| 1 | //===-- ConvertConstant.cpp -----------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/ |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "flang/Lower/ConvertConstant.h" |
| 14 | #include "flang/Evaluate/expression.h" |
| 15 | #include "flang/Lower/AbstractConverter.h" |
| 16 | #include "flang/Lower/BuiltinModules.h" |
| 17 | #include "flang/Lower/ConvertExprToHLFIR.h" |
| 18 | #include "flang/Lower/ConvertType.h" |
| 19 | #include "flang/Lower/ConvertVariable.h" |
| 20 | #include "flang/Lower/Mangler.h" |
| 21 | #include "flang/Lower/StatementContext.h" |
| 22 | #include "flang/Lower/SymbolMap.h" |
| 23 | #include "flang/Optimizer/Builder/Complex.h" |
| 24 | #include "flang/Optimizer/Builder/MutableBox.h" |
| 25 | #include "flang/Optimizer/Builder/Todo.h" |
| 26 | |
| 27 | #include <algorithm> |
| 28 | |
| 29 | /// Convert string, \p s, to an APFloat value. Recognize and handle Inf and |
| 30 | /// NaN strings as well. \p s is assumed to not contain any spaces. |
| 31 | static llvm::APFloat consAPFloat(const llvm::fltSemantics &fsem, |
| 32 | llvm::StringRef s) { |
| 33 | assert(!s.contains(' ')); |
| 34 | if (s.compare_insensitive("-inf" ) == 0) |
| 35 | return llvm::APFloat::getInf(fsem, /*negative=*/true); |
| 36 | if (s.compare_insensitive("inf" ) == 0 || s.compare_insensitive("+inf" ) == 0) |
| 37 | return llvm::APFloat::getInf(fsem); |
| 38 | // TODO: Add support for quiet and signaling NaNs. |
| 39 | if (s.compare_insensitive("-nan" ) == 0) |
| 40 | return llvm::APFloat::getNaN(fsem, /*negative=*/true); |
| 41 | if (s.compare_insensitive("nan" ) == 0 || s.compare_insensitive("+nan" ) == 0) |
| 42 | return llvm::APFloat::getNaN(fsem); |
| 43 | return {fsem, s}; |
| 44 | } |
| 45 | |
| 46 | //===----------------------------------------------------------------------===// |
| 47 | // Fortran::lower::tryCreatingDenseGlobal implementation |
| 48 | //===----------------------------------------------------------------------===// |
| 49 | |
| 50 | /// Generate an mlir attribute from a literal value |
| 51 | template <Fortran::common::TypeCategory TC, int KIND> |
| 52 | static mlir::Attribute convertToAttribute( |
| 53 | fir::FirOpBuilder &builder, |
| 54 | const Fortran::evaluate::Scalar<Fortran::evaluate::Type<TC, KIND>> &value, |
| 55 | mlir::Type type) { |
| 56 | if constexpr (TC == Fortran::common::TypeCategory::Integer) { |
| 57 | if constexpr (KIND <= 8) |
| 58 | return builder.getIntegerAttr(type, value.ToInt64()); |
| 59 | else { |
| 60 | static_assert(KIND <= 16, "integers with KIND > 16 are not supported" ); |
| 61 | return builder.getIntegerAttr( |
| 62 | type, llvm::APInt(KIND * 8, |
| 63 | {value.ToUInt64(), value.SHIFTR(64).ToUInt64()})); |
| 64 | } |
| 65 | } else if constexpr (TC == Fortran::common::TypeCategory::Logical) { |
| 66 | return builder.getIntegerAttr(type, value.IsTrue()); |
| 67 | } else { |
| 68 | auto getFloatAttr = [&](const auto &value, mlir::Type type) { |
| 69 | std::string str = value.DumpHexadecimal(); |
| 70 | auto floatVal = |
| 71 | consAPFloat(builder.getKindMap().getFloatSemantics(KIND), str); |
| 72 | return builder.getFloatAttr(type, floatVal); |
| 73 | }; |
| 74 | |
| 75 | if constexpr (TC == Fortran::common::TypeCategory::Real) { |
| 76 | return getFloatAttr(value, type); |
| 77 | } else { |
| 78 | static_assert(TC == Fortran::common::TypeCategory::Complex, |
| 79 | "type values cannot be converted to attributes" ); |
| 80 | mlir::Type eleTy = mlir::cast<mlir::ComplexType>(type).getElementType(); |
| 81 | llvm::SmallVector<mlir::Attribute, 2> attrs = { |
| 82 | getFloatAttr(value.REAL(), eleTy), |
| 83 | getFloatAttr(value.AIMAG(), eleTy)}; |
| 84 | return builder.getArrayAttr(attrs); |
| 85 | } |
| 86 | } |
| 87 | return {}; |
| 88 | } |
| 89 | |
| 90 | namespace { |
| 91 | /// Helper class to lower an array constant to a global with an MLIR dense |
| 92 | /// attribute. |
| 93 | /// |
| 94 | /// If we have an array of integer, real, complex, or logical, then we can |
| 95 | /// create a global array with the dense attribute. |
| 96 | /// |
| 97 | /// The mlir tensor type can only handle integer, real, complex, or logical. |
| 98 | /// It does not currently support nested structures. |
| 99 | class DenseGlobalBuilder { |
| 100 | public: |
| 101 | static fir::GlobalOp tryCreating(fir::FirOpBuilder &builder, |
| 102 | mlir::Location loc, mlir::Type symTy, |
| 103 | llvm::StringRef globalName, |
| 104 | mlir::StringAttr linkage, bool isConst, |
| 105 | const Fortran::lower::SomeExpr &initExpr, |
| 106 | cuf::DataAttributeAttr dataAttr) { |
| 107 | DenseGlobalBuilder globalBuilder; |
| 108 | Fortran::common::visit( |
| 109 | Fortran::common::visitors{ |
| 110 | [&](const Fortran::evaluate::Expr<Fortran::evaluate::SomeLogical> & |
| 111 | x) { globalBuilder.tryConvertingToAttributes(builder, x); }, |
| 112 | [&](const Fortran::evaluate::Expr<Fortran::evaluate::SomeInteger> & |
| 113 | x) { globalBuilder.tryConvertingToAttributes(builder, x); }, |
| 114 | [&](const Fortran::evaluate::Expr<Fortran::evaluate::SomeReal> &x) { |
| 115 | globalBuilder.tryConvertingToAttributes(builder, x); |
| 116 | }, |
| 117 | [&](const Fortran::evaluate::Expr<Fortran::evaluate::SomeComplex> & |
| 118 | x) { globalBuilder.tryConvertingToAttributes(builder, x); }, |
| 119 | [](const auto &) {}, |
| 120 | }, |
| 121 | initExpr.u); |
| 122 | return globalBuilder.tryCreatingGlobal(builder, loc, symTy, globalName, |
| 123 | linkage, isConst, dataAttr); |
| 124 | } |
| 125 | |
| 126 | template <Fortran::common::TypeCategory TC, int KIND> |
| 127 | static fir::GlobalOp tryCreating( |
| 128 | fir::FirOpBuilder &builder, mlir::Location loc, mlir::Type symTy, |
| 129 | llvm::StringRef globalName, mlir::StringAttr linkage, bool isConst, |
| 130 | const Fortran::evaluate::Constant<Fortran::evaluate::Type<TC, KIND>> |
| 131 | &constant, |
| 132 | cuf::DataAttributeAttr dataAttr) { |
| 133 | DenseGlobalBuilder globalBuilder; |
| 134 | globalBuilder.tryConvertingToAttributes(builder, constant); |
| 135 | return globalBuilder.tryCreatingGlobal(builder, loc, symTy, globalName, |
| 136 | linkage, isConst, dataAttr); |
| 137 | } |
| 138 | |
| 139 | private: |
| 140 | DenseGlobalBuilder() = default; |
| 141 | |
| 142 | /// Try converting an evaluate::Constant to a list of MLIR attributes. |
| 143 | template <Fortran::common::TypeCategory TC, int KIND> |
| 144 | void tryConvertingToAttributes( |
| 145 | fir::FirOpBuilder &builder, |
| 146 | const Fortran::evaluate::Constant<Fortran::evaluate::Type<TC, KIND>> |
| 147 | &constant) { |
| 148 | static_assert(TC != Fortran::common::TypeCategory::Character, |
| 149 | "must be numerical or logical" ); |
| 150 | auto attrTc = TC == Fortran::common::TypeCategory::Logical |
| 151 | ? Fortran::common::TypeCategory::Integer |
| 152 | : TC; |
| 153 | attributeElementType = Fortran::lower::getFIRType( |
| 154 | builder.getContext(), attrTc, KIND, std::nullopt); |
| 155 | for (auto element : constant.values()) |
| 156 | attributes.push_back( |
| 157 | convertToAttribute<TC, KIND>(builder, element, attributeElementType)); |
| 158 | } |
| 159 | |
| 160 | /// Try converting an evaluate::Expr to a list of MLIR attributes. |
| 161 | template <typename SomeCat> |
| 162 | void tryConvertingToAttributes(fir::FirOpBuilder &builder, |
| 163 | const Fortran::evaluate::Expr<SomeCat> &expr) { |
| 164 | Fortran::common::visit( |
| 165 | [&](const auto &x) { |
| 166 | using TR = Fortran::evaluate::ResultType<decltype(x)>; |
| 167 | if (const auto *constant = |
| 168 | std::get_if<Fortran::evaluate::Constant<TR>>(&x.u)) |
| 169 | tryConvertingToAttributes<TR::category, TR::kind>(builder, |
| 170 | *constant); |
| 171 | }, |
| 172 | expr.u); |
| 173 | } |
| 174 | |
| 175 | /// Create a fir::Global if MLIR attributes have been successfully created by |
| 176 | /// tryConvertingToAttributes. |
| 177 | fir::GlobalOp tryCreatingGlobal(fir::FirOpBuilder &builder, |
| 178 | mlir::Location loc, mlir::Type symTy, |
| 179 | llvm::StringRef globalName, |
| 180 | mlir::StringAttr linkage, bool isConst, |
| 181 | cuf::DataAttributeAttr dataAttr) const { |
| 182 | // Not a "trivial" intrinsic constant array, or empty array. |
| 183 | if (!attributeElementType || attributes.empty()) |
| 184 | return {}; |
| 185 | |
| 186 | assert(mlir::isa<fir::SequenceType>(symTy) && "expecting an array global" ); |
| 187 | auto arrTy = mlir::cast<fir::SequenceType>(symTy); |
| 188 | llvm::SmallVector<int64_t> tensorShape(arrTy.getShape()); |
| 189 | std::reverse(tensorShape.begin(), tensorShape.end()); |
| 190 | auto tensorTy = |
| 191 | mlir::RankedTensorType::get(tensorShape, attributeElementType); |
| 192 | auto init = mlir::DenseElementsAttr::get(tensorTy, attributes); |
| 193 | return builder.createGlobal(loc, symTy, globalName, linkage, init, isConst, |
| 194 | /*isTarget=*/false, dataAttr); |
| 195 | } |
| 196 | |
| 197 | llvm::SmallVector<mlir::Attribute> attributes; |
| 198 | mlir::Type attributeElementType; |
| 199 | }; |
| 200 | } // namespace |
| 201 | |
| 202 | fir::GlobalOp Fortran::lower::tryCreatingDenseGlobal( |
| 203 | fir::FirOpBuilder &builder, mlir::Location loc, mlir::Type symTy, |
| 204 | llvm::StringRef globalName, mlir::StringAttr linkage, bool isConst, |
| 205 | const Fortran::lower::SomeExpr &initExpr, cuf::DataAttributeAttr dataAttr) { |
| 206 | return DenseGlobalBuilder::tryCreating(builder, loc, symTy, globalName, |
| 207 | linkage, isConst, initExpr, dataAttr); |
| 208 | } |
| 209 | |
| 210 | //===----------------------------------------------------------------------===// |
| 211 | // Fortran::lower::convertConstant |
| 212 | // Lower a constant to a fir::ExtendedValue. |
| 213 | //===----------------------------------------------------------------------===// |
| 214 | |
| 215 | /// Generate a real constant with a value `value`. |
| 216 | template <int KIND> |
| 217 | static mlir::Value genRealConstant(fir::FirOpBuilder &builder, |
| 218 | mlir::Location loc, |
| 219 | const llvm::APFloat &value) { |
| 220 | mlir::Type fltTy = Fortran::lower::convertReal(builder.getContext(), KIND); |
| 221 | return builder.createRealConstant(loc, fltTy, value); |
| 222 | } |
| 223 | |
| 224 | /// Convert a scalar literal constant to IR. |
| 225 | template <Fortran::common::TypeCategory TC, int KIND> |
| 226 | static mlir::Value genScalarLit( |
| 227 | fir::FirOpBuilder &builder, mlir::Location loc, |
| 228 | const Fortran::evaluate::Scalar<Fortran::evaluate::Type<TC, KIND>> &value) { |
| 229 | if constexpr (TC == Fortran::common::TypeCategory::Integer || |
| 230 | TC == Fortran::common::TypeCategory::Unsigned) { |
| 231 | // MLIR requires constants to be signless |
| 232 | mlir::Type ty = Fortran::lower::getFIRType( |
| 233 | builder.getContext(), Fortran::common::TypeCategory::Integer, KIND, |
| 234 | std::nullopt); |
| 235 | if (KIND == 16) { |
| 236 | auto bigInt = llvm::APInt(ty.getIntOrFloatBitWidth(), |
| 237 | TC == Fortran::common::TypeCategory::Unsigned |
| 238 | ? value.UnsignedDecimal() |
| 239 | : value.SignedDecimal(), |
| 240 | 10); |
| 241 | return builder.create<mlir::arith::ConstantOp>( |
| 242 | loc, ty, mlir::IntegerAttr::get(ty, bigInt)); |
| 243 | } |
| 244 | return builder.createIntegerConstant(loc, ty, value.ToInt64()); |
| 245 | } else if constexpr (TC == Fortran::common::TypeCategory::Logical) { |
| 246 | return builder.createBool(loc, value.IsTrue()); |
| 247 | } else if constexpr (TC == Fortran::common::TypeCategory::Real) { |
| 248 | std::string str = value.DumpHexadecimal(); |
| 249 | if constexpr (KIND == 2) { |
| 250 | auto floatVal = consAPFloat(llvm::APFloatBase::IEEEhalf(), str); |
| 251 | return genRealConstant<KIND>(builder, loc, floatVal); |
| 252 | } else if constexpr (KIND == 3) { |
| 253 | auto floatVal = consAPFloat(llvm::APFloatBase::BFloat(), str); |
| 254 | return genRealConstant<KIND>(builder, loc, floatVal); |
| 255 | } else if constexpr (KIND == 4) { |
| 256 | auto floatVal = consAPFloat(llvm::APFloatBase::IEEEsingle(), str); |
| 257 | return genRealConstant<KIND>(builder, loc, floatVal); |
| 258 | } else if constexpr (KIND == 10) { |
| 259 | auto floatVal = consAPFloat(llvm::APFloatBase::x87DoubleExtended(), str); |
| 260 | return genRealConstant<KIND>(builder, loc, floatVal); |
| 261 | } else if constexpr (KIND == 16) { |
| 262 | auto floatVal = consAPFloat(llvm::APFloatBase::IEEEquad(), str); |
| 263 | return genRealConstant<KIND>(builder, loc, floatVal); |
| 264 | } else { |
| 265 | // convert everything else to double |
| 266 | auto floatVal = consAPFloat(llvm::APFloatBase::IEEEdouble(), str); |
| 267 | return genRealConstant<KIND>(builder, loc, floatVal); |
| 268 | } |
| 269 | } else if constexpr (TC == Fortran::common::TypeCategory::Complex) { |
| 270 | mlir::Value real = genScalarLit<Fortran::common::TypeCategory::Real, KIND>( |
| 271 | builder, loc, value.REAL()); |
| 272 | mlir::Value imag = genScalarLit<Fortran::common::TypeCategory::Real, KIND>( |
| 273 | builder, loc, value.AIMAG()); |
| 274 | return fir::factory::Complex{builder, loc}.createComplex(real, imag); |
| 275 | } else /*constexpr*/ { |
| 276 | llvm_unreachable("unhandled constant" ); |
| 277 | } |
| 278 | } |
| 279 | |
| 280 | /// Create fir::string_lit from a scalar character constant. |
| 281 | template <int KIND> |
| 282 | static fir::StringLitOp |
| 283 | createStringLitOp(fir::FirOpBuilder &builder, mlir::Location loc, |
| 284 | const Fortran::evaluate::Scalar<Fortran::evaluate::Type< |
| 285 | Fortran::common::TypeCategory::Character, KIND>> &value, |
| 286 | [[maybe_unused]] int64_t len) { |
| 287 | if constexpr (KIND == 1) { |
| 288 | assert(value.size() == static_cast<std::uint64_t>(len)); |
| 289 | return builder.createStringLitOp(loc, value); |
| 290 | } else { |
| 291 | using ET = typename std::decay_t<decltype(value)>::value_type; |
| 292 | fir::CharacterType type = |
| 293 | fir::CharacterType::get(builder.getContext(), KIND, len); |
| 294 | mlir::MLIRContext *context = builder.getContext(); |
| 295 | std::int64_t size = static_cast<std::int64_t>(value.size()); |
| 296 | mlir::ShapedType shape = mlir::RankedTensorType::get( |
| 297 | llvm::ArrayRef<std::int64_t>{size}, |
| 298 | mlir::IntegerType::get(builder.getContext(), sizeof(ET) * 8)); |
| 299 | auto denseAttr = mlir::DenseElementsAttr::get( |
| 300 | shape, llvm::ArrayRef<ET>{value.data(), value.size()}); |
| 301 | auto denseTag = mlir::StringAttr::get(context, fir::StringLitOp::xlist()); |
| 302 | mlir::NamedAttribute dataAttr(denseTag, denseAttr); |
| 303 | auto sizeTag = mlir::StringAttr::get(context, fir::StringLitOp::size()); |
| 304 | mlir::NamedAttribute sizeAttr(sizeTag, builder.getI64IntegerAttr(len)); |
| 305 | llvm::SmallVector<mlir::NamedAttribute> attrs = {dataAttr, sizeAttr}; |
| 306 | return builder.create<fir::StringLitOp>( |
| 307 | loc, llvm::ArrayRef<mlir::Type>{type}, std::nullopt, attrs); |
| 308 | } |
| 309 | } |
| 310 | |
| 311 | /// Convert a scalar literal CHARACTER to IR. |
| 312 | template <int KIND> |
| 313 | static mlir::Value |
| 314 | genScalarLit(fir::FirOpBuilder &builder, mlir::Location loc, |
| 315 | const Fortran::evaluate::Scalar<Fortran::evaluate::Type< |
| 316 | Fortran::common::TypeCategory::Character, KIND>> &value, |
| 317 | int64_t len, bool outlineInReadOnlyMemory) { |
| 318 | // When in an initializer context, construct the literal op itself and do |
| 319 | // not construct another constant object in rodata. |
| 320 | if (!outlineInReadOnlyMemory) |
| 321 | return createStringLitOp<KIND>(builder, loc, value, len); |
| 322 | |
| 323 | // Otherwise, the string is in a plain old expression so "outline" the value |
| 324 | // in read only data by hash consing it to a constant literal object. |
| 325 | |
| 326 | // ASCII global constants are created using an mlir string attribute. |
| 327 | if constexpr (KIND == 1) { |
| 328 | return fir::getBase(fir::factory::createStringLiteral(builder, loc, value)); |
| 329 | } |
| 330 | |
| 331 | auto size = builder.getKindMap().getCharacterBitsize(KIND) / 8 * value.size(); |
| 332 | llvm::StringRef strVal(reinterpret_cast<const char *>(value.c_str()), size); |
| 333 | std::string globalName = fir::factory::uniqueCGIdent( |
| 334 | KIND == 1 ? "cl"s : "cl"s + std::to_string(KIND), strVal); |
| 335 | fir::GlobalOp global = builder.getNamedGlobal(globalName); |
| 336 | fir::CharacterType type = |
| 337 | fir::CharacterType::get(builder.getContext(), KIND, len); |
| 338 | if (!global) |
| 339 | global = builder.createGlobalConstant( |
| 340 | loc, type, globalName, |
| 341 | [&](fir::FirOpBuilder &builder) { |
| 342 | fir::StringLitOp str = |
| 343 | createStringLitOp<KIND>(builder, loc, value, len); |
| 344 | builder.create<fir::HasValueOp>(loc, str); |
| 345 | }, |
| 346 | builder.createLinkOnceLinkage()); |
| 347 | return builder.create<fir::AddrOfOp>(loc, global.resultType(), |
| 348 | global.getSymbol()); |
| 349 | } |
| 350 | |
| 351 | // Helper to generate StructureConstructor component values. |
| 352 | static fir::ExtendedValue |
| 353 | genConstantValue(Fortran::lower::AbstractConverter &converter, |
| 354 | mlir::Location loc, |
| 355 | const Fortran::lower::SomeExpr &constantExpr); |
| 356 | |
| 357 | static mlir::Value genStructureComponentInit( |
| 358 | Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
| 359 | const Fortran::semantics::Symbol &sym, const Fortran::lower::SomeExpr &expr, |
| 360 | mlir::Value res) { |
| 361 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 362 | fir::RecordType recTy = mlir::cast<fir::RecordType>(res.getType()); |
| 363 | std::string name = converter.getRecordTypeFieldName(sym); |
| 364 | mlir::Type componentTy = recTy.getType(name); |
| 365 | auto fieldTy = fir::FieldType::get(recTy.getContext()); |
| 366 | assert(componentTy && "failed to retrieve component" ); |
| 367 | // FIXME: type parameters must come from the derived-type-spec |
| 368 | auto field = builder.create<fir::FieldIndexOp>( |
| 369 | loc, fieldTy, name, recTy, |
| 370 | /*typeParams=*/mlir::ValueRange{} /*TODO*/); |
| 371 | |
| 372 | if (Fortran::semantics::IsAllocatable(sym)) { |
| 373 | if (!Fortran::evaluate::IsNullPointerOrAllocatable(&expr)) { |
| 374 | fir::emitFatalError(loc, "constant structure constructor with an " |
| 375 | "allocatable component value that is not NULL" ); |
| 376 | } else { |
| 377 | // Handle NULL() initialization |
| 378 | mlir::Value componentValue{fir::factory::createUnallocatedBox( |
| 379 | builder, loc, componentTy, std::nullopt)}; |
| 380 | componentValue = builder.createConvert(loc, componentTy, componentValue); |
| 381 | |
| 382 | return builder.create<fir::InsertValueOp>( |
| 383 | loc, recTy, res, componentValue, |
| 384 | builder.getArrayAttr(field.getAttributes())); |
| 385 | } |
| 386 | } |
| 387 | |
| 388 | if (Fortran::semantics::IsPointer(sym)) { |
| 389 | mlir::Value initialTarget; |
| 390 | if (Fortran::semantics::IsProcedure(sym)) { |
| 391 | if (Fortran::evaluate::UnwrapExpr<Fortran::evaluate::NullPointer>(expr)) |
| 392 | initialTarget = |
| 393 | fir::factory::createNullBoxProc(builder, loc, componentTy); |
| 394 | else { |
| 395 | Fortran::lower::SymMap globalOpSymMap; |
| 396 | Fortran::lower::StatementContext stmtCtx; |
| 397 | auto box{getBase(Fortran::lower::convertExprToAddress( |
| 398 | loc, converter, expr, globalOpSymMap, stmtCtx))}; |
| 399 | initialTarget = builder.createConvert(loc, componentTy, box); |
| 400 | } |
| 401 | } else |
| 402 | initialTarget = Fortran::lower::genInitialDataTarget(converter, loc, |
| 403 | componentTy, expr); |
| 404 | res = builder.create<fir::InsertValueOp>( |
| 405 | loc, recTy, res, initialTarget, |
| 406 | builder.getArrayAttr(field.getAttributes())); |
| 407 | return res; |
| 408 | } |
| 409 | |
| 410 | if (Fortran::lower::isDerivedTypeWithLenParameters(sym)) |
| 411 | TODO(loc, "component with length parameters in structure constructor" ); |
| 412 | |
| 413 | // Special handling for scalar c_ptr/c_funptr constants. The array constant |
| 414 | // must fall through to genConstantValue() below. |
| 415 | if (Fortran::semantics::IsBuiltinCPtr(sym) && sym.Rank() == 0 && |
| 416 | (Fortran::evaluate::GetLastSymbol(expr) || |
| 417 | Fortran::evaluate::IsNullPointer(&expr))) { |
| 418 | // Builtin c_ptr and c_funptr have special handling because designators |
| 419 | // and NULL() are handled as initial values for them as an extension |
| 420 | // (otherwise only c_ptr_null/c_funptr_null are allowed and these are |
| 421 | // replaced by structure constructors by semantics, so GetLastSymbol |
| 422 | // returns nothing). |
| 423 | |
| 424 | // The Ev::Expr is an initializer that is a pointer target (e.g., 'x' or |
| 425 | // NULL()) that must be inserted into an intermediate cptr record value's |
| 426 | // address field, which ought to be an intptr_t on the target. |
| 427 | mlir::Value addr = fir::getBase( |
| 428 | Fortran::lower::genExtAddrInInitializer(converter, loc, expr)); |
| 429 | if (mlir::isa<fir::BoxProcType>(addr.getType())) |
| 430 | addr = builder.create<fir::BoxAddrOp>(loc, addr); |
| 431 | assert((fir::isa_ref_type(addr.getType()) || |
| 432 | mlir::isa<mlir::FunctionType>(addr.getType())) && |
| 433 | "expect reference type for address field" ); |
| 434 | assert(fir::isa_derived(componentTy) && |
| 435 | "expect C_PTR, C_FUNPTR to be a record" ); |
| 436 | auto cPtrRecTy = mlir::cast<fir::RecordType>(componentTy); |
| 437 | llvm::StringRef addrFieldName = Fortran::lower::builtin::cptrFieldName; |
| 438 | mlir::Type addrFieldTy = cPtrRecTy.getType(addrFieldName); |
| 439 | auto addrField = builder.create<fir::FieldIndexOp>( |
| 440 | loc, fieldTy, addrFieldName, componentTy, |
| 441 | /*typeParams=*/mlir::ValueRange{}); |
| 442 | mlir::Value castAddr = builder.createConvert(loc, addrFieldTy, addr); |
| 443 | auto undef = builder.create<fir::UndefOp>(loc, componentTy); |
| 444 | addr = builder.create<fir::InsertValueOp>( |
| 445 | loc, componentTy, undef, castAddr, |
| 446 | builder.getArrayAttr(addrField.getAttributes())); |
| 447 | res = builder.create<fir::InsertValueOp>( |
| 448 | loc, recTy, res, addr, builder.getArrayAttr(field.getAttributes())); |
| 449 | return res; |
| 450 | } |
| 451 | |
| 452 | mlir::Value val = fir::getBase(genConstantValue(converter, loc, expr)); |
| 453 | assert(!fir::isa_ref_type(val.getType()) && "expecting a constant value" ); |
| 454 | mlir::Value castVal = builder.createConvert(loc, componentTy, val); |
| 455 | res = builder.create<fir::InsertValueOp>( |
| 456 | loc, recTy, res, castVal, builder.getArrayAttr(field.getAttributes())); |
| 457 | return res; |
| 458 | } |
| 459 | |
| 460 | // Generate a StructureConstructor inlined (returns raw fir.type<T> value, |
| 461 | // not the address of a global constant). |
| 462 | static mlir::Value genInlinedStructureCtorLitImpl( |
| 463 | Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
| 464 | const Fortran::evaluate::StructureConstructor &ctor, mlir::Type type) { |
| 465 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 466 | auto recTy = mlir::cast<fir::RecordType>(type); |
| 467 | |
| 468 | if (!converter.getLoweringOptions().getLowerToHighLevelFIR()) { |
| 469 | mlir::Value res = builder.create<fir::UndefOp>(loc, recTy); |
| 470 | for (const auto &[sym, expr] : ctor.values()) { |
| 471 | // Parent components need more work because they do not appear in the |
| 472 | // fir.rec type. |
| 473 | if (sym->test(Fortran::semantics::Symbol::Flag::ParentComp)) |
| 474 | TODO(loc, "parent component in structure constructor" ); |
| 475 | res = genStructureComponentInit(converter, loc, sym, expr.value(), res); |
| 476 | } |
| 477 | return res; |
| 478 | } |
| 479 | |
| 480 | auto fieldTy = fir::FieldType::get(recTy.getContext()); |
| 481 | mlir::Value res{}; |
| 482 | // When the first structure component values belong to some parent type PT |
| 483 | // and the next values belong to a type extension ET, a new undef for ET must |
| 484 | // be created and the previous PT value inserted into it. There may |
| 485 | // be empty parent types in between ET and PT, hence the list and while loop. |
| 486 | auto insertParentValueIntoExtension = [&](mlir::Type typeExtension) { |
| 487 | assert(res && "res must be set" ); |
| 488 | llvm::SmallVector<mlir::Type> parentTypes = {typeExtension}; |
| 489 | while (true) { |
| 490 | fir::RecordType last = mlir::cast<fir::RecordType>(parentTypes.back()); |
| 491 | mlir::Type next = |
| 492 | last.getType(0); // parent components are first in HLFIR. |
| 493 | if (next != res.getType()) |
| 494 | parentTypes.push_back(next); |
| 495 | else |
| 496 | break; |
| 497 | } |
| 498 | for (mlir::Type parentType : llvm::reverse(parentTypes)) { |
| 499 | auto undef = builder.create<fir::UndefOp>(loc, parentType); |
| 500 | fir::RecordType parentRecTy = mlir::cast<fir::RecordType>(parentType); |
| 501 | auto field = builder.create<fir::FieldIndexOp>( |
| 502 | loc, fieldTy, parentRecTy.getTypeList()[0].first, parentType, |
| 503 | /*typeParams=*/mlir::ValueRange{} /*TODO*/); |
| 504 | res = builder.create<fir::InsertValueOp>( |
| 505 | loc, parentRecTy, undef, res, |
| 506 | builder.getArrayAttr(field.getAttributes())); |
| 507 | } |
| 508 | }; |
| 509 | |
| 510 | const Fortran::semantics::DerivedTypeSpec *curentType = nullptr; |
| 511 | for (const auto &[sym, expr] : ctor.values()) { |
| 512 | const Fortran::semantics::DerivedTypeSpec *componentParentType = |
| 513 | sym->owner().derivedTypeSpec(); |
| 514 | assert(componentParentType && "failed to retrieve component parent type" ); |
| 515 | if (!res) { |
| 516 | mlir::Type parentType = converter.genType(*componentParentType); |
| 517 | curentType = componentParentType; |
| 518 | res = builder.create<fir::UndefOp>(loc, parentType); |
| 519 | } else if (*componentParentType != *curentType) { |
| 520 | mlir::Type parentType = converter.genType(*componentParentType); |
| 521 | insertParentValueIntoExtension(parentType); |
| 522 | curentType = componentParentType; |
| 523 | } |
| 524 | res = genStructureComponentInit(converter, loc, sym, expr.value(), res); |
| 525 | } |
| 526 | |
| 527 | if (!res) // structure constructor for empty type. |
| 528 | return builder.create<fir::UndefOp>(loc, recTy); |
| 529 | |
| 530 | // The last component may belong to a parent type. |
| 531 | if (res.getType() != recTy) |
| 532 | insertParentValueIntoExtension(recTy); |
| 533 | return res; |
| 534 | } |
| 535 | |
| 536 | static mlir::Value genScalarLit( |
| 537 | Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
| 538 | const Fortran::evaluate::Scalar<Fortran::evaluate::SomeDerived> &value, |
| 539 | mlir::Type eleTy, bool outlineBigConstantsInReadOnlyMemory) { |
| 540 | if (!outlineBigConstantsInReadOnlyMemory) |
| 541 | return genInlinedStructureCtorLitImpl(converter, loc, value, eleTy); |
| 542 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 543 | auto expr = std::make_unique<Fortran::lower::SomeExpr>(toEvExpr( |
| 544 | Fortran::evaluate::Constant<Fortran::evaluate::SomeDerived>(value))); |
| 545 | llvm::StringRef globalName = |
| 546 | converter.getUniqueLitName(loc, std::move(expr), eleTy); |
| 547 | fir::GlobalOp global = builder.getNamedGlobal(globalName); |
| 548 | if (!global) { |
| 549 | global = builder.createGlobalConstant( |
| 550 | loc, eleTy, globalName, |
| 551 | [&](fir::FirOpBuilder &builder) { |
| 552 | mlir::Value result = |
| 553 | genInlinedStructureCtorLitImpl(converter, loc, value, eleTy); |
| 554 | builder.create<fir::HasValueOp>(loc, result); |
| 555 | }, |
| 556 | builder.createInternalLinkage()); |
| 557 | } |
| 558 | return builder.create<fir::AddrOfOp>(loc, global.resultType(), |
| 559 | global.getSymbol()); |
| 560 | } |
| 561 | |
| 562 | /// Create an evaluate::Constant<T> array to a fir.array<> value |
| 563 | /// built with a chain of fir.insert or fir.insert_on_range operations. |
| 564 | /// This is intended to be called when building the body of a fir.global. |
| 565 | template <typename T> |
| 566 | static mlir::Value |
| 567 | genInlinedArrayLit(Fortran::lower::AbstractConverter &converter, |
| 568 | mlir::Location loc, mlir::Type arrayTy, |
| 569 | const Fortran::evaluate::Constant<T> &con) { |
| 570 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 571 | mlir::IndexType idxTy = builder.getIndexType(); |
| 572 | Fortran::evaluate::ConstantSubscripts subscripts = con.lbounds(); |
| 573 | auto createIdx = [&]() { |
| 574 | llvm::SmallVector<mlir::Attribute> idx; |
| 575 | for (size_t i = 0; i < subscripts.size(); ++i) |
| 576 | idx.push_back( |
| 577 | builder.getIntegerAttr(idxTy, subscripts[i] - con.lbounds()[i])); |
| 578 | return idx; |
| 579 | }; |
| 580 | mlir::Value array = builder.create<fir::UndefOp>(loc, arrayTy); |
| 581 | if (Fortran::evaluate::GetSize(con.shape()) == 0) |
| 582 | return array; |
| 583 | if constexpr (T::category == Fortran::common::TypeCategory::Character) { |
| 584 | do { |
| 585 | mlir::Value elementVal = |
| 586 | genScalarLit<T::kind>(builder, loc, con.At(subscripts), con.LEN(), |
| 587 | /*outlineInReadOnlyMemory=*/false); |
| 588 | array = builder.create<fir::InsertValueOp>( |
| 589 | loc, arrayTy, array, elementVal, builder.getArrayAttr(createIdx())); |
| 590 | } while (con.IncrementSubscripts(subscripts)); |
| 591 | } else if constexpr (T::category == Fortran::common::TypeCategory::Derived) { |
| 592 | do { |
| 593 | mlir::Type eleTy = |
| 594 | mlir::cast<fir::SequenceType>(arrayTy).getElementType(); |
| 595 | mlir::Value elementVal = |
| 596 | genScalarLit(converter, loc, con.At(subscripts), eleTy, |
| 597 | /*outlineInReadOnlyMemory=*/false); |
| 598 | array = builder.create<fir::InsertValueOp>( |
| 599 | loc, arrayTy, array, elementVal, builder.getArrayAttr(createIdx())); |
| 600 | } while (con.IncrementSubscripts(subscripts)); |
| 601 | } else { |
| 602 | llvm::SmallVector<mlir::Attribute> rangeStartIdx; |
| 603 | uint64_t rangeSize = 0; |
| 604 | mlir::Type eleTy = mlir::cast<fir::SequenceType>(arrayTy).getElementType(); |
| 605 | do { |
| 606 | auto getElementVal = [&]() { |
| 607 | return builder.createConvert(loc, eleTy, |
| 608 | genScalarLit<T::category, T::kind>( |
| 609 | builder, loc, con.At(subscripts))); |
| 610 | }; |
| 611 | Fortran::evaluate::ConstantSubscripts nextSubscripts = subscripts; |
| 612 | bool nextIsSame = con.IncrementSubscripts(nextSubscripts) && |
| 613 | con.At(subscripts) == con.At(nextSubscripts); |
| 614 | if (!rangeSize && !nextIsSame) { // single (non-range) value |
| 615 | array = builder.create<fir::InsertValueOp>( |
| 616 | loc, arrayTy, array, getElementVal(), |
| 617 | builder.getArrayAttr(createIdx())); |
| 618 | } else if (!rangeSize) { // start a range |
| 619 | rangeStartIdx = createIdx(); |
| 620 | rangeSize = 1; |
| 621 | } else if (nextIsSame) { // expand a range |
| 622 | ++rangeSize; |
| 623 | } else { // end a range |
| 624 | llvm::SmallVector<int64_t> rangeBounds; |
| 625 | llvm::SmallVector<mlir::Attribute> idx = createIdx(); |
| 626 | for (size_t i = 0; i < idx.size(); ++i) { |
| 627 | rangeBounds.push_back(mlir::cast<mlir::IntegerAttr>(rangeStartIdx[i]) |
| 628 | .getValue() |
| 629 | .getSExtValue()); |
| 630 | rangeBounds.push_back( |
| 631 | mlir::cast<mlir::IntegerAttr>(idx[i]).getValue().getSExtValue()); |
| 632 | } |
| 633 | array = builder.create<fir::InsertOnRangeOp>( |
| 634 | loc, arrayTy, array, getElementVal(), |
| 635 | builder.getIndexVectorAttr(rangeBounds)); |
| 636 | rangeSize = 0; |
| 637 | } |
| 638 | } while (con.IncrementSubscripts(subscripts)); |
| 639 | } |
| 640 | return array; |
| 641 | } |
| 642 | |
| 643 | /// Convert an evaluate::Constant<T> array into a fir.ref<fir.array<>> value |
| 644 | /// that points to the storage of a fir.global in read only memory and is |
| 645 | /// initialized with the value of the constant. |
| 646 | /// This should not be called while generating the body of a fir.global. |
| 647 | template <typename T> |
| 648 | static mlir::Value |
| 649 | genOutlineArrayLit(Fortran::lower::AbstractConverter &converter, |
| 650 | mlir::Location loc, mlir::Type arrayTy, |
| 651 | const Fortran::evaluate::Constant<T> &constant) { |
| 652 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 653 | mlir::Type eleTy = mlir::cast<fir::SequenceType>(arrayTy).getElementType(); |
| 654 | llvm::StringRef globalName = converter.getUniqueLitName( |
| 655 | loc, std::make_unique<Fortran::lower::SomeExpr>(toEvExpr(constant)), |
| 656 | eleTy); |
| 657 | fir::GlobalOp global = builder.getNamedGlobal(globalName); |
| 658 | if (!global) { |
| 659 | // Using a dense attribute for the initial value instead of creating an |
| 660 | // intialization body speeds up MLIR/LLVM compilation, but this is not |
| 661 | // always possible. |
| 662 | if constexpr (T::category == Fortran::common::TypeCategory::Logical || |
| 663 | T::category == Fortran::common::TypeCategory::Integer || |
| 664 | T::category == Fortran::common::TypeCategory::Real || |
| 665 | T::category == Fortran::common::TypeCategory::Complex) { |
| 666 | global = DenseGlobalBuilder::tryCreating( |
| 667 | builder, loc, arrayTy, globalName, builder.createInternalLinkage(), |
| 668 | true, constant, {}); |
| 669 | } |
| 670 | if (!global) |
| 671 | // If the number of elements of the array is huge, the compilation may |
| 672 | // use a lot of memory and take a very long time to complete. |
| 673 | // Empirical evidence shows that an array with 150000 elements of |
| 674 | // complex type takes roughly 30 seconds to compile and uses 4GB of RAM, |
| 675 | // on a modern machine. |
| 676 | // It would be nice to add a driver switch to control the array size |
| 677 | // after which flang should not continue to compile. |
| 678 | global = builder.createGlobalConstant( |
| 679 | loc, arrayTy, globalName, |
| 680 | [&](fir::FirOpBuilder &builder) { |
| 681 | mlir::Value result = |
| 682 | genInlinedArrayLit(converter, loc, arrayTy, constant); |
| 683 | builder.create<fir::HasValueOp>(loc, result); |
| 684 | }, |
| 685 | builder.createInternalLinkage()); |
| 686 | } |
| 687 | return builder.create<fir::AddrOfOp>(loc, global.resultType(), |
| 688 | global.getSymbol()); |
| 689 | } |
| 690 | |
| 691 | /// Convert an evaluate::Constant<T> array into an fir::ExtendedValue. |
| 692 | template <typename T> |
| 693 | static fir::ExtendedValue |
| 694 | genArrayLit(Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
| 695 | const Fortran::evaluate::Constant<T> &con, |
| 696 | bool outlineInReadOnlyMemory) { |
| 697 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 698 | Fortran::evaluate::ConstantSubscript size = |
| 699 | Fortran::evaluate::GetSize(con.shape()); |
| 700 | if (size > std::numeric_limits<std::uint32_t>::max()) |
| 701 | // llvm::SmallVector has limited size |
| 702 | TODO(loc, "Creation of very large array constants" ); |
| 703 | fir::SequenceType::Shape shape(con.shape().begin(), con.shape().end()); |
| 704 | llvm::SmallVector<std::int64_t> typeParams; |
| 705 | if constexpr (T::category == Fortran::common::TypeCategory::Character) |
| 706 | typeParams.push_back(con.LEN()); |
| 707 | mlir::Type eleTy; |
| 708 | if constexpr (T::category == Fortran::common::TypeCategory::Derived) |
| 709 | eleTy = Fortran::lower::translateDerivedTypeToFIRType( |
| 710 | converter, con.GetType().GetDerivedTypeSpec()); |
| 711 | else |
| 712 | eleTy = Fortran::lower::getFIRType(builder.getContext(), T::category, |
| 713 | T::kind, typeParams); |
| 714 | auto arrayTy = fir::SequenceType::get(shape, eleTy); |
| 715 | mlir::Value array = outlineInReadOnlyMemory |
| 716 | ? genOutlineArrayLit(converter, loc, arrayTy, con) |
| 717 | : genInlinedArrayLit(converter, loc, arrayTy, con); |
| 718 | |
| 719 | mlir::IndexType idxTy = builder.getIndexType(); |
| 720 | llvm::SmallVector<mlir::Value> extents; |
| 721 | for (auto extent : shape) |
| 722 | extents.push_back(builder.createIntegerConstant(loc, idxTy, extent)); |
| 723 | // Convert lower bounds if they are not all ones. |
| 724 | llvm::SmallVector<mlir::Value> lbounds; |
| 725 | if (llvm::any_of(con.lbounds(), [](auto lb) { return lb != 1; })) |
| 726 | for (auto lb : con.lbounds()) |
| 727 | lbounds.push_back(builder.createIntegerConstant(loc, idxTy, lb)); |
| 728 | |
| 729 | if constexpr (T::category == Fortran::common::TypeCategory::Character) { |
| 730 | mlir::Value len = builder.createIntegerConstant(loc, idxTy, con.LEN()); |
| 731 | return fir::CharArrayBoxValue{array, len, extents, lbounds}; |
| 732 | } else { |
| 733 | return fir::ArrayBoxValue{array, extents, lbounds}; |
| 734 | } |
| 735 | } |
| 736 | |
| 737 | template <typename T> |
| 738 | fir::ExtendedValue Fortran::lower::ConstantBuilder<T>::gen( |
| 739 | Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
| 740 | const Fortran::evaluate::Constant<T> &constant, |
| 741 | bool outlineBigConstantsInReadOnlyMemory) { |
| 742 | if (constant.Rank() > 0) |
| 743 | return genArrayLit(converter, loc, constant, |
| 744 | outlineBigConstantsInReadOnlyMemory); |
| 745 | std::optional<Fortran::evaluate::Scalar<T>> opt = constant.GetScalarValue(); |
| 746 | assert(opt.has_value() && "constant has no value" ); |
| 747 | if constexpr (T::category == Fortran::common::TypeCategory::Character) { |
| 748 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 749 | auto value = |
| 750 | genScalarLit<T::kind>(builder, loc, opt.value(), constant.LEN(), |
| 751 | outlineBigConstantsInReadOnlyMemory); |
| 752 | mlir::Value len = builder.createIntegerConstant( |
| 753 | loc, builder.getCharacterLengthType(), constant.LEN()); |
| 754 | return fir::CharBoxValue{value, len}; |
| 755 | } else if constexpr (T::category == Fortran::common::TypeCategory::Derived) { |
| 756 | mlir::Type eleTy = Fortran::lower::translateDerivedTypeToFIRType( |
| 757 | converter, opt->GetType().GetDerivedTypeSpec()); |
| 758 | return genScalarLit(converter, loc, *opt, eleTy, |
| 759 | outlineBigConstantsInReadOnlyMemory); |
| 760 | } else { |
| 761 | return genScalarLit<T::category, T::kind>(converter.getFirOpBuilder(), loc, |
| 762 | opt.value()); |
| 763 | } |
| 764 | } |
| 765 | |
| 766 | static fir::ExtendedValue |
| 767 | genConstantValue(Fortran::lower::AbstractConverter &converter, |
| 768 | mlir::Location loc, |
| 769 | const Fortran::evaluate::Expr<Fortran::evaluate::SomeDerived> |
| 770 | &constantExpr) { |
| 771 | if (const auto *constant = std::get_if< |
| 772 | Fortran::evaluate::Constant<Fortran::evaluate::SomeDerived>>( |
| 773 | &constantExpr.u)) |
| 774 | return Fortran::lower::convertConstant(converter, loc, *constant, |
| 775 | /*outline=*/false); |
| 776 | if (const auto *structCtor = |
| 777 | std::get_if<Fortran::evaluate::StructureConstructor>(&constantExpr.u)) |
| 778 | return Fortran::lower::genInlinedStructureCtorLit(converter, loc, |
| 779 | *structCtor); |
| 780 | fir::emitFatalError(loc, "not a constant derived type expression" ); |
| 781 | } |
| 782 | |
| 783 | template <Fortran::common::TypeCategory TC, int KIND> |
| 784 | static fir::ExtendedValue genConstantValue( |
| 785 | Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
| 786 | const Fortran::evaluate::Expr<Fortran::evaluate::Type<TC, KIND>> |
| 787 | &constantExpr) { |
| 788 | using T = Fortran::evaluate::Type<TC, KIND>; |
| 789 | if (const auto *constant = |
| 790 | std::get_if<Fortran::evaluate::Constant<T>>(&constantExpr.u)) |
| 791 | return Fortran::lower::convertConstant(converter, loc, *constant, |
| 792 | /*outline=*/false); |
| 793 | fir::emitFatalError(loc, "not an evaluate::Constant<T>" ); |
| 794 | } |
| 795 | |
| 796 | static fir::ExtendedValue |
| 797 | genConstantValue(Fortran::lower::AbstractConverter &converter, |
| 798 | mlir::Location loc, |
| 799 | const Fortran::lower::SomeExpr &constantExpr) { |
| 800 | return Fortran::common::visit( |
| 801 | [&](const auto &x) -> fir::ExtendedValue { |
| 802 | using T = std::decay_t<decltype(x)>; |
| 803 | if constexpr (Fortran::common::HasMember< |
| 804 | T, Fortran::lower::CategoryExpression>) { |
| 805 | if constexpr (T::Result::category == |
| 806 | Fortran::common::TypeCategory::Derived) { |
| 807 | return genConstantValue(converter, loc, x); |
| 808 | } else { |
| 809 | return Fortran::common::visit( |
| 810 | [&](const auto &preciseKind) { |
| 811 | return genConstantValue(converter, loc, preciseKind); |
| 812 | }, |
| 813 | x.u); |
| 814 | } |
| 815 | } else { |
| 816 | fir::emitFatalError(loc, "unexpected typeless constant value" ); |
| 817 | } |
| 818 | }, |
| 819 | constantExpr.u); |
| 820 | } |
| 821 | |
| 822 | fir::ExtendedValue Fortran::lower::genInlinedStructureCtorLit( |
| 823 | Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
| 824 | const Fortran::evaluate::StructureConstructor &ctor) { |
| 825 | mlir::Type type = Fortran::lower::translateDerivedTypeToFIRType( |
| 826 | converter, ctor.derivedTypeSpec()); |
| 827 | return genInlinedStructureCtorLitImpl(converter, loc, ctor, type); |
| 828 | } |
| 829 | |
| 830 | using namespace Fortran::evaluate; |
| 831 | FOR_EACH_SPECIFIC_TYPE(template class Fortran::lower::ConstantBuilder, ) |
| 832 | |