| 1 | //===-- HostAssociations.cpp ----------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "flang/Lower/HostAssociations.h" |
| 10 | #include "flang/Evaluate/check-expression.h" |
| 11 | #include "flang/Lower/AbstractConverter.h" |
| 12 | #include "flang/Lower/Allocatable.h" |
| 13 | #include "flang/Lower/BoxAnalyzer.h" |
| 14 | #include "flang/Lower/CallInterface.h" |
| 15 | #include "flang/Lower/ConvertType.h" |
| 16 | #include "flang/Lower/ConvertVariable.h" |
| 17 | #include "flang/Lower/OpenMP.h" |
| 18 | #include "flang/Lower/PFTBuilder.h" |
| 19 | #include "flang/Lower/SymbolMap.h" |
| 20 | #include "flang/Optimizer/Builder/Character.h" |
| 21 | #include "flang/Optimizer/Builder/FIRBuilder.h" |
| 22 | #include "flang/Optimizer/Builder/Todo.h" |
| 23 | #include "flang/Optimizer/Support/FatalError.h" |
| 24 | #include "flang/Semantics/tools.h" |
| 25 | #include "llvm/ADT/TypeSwitch.h" |
| 26 | #include "llvm/Support/Debug.h" |
| 27 | #include <optional> |
| 28 | |
| 29 | #define DEBUG_TYPE "flang-host-assoc" |
| 30 | |
| 31 | // Host association inside internal procedures is implemented by allocating an |
| 32 | // mlir tuple (a struct) inside the host containing the addresses and properties |
| 33 | // of variables that are accessed by internal procedures. The address of this |
| 34 | // tuple is passed as an argument by the host when calling internal procedures. |
| 35 | // Internal procedures propagate a reference to this tuple when calling other |
| 36 | // internal procedures of the host. |
| 37 | // |
| 38 | // This file defines how the type of the host tuple is built, how the tuple |
| 39 | // value is created inside the host, and how the host associated variables are |
| 40 | // instantiated inside the internal procedures from the tuple value. The |
| 41 | // CapturedXXX classes define each of these three actions for a specific |
| 42 | // kind of variables by providing a `getType`, a `instantiateHostTuple`, and a |
| 43 | // `getFromTuple` method. These classes are structured as follow: |
| 44 | // |
| 45 | // class CapturedKindOfVar : public CapturedSymbols<CapturedKindOfVar> { |
| 46 | // // Return the type of the tuple element for a host associated |
| 47 | // // variable given its symbol inside the host. This is called when |
| 48 | // // building function interfaces. |
| 49 | // static mlir::Type getType(); |
| 50 | // // Build the tuple element value for a host associated variable given its |
| 51 | // // value inside the host. This is called when lowering the host body. |
| 52 | // static void instantiateHostTuple(); |
| 53 | // // Instantiate a host variable inside an internal procedure given its |
| 54 | // // tuple element value. This is called when lowering internal procedure |
| 55 | // // bodies. |
| 56 | // static void getFromTuple(); |
| 57 | // }; |
| 58 | // |
| 59 | // If a new kind of variable requires ad-hoc handling, a new CapturedXXX class |
| 60 | // should be added to handle it, and `walkCaptureCategories` should be updated |
| 61 | // to dispatch this new kind of variable to this new class. |
| 62 | |
| 63 | /// Is \p sym a derived type entity with length parameters ? |
| 64 | static bool isDerivedWithLenParameters(const Fortran::semantics::Symbol &sym) { |
| 65 | if (const auto *declTy = sym.GetType()) |
| 66 | if (const auto *derived = declTy->AsDerived()) |
| 67 | return Fortran::semantics::CountLenParameters(*derived) != 0; |
| 68 | return false; |
| 69 | } |
| 70 | |
| 71 | /// Map the extracted fir::ExtendedValue for a host associated variable inside |
| 72 | /// and internal procedure to its symbol. Generates an hlfir.declare in HLFIR. |
| 73 | static void bindCapturedSymbol(const Fortran::semantics::Symbol &sym, |
| 74 | fir::ExtendedValue val, |
| 75 | Fortran::lower::AbstractConverter &converter, |
| 76 | Fortran::lower::SymMap &symMap) { |
| 77 | if (converter.getLoweringOptions().getLowerToHighLevelFIR()) |
| 78 | Fortran::lower::genDeclareSymbol(converter, symMap, sym, val, |
| 79 | fir::FortranVariableFlagsEnum::host_assoc); |
| 80 | else |
| 81 | symMap.addSymbol(sym, val); |
| 82 | } |
| 83 | |
| 84 | namespace { |
| 85 | /// Struct to be used as argument in walkCaptureCategories when building the |
| 86 | /// tuple element type for a host associated variable. |
| 87 | struct GetTypeInTuple { |
| 88 | /// walkCaptureCategories must return a type. |
| 89 | using Result = mlir::Type; |
| 90 | }; |
| 91 | |
| 92 | /// Struct to be used as argument in walkCaptureCategories when building the |
| 93 | /// tuple element value for a host associated variable. |
| 94 | struct InstantiateHostTuple { |
| 95 | /// walkCaptureCategories returns nothing. |
| 96 | using Result = void; |
| 97 | /// Value of the variable inside the host procedure. |
| 98 | fir::ExtendedValue hostValue; |
| 99 | /// Address of the tuple element of the variable. |
| 100 | mlir::Value addrInTuple; |
| 101 | mlir::Location loc; |
| 102 | }; |
| 103 | |
| 104 | /// Struct to be used as argument in walkCaptureCategories when instantiating a |
| 105 | /// host associated variables from its tuple element value. |
| 106 | struct GetFromTuple { |
| 107 | /// walkCaptureCategories returns nothing. |
| 108 | using Result = void; |
| 109 | /// Symbol map inside the internal procedure. |
| 110 | Fortran::lower::SymMap &symMap; |
| 111 | /// Value of the tuple element for the host associated variable. |
| 112 | mlir::Value valueInTuple; |
| 113 | mlir::Location loc; |
| 114 | }; |
| 115 | |
| 116 | /// Base class that must be inherited with CRTP by classes defining |
| 117 | /// how host association is implemented for a type of symbol. |
| 118 | /// It simply dispatches visit() calls to the implementations according |
| 119 | /// to the argument type. |
| 120 | template <typename SymbolCategory> |
| 121 | class CapturedSymbols { |
| 122 | public: |
| 123 | template <typename T> |
| 124 | static void visit(const T &, Fortran::lower::AbstractConverter &, |
| 125 | const Fortran::semantics::Symbol &, |
| 126 | const Fortran::lower::BoxAnalyzer &) { |
| 127 | static_assert(!std::is_same_v<T, T> && |
| 128 | "default visit must not be instantiated" ); |
| 129 | } |
| 130 | static mlir::Type visit(const GetTypeInTuple &, |
| 131 | Fortran::lower::AbstractConverter &converter, |
| 132 | const Fortran::semantics::Symbol &sym, |
| 133 | const Fortran::lower::BoxAnalyzer &) { |
| 134 | return SymbolCategory::getType(converter, sym); |
| 135 | } |
| 136 | static void visit(const InstantiateHostTuple &args, |
| 137 | Fortran::lower::AbstractConverter &converter, |
| 138 | const Fortran::semantics::Symbol &sym, |
| 139 | const Fortran::lower::BoxAnalyzer &) { |
| 140 | return SymbolCategory::instantiateHostTuple(args, converter, sym); |
| 141 | } |
| 142 | static void visit(const GetFromTuple &args, |
| 143 | Fortran::lower::AbstractConverter &converter, |
| 144 | const Fortran::semantics::Symbol &sym, |
| 145 | const Fortran::lower::BoxAnalyzer &ba) { |
| 146 | return SymbolCategory::getFromTuple(args, converter, sym, ba); |
| 147 | } |
| 148 | }; |
| 149 | |
| 150 | /// Class defining simple scalars are captured in internal procedures. |
| 151 | /// Simple scalars are non character intrinsic scalars. They are captured |
| 152 | /// as `!fir.ref<T>`, for example `!fir.ref<i32>` for `INTEGER*4`. |
| 153 | class CapturedSimpleScalars : public CapturedSymbols<CapturedSimpleScalars> { |
| 154 | public: |
| 155 | static mlir::Type getType(Fortran::lower::AbstractConverter &converter, |
| 156 | const Fortran::semantics::Symbol &sym) { |
| 157 | return fir::ReferenceType::get(converter.genType(sym)); |
| 158 | } |
| 159 | |
| 160 | static void instantiateHostTuple(const InstantiateHostTuple &args, |
| 161 | Fortran::lower::AbstractConverter &converter, |
| 162 | const Fortran::semantics::Symbol &) { |
| 163 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 164 | mlir::Type typeInTuple = fir::dyn_cast_ptrEleTy(args.addrInTuple.getType()); |
| 165 | assert(typeInTuple && "addrInTuple must be an address" ); |
| 166 | mlir::Value castBox = builder.createConvertWithVolatileCast( |
| 167 | args.loc, typeInTuple, fir::getBase(args.hostValue)); |
| 168 | builder.create<fir::StoreOp>(args.loc, castBox, args.addrInTuple); |
| 169 | } |
| 170 | |
| 171 | static void getFromTuple(const GetFromTuple &args, |
| 172 | Fortran::lower::AbstractConverter &converter, |
| 173 | const Fortran::semantics::Symbol &sym, |
| 174 | const Fortran::lower::BoxAnalyzer &) { |
| 175 | bindCapturedSymbol(sym, args.valueInTuple, converter, args.symMap); |
| 176 | } |
| 177 | }; |
| 178 | |
| 179 | /// Class defining how dummy procedures and procedure pointers |
| 180 | /// are captured in internal procedures. |
| 181 | class CapturedProcedure : public CapturedSymbols<CapturedProcedure> { |
| 182 | public: |
| 183 | static mlir::Type getType(Fortran::lower::AbstractConverter &converter, |
| 184 | const Fortran::semantics::Symbol &sym) { |
| 185 | mlir::Type funTy = Fortran::lower::getDummyProcedureType(sym, converter); |
| 186 | if (Fortran::semantics::IsPointer(sym)) |
| 187 | return fir::ReferenceType::get(funTy); |
| 188 | return funTy; |
| 189 | } |
| 190 | |
| 191 | static void instantiateHostTuple(const InstantiateHostTuple &args, |
| 192 | Fortran::lower::AbstractConverter &converter, |
| 193 | const Fortran::semantics::Symbol &) { |
| 194 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 195 | mlir::Type typeInTuple = fir::dyn_cast_ptrEleTy(args.addrInTuple.getType()); |
| 196 | assert(typeInTuple && "addrInTuple must be an address" ); |
| 197 | mlir::Value castBox = builder.createConvertWithVolatileCast( |
| 198 | args.loc, typeInTuple, fir::getBase(args.hostValue)); |
| 199 | builder.create<fir::StoreOp>(args.loc, castBox, args.addrInTuple); |
| 200 | } |
| 201 | |
| 202 | static void getFromTuple(const GetFromTuple &args, |
| 203 | Fortran::lower::AbstractConverter &converter, |
| 204 | const Fortran::semantics::Symbol &sym, |
| 205 | const Fortran::lower::BoxAnalyzer &) { |
| 206 | bindCapturedSymbol(sym, args.valueInTuple, converter, args.symMap); |
| 207 | } |
| 208 | }; |
| 209 | |
| 210 | /// Class defining how character scalars are captured in internal procedures. |
| 211 | /// Character scalars are passed as !fir.boxchar<kind> in the tuple. |
| 212 | class CapturedCharacterScalars |
| 213 | : public CapturedSymbols<CapturedCharacterScalars> { |
| 214 | public: |
| 215 | // Note: so far, do not specialize constant length characters. They can be |
| 216 | // implemented by only passing the address. This could be done later in |
| 217 | // lowering or a CapturedStaticLenCharacterScalars class could be added here. |
| 218 | |
| 219 | static mlir::Type getType(Fortran::lower::AbstractConverter &converter, |
| 220 | const Fortran::semantics::Symbol &sym) { |
| 221 | fir::KindTy kind = |
| 222 | mlir::cast<fir::CharacterType>(converter.genType(sym)).getFKind(); |
| 223 | return fir::BoxCharType::get(&converter.getMLIRContext(), kind); |
| 224 | } |
| 225 | |
| 226 | static void instantiateHostTuple(const InstantiateHostTuple &args, |
| 227 | Fortran::lower::AbstractConverter &converter, |
| 228 | const Fortran::semantics::Symbol &) { |
| 229 | const fir::CharBoxValue *charBox = args.hostValue.getCharBox(); |
| 230 | assert(charBox && "host value must be a fir::CharBoxValue" ); |
| 231 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 232 | mlir::Value boxchar = fir::factory::CharacterExprHelper(builder, args.loc) |
| 233 | .createEmbox(*charBox); |
| 234 | builder.create<fir::StoreOp>(args.loc, boxchar, args.addrInTuple); |
| 235 | } |
| 236 | |
| 237 | static void getFromTuple(const GetFromTuple &args, |
| 238 | Fortran::lower::AbstractConverter &converter, |
| 239 | const Fortran::semantics::Symbol &sym, |
| 240 | const Fortran::lower::BoxAnalyzer &) { |
| 241 | fir::factory::CharacterExprHelper charHelp(converter.getFirOpBuilder(), |
| 242 | args.loc); |
| 243 | std::pair<mlir::Value, mlir::Value> unboxchar = |
| 244 | charHelp.createUnboxChar(args.valueInTuple); |
| 245 | bindCapturedSymbol(sym, |
| 246 | fir::CharBoxValue{unboxchar.first, unboxchar.second}, |
| 247 | converter, args.symMap); |
| 248 | } |
| 249 | }; |
| 250 | |
| 251 | /// Class defining how polymorphic scalar entities are captured in internal |
| 252 | /// procedures. Polymorphic entities are always boxed as a fir.class box. |
| 253 | /// Polymorphic array can be handled in CapturedArrays directly |
| 254 | class CapturedPolymorphicScalar |
| 255 | : public CapturedSymbols<CapturedPolymorphicScalar> { |
| 256 | public: |
| 257 | static mlir::Type getType(Fortran::lower::AbstractConverter &converter, |
| 258 | const Fortran::semantics::Symbol &sym) { |
| 259 | return converter.genType(sym); |
| 260 | } |
| 261 | static void instantiateHostTuple(const InstantiateHostTuple &args, |
| 262 | Fortran::lower::AbstractConverter &converter, |
| 263 | const Fortran::semantics::Symbol &sym) { |
| 264 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 265 | mlir::Location loc = args.loc; |
| 266 | mlir::Type typeInTuple = fir::dyn_cast_ptrEleTy(args.addrInTuple.getType()); |
| 267 | assert(typeInTuple && "addrInTuple must be an address" ); |
| 268 | mlir::Value castBox = builder.createConvertWithVolatileCast( |
| 269 | args.loc, typeInTuple, fir::getBase(args.hostValue)); |
| 270 | if (Fortran::semantics::IsOptional(sym)) { |
| 271 | auto isPresent = |
| 272 | builder.create<fir::IsPresentOp>(loc, builder.getI1Type(), castBox); |
| 273 | builder.genIfThenElse(loc, isPresent) |
| 274 | .genThen([&]() { |
| 275 | builder.create<fir::StoreOp>(loc, castBox, args.addrInTuple); |
| 276 | }) |
| 277 | .genElse([&]() { |
| 278 | mlir::Value null = fir::factory::createUnallocatedBox( |
| 279 | builder, loc, typeInTuple, |
| 280 | /*nonDeferredParams=*/mlir::ValueRange{}); |
| 281 | builder.create<fir::StoreOp>(loc, null, args.addrInTuple); |
| 282 | }) |
| 283 | .end(); |
| 284 | } else { |
| 285 | builder.create<fir::StoreOp>(loc, castBox, args.addrInTuple); |
| 286 | } |
| 287 | } |
| 288 | static void getFromTuple(const GetFromTuple &args, |
| 289 | Fortran::lower::AbstractConverter &converter, |
| 290 | const Fortran::semantics::Symbol &sym, |
| 291 | const Fortran::lower::BoxAnalyzer &ba) { |
| 292 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 293 | mlir::Location loc = args.loc; |
| 294 | mlir::Value box = args.valueInTuple; |
| 295 | if (Fortran::semantics::IsOptional(sym)) { |
| 296 | auto boxTy = mlir::cast<fir::BaseBoxType>(box.getType()); |
| 297 | auto eleTy = boxTy.getEleTy(); |
| 298 | if (!fir::isa_ref_type(eleTy)) |
| 299 | eleTy = builder.getRefType(eleTy); |
| 300 | auto addr = builder.create<fir::BoxAddrOp>(loc, eleTy, box); |
| 301 | mlir::Value isPresent = builder.genIsNotNullAddr(loc, addr); |
| 302 | auto absentBox = builder.create<fir::AbsentOp>(loc, boxTy); |
| 303 | box = |
| 304 | builder.create<mlir::arith::SelectOp>(loc, isPresent, box, absentBox); |
| 305 | } |
| 306 | bindCapturedSymbol(sym, box, converter, args.symMap); |
| 307 | } |
| 308 | }; |
| 309 | |
| 310 | /// Class defining how allocatable and pointers entities are captured in |
| 311 | /// internal procedures. Allocatable and pointers are simply captured by placing |
| 312 | /// their !fir.ref<fir.box<>> address in the host tuple. |
| 313 | class CapturedAllocatableAndPointer |
| 314 | : public CapturedSymbols<CapturedAllocatableAndPointer> { |
| 315 | public: |
| 316 | static mlir::Type getType(Fortran::lower::AbstractConverter &converter, |
| 317 | const Fortran::semantics::Symbol &sym) { |
| 318 | mlir::Type baseType = converter.genType(sym); |
| 319 | if (sym.GetUltimate().test(Fortran::semantics::Symbol::Flag::CrayPointee)) |
| 320 | return fir::ReferenceType::get( |
| 321 | Fortran::lower::getCrayPointeeBoxType(baseType)); |
| 322 | return fir::ReferenceType::get(baseType); |
| 323 | } |
| 324 | static void instantiateHostTuple(const InstantiateHostTuple &args, |
| 325 | Fortran::lower::AbstractConverter &converter, |
| 326 | const Fortran::semantics::Symbol &) { |
| 327 | assert(args.hostValue.getBoxOf<fir::MutableBoxValue>() && |
| 328 | "host value must be a fir::MutableBoxValue" ); |
| 329 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 330 | mlir::Type typeInTuple = fir::dyn_cast_ptrEleTy(args.addrInTuple.getType()); |
| 331 | assert(typeInTuple && "addrInTuple must be an address" ); |
| 332 | mlir::Value castBox = builder.createConvertWithVolatileCast( |
| 333 | args.loc, typeInTuple, fir::getBase(args.hostValue)); |
| 334 | builder.create<fir::StoreOp>(args.loc, castBox, args.addrInTuple); |
| 335 | } |
| 336 | static void getFromTuple(const GetFromTuple &args, |
| 337 | Fortran::lower::AbstractConverter &converter, |
| 338 | const Fortran::semantics::Symbol &sym, |
| 339 | const Fortran::lower::BoxAnalyzer &ba) { |
| 340 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 341 | mlir::Location loc = args.loc; |
| 342 | // Non deferred type parameters impact the semantics of some statements |
| 343 | // where allocatables/pointer can appear. For instance, assignment to a |
| 344 | // scalar character allocatable with has a different semantics in F2003 and |
| 345 | // later if the length is non deferred vs when it is deferred. So it is |
| 346 | // important to keep track of the non deferred parameters here. |
| 347 | llvm::SmallVector<mlir::Value> nonDeferredLenParams; |
| 348 | if (ba.isChar()) { |
| 349 | mlir::IndexType idxTy = builder.getIndexType(); |
| 350 | if (std::optional<int64_t> len = ba.getCharLenConst()) { |
| 351 | nonDeferredLenParams.push_back( |
| 352 | builder.createIntegerConstant(loc, idxTy, *len)); |
| 353 | } else if (Fortran::semantics::IsAssumedLengthCharacter(sym) || |
| 354 | ba.getCharLenExpr()) { |
| 355 | nonDeferredLenParams.push_back( |
| 356 | Fortran::lower::getAssumedCharAllocatableOrPointerLen( |
| 357 | builder, loc, sym, args.valueInTuple)); |
| 358 | } |
| 359 | } else if (isDerivedWithLenParameters(sym)) { |
| 360 | TODO(loc, "host associated derived type allocatable or pointer with " |
| 361 | "length parameters" ); |
| 362 | } |
| 363 | bindCapturedSymbol( |
| 364 | sym, fir::MutableBoxValue(args.valueInTuple, nonDeferredLenParams, {}), |
| 365 | converter, args.symMap); |
| 366 | } |
| 367 | }; |
| 368 | |
| 369 | /// Class defining how arrays, including assumed-ranks, are captured inside |
| 370 | /// internal procedures. |
| 371 | /// Array are captured via a `fir.box<fir.array<T>>` descriptor that belongs to |
| 372 | /// the host tuple. This allows capturing lower bounds, which can be done by |
| 373 | /// providing a ShapeShiftOp argument to the EmboxOp. |
| 374 | class CapturedArrays : public CapturedSymbols<CapturedArrays> { |
| 375 | |
| 376 | // Note: Constant shape arrays are not specialized (their base address would |
| 377 | // be sufficient information inside the tuple). They could be specialized in |
| 378 | // a later FIR pass, or a CapturedStaticShapeArrays could be added to deal |
| 379 | // with them here. |
| 380 | public: |
| 381 | static mlir::Type getType(Fortran::lower::AbstractConverter &converter, |
| 382 | const Fortran::semantics::Symbol &sym) { |
| 383 | mlir::Type type = converter.genType(sym); |
| 384 | bool isPolymorphic = Fortran::semantics::IsPolymorphic(sym); |
| 385 | assert((mlir::isa<fir::SequenceType>(type) || |
| 386 | (isPolymorphic && mlir::isa<fir::ClassType>(type))) && |
| 387 | "must be a sequence type" ); |
| 388 | if (isPolymorphic) |
| 389 | return type; |
| 390 | return fir::BoxType::get(type); |
| 391 | } |
| 392 | |
| 393 | static void instantiateHostTuple(const InstantiateHostTuple &args, |
| 394 | Fortran::lower::AbstractConverter &converter, |
| 395 | const Fortran::semantics::Symbol &sym) { |
| 396 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 397 | mlir::Location loc = args.loc; |
| 398 | fir::MutableBoxValue boxInTuple(args.addrInTuple, {}, {}); |
| 399 | if (args.hostValue.getBoxOf<fir::BoxValue>() && |
| 400 | Fortran::semantics::IsOptional(sym)) { |
| 401 | // The assumed shape optional case need some care because it is illegal to |
| 402 | // read the incoming box if it is absent (this would cause segfaults). |
| 403 | // Pointer association requires reading the target box, so it can only be |
| 404 | // done on present optional. For absent optionals, simply create a |
| 405 | // disassociated pointer (it is illegal to inquire about lower bounds or |
| 406 | // lengths of optional according to 15.5.2.12 3 (9) and 10.1.11 2 (7)b). |
| 407 | auto isPresent = builder.create<fir::IsPresentOp>( |
| 408 | loc, builder.getI1Type(), fir::getBase(args.hostValue)); |
| 409 | builder.genIfThenElse(loc, isPresent) |
| 410 | .genThen([&]() { |
| 411 | fir::factory::associateMutableBox(builder, loc, boxInTuple, |
| 412 | args.hostValue, |
| 413 | /*lbounds=*/std::nullopt); |
| 414 | }) |
| 415 | .genElse([&]() { |
| 416 | fir::factory::disassociateMutableBox(builder, loc, boxInTuple); |
| 417 | }) |
| 418 | .end(); |
| 419 | } else { |
| 420 | fir::factory::associateMutableBox( |
| 421 | builder, loc, boxInTuple, args.hostValue, /*lbounds=*/std::nullopt); |
| 422 | } |
| 423 | } |
| 424 | |
| 425 | static void getFromTuple(const GetFromTuple &args, |
| 426 | Fortran::lower::AbstractConverter &converter, |
| 427 | const Fortran::semantics::Symbol &sym, |
| 428 | const Fortran::lower::BoxAnalyzer &ba) { |
| 429 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 430 | mlir::Location loc = args.loc; |
| 431 | mlir::Value box = args.valueInTuple; |
| 432 | mlir::IndexType idxTy = builder.getIndexType(); |
| 433 | llvm::SmallVector<mlir::Value> lbounds; |
| 434 | if (!ba.lboundIsAllOnes() && !Fortran::evaluate::IsAssumedRank(sym)) { |
| 435 | if (ba.isStaticArray()) { |
| 436 | for (std::int64_t lb : ba.staticLBound()) |
| 437 | lbounds.emplace_back(builder.createIntegerConstant(loc, idxTy, lb)); |
| 438 | } else { |
| 439 | // Cannot re-evaluate specification expressions here. |
| 440 | // Operands values may have changed. Get value from fir.box |
| 441 | const unsigned rank = sym.Rank(); |
| 442 | for (unsigned dim = 0; dim < rank; ++dim) { |
| 443 | mlir::Value dimVal = builder.createIntegerConstant(loc, idxTy, dim); |
| 444 | auto dims = builder.create<fir::BoxDimsOp>(loc, idxTy, idxTy, idxTy, |
| 445 | box, dimVal); |
| 446 | lbounds.emplace_back(dims.getResult(0)); |
| 447 | } |
| 448 | } |
| 449 | } |
| 450 | |
| 451 | if (canReadCapturedBoxValue(converter, sym)) { |
| 452 | fir::BoxValue boxValue(box, lbounds, /*explicitParams=*/std::nullopt); |
| 453 | bindCapturedSymbol(sym, |
| 454 | fir::factory::readBoxValue(builder, loc, boxValue), |
| 455 | converter, args.symMap); |
| 456 | } else { |
| 457 | // Keep variable as a fir.box/fir.class. |
| 458 | // If this is an optional that is absent, the fir.box needs to be an |
| 459 | // AbsentOp result, otherwise it will not work properly with IsPresentOp |
| 460 | // (absent boxes are null descriptor addresses, not descriptors containing |
| 461 | // a null base address). |
| 462 | if (Fortran::semantics::IsOptional(sym)) { |
| 463 | auto boxTy = mlir::cast<fir::BaseBoxType>(box.getType()); |
| 464 | auto eleTy = boxTy.getEleTy(); |
| 465 | if (!fir::isa_ref_type(eleTy)) |
| 466 | eleTy = builder.getRefType(eleTy); |
| 467 | auto addr = builder.create<fir::BoxAddrOp>(loc, eleTy, box); |
| 468 | mlir::Value isPresent = builder.genIsNotNullAddr(loc, addr); |
| 469 | auto absentBox = builder.create<fir::AbsentOp>(loc, boxTy); |
| 470 | box = builder.create<mlir::arith::SelectOp>(loc, isPresent, box, |
| 471 | absentBox); |
| 472 | } |
| 473 | fir::BoxValue boxValue(box, lbounds, /*explicitParams=*/std::nullopt); |
| 474 | bindCapturedSymbol(sym, boxValue, converter, args.symMap); |
| 475 | } |
| 476 | } |
| 477 | |
| 478 | private: |
| 479 | /// Can the fir.box from the host link be read into simpler values ? |
| 480 | /// Later, without the symbol information, it might not be possible |
| 481 | /// to tell if the fir::BoxValue from the host link is contiguous. |
| 482 | static bool |
| 483 | canReadCapturedBoxValue(Fortran::lower::AbstractConverter &converter, |
| 484 | const Fortran::semantics::Symbol &sym) { |
| 485 | bool isScalarOrContiguous = |
| 486 | sym.Rank() == 0 || Fortran::evaluate::IsSimplyContiguous( |
| 487 | Fortran::evaluate::AsGenericExpr(sym).value(), |
| 488 | converter.getFoldingContext()); |
| 489 | const Fortran::semantics::DeclTypeSpec *type = sym.GetType(); |
| 490 | bool isPolymorphic = type && type->IsPolymorphic(); |
| 491 | return isScalarOrContiguous && !isPolymorphic && |
| 492 | !isDerivedWithLenParameters(sym) && |
| 493 | !Fortran::evaluate::IsAssumedRank(sym); |
| 494 | } |
| 495 | }; |
| 496 | } // namespace |
| 497 | |
| 498 | /// Dispatch \p visitor to the CapturedSymbols which is handling how host |
| 499 | /// association is implemented for this kind of symbols. This ensures the same |
| 500 | /// dispatch decision is taken when building the tuple type, when creating the |
| 501 | /// tuple, and when instantiating host associated variables from it. |
| 502 | template <typename T> |
| 503 | static typename T::Result |
| 504 | walkCaptureCategories(T visitor, Fortran::lower::AbstractConverter &converter, |
| 505 | const Fortran::semantics::Symbol &sym) { |
| 506 | if (isDerivedWithLenParameters(sym)) |
| 507 | // Should be boxed. |
| 508 | TODO(converter.genLocation(sym.name()), |
| 509 | "host associated derived type with length parameters" ); |
| 510 | Fortran::lower::BoxAnalyzer ba; |
| 511 | // Do not analyze procedures, they may be subroutines with no types that would |
| 512 | // crash the analysis. |
| 513 | if (Fortran::semantics::IsProcedure(sym)) |
| 514 | return CapturedProcedure::visit(visitor, converter, sym, ba); |
| 515 | ba.analyze(sym); |
| 516 | if (Fortran::semantics::IsAllocatableOrPointer(sym) || |
| 517 | sym.GetUltimate().test(Fortran::semantics::Symbol::Flag::CrayPointee)) |
| 518 | return CapturedAllocatableAndPointer::visit(visitor, converter, sym, ba); |
| 519 | if (ba.isArray()) // include assumed-ranks. |
| 520 | return CapturedArrays::visit(visitor, converter, sym, ba); |
| 521 | if (Fortran::semantics::IsPolymorphic(sym)) |
| 522 | return CapturedPolymorphicScalar::visit(visitor, converter, sym, ba); |
| 523 | if (ba.isChar()) |
| 524 | return CapturedCharacterScalars::visit(visitor, converter, sym, ba); |
| 525 | assert(ba.isTrivial() && "must be trivial scalar" ); |
| 526 | return CapturedSimpleScalars::visit(visitor, converter, sym, ba); |
| 527 | } |
| 528 | |
| 529 | // `t` should be the result of getArgumentType, which has a type of |
| 530 | // `!fir.ref<tuple<...>>`. |
| 531 | static mlir::TupleType unwrapTupleTy(mlir::Type t) { |
| 532 | return mlir::cast<mlir::TupleType>(fir::dyn_cast_ptrEleTy(t)); |
| 533 | } |
| 534 | |
| 535 | static mlir::Value genTupleCoor(fir::FirOpBuilder &builder, mlir::Location loc, |
| 536 | mlir::Type varTy, mlir::Value tupleArg, |
| 537 | mlir::Value offset) { |
| 538 | // fir.ref<fir.ref> and fir.ptr<fir.ref> are forbidden. Use |
| 539 | // fir.llvm_ptr if needed. |
| 540 | auto ty = mlir::isa<fir::ReferenceType>(varTy) |
| 541 | ? mlir::Type(fir::LLVMPointerType::get(varTy)) |
| 542 | : mlir::Type(builder.getRefType(varTy)); |
| 543 | return builder.create<fir::CoordinateOp>(loc, ty, tupleArg, offset); |
| 544 | } |
| 545 | |
| 546 | void Fortran::lower::HostAssociations::addSymbolsToBind( |
| 547 | const llvm::SetVector<const Fortran::semantics::Symbol *> &symbols, |
| 548 | const Fortran::semantics::Scope &hostScope) { |
| 549 | assert(tupleSymbols.empty() && globalSymbols.empty() && |
| 550 | "must be initially empty" ); |
| 551 | this->hostScope = &hostScope; |
| 552 | for (const auto *s : symbols) |
| 553 | // GlobalOp are created for non-global threadprivate variable, |
| 554 | // so considering them as globals. |
| 555 | if (Fortran::lower::symbolIsGlobal(*s) || |
| 556 | (*s).test(Fortran::semantics::Symbol::Flag::OmpThreadprivate)) { |
| 557 | // The ultimate symbol is stored here so that global symbols from the |
| 558 | // host scope can later be searched in this set. |
| 559 | globalSymbols.insert(&s->GetUltimate()); |
| 560 | } else { |
| 561 | tupleSymbols.insert(s); |
| 562 | } |
| 563 | } |
| 564 | |
| 565 | void Fortran::lower::HostAssociations::hostProcedureBindings( |
| 566 | Fortran::lower::AbstractConverter &converter, |
| 567 | Fortran::lower::SymMap &symMap) { |
| 568 | if (tupleSymbols.empty()) |
| 569 | return; |
| 570 | |
| 571 | // Create the tuple variable. |
| 572 | mlir::TupleType tupTy = unwrapTupleTy(getArgumentType(converter)); |
| 573 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 574 | mlir::Location loc = converter.getCurrentLocation(); |
| 575 | auto hostTuple = builder.create<fir::AllocaOp>(loc, tupTy); |
| 576 | mlir::IntegerType offTy = builder.getIntegerType(32); |
| 577 | |
| 578 | // Walk the list of tupleSymbols and update the pointers in the tuple. |
| 579 | for (auto s : llvm::enumerate(tupleSymbols)) { |
| 580 | auto indexInTuple = s.index(); |
| 581 | mlir::Value off = builder.createIntegerConstant(loc, offTy, indexInTuple); |
| 582 | mlir::Type varTy = tupTy.getType(indexInTuple); |
| 583 | mlir::Value eleOff = genTupleCoor(builder, loc, varTy, hostTuple, off); |
| 584 | InstantiateHostTuple instantiateHostTuple{ |
| 585 | converter.getSymbolExtendedValue(*s.value(), &symMap), eleOff, loc}; |
| 586 | walkCaptureCategories(instantiateHostTuple, converter, *s.value()); |
| 587 | } |
| 588 | |
| 589 | converter.bindHostAssocTuple(hostTuple); |
| 590 | } |
| 591 | |
| 592 | void Fortran::lower::HostAssociations::internalProcedureBindings( |
| 593 | Fortran::lower::AbstractConverter &converter, |
| 594 | Fortran::lower::SymMap &symMap) { |
| 595 | if (!globalSymbols.empty()) { |
| 596 | assert(hostScope && "host scope must have been set" ); |
| 597 | Fortran::lower::AggregateStoreMap storeMap; |
| 598 | // The host scope variable list is required to deal with host variables |
| 599 | // that are equivalenced and requires instantiating the right global |
| 600 | // AggregateStore. |
| 601 | for (auto &hostVariable : pft::getScopeVariableList(*hostScope)) |
| 602 | if ((hostVariable.isAggregateStore() && hostVariable.isGlobal()) || |
| 603 | (hostVariable.hasSymbol() && |
| 604 | globalSymbols.contains(&hostVariable.getSymbol().GetUltimate()))) { |
| 605 | Fortran::lower::instantiateVariable(converter, hostVariable, symMap, |
| 606 | storeMap); |
| 607 | // Generate threadprivate Op for host associated variables. |
| 608 | if (hostVariable.hasSymbol() && |
| 609 | hostVariable.getSymbol().test( |
| 610 | Fortran::semantics::Symbol::Flag::OmpThreadprivate)) |
| 611 | Fortran::lower::genThreadprivateOp(converter, hostVariable); |
| 612 | } |
| 613 | } |
| 614 | if (tupleSymbols.empty()) |
| 615 | return; |
| 616 | |
| 617 | // Find the argument with the tuple type. The argument ought to be appended. |
| 618 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 619 | mlir::Type argTy = getArgumentType(converter); |
| 620 | mlir::TupleType tupTy = unwrapTupleTy(argTy); |
| 621 | mlir::Location loc = converter.getCurrentLocation(); |
| 622 | mlir::func::FuncOp func = builder.getFunction(); |
| 623 | mlir::Value tupleArg; |
| 624 | for (auto [ty, arg] : llvm::reverse(llvm::zip( |
| 625 | func.getFunctionType().getInputs(), func.front().getArguments()))) |
| 626 | if (ty == argTy) { |
| 627 | tupleArg = arg; |
| 628 | break; |
| 629 | } |
| 630 | if (!tupleArg) |
| 631 | fir::emitFatalError(loc, "no host association argument found" ); |
| 632 | |
| 633 | converter.bindHostAssocTuple(tupleArg); |
| 634 | |
| 635 | mlir::IntegerType offTy = builder.getIntegerType(32); |
| 636 | |
| 637 | // Walk the list and add the bindings to the symbol table. |
| 638 | for (auto s : llvm::enumerate(tupleSymbols)) { |
| 639 | mlir::Value off = builder.createIntegerConstant(loc, offTy, s.index()); |
| 640 | mlir::Type varTy = tupTy.getType(s.index()); |
| 641 | mlir::Value eleOff = genTupleCoor(builder, loc, varTy, tupleArg, off); |
| 642 | mlir::Value valueInTuple = builder.create<fir::LoadOp>(loc, eleOff); |
| 643 | GetFromTuple getFromTuple{symMap, valueInTuple, loc}; |
| 644 | walkCaptureCategories(getFromTuple, converter, *s.value()); |
| 645 | } |
| 646 | } |
| 647 | |
| 648 | mlir::Type Fortran::lower::HostAssociations::getArgumentType( |
| 649 | Fortran::lower::AbstractConverter &converter) { |
| 650 | if (tupleSymbols.empty()) |
| 651 | return {}; |
| 652 | if (argType) |
| 653 | return argType; |
| 654 | |
| 655 | // Walk the list of Symbols and create their types. Wrap them in a reference |
| 656 | // to a tuple. |
| 657 | mlir::MLIRContext *ctxt = &converter.getMLIRContext(); |
| 658 | llvm::SmallVector<mlir::Type> tupleTys; |
| 659 | for (const Fortran::semantics::Symbol *sym : tupleSymbols) |
| 660 | tupleTys.emplace_back( |
| 661 | walkCaptureCategories(GetTypeInTuple{}, converter, *sym)); |
| 662 | argType = fir::ReferenceType::get(mlir::TupleType::get(ctxt, tupleTys)); |
| 663 | return argType; |
| 664 | } |
| 665 | |