubnormalToZero(); |
1986 | } |
1987 | return Expr<T>{Constant<T>{quotient.value}}; |
1988 | } |
1989 | } |
1990 | return Expr<T>{std::move(x)}; |
1991 | } |
1992 | |
1993 | template <typename T> |
1994 | Expr<T> FoldOperation(FoldingContext &context, Power<T> &&x) { |
1995 | if (auto array{ApplyElementwise(context, x)}) { |
1996 | return *array; |
1997 | } |
1998 | if (auto folded{OperandsAreConstants(x)}) { |
1999 | if constexpr (T::category == TypeCategory::Integer) { |
2000 | auto power{folded->first.Power(folded->second)}; |
2001 | if (power.divisionByZero) { |
2002 | context.messages().Say( |
2003 | "INTEGER(%d) zero to negative power"_warn_en_US , T::kind); |
2004 | } else if (power.overflow) { |
2005 | context.messages().Say( |
2006 | "INTEGER(%d) power overflowed"_warn_en_US , T::kind); |
2007 | } else if (power.zeroToZero) { |
2008 | context.messages().Say( |
2009 | "INTEGER(%d) 0**0 is not defined"_warn_en_US , T::kind); |
2010 | } |
2011 | return Expr<T>{Constant<T>{power.power}}; |
2012 | } else { |
2013 | if (auto callable{GetHostRuntimeWrapper<T, T, T>("pow" )}) { |
2014 | return Expr<T>{ |
2015 | Constant<T>{(*callable)(context, folded->first, folded->second)}}; |
2016 | } else { |
2017 | context.messages().Say( |
2018 | "Power for %s cannot be folded on host"_warn_en_US , |
2019 | T{}.AsFortran()); |
2020 | } |
2021 | } |
2022 | } |
2023 | return Expr<T>{std::move(x)}; |
2024 | } |
2025 | |
2026 | template <typename T> |
2027 | Expr<T> FoldOperation(FoldingContext &context, RealToIntPower<T> &&x) { |
2028 | if (auto array{ApplyElementwise(context, x)}) { |
2029 | return *array; |
2030 | } |
2031 | return common::visit( |
2032 | [&](auto &y) -> Expr<T> { |
2033 | if (auto folded{OperandsAreConstants(x.left(), y)}) { |
2034 | auto power{evaluate::IntPower(folded->first, folded->second)}; |
2035 | RealFlagWarnings(context, power.flags, "power with INTEGER exponent" ); |
2036 | if (context.targetCharacteristics().areSubnormalsFlushedToZero()) { |
2037 | power.value = power.value.FlushSubnormalToZero(); |
2038 | } |
2039 | return Expr<T>{Constant<T>{power.value}}; |
2040 | } else { |
2041 | return Expr<T>{std::move(x)}; |
2042 | } |
2043 | }, |
2044 | x.right().u); |
2045 | } |
2046 | |
2047 | template <typename T> |
2048 | Expr<T> FoldOperation(FoldingContext &context, Extremum<T> &&x) { |
2049 | if (auto array{ApplyElementwise(context, x, |
2050 | std::function<Expr<T>(Expr<T> &&, Expr<T> &&)>{[=](Expr<T> &&l, |
2051 | Expr<T> &&r) { |
2052 | return Expr<T>{Extremum<T>{x.ordering, std::move(l), std::move(r)}}; |
2053 | }})}) { |
2054 | return *array; |
2055 | } |
2056 | if (auto folded{OperandsAreConstants(x)}) { |
2057 | if constexpr (T::category == TypeCategory::Integer) { |
2058 | if (folded->first.CompareSigned(folded->second) == x.ordering) { |
2059 | return Expr<T>{Constant<T>{folded->first}}; |
2060 | } |
2061 | } else if constexpr (T::category == TypeCategory::Real) { |
2062 | if (folded->first.IsNotANumber() || |
2063 | (folded->first.Compare(folded->second) == Relation::Less) == |
2064 | (x.ordering == Ordering::Less)) { |
2065 | return Expr<T>{Constant<T>{folded->first}}; |
2066 | } |
2067 | } else { |
2068 | static_assert(T::category == TypeCategory::Character); |
2069 | // Result of MIN and MAX on character has the length of |
2070 | // the longest argument. |
2071 | auto maxLen{std::max(folded->first.length(), folded->second.length())}; |
2072 | bool isFirst{x.ordering == Compare(folded->first, folded->second)}; |
2073 | auto res{isFirst ? std::move(folded->first) : std::move(folded->second)}; |
2074 | res = res.length() == maxLen |
2075 | ? std::move(res) |
2076 | : CharacterUtils<T::kind>::Resize(res, maxLen); |
2077 | return Expr<T>{Constant<T>{std::move(res)}}; |
2078 | } |
2079 | return Expr<T>{Constant<T>{folded->second}}; |
2080 | } |
2081 | return Expr<T>{std::move(x)}; |
2082 | } |
2083 | |
2084 | template <int KIND> |
2085 | Expr<Type<TypeCategory::Real, KIND>> ToReal( |
2086 | FoldingContext &context, Expr<SomeType> &&expr) { |
2087 | using Result = Type<TypeCategory::Real, KIND>; |
2088 | std::optional<Expr<Result>> result; |
2089 | common::visit( |
2090 | [&](auto &&x) { |
2091 | using From = std::decay_t<decltype(x)>; |
2092 | if constexpr (std::is_same_v<From, BOZLiteralConstant>) { |
2093 | // Move the bits without any integer->real conversion |
2094 | From original{x}; |
2095 | result = ConvertToType<Result>(std::move(x)); |
2096 | const auto *constant{UnwrapExpr<Constant<Result>>(*result)}; |
2097 | CHECK(constant); |
2098 | Scalar<Result> real{constant->GetScalarValue().value()}; |
2099 | From converted{From::ConvertUnsigned(real.RawBits()).value}; |
2100 | if (original != converted) { // C1601 |
2101 | context.messages().Say( |
2102 | "Nonzero bits truncated from BOZ literal constant in REAL intrinsic"_warn_en_US ); |
2103 | } |
2104 | } else if constexpr (IsNumericCategoryExpr<From>()) { |
2105 | result = Fold(context, ConvertToType<Result>(std::move(x))); |
2106 | } else { |
2107 | common::die("ToReal: bad argument expression" ); |
2108 | } |
2109 | }, |
2110 | std::move(expr.u)); |
2111 | return result.value(); |
2112 | } |
2113 | |
2114 | // REAL(z) and AIMAG(z) |
2115 | template <int KIND> |
2116 | Expr<Type<TypeCategory::Real, KIND>> FoldOperation( |
2117 | FoldingContext &context, ComplexComponent<KIND> &&x) { |
2118 | using Operand = Type<TypeCategory::Complex, KIND>; |
2119 | using Result = Type<TypeCategory::Real, KIND>; |
2120 | if (auto array{ApplyElementwise(context, x, |
2121 | std::function<Expr<Result>(Expr<Operand> &&)>{ |
2122 | [=](Expr<Operand> &&operand) { |
2123 | return Expr<Result>{ComplexComponent<KIND>{ |
2124 | x.isImaginaryPart, std::move(operand)}}; |
2125 | }})}) { |
2126 | return *array; |
2127 | } |
2128 | auto &operand{x.left()}; |
2129 | if (auto value{GetScalarConstantValue<Operand>(operand)}) { |
2130 | if (x.isImaginaryPart) { |
2131 | return Expr<Result>{Constant<Result>{value->AIMAG()}}; |
2132 | } else { |
2133 | return Expr<Result>{Constant<Result>{value->REAL()}}; |
2134 | } |
2135 | } |
2136 | return Expr<Result>{std::move(x)}; |
2137 | } |
2138 | |
2139 | template <typename T> |
2140 | Expr<T> ExpressionBase<T>::Rewrite(FoldingContext &context, Expr<T> &&expr) { |
2141 | return common::visit( |
2142 | [&](auto &&x) -> Expr<T> { |
2143 | if constexpr (IsSpecificIntrinsicType<T>) { |
2144 | return FoldOperation(context, std::move(x)); |
2145 | } else if constexpr (std::is_same_v<T, SomeDerived>) { |
2146 | return FoldOperation(context, std::move(x)); |
2147 | } else if constexpr (common::HasMember<decltype(x), |
2148 | TypelessExpression>) { |
2149 | return std::move(expr); |
2150 | } else { |
2151 | return Expr<T>{Fold(context, std::move(x))}; |
2152 | } |
2153 | }, |
2154 | std::move(expr.u)); |
2155 | } |
2156 | |
2157 | FOR_EACH_TYPE_AND_KIND(extern template class ExpressionBase, ) |
2158 | } // namespace Fortran::evaluate |
2159 | #endif // FORTRAN_EVALUATE_FOLD_IMPLEMENTATION_H_ |
2160 | |