1 | //===-- IO.cpp -- IO statement lowering -----------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/ |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "flang/Lower/IO.h" |
14 | #include "flang/Common/uint128.h" |
15 | #include "flang/Evaluate/tools.h" |
16 | #include "flang/Lower/Allocatable.h" |
17 | #include "flang/Lower/Bridge.h" |
18 | #include "flang/Lower/CallInterface.h" |
19 | #include "flang/Lower/ConvertExpr.h" |
20 | #include "flang/Lower/ConvertVariable.h" |
21 | #include "flang/Lower/Mangler.h" |
22 | #include "flang/Lower/PFTBuilder.h" |
23 | #include "flang/Lower/Runtime.h" |
24 | #include "flang/Lower/StatementContext.h" |
25 | #include "flang/Lower/Support/Utils.h" |
26 | #include "flang/Lower/VectorSubscripts.h" |
27 | #include "flang/Optimizer/Builder/Character.h" |
28 | #include "flang/Optimizer/Builder/Complex.h" |
29 | #include "flang/Optimizer/Builder/FIRBuilder.h" |
30 | #include "flang/Optimizer/Builder/Runtime/RTBuilder.h" |
31 | #include "flang/Optimizer/Builder/Runtime/Stop.h" |
32 | #include "flang/Optimizer/Builder/Todo.h" |
33 | #include "flang/Optimizer/Dialect/FIRDialect.h" |
34 | #include "flang/Optimizer/Dialect/Support/FIRContext.h" |
35 | #include "flang/Parser/parse-tree.h" |
36 | #include "flang/Runtime/io-api.h" |
37 | #include "flang/Semantics/runtime-type-info.h" |
38 | #include "flang/Semantics/tools.h" |
39 | #include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h" |
40 | #include "llvm/Support/Debug.h" |
41 | #include <optional> |
42 | |
43 | #define DEBUG_TYPE "flang-lower-io" |
44 | |
45 | // Define additional runtime type models specific to IO. |
46 | namespace fir::runtime { |
47 | template <> |
48 | constexpr TypeBuilderFunc getModel<Fortran::runtime::io::IoStatementState *>() { |
49 | return getModel<char *>(); |
50 | } |
51 | template <> |
52 | constexpr TypeBuilderFunc getModel<Fortran::runtime::io::Iostat>() { |
53 | return [](mlir::MLIRContext *context) -> mlir::Type { |
54 | return mlir::IntegerType::get(context, |
55 | 8 * sizeof(Fortran::runtime::io::Iostat)); |
56 | }; |
57 | } |
58 | template <> |
59 | constexpr TypeBuilderFunc |
60 | getModel<const Fortran::runtime::io::NamelistGroup &>() { |
61 | return [](mlir::MLIRContext *context) -> mlir::Type { |
62 | return fir::ReferenceType::get(mlir::TupleType::get(context)); |
63 | }; |
64 | } |
65 | template <> |
66 | constexpr TypeBuilderFunc |
67 | getModel<const Fortran::runtime::io::NonTbpDefinedIoTable *>() { |
68 | return [](mlir::MLIRContext *context) -> mlir::Type { |
69 | return fir::ReferenceType::get(mlir::TupleType::get(context)); |
70 | }; |
71 | } |
72 | } // namespace fir::runtime |
73 | |
74 | using namespace Fortran::runtime::io; |
75 | |
76 | #define mkIOKey(X) FirmkKey(IONAME(X)) |
77 | |
78 | namespace Fortran::lower { |
79 | /// Static table of IO runtime calls |
80 | /// |
81 | /// This logical map contains the name and type builder function for each IO |
82 | /// runtime function listed in the tuple. This table is fully constructed at |
83 | /// compile-time. Use the `mkIOKey` macro to access the table. |
84 | static constexpr std::tuple< |
85 | mkIOKey(BeginBackspace), mkIOKey(BeginClose), mkIOKey(BeginEndfile), |
86 | mkIOKey(BeginExternalFormattedInput), mkIOKey(BeginExternalFormattedOutput), |
87 | mkIOKey(BeginExternalListInput), mkIOKey(BeginExternalListOutput), |
88 | mkIOKey(BeginFlush), mkIOKey(BeginInquireFile), |
89 | mkIOKey(BeginInquireIoLength), mkIOKey(BeginInquireUnit), |
90 | mkIOKey(BeginInternalArrayFormattedInput), |
91 | mkIOKey(BeginInternalArrayFormattedOutput), |
92 | mkIOKey(BeginInternalArrayListInput), mkIOKey(BeginInternalArrayListOutput), |
93 | mkIOKey(BeginInternalFormattedInput), mkIOKey(BeginInternalFormattedOutput), |
94 | mkIOKey(BeginInternalListInput), mkIOKey(BeginInternalListOutput), |
95 | mkIOKey(BeginOpenNewUnit), mkIOKey(BeginOpenUnit), mkIOKey(BeginRewind), |
96 | mkIOKey(BeginUnformattedInput), mkIOKey(BeginUnformattedOutput), |
97 | mkIOKey(BeginWait), mkIOKey(BeginWaitAll), |
98 | mkIOKey(CheckUnitNumberInRange64), mkIOKey(CheckUnitNumberInRange128), |
99 | mkIOKey(EnableHandlers), mkIOKey(EndIoStatement), |
100 | mkIOKey(GetAsynchronousId), mkIOKey(GetIoLength), mkIOKey(GetIoMsg), |
101 | mkIOKey(GetNewUnit), mkIOKey(GetSize), mkIOKey(InputAscii), |
102 | mkIOKey(InputComplex32), mkIOKey(InputComplex64), mkIOKey(InputDerivedType), |
103 | mkIOKey(InputDescriptor), mkIOKey(InputInteger), mkIOKey(InputLogical), |
104 | mkIOKey(InputNamelist), mkIOKey(InputReal32), mkIOKey(InputReal64), |
105 | mkIOKey(InquireCharacter), mkIOKey(InquireInteger64), |
106 | mkIOKey(InquireLogical), mkIOKey(InquirePendingId), mkIOKey(OutputAscii), |
107 | mkIOKey(OutputComplex32), mkIOKey(OutputComplex64), |
108 | mkIOKey(OutputDerivedType), mkIOKey(OutputDescriptor), |
109 | mkIOKey(OutputInteger8), mkIOKey(OutputInteger16), mkIOKey(OutputInteger32), |
110 | mkIOKey(OutputInteger64), mkIOKey(OutputInteger128), mkIOKey(OutputLogical), |
111 | mkIOKey(OutputNamelist), mkIOKey(OutputReal32), mkIOKey(OutputReal64), |
112 | mkIOKey(SetAccess), mkIOKey(SetAction), mkIOKey(SetAdvance), |
113 | mkIOKey(SetAsynchronous), mkIOKey(SetBlank), mkIOKey(SetCarriagecontrol), |
114 | mkIOKey(SetConvert), mkIOKey(SetDecimal), mkIOKey(SetDelim), |
115 | mkIOKey(SetEncoding), mkIOKey(SetFile), mkIOKey(SetForm), mkIOKey(SetPad), |
116 | mkIOKey(SetPos), mkIOKey(SetPosition), mkIOKey(SetRec), mkIOKey(SetRecl), |
117 | mkIOKey(SetRound), mkIOKey(SetSign), mkIOKey(SetStatus)> |
118 | newIOTable; |
119 | } // namespace Fortran::lower |
120 | |
121 | namespace { |
122 | /// IO statements may require exceptional condition handling. A statement that |
123 | /// encounters an exceptional condition may branch to a label given on an ERR |
124 | /// (error), END (end-of-file), or EOR (end-of-record) specifier. An IOSTAT |
125 | /// specifier variable may be set to a value that indicates some condition, |
126 | /// and an IOMSG specifier variable may be set to a description of a condition. |
127 | struct ConditionSpecInfo { |
128 | const Fortran::lower::SomeExpr *ioStatExpr{}; |
129 | std::optional<fir::ExtendedValue> ioMsg; |
130 | bool hasErr{}; |
131 | bool hasEnd{}; |
132 | bool hasEor{}; |
133 | fir::IfOp bigUnitIfOp; |
134 | |
135 | /// Check for any condition specifier that applies to specifier processing. |
136 | bool hasErrorConditionSpec() const { return ioStatExpr != nullptr || hasErr; } |
137 | |
138 | /// Check for any condition specifier that applies to data transfer items |
139 | /// in a PRINT, READ, WRITE, or WAIT statement. (WAIT may be irrelevant.) |
140 | bool hasTransferConditionSpec() const { |
141 | return hasErrorConditionSpec() || hasEnd || hasEor; |
142 | } |
143 | |
144 | /// Check for any condition specifier, including IOMSG. |
145 | bool hasAnyConditionSpec() const { |
146 | return hasTransferConditionSpec() || ioMsg; |
147 | } |
148 | }; |
149 | } // namespace |
150 | |
151 | template <typename D> |
152 | static void genIoLoop(Fortran::lower::AbstractConverter &converter, |
153 | mlir::Value cookie, const D &ioImpliedDo, |
154 | bool isFormatted, bool checkResult, mlir::Value &ok, |
155 | bool inLoop); |
156 | |
157 | /// Helper function to retrieve the name of the IO function given the key `A` |
158 | template <typename A> |
159 | static constexpr const char *getName() { |
160 | return std::get<A>(Fortran::lower::newIOTable).name; |
161 | } |
162 | |
163 | /// Helper function to retrieve the type model signature builder of the IO |
164 | /// function as defined by the key `A` |
165 | template <typename A> |
166 | static constexpr fir::runtime::FuncTypeBuilderFunc getTypeModel() { |
167 | return std::get<A>(Fortran::lower::newIOTable).getTypeModel(); |
168 | } |
169 | |
170 | inline int64_t getLength(mlir::Type argTy) { |
171 | return argTy.cast<fir::SequenceType>().getShape()[0]; |
172 | } |
173 | |
174 | /// Get (or generate) the MLIR FuncOp for a given IO runtime function. |
175 | template <typename E> |
176 | static mlir::func::FuncOp getIORuntimeFunc(mlir::Location loc, |
177 | fir::FirOpBuilder &builder) { |
178 | llvm::StringRef name = getName<E>(); |
179 | mlir::func::FuncOp func = builder.getNamedFunction(name); |
180 | if (func) |
181 | return func; |
182 | auto funTy = getTypeModel<E>()(builder.getContext()); |
183 | func = builder.createFunction(loc, name, funTy); |
184 | func->setAttr(fir::FIROpsDialect::getFirRuntimeAttrName(), |
185 | builder.getUnitAttr()); |
186 | func->setAttr("fir.io" , builder.getUnitAttr()); |
187 | return func; |
188 | } |
189 | |
190 | /// Generate calls to end an IO statement. Return the IOSTAT value, if any. |
191 | /// It is the caller's responsibility to generate branches on that value. |
192 | static mlir::Value genEndIO(Fortran::lower::AbstractConverter &converter, |
193 | mlir::Location loc, mlir::Value cookie, |
194 | ConditionSpecInfo &csi, |
195 | Fortran::lower::StatementContext &stmtCtx) { |
196 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
197 | if (csi.ioMsg) { |
198 | mlir::func::FuncOp getIoMsg = |
199 | getIORuntimeFunc<mkIOKey(GetIoMsg)>(loc, builder); |
200 | builder.create<fir::CallOp>( |
201 | loc, getIoMsg, |
202 | mlir::ValueRange{ |
203 | cookie, |
204 | builder.createConvert(loc, getIoMsg.getFunctionType().getInput(1), |
205 | fir::getBase(*csi.ioMsg)), |
206 | builder.createConvert(loc, getIoMsg.getFunctionType().getInput(2), |
207 | fir::getLen(*csi.ioMsg))}); |
208 | } |
209 | mlir::func::FuncOp endIoStatement = |
210 | getIORuntimeFunc<mkIOKey(EndIoStatement)>(loc, builder); |
211 | auto call = builder.create<fir::CallOp>(loc, endIoStatement, |
212 | mlir::ValueRange{cookie}); |
213 | mlir::Value iostat = call.getResult(0); |
214 | if (csi.bigUnitIfOp) { |
215 | stmtCtx.finalizeAndPop(); |
216 | builder.create<fir::ResultOp>(loc, iostat); |
217 | builder.setInsertionPointAfter(csi.bigUnitIfOp); |
218 | iostat = csi.bigUnitIfOp.getResult(0); |
219 | } |
220 | if (csi.ioStatExpr) { |
221 | mlir::Value ioStatVar = |
222 | fir::getBase(converter.genExprAddr(loc, csi.ioStatExpr, stmtCtx)); |
223 | mlir::Value ioStatResult = |
224 | builder.createConvert(loc, converter.genType(*csi.ioStatExpr), iostat); |
225 | builder.create<fir::StoreOp>(loc, ioStatResult, ioStatVar); |
226 | } |
227 | return csi.hasTransferConditionSpec() ? iostat : mlir::Value{}; |
228 | } |
229 | |
230 | /// Make the next call in the IO statement conditional on runtime result `ok`. |
231 | /// If a call returns `ok==false`, further suboperation calls for an IO |
232 | /// statement will be skipped. This may generate branch heavy, deeply nested |
233 | /// conditionals for IO statements with a large number of suboperations. |
234 | static void makeNextConditionalOn(fir::FirOpBuilder &builder, |
235 | mlir::Location loc, bool checkResult, |
236 | mlir::Value ok, bool inLoop = false) { |
237 | if (!checkResult || !ok) |
238 | // Either no IO calls need to be checked, or this will be the first call. |
239 | return; |
240 | |
241 | // A previous IO call for a statement returned the bool `ok`. If this call |
242 | // is in a fir.iterate_while loop, the result must be propagated up to the |
243 | // loop scope as an extra ifOp result. (The propagation is done in genIoLoop.) |
244 | mlir::TypeRange resTy; |
245 | // TypeRange does not own its contents, so make sure the the type object |
246 | // is live until the end of the function. |
247 | mlir::IntegerType boolTy = builder.getI1Type(); |
248 | if (inLoop) |
249 | resTy = boolTy; |
250 | auto ifOp = builder.create<fir::IfOp>(loc, resTy, ok, |
251 | /*withElseRegion=*/inLoop); |
252 | builder.setInsertionPointToStart(&ifOp.getThenRegion().front()); |
253 | } |
254 | |
255 | // Derived type symbols may each be mapped to up to 4 defined IO procedures. |
256 | using DefinedIoProcMap = std::multimap<const Fortran::semantics::Symbol *, |
257 | Fortran::semantics::NonTbpDefinedIo>; |
258 | |
259 | /// Get the current scope's non-type-bound defined IO procedures. |
260 | static DefinedIoProcMap |
261 | getDefinedIoProcMap(Fortran::lower::AbstractConverter &converter) { |
262 | const Fortran::semantics::Scope *scope = &converter.getCurrentScope(); |
263 | for (; !scope->IsGlobal(); scope = &scope->parent()) |
264 | if (scope->kind() == Fortran::semantics::Scope::Kind::MainProgram || |
265 | scope->kind() == Fortran::semantics::Scope::Kind::Subprogram || |
266 | scope->kind() == Fortran::semantics::Scope::Kind::BlockConstruct) |
267 | break; |
268 | return Fortran::semantics::CollectNonTbpDefinedIoGenericInterfaces(*scope, |
269 | false); |
270 | } |
271 | |
272 | /// Check a set of defined IO procedures for any procedure pointer or dummy |
273 | /// procedures. |
274 | static bool hasLocalDefinedIoProc(DefinedIoProcMap &definedIoProcMap) { |
275 | for (auto &iface : definedIoProcMap) { |
276 | const Fortran::semantics::Symbol *procSym = iface.second.subroutine; |
277 | if (!procSym) |
278 | continue; |
279 | procSym = &procSym->GetUltimate(); |
280 | if (Fortran::semantics::IsProcedurePointer(*procSym) || |
281 | Fortran::semantics::IsDummy(*procSym)) |
282 | return true; |
283 | } |
284 | return false; |
285 | } |
286 | |
287 | /// Retrieve or generate a runtime description of the non-type-bound defined |
288 | /// IO procedures in the current scope. If any procedure is a dummy or a |
289 | /// procedure pointer, the result is local. Otherwise the result is static. |
290 | /// If there are no procedures, return a scope-independent default table with |
291 | /// an empty procedure list, but with the `ignoreNonTbpEntries` flag set. The |
292 | /// form of the description is defined in runtime header file non-tbp-dio.h. |
293 | static mlir::Value |
294 | getNonTbpDefinedIoTableAddr(Fortran::lower::AbstractConverter &converter, |
295 | DefinedIoProcMap &definedIoProcMap) { |
296 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
297 | mlir::MLIRContext *context = builder.getContext(); |
298 | mlir::Location loc = converter.getCurrentLocation(); |
299 | mlir::Type refTy = fir::ReferenceType::get(mlir::NoneType::get(context)); |
300 | std::string suffix = ".nonTbpDefinedIoTable" ; |
301 | std::string tableMangleName = definedIoProcMap.empty() |
302 | ? "default" + suffix |
303 | : converter.mangleName(suffix); |
304 | if (auto table = builder.getNamedGlobal(tableMangleName)) |
305 | return builder.createConvert( |
306 | loc, refTy, |
307 | builder.create<fir::AddrOfOp>(loc, table.resultType(), |
308 | table.getSymbol())); |
309 | |
310 | mlir::StringAttr linkOnce = builder.createLinkOnceLinkage(); |
311 | mlir::Type idxTy = builder.getIndexType(); |
312 | mlir::Type sizeTy = |
313 | fir::runtime::getModel<std::size_t>()(builder.getContext()); |
314 | mlir::Type intTy = fir::runtime::getModel<int>()(builder.getContext()); |
315 | mlir::Type boolTy = fir::runtime::getModel<bool>()(builder.getContext()); |
316 | mlir::Type listTy = fir::SequenceType::get( |
317 | definedIoProcMap.size(), |
318 | mlir::TupleType::get(context, {refTy, refTy, intTy, boolTy})); |
319 | mlir::Type tableTy = mlir::TupleType::get( |
320 | context, {sizeTy, fir::ReferenceType::get(listTy), boolTy}); |
321 | |
322 | // Define the list of NonTbpDefinedIo procedures. |
323 | bool tableIsLocal = |
324 | !definedIoProcMap.empty() && hasLocalDefinedIoProc(definedIoProcMap); |
325 | mlir::Value listAddr = |
326 | tableIsLocal ? builder.create<fir::AllocaOp>(loc, listTy) : mlir::Value{}; |
327 | std::string listMangleName = tableMangleName + ".list" ; |
328 | auto listFunc = [&](fir::FirOpBuilder &builder) { |
329 | mlir::Value list = builder.create<fir::UndefOp>(loc, listTy); |
330 | mlir::IntegerAttr intAttr[4]; |
331 | for (int i = 0; i < 4; ++i) |
332 | intAttr[i] = builder.getIntegerAttr(idxTy, i); |
333 | llvm::SmallVector<mlir::Attribute, 2> idx = {mlir::Attribute{}, |
334 | mlir::Attribute{}}; |
335 | int n0 = 0, n1; |
336 | auto insert = [&](mlir::Value val) { |
337 | idx[1] = intAttr[n1++]; |
338 | list = builder.create<fir::InsertValueOp>(loc, listTy, list, val, |
339 | builder.getArrayAttr(idx)); |
340 | }; |
341 | for (auto &iface : definedIoProcMap) { |
342 | idx[0] = builder.getIntegerAttr(idxTy, n0++); |
343 | n1 = 0; |
344 | // derived type description [const typeInfo::DerivedType &derivedType] |
345 | const Fortran::semantics::Symbol &dtSym = iface.first->GetUltimate(); |
346 | std::string dtName = converter.mangleName(dtSym); |
347 | insert(builder.createConvert( |
348 | loc, refTy, |
349 | builder.create<fir::AddrOfOp>( |
350 | loc, fir::ReferenceType::get(converter.genType(dtSym)), |
351 | builder.getSymbolRefAttr(dtName)))); |
352 | // defined IO procedure [void (*subroutine)()], may be null |
353 | const Fortran::semantics::Symbol *procSym = iface.second.subroutine; |
354 | if (procSym) { |
355 | procSym = &procSym->GetUltimate(); |
356 | if (Fortran::semantics::IsProcedurePointer(*procSym)) { |
357 | TODO(loc, "defined IO procedure pointers" ); |
358 | } else if (Fortran::semantics::IsDummy(*procSym)) { |
359 | Fortran::lower::StatementContext stmtCtx; |
360 | insert(builder.create<fir::BoxAddrOp>( |
361 | loc, refTy, |
362 | fir::getBase(converter.genExprAddr( |
363 | loc, |
364 | Fortran::lower::SomeExpr{ |
365 | Fortran::evaluate::ProcedureDesignator{*procSym}}, |
366 | stmtCtx)))); |
367 | } else { |
368 | mlir::func::FuncOp procDef = Fortran::lower::getOrDeclareFunction( |
369 | Fortran::evaluate::ProcedureDesignator{*procSym}, converter); |
370 | mlir::SymbolRefAttr nameAttr = |
371 | builder.getSymbolRefAttr(procDef.getSymName()); |
372 | insert(builder.createConvert( |
373 | loc, refTy, |
374 | builder.create<fir::AddrOfOp>(loc, procDef.getFunctionType(), |
375 | nameAttr))); |
376 | } |
377 | } else { |
378 | insert(builder.createNullConstant(loc, refTy)); |
379 | } |
380 | // defined IO variant, one of (read/write, formatted/unformatted) |
381 | // [common::DefinedIo definedIo] |
382 | insert(builder.createIntegerConstant( |
383 | loc, intTy, static_cast<int>(iface.second.definedIo))); |
384 | // polymorphic flag is set if first defined IO dummy arg is CLASS(T) |
385 | // [bool isDtvArgPolymorphic] |
386 | insert(builder.createIntegerConstant(loc, boolTy, |
387 | iface.second.isDtvArgPolymorphic)); |
388 | } |
389 | if (tableIsLocal) |
390 | builder.create<fir::StoreOp>(loc, list, listAddr); |
391 | else |
392 | builder.create<fir::HasValueOp>(loc, list); |
393 | }; |
394 | if (!definedIoProcMap.empty()) { |
395 | if (tableIsLocal) |
396 | listFunc(builder); |
397 | else |
398 | builder.createGlobalConstant(loc, listTy, listMangleName, listFunc, |
399 | linkOnce); |
400 | } |
401 | |
402 | // Define the NonTbpDefinedIoTable. |
403 | mlir::Value tableAddr = tableIsLocal |
404 | ? builder.create<fir::AllocaOp>(loc, tableTy) |
405 | : mlir::Value{}; |
406 | auto tableFunc = [&](fir::FirOpBuilder &builder) { |
407 | mlir::Value table = builder.create<fir::UndefOp>(loc, tableTy); |
408 | // list item count [std::size_t items] |
409 | table = builder.create<fir::InsertValueOp>( |
410 | loc, tableTy, table, |
411 | builder.createIntegerConstant(loc, sizeTy, definedIoProcMap.size()), |
412 | builder.getArrayAttr(builder.getIntegerAttr(idxTy, 0))); |
413 | // item list [const NonTbpDefinedIo *item] |
414 | if (definedIoProcMap.empty()) |
415 | listAddr = builder.createNullConstant(loc, builder.getRefType(listTy)); |
416 | else if (fir::GlobalOp list = builder.getNamedGlobal(listMangleName)) |
417 | listAddr = builder.create<fir::AddrOfOp>(loc, list.resultType(), |
418 | list.getSymbol()); |
419 | assert(listAddr && "missing namelist object list" ); |
420 | table = builder.create<fir::InsertValueOp>( |
421 | loc, tableTy, table, listAddr, |
422 | builder.getArrayAttr(builder.getIntegerAttr(idxTy, 1))); |
423 | // [bool ignoreNonTbpEntries] conservatively set to true |
424 | table = builder.create<fir::InsertValueOp>( |
425 | loc, tableTy, table, builder.createIntegerConstant(loc, boolTy, true), |
426 | builder.getArrayAttr(builder.getIntegerAttr(idxTy, 2))); |
427 | if (tableIsLocal) |
428 | builder.create<fir::StoreOp>(loc, table, tableAddr); |
429 | else |
430 | builder.create<fir::HasValueOp>(loc, table); |
431 | }; |
432 | if (tableIsLocal) { |
433 | tableFunc(builder); |
434 | } else { |
435 | fir::GlobalOp table = builder.createGlobal( |
436 | loc, tableTy, tableMangleName, |
437 | /*isConst=*/true, /*isTarget=*/false, tableFunc, linkOnce); |
438 | tableAddr = builder.create<fir::AddrOfOp>( |
439 | loc, fir::ReferenceType::get(tableTy), table.getSymbol()); |
440 | } |
441 | assert(tableAddr && "missing NonTbpDefinedIo table result" ); |
442 | return builder.createConvert(loc, refTy, tableAddr); |
443 | } |
444 | |
445 | static mlir::Value |
446 | getNonTbpDefinedIoTableAddr(Fortran::lower::AbstractConverter &converter) { |
447 | DefinedIoProcMap definedIoProcMap = getDefinedIoProcMap(converter); |
448 | return getNonTbpDefinedIoTableAddr(converter, definedIoProcMap); |
449 | } |
450 | |
451 | /// Retrieve or generate a runtime description of NAMELIST group \p symbol. |
452 | /// The form of the description is defined in runtime header file namelist.h. |
453 | /// Static descriptors are generated for global objects; local descriptors for |
454 | /// local objects. If all descriptors and defined IO procedures are static, |
455 | /// the NamelistGroup is static. |
456 | static mlir::Value |
457 | getNamelistGroup(Fortran::lower::AbstractConverter &converter, |
458 | const Fortran::semantics::Symbol &symbol, |
459 | Fortran::lower::StatementContext &stmtCtx) { |
460 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
461 | mlir::Location loc = converter.getCurrentLocation(); |
462 | std::string groupMangleName = converter.mangleName(symbol); |
463 | if (auto group = builder.getNamedGlobal(groupMangleName)) |
464 | return builder.create<fir::AddrOfOp>(loc, group.resultType(), |
465 | group.getSymbol()); |
466 | |
467 | const auto &details = |
468 | symbol.GetUltimate().get<Fortran::semantics::NamelistDetails>(); |
469 | mlir::MLIRContext *context = builder.getContext(); |
470 | mlir::StringAttr linkOnce = builder.createLinkOnceLinkage(); |
471 | mlir::Type idxTy = builder.getIndexType(); |
472 | mlir::Type sizeTy = |
473 | fir::runtime::getModel<std::size_t>()(builder.getContext()); |
474 | mlir::Type charRefTy = fir::ReferenceType::get(builder.getIntegerType(8)); |
475 | mlir::Type descRefTy = |
476 | fir::ReferenceType::get(fir::BoxType::get(mlir::NoneType::get(context))); |
477 | mlir::Type listTy = fir::SequenceType::get( |
478 | details.objects().size(), |
479 | mlir::TupleType::get(context, {charRefTy, descRefTy})); |
480 | mlir::Type groupTy = mlir::TupleType::get( |
481 | context, {charRefTy, sizeTy, fir::ReferenceType::get(listTy), |
482 | fir::ReferenceType::get(mlir::NoneType::get(context))}); |
483 | auto stringAddress = [&](const Fortran::semantics::Symbol &symbol) { |
484 | return fir::factory::createStringLiteral(builder, loc, |
485 | symbol.name().ToString() + '\0'); |
486 | }; |
487 | |
488 | // Define variable names, and static descriptors for global variables. |
489 | DefinedIoProcMap definedIoProcMap = getDefinedIoProcMap(converter); |
490 | bool groupIsLocal = hasLocalDefinedIoProc(definedIoProcMap); |
491 | stringAddress(symbol); |
492 | for (const Fortran::semantics::Symbol &s : details.objects()) { |
493 | stringAddress(s); |
494 | if (!Fortran::lower::symbolIsGlobal(s)) { |
495 | groupIsLocal = true; |
496 | continue; |
497 | } |
498 | // A global pointer or allocatable variable has a descriptor for typical |
499 | // accesses. Variables in multiple namelist groups may already have one. |
500 | // Create descriptors for other cases. |
501 | if (!IsAllocatableOrObjectPointer(&s)) { |
502 | std::string mangleName = |
503 | Fortran::lower::mangle::globalNamelistDescriptorName(s); |
504 | if (builder.getNamedGlobal(mangleName)) |
505 | continue; |
506 | const auto expr = Fortran::evaluate::AsGenericExpr(s); |
507 | fir::BoxType boxTy = |
508 | fir::BoxType::get(fir::PointerType::get(converter.genType(s))); |
509 | auto descFunc = [&](fir::FirOpBuilder &b) { |
510 | auto box = Fortran::lower::genInitialDataTarget( |
511 | converter, loc, boxTy, *expr, /*couldBeInEquivalence=*/true); |
512 | b.create<fir::HasValueOp>(loc, box); |
513 | }; |
514 | builder.createGlobalConstant(loc, boxTy, mangleName, descFunc, linkOnce); |
515 | } |
516 | } |
517 | |
518 | // Define the list of Items. |
519 | mlir::Value listAddr = |
520 | groupIsLocal ? builder.create<fir::AllocaOp>(loc, listTy) : mlir::Value{}; |
521 | std::string listMangleName = groupMangleName + ".list" ; |
522 | auto listFunc = [&](fir::FirOpBuilder &builder) { |
523 | mlir::Value list = builder.create<fir::UndefOp>(loc, listTy); |
524 | mlir::IntegerAttr zero = builder.getIntegerAttr(idxTy, 0); |
525 | mlir::IntegerAttr one = builder.getIntegerAttr(idxTy, 1); |
526 | llvm::SmallVector<mlir::Attribute, 2> idx = {mlir::Attribute{}, |
527 | mlir::Attribute{}}; |
528 | int n = 0; |
529 | for (const Fortran::semantics::Symbol &s : details.objects()) { |
530 | idx[0] = builder.getIntegerAttr(idxTy, n++); |
531 | idx[1] = zero; |
532 | mlir::Value nameAddr = |
533 | builder.createConvert(loc, charRefTy, fir::getBase(stringAddress(s))); |
534 | list = builder.create<fir::InsertValueOp>(loc, listTy, list, nameAddr, |
535 | builder.getArrayAttr(idx)); |
536 | idx[1] = one; |
537 | mlir::Value descAddr; |
538 | if (auto desc = builder.getNamedGlobal( |
539 | Fortran::lower::mangle::globalNamelistDescriptorName(s))) { |
540 | descAddr = builder.create<fir::AddrOfOp>(loc, desc.resultType(), |
541 | desc.getSymbol()); |
542 | } else if (Fortran::semantics::FindCommonBlockContaining(s) && |
543 | IsAllocatableOrPointer(s)) { |
544 | mlir::Type symType = converter.genType(s); |
545 | const Fortran::semantics::Symbol *commonBlockSym = |
546 | Fortran::semantics::FindCommonBlockContaining(s); |
547 | std::string commonBlockName = converter.mangleName(*commonBlockSym); |
548 | fir::GlobalOp commonGlobal = builder.getNamedGlobal(commonBlockName); |
549 | mlir::Value commonBlockAddr = builder.create<fir::AddrOfOp>( |
550 | loc, commonGlobal.resultType(), commonGlobal.getSymbol()); |
551 | mlir::IntegerType i8Ty = builder.getIntegerType(8); |
552 | mlir::Type i8Ptr = builder.getRefType(i8Ty); |
553 | mlir::Type seqTy = builder.getRefType(builder.getVarLenSeqTy(i8Ty)); |
554 | mlir::Value base = builder.createConvert(loc, seqTy, commonBlockAddr); |
555 | std::size_t byteOffset = s.GetUltimate().offset(); |
556 | mlir::Value offs = builder.createIntegerConstant( |
557 | loc, builder.getIndexType(), byteOffset); |
558 | mlir::Value varAddr = builder.create<fir::CoordinateOp>( |
559 | loc, i8Ptr, base, mlir::ValueRange{offs}); |
560 | descAddr = |
561 | builder.createConvert(loc, builder.getRefType(symType), varAddr); |
562 | } else { |
563 | const auto expr = Fortran::evaluate::AsGenericExpr(s); |
564 | fir::ExtendedValue exv = converter.genExprAddr(*expr, stmtCtx); |
565 | mlir::Type type = fir::getBase(exv).getType(); |
566 | if (mlir::Type baseTy = fir::dyn_cast_ptrOrBoxEleTy(type)) |
567 | type = baseTy; |
568 | fir::BoxType boxType = fir::BoxType::get(fir::PointerType::get(type)); |
569 | descAddr = builder.createTemporary(loc, boxType); |
570 | fir::MutableBoxValue box = fir::MutableBoxValue(descAddr, {}, {}); |
571 | fir::factory::associateMutableBox(builder, loc, box, exv, |
572 | /*lbounds=*/std::nullopt); |
573 | } |
574 | descAddr = builder.createConvert(loc, descRefTy, descAddr); |
575 | list = builder.create<fir::InsertValueOp>(loc, listTy, list, descAddr, |
576 | builder.getArrayAttr(idx)); |
577 | } |
578 | if (groupIsLocal) |
579 | builder.create<fir::StoreOp>(loc, list, listAddr); |
580 | else |
581 | builder.create<fir::HasValueOp>(loc, list); |
582 | }; |
583 | if (groupIsLocal) |
584 | listFunc(builder); |
585 | else |
586 | builder.createGlobalConstant(loc, listTy, listMangleName, listFunc, |
587 | linkOnce); |
588 | |
589 | // Define the group. |
590 | mlir::Value groupAddr = groupIsLocal |
591 | ? builder.create<fir::AllocaOp>(loc, groupTy) |
592 | : mlir::Value{}; |
593 | auto groupFunc = [&](fir::FirOpBuilder &builder) { |
594 | mlir::Value group = builder.create<fir::UndefOp>(loc, groupTy); |
595 | // group name [const char *groupName] |
596 | group = builder.create<fir::InsertValueOp>( |
597 | loc, groupTy, group, |
598 | builder.createConvert(loc, charRefTy, |
599 | fir::getBase(stringAddress(symbol))), |
600 | builder.getArrayAttr(builder.getIntegerAttr(idxTy, 0))); |
601 | // list item count [std::size_t items] |
602 | group = builder.create<fir::InsertValueOp>( |
603 | loc, groupTy, group, |
604 | builder.createIntegerConstant(loc, sizeTy, details.objects().size()), |
605 | builder.getArrayAttr(builder.getIntegerAttr(idxTy, 1))); |
606 | // item list [const Item *item] |
607 | if (fir::GlobalOp list = builder.getNamedGlobal(listMangleName)) |
608 | listAddr = builder.create<fir::AddrOfOp>(loc, list.resultType(), |
609 | list.getSymbol()); |
610 | assert(listAddr && "missing namelist object list" ); |
611 | group = builder.create<fir::InsertValueOp>( |
612 | loc, groupTy, group, listAddr, |
613 | builder.getArrayAttr(builder.getIntegerAttr(idxTy, 2))); |
614 | // non-type-bound defined IO procedures |
615 | // [const NonTbpDefinedIoTable *nonTbpDefinedIo] |
616 | group = builder.create<fir::InsertValueOp>( |
617 | loc, groupTy, group, |
618 | getNonTbpDefinedIoTableAddr(converter, definedIoProcMap), |
619 | builder.getArrayAttr(builder.getIntegerAttr(idxTy, 3))); |
620 | if (groupIsLocal) |
621 | builder.create<fir::StoreOp>(loc, group, groupAddr); |
622 | else |
623 | builder.create<fir::HasValueOp>(loc, group); |
624 | }; |
625 | if (groupIsLocal) { |
626 | groupFunc(builder); |
627 | } else { |
628 | fir::GlobalOp group = builder.createGlobal( |
629 | loc, groupTy, groupMangleName, |
630 | /*isConst=*/true, /*isTarget=*/false, groupFunc, linkOnce); |
631 | groupAddr = builder.create<fir::AddrOfOp>(loc, group.resultType(), |
632 | group.getSymbol()); |
633 | } |
634 | assert(groupAddr && "missing namelist group result" ); |
635 | return groupAddr; |
636 | } |
637 | |
638 | /// Generate a namelist IO call. |
639 | static void genNamelistIO(Fortran::lower::AbstractConverter &converter, |
640 | mlir::Value cookie, mlir::func::FuncOp funcOp, |
641 | Fortran::semantics::Symbol &symbol, bool checkResult, |
642 | mlir::Value &ok, |
643 | Fortran::lower::StatementContext &stmtCtx) { |
644 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
645 | mlir::Location loc = converter.getCurrentLocation(); |
646 | makeNextConditionalOn(builder, loc, checkResult, ok); |
647 | mlir::Type argType = funcOp.getFunctionType().getInput(1); |
648 | mlir::Value groupAddr = |
649 | getNamelistGroup(converter, symbol.GetUltimate(), stmtCtx); |
650 | groupAddr = builder.createConvert(loc, argType, groupAddr); |
651 | llvm::SmallVector<mlir::Value> args = {cookie, groupAddr}; |
652 | ok = builder.create<fir::CallOp>(loc, funcOp, args).getResult(0); |
653 | } |
654 | |
655 | /// Get the output function to call for a value of the given type. |
656 | static mlir::func::FuncOp getOutputFunc(mlir::Location loc, |
657 | fir::FirOpBuilder &builder, |
658 | mlir::Type type, bool isFormatted) { |
659 | if (fir::unwrapPassByRefType(type).isa<fir::RecordType>()) |
660 | return getIORuntimeFunc<mkIOKey(OutputDerivedType)>(loc, builder); |
661 | if (!isFormatted) |
662 | return getIORuntimeFunc<mkIOKey(OutputDescriptor)>(loc, builder); |
663 | if (auto ty = type.dyn_cast<mlir::IntegerType>()) { |
664 | switch (ty.getWidth()) { |
665 | case 1: |
666 | return getIORuntimeFunc<mkIOKey(OutputLogical)>(loc, builder); |
667 | case 8: |
668 | return getIORuntimeFunc<mkIOKey(OutputInteger8)>(loc, builder); |
669 | case 16: |
670 | return getIORuntimeFunc<mkIOKey(OutputInteger16)>(loc, builder); |
671 | case 32: |
672 | return getIORuntimeFunc<mkIOKey(OutputInteger32)>(loc, builder); |
673 | case 64: |
674 | return getIORuntimeFunc<mkIOKey(OutputInteger64)>(loc, builder); |
675 | case 128: |
676 | return getIORuntimeFunc<mkIOKey(OutputInteger128)>(loc, builder); |
677 | } |
678 | llvm_unreachable("unknown OutputInteger kind" ); |
679 | } |
680 | if (auto ty = type.dyn_cast<mlir::FloatType>()) { |
681 | if (auto width = ty.getWidth(); width == 32) |
682 | return getIORuntimeFunc<mkIOKey(OutputReal32)>(loc, builder); |
683 | else if (width == 64) |
684 | return getIORuntimeFunc<mkIOKey(OutputReal64)>(loc, builder); |
685 | } |
686 | auto kindMap = fir::getKindMapping(builder.getModule()); |
687 | if (auto ty = type.dyn_cast<fir::ComplexType>()) { |
688 | // COMPLEX(KIND=k) corresponds to a pair of REAL(KIND=k). |
689 | auto width = kindMap.getRealBitsize(ty.getFKind()); |
690 | if (width == 32) |
691 | return getIORuntimeFunc<mkIOKey(OutputComplex32)>(loc, builder); |
692 | else if (width == 64) |
693 | return getIORuntimeFunc<mkIOKey(OutputComplex64)>(loc, builder); |
694 | } |
695 | if (type.isa<fir::LogicalType>()) |
696 | return getIORuntimeFunc<mkIOKey(OutputLogical)>(loc, builder); |
697 | if (fir::factory::CharacterExprHelper::isCharacterScalar(type)) { |
698 | // TODO: What would it mean if the default CHARACTER KIND is set to a wide |
699 | // character encoding scheme? How do we handle UTF-8? Is it a distinct KIND |
700 | // value? For now, assume that if the default CHARACTER KIND is 8 bit, |
701 | // then it is an ASCII string and UTF-8 is unsupported. |
702 | auto asciiKind = kindMap.defaultCharacterKind(); |
703 | if (kindMap.getCharacterBitsize(asciiKind) == 8 && |
704 | fir::factory::CharacterExprHelper::getCharacterKind(type) == asciiKind) |
705 | return getIORuntimeFunc<mkIOKey(OutputAscii)>(loc, builder); |
706 | } |
707 | return getIORuntimeFunc<mkIOKey(OutputDescriptor)>(loc, builder); |
708 | } |
709 | |
710 | /// Generate a sequence of output data transfer calls. |
711 | static void genOutputItemList( |
712 | Fortran::lower::AbstractConverter &converter, mlir::Value cookie, |
713 | const std::list<Fortran::parser::OutputItem> &items, bool isFormatted, |
714 | bool checkResult, mlir::Value &ok, bool inLoop) { |
715 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
716 | for (const Fortran::parser::OutputItem &item : items) { |
717 | if (const auto &impliedDo = std::get_if<1>(&item.u)) { |
718 | genIoLoop(converter, cookie, impliedDo->value(), isFormatted, checkResult, |
719 | ok, inLoop); |
720 | continue; |
721 | } |
722 | auto &pExpr = std::get<Fortran::parser::Expr>(item.u); |
723 | mlir::Location loc = converter.genLocation(pExpr.source); |
724 | makeNextConditionalOn(builder, loc, checkResult, ok, inLoop); |
725 | Fortran::lower::StatementContext stmtCtx; |
726 | |
727 | const auto *expr = Fortran::semantics::GetExpr(pExpr); |
728 | if (!expr) |
729 | fir::emitFatalError(loc, "internal error: could not get evaluate::Expr" ); |
730 | mlir::Type itemTy = converter.genType(*expr); |
731 | mlir::func::FuncOp outputFunc = |
732 | getOutputFunc(loc, builder, itemTy, isFormatted); |
733 | mlir::Type argType = outputFunc.getFunctionType().getInput(1); |
734 | assert((isFormatted || argType.isa<fir::BoxType>()) && |
735 | "expect descriptor for unformatted IO runtime" ); |
736 | llvm::SmallVector<mlir::Value> outputFuncArgs = {cookie}; |
737 | fir::factory::CharacterExprHelper helper{builder, loc}; |
738 | if (argType.isa<fir::BoxType>()) { |
739 | mlir::Value box = fir::getBase(converter.genExprBox(loc, *expr, stmtCtx)); |
740 | outputFuncArgs.push_back(builder.createConvert(loc, argType, box)); |
741 | if (fir::unwrapPassByRefType(itemTy).isa<fir::RecordType>()) |
742 | outputFuncArgs.push_back(getNonTbpDefinedIoTableAddr(converter)); |
743 | } else if (helper.isCharacterScalar(itemTy)) { |
744 | fir::ExtendedValue exv = converter.genExprAddr(loc, expr, stmtCtx); |
745 | // scalar allocatable/pointer may also get here, not clear if |
746 | // genExprAddr will lower them as CharBoxValue or BoxValue. |
747 | if (!exv.getCharBox()) |
748 | llvm::report_fatal_error( |
749 | "internal error: scalar character not in CharBox" ); |
750 | outputFuncArgs.push_back(builder.createConvert( |
751 | loc, outputFunc.getFunctionType().getInput(1), fir::getBase(exv))); |
752 | outputFuncArgs.push_back(builder.createConvert( |
753 | loc, outputFunc.getFunctionType().getInput(2), fir::getLen(exv))); |
754 | } else { |
755 | fir::ExtendedValue itemBox = converter.genExprValue(loc, expr, stmtCtx); |
756 | mlir::Value itemValue = fir::getBase(itemBox); |
757 | if (fir::isa_complex(itemTy)) { |
758 | auto parts = |
759 | fir::factory::Complex{builder, loc}.extractParts(itemValue); |
760 | outputFuncArgs.push_back(parts.first); |
761 | outputFuncArgs.push_back(parts.second); |
762 | } else { |
763 | itemValue = builder.createConvert(loc, argType, itemValue); |
764 | outputFuncArgs.push_back(itemValue); |
765 | } |
766 | } |
767 | ok = builder.create<fir::CallOp>(loc, outputFunc, outputFuncArgs) |
768 | .getResult(0); |
769 | } |
770 | } |
771 | |
772 | /// Get the input function to call for a value of the given type. |
773 | static mlir::func::FuncOp getInputFunc(mlir::Location loc, |
774 | fir::FirOpBuilder &builder, |
775 | mlir::Type type, bool isFormatted) { |
776 | if (fir::unwrapPassByRefType(type).isa<fir::RecordType>()) |
777 | return getIORuntimeFunc<mkIOKey(InputDerivedType)>(loc, builder); |
778 | if (!isFormatted) |
779 | return getIORuntimeFunc<mkIOKey(InputDescriptor)>(loc, builder); |
780 | if (auto ty = type.dyn_cast<mlir::IntegerType>()) |
781 | return ty.getWidth() == 1 |
782 | ? getIORuntimeFunc<mkIOKey(InputLogical)>(loc, builder) |
783 | : getIORuntimeFunc<mkIOKey(InputInteger)>(loc, builder); |
784 | if (auto ty = type.dyn_cast<mlir::FloatType>()) { |
785 | if (auto width = ty.getWidth(); width == 32) |
786 | return getIORuntimeFunc<mkIOKey(InputReal32)>(loc, builder); |
787 | else if (width == 64) |
788 | return getIORuntimeFunc<mkIOKey(InputReal64)>(loc, builder); |
789 | } |
790 | auto kindMap = fir::getKindMapping(builder.getModule()); |
791 | if (auto ty = type.dyn_cast<fir::ComplexType>()) { |
792 | auto width = kindMap.getRealBitsize(ty.getFKind()); |
793 | if (width == 32) |
794 | return getIORuntimeFunc<mkIOKey(InputComplex32)>(loc, builder); |
795 | else if (width == 64) |
796 | return getIORuntimeFunc<mkIOKey(InputComplex64)>(loc, builder); |
797 | } |
798 | if (type.isa<fir::LogicalType>()) |
799 | return getIORuntimeFunc<mkIOKey(InputLogical)>(loc, builder); |
800 | if (fir::factory::CharacterExprHelper::isCharacterScalar(type)) { |
801 | auto asciiKind = kindMap.defaultCharacterKind(); |
802 | if (kindMap.getCharacterBitsize(asciiKind) == 8 && |
803 | fir::factory::CharacterExprHelper::getCharacterKind(type) == asciiKind) |
804 | return getIORuntimeFunc<mkIOKey(InputAscii)>(loc, builder); |
805 | } |
806 | return getIORuntimeFunc<mkIOKey(InputDescriptor)>(loc, builder); |
807 | } |
808 | |
809 | /// Interpret the lowest byte of a LOGICAL and store that value into the full |
810 | /// storage of the LOGICAL. The load, convert, and store effectively (sign or |
811 | /// zero) extends the lowest byte into the full LOGICAL value storage, as the |
812 | /// runtime is unaware of the LOGICAL value's actual bit width (it was passed |
813 | /// as a `bool&` to the runtime in order to be set). |
814 | static void boolRefToLogical(mlir::Location loc, fir::FirOpBuilder &builder, |
815 | mlir::Value addr) { |
816 | auto boolType = builder.getRefType(builder.getI1Type()); |
817 | auto boolAddr = builder.createConvert(loc, boolType, addr); |
818 | auto boolValue = builder.create<fir::LoadOp>(loc, boolAddr); |
819 | auto logicalType = fir::unwrapPassByRefType(addr.getType()); |
820 | // The convert avoid making any assumptions about how LOGICALs are actually |
821 | // represented (it might end-up being either a signed or zero extension). |
822 | auto logicalValue = builder.createConvert(loc, logicalType, boolValue); |
823 | builder.create<fir::StoreOp>(loc, logicalValue, addr); |
824 | } |
825 | |
826 | static mlir::Value |
827 | createIoRuntimeCallForItem(Fortran::lower::AbstractConverter &converter, |
828 | mlir::Location loc, mlir::func::FuncOp inputFunc, |
829 | mlir::Value cookie, const fir::ExtendedValue &item) { |
830 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
831 | mlir::Type argType = inputFunc.getFunctionType().getInput(1); |
832 | llvm::SmallVector<mlir::Value> inputFuncArgs = {cookie}; |
833 | if (argType.isa<fir::BaseBoxType>()) { |
834 | mlir::Value box = fir::getBase(item); |
835 | auto boxTy = box.getType().dyn_cast<fir::BaseBoxType>(); |
836 | assert(boxTy && "must be previously emboxed" ); |
837 | inputFuncArgs.push_back(builder.createConvert(loc, argType, box)); |
838 | if (fir::unwrapPassByRefType(boxTy).isa<fir::RecordType>()) |
839 | inputFuncArgs.push_back(getNonTbpDefinedIoTableAddr(converter)); |
840 | } else { |
841 | mlir::Value itemAddr = fir::getBase(item); |
842 | mlir::Type itemTy = fir::unwrapPassByRefType(itemAddr.getType()); |
843 | inputFuncArgs.push_back(builder.createConvert(loc, argType, itemAddr)); |
844 | fir::factory::CharacterExprHelper charHelper{builder, loc}; |
845 | if (charHelper.isCharacterScalar(itemTy)) { |
846 | mlir::Value len = fir::getLen(item); |
847 | inputFuncArgs.push_back(builder.createConvert( |
848 | loc, inputFunc.getFunctionType().getInput(2), len)); |
849 | } else if (itemTy.isa<mlir::IntegerType>()) { |
850 | inputFuncArgs.push_back(builder.create<mlir::arith::ConstantOp>( |
851 | loc, builder.getI32IntegerAttr( |
852 | itemTy.cast<mlir::IntegerType>().getWidth() / 8))); |
853 | } |
854 | } |
855 | auto call = builder.create<fir::CallOp>(loc, inputFunc, inputFuncArgs); |
856 | auto itemAddr = fir::getBase(item); |
857 | auto itemTy = fir::unwrapRefType(itemAddr.getType()); |
858 | if (itemTy.isa<fir::LogicalType>()) |
859 | boolRefToLogical(loc, builder, itemAddr); |
860 | return call.getResult(0); |
861 | } |
862 | |
863 | /// Generate a sequence of input data transfer calls. |
864 | static void genInputItemList(Fortran::lower::AbstractConverter &converter, |
865 | mlir::Value cookie, |
866 | const std::list<Fortran::parser::InputItem> &items, |
867 | bool isFormatted, bool checkResult, |
868 | mlir::Value &ok, bool inLoop) { |
869 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
870 | for (const Fortran::parser::InputItem &item : items) { |
871 | if (const auto &impliedDo = std::get_if<1>(&item.u)) { |
872 | genIoLoop(converter, cookie, impliedDo->value(), isFormatted, checkResult, |
873 | ok, inLoop); |
874 | continue; |
875 | } |
876 | auto &pVar = std::get<Fortran::parser::Variable>(item.u); |
877 | mlir::Location loc = converter.genLocation(pVar.GetSource()); |
878 | makeNextConditionalOn(builder, loc, checkResult, ok, inLoop); |
879 | Fortran::lower::StatementContext stmtCtx; |
880 | const auto *expr = Fortran::semantics::GetExpr(pVar); |
881 | if (!expr) |
882 | fir::emitFatalError(loc, "internal error: could not get evaluate::Expr" ); |
883 | if (Fortran::evaluate::HasVectorSubscript(*expr)) { |
884 | auto vectorSubscriptBox = |
885 | Fortran::lower::genVectorSubscriptBox(loc, converter, stmtCtx, *expr); |
886 | mlir::func::FuncOp inputFunc = getInputFunc( |
887 | loc, builder, vectorSubscriptBox.getElementType(), isFormatted); |
888 | const bool mustBox = |
889 | inputFunc.getFunctionType().getInput(1).isa<fir::BoxType>(); |
890 | if (!checkResult) { |
891 | auto elementalGenerator = [&](const fir::ExtendedValue &element) { |
892 | createIoRuntimeCallForItem(converter, loc, inputFunc, cookie, |
893 | mustBox ? builder.createBox(loc, element) |
894 | : element); |
895 | }; |
896 | vectorSubscriptBox.loopOverElements(builder, loc, elementalGenerator); |
897 | } else { |
898 | auto elementalGenerator = |
899 | [&](const fir::ExtendedValue &element) -> mlir::Value { |
900 | return createIoRuntimeCallForItem( |
901 | converter, loc, inputFunc, cookie, |
902 | mustBox ? builder.createBox(loc, element) : element); |
903 | }; |
904 | if (!ok) |
905 | ok = builder.createBool(loc, true); |
906 | ok = vectorSubscriptBox.loopOverElementsWhile(builder, loc, |
907 | elementalGenerator, ok); |
908 | } |
909 | continue; |
910 | } |
911 | mlir::Type itemTy = converter.genType(*expr); |
912 | mlir::func::FuncOp inputFunc = |
913 | getInputFunc(loc, builder, itemTy, isFormatted); |
914 | auto itemExv = inputFunc.getFunctionType().getInput(1).isa<fir::BoxType>() |
915 | ? converter.genExprBox(loc, *expr, stmtCtx) |
916 | : converter.genExprAddr(loc, expr, stmtCtx); |
917 | ok = createIoRuntimeCallForItem(converter, loc, inputFunc, cookie, itemExv); |
918 | } |
919 | } |
920 | |
921 | /// Generate an io-implied-do loop. |
922 | template <typename D> |
923 | static void genIoLoop(Fortran::lower::AbstractConverter &converter, |
924 | mlir::Value cookie, const D &ioImpliedDo, |
925 | bool isFormatted, bool checkResult, mlir::Value &ok, |
926 | bool inLoop) { |
927 | Fortran::lower::StatementContext stmtCtx; |
928 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
929 | mlir::Location loc = converter.getCurrentLocation(); |
930 | makeNextConditionalOn(builder, loc, checkResult, ok, inLoop); |
931 | const auto &itemList = std::get<0>(ioImpliedDo.t); |
932 | const auto &control = std::get<1>(ioImpliedDo.t); |
933 | const auto &loopSym = *control.name.thing.thing.symbol; |
934 | mlir::Value loopVar = fir::getBase(converter.genExprAddr( |
935 | Fortran::evaluate::AsGenericExpr(loopSym).value(), stmtCtx)); |
936 | auto genControlValue = [&](const Fortran::parser::ScalarIntExpr &expr) { |
937 | mlir::Value v = fir::getBase( |
938 | converter.genExprValue(*Fortran::semantics::GetExpr(expr), stmtCtx)); |
939 | return builder.createConvert(loc, builder.getIndexType(), v); |
940 | }; |
941 | mlir::Value lowerValue = genControlValue(control.lower); |
942 | mlir::Value upperValue = genControlValue(control.upper); |
943 | mlir::Value stepValue = |
944 | control.step.has_value() |
945 | ? genControlValue(*control.step) |
946 | : builder.create<mlir::arith::ConstantIndexOp>(loc, 1); |
947 | auto genItemList = [&](const D &ioImpliedDo) { |
948 | if constexpr (std::is_same_v<D, Fortran::parser::InputImpliedDo>) |
949 | genInputItemList(converter, cookie, itemList, isFormatted, checkResult, |
950 | ok, /*inLoop=*/true); |
951 | else |
952 | genOutputItemList(converter, cookie, itemList, isFormatted, checkResult, |
953 | ok, /*inLoop=*/true); |
954 | }; |
955 | if (!checkResult) { |
956 | // No IO call result checks - the loop is a fir.do_loop op. |
957 | auto doLoopOp = builder.create<fir::DoLoopOp>( |
958 | loc, lowerValue, upperValue, stepValue, /*unordered=*/false, |
959 | /*finalCountValue=*/true); |
960 | builder.setInsertionPointToStart(doLoopOp.getBody()); |
961 | mlir::Value lcv = builder.createConvert( |
962 | loc, fir::unwrapRefType(loopVar.getType()), doLoopOp.getInductionVar()); |
963 | builder.create<fir::StoreOp>(loc, lcv, loopVar); |
964 | genItemList(ioImpliedDo); |
965 | builder.setInsertionPointToEnd(doLoopOp.getBody()); |
966 | mlir::Value result = builder.create<mlir::arith::AddIOp>( |
967 | loc, doLoopOp.getInductionVar(), doLoopOp.getStep()); |
968 | builder.create<fir::ResultOp>(loc, result); |
969 | builder.setInsertionPointAfter(doLoopOp); |
970 | // The loop control variable may be used after the loop. |
971 | lcv = builder.createConvert(loc, fir::unwrapRefType(loopVar.getType()), |
972 | doLoopOp.getResult(0)); |
973 | builder.create<fir::StoreOp>(loc, lcv, loopVar); |
974 | return; |
975 | } |
976 | // Check IO call results - the loop is a fir.iterate_while op. |
977 | if (!ok) |
978 | ok = builder.createBool(loc, true); |
979 | auto iterWhileOp = builder.create<fir::IterWhileOp>( |
980 | loc, lowerValue, upperValue, stepValue, ok, /*finalCountValue*/ true); |
981 | builder.setInsertionPointToStart(iterWhileOp.getBody()); |
982 | mlir::Value lcv = |
983 | builder.createConvert(loc, fir::unwrapRefType(loopVar.getType()), |
984 | iterWhileOp.getInductionVar()); |
985 | builder.create<fir::StoreOp>(loc, lcv, loopVar); |
986 | ok = iterWhileOp.getIterateVar(); |
987 | mlir::Value falseValue = |
988 | builder.createIntegerConstant(loc, builder.getI1Type(), 0); |
989 | genItemList(ioImpliedDo); |
990 | // Unwind nested IO call scopes, filling in true and false ResultOp's. |
991 | for (mlir::Operation *op = builder.getBlock()->getParentOp(); |
992 | mlir::isa<fir::IfOp>(op); op = op->getBlock()->getParentOp()) { |
993 | auto ifOp = mlir::dyn_cast<fir::IfOp>(op); |
994 | mlir::Operation *lastOp = &ifOp.getThenRegion().front().back(); |
995 | builder.setInsertionPointAfter(lastOp); |
996 | // The primary ifOp result is the result of an IO call or loop. |
997 | if (mlir::isa<fir::CallOp, fir::IfOp>(*lastOp)) |
998 | builder.create<fir::ResultOp>(loc, lastOp->getResult(0)); |
999 | else |
1000 | builder.create<fir::ResultOp>(loc, ok); // loop result |
1001 | // The else branch propagates an early exit false result. |
1002 | builder.setInsertionPointToStart(&ifOp.getElseRegion().front()); |
1003 | builder.create<fir::ResultOp>(loc, falseValue); |
1004 | } |
1005 | builder.setInsertionPointToEnd(iterWhileOp.getBody()); |
1006 | mlir::OpResult iterateResult = builder.getBlock()->back().getResult(0); |
1007 | mlir::Value inductionResult0 = iterWhileOp.getInductionVar(); |
1008 | auto inductionResult1 = builder.create<mlir::arith::AddIOp>( |
1009 | loc, inductionResult0, iterWhileOp.getStep()); |
1010 | auto inductionResult = builder.create<mlir::arith::SelectOp>( |
1011 | loc, iterateResult, inductionResult1, inductionResult0); |
1012 | llvm::SmallVector<mlir::Value> results = {inductionResult, iterateResult}; |
1013 | builder.create<fir::ResultOp>(loc, results); |
1014 | ok = iterWhileOp.getResult(1); |
1015 | builder.setInsertionPointAfter(iterWhileOp); |
1016 | // The loop control variable may be used after the loop. |
1017 | lcv = builder.createConvert(loc, fir::unwrapRefType(loopVar.getType()), |
1018 | iterWhileOp.getResult(0)); |
1019 | builder.create<fir::StoreOp>(loc, lcv, loopVar); |
1020 | } |
1021 | |
1022 | //===----------------------------------------------------------------------===// |
1023 | // Default argument generation. |
1024 | //===----------------------------------------------------------------------===// |
1025 | |
1026 | static mlir::Value locToFilename(Fortran::lower::AbstractConverter &converter, |
1027 | mlir::Location loc, mlir::Type toType) { |
1028 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
1029 | return builder.createConvert(loc, toType, |
1030 | fir::factory::locationToFilename(builder, loc)); |
1031 | } |
1032 | |
1033 | static mlir::Value locToLineNo(Fortran::lower::AbstractConverter &converter, |
1034 | mlir::Location loc, mlir::Type toType) { |
1035 | return fir::factory::locationToLineNo(converter.getFirOpBuilder(), loc, |
1036 | toType); |
1037 | } |
1038 | |
1039 | static mlir::Value getDefaultScratch(fir::FirOpBuilder &builder, |
1040 | mlir::Location loc, mlir::Type toType) { |
1041 | mlir::Value null = builder.create<mlir::arith::ConstantOp>( |
1042 | loc, builder.getI64IntegerAttr(0)); |
1043 | return builder.createConvert(loc, toType, null); |
1044 | } |
1045 | |
1046 | static mlir::Value getDefaultScratchLen(fir::FirOpBuilder &builder, |
1047 | mlir::Location loc, mlir::Type toType) { |
1048 | return builder.create<mlir::arith::ConstantOp>( |
1049 | loc, builder.getIntegerAttr(toType, 0)); |
1050 | } |
1051 | |
1052 | /// Generate a reference to a buffer and the length of buffer given |
1053 | /// a character expression. An array expression will be cast to scalar |
1054 | /// character as long as they are contiguous. |
1055 | static std::tuple<mlir::Value, mlir::Value> |
1056 | genBuffer(Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
1057 | const Fortran::lower::SomeExpr &expr, mlir::Type strTy, |
1058 | mlir::Type lenTy, Fortran::lower::StatementContext &stmtCtx) { |
1059 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
1060 | fir::ExtendedValue exprAddr = converter.genExprAddr(expr, stmtCtx); |
1061 | fir::factory::CharacterExprHelper helper(builder, loc); |
1062 | using ValuePair = std::pair<mlir::Value, mlir::Value>; |
1063 | auto [buff, len] = exprAddr.match( |
1064 | [&](const fir::CharBoxValue &x) -> ValuePair { |
1065 | return {x.getBuffer(), x.getLen()}; |
1066 | }, |
1067 | [&](const fir::CharArrayBoxValue &x) -> ValuePair { |
1068 | fir::CharBoxValue scalar = helper.toScalarCharacter(x); |
1069 | return {scalar.getBuffer(), scalar.getLen()}; |
1070 | }, |
1071 | [&](const fir::BoxValue &) -> ValuePair { |
1072 | // May need to copy before after IO to handle contiguous |
1073 | // aspect. Not sure descriptor can get here though. |
1074 | TODO(loc, "character descriptor to contiguous buffer" ); |
1075 | }, |
1076 | [&](const auto &) -> ValuePair { |
1077 | llvm::report_fatal_error( |
1078 | "internal error: IO buffer is not a character" ); |
1079 | }); |
1080 | buff = builder.createConvert(loc, strTy, buff); |
1081 | len = builder.createConvert(loc, lenTy, len); |
1082 | return {buff, len}; |
1083 | } |
1084 | |
1085 | /// Lower a string literal. Many arguments to the runtime are conveyed as |
1086 | /// Fortran CHARACTER literals. |
1087 | template <typename A> |
1088 | static std::tuple<mlir::Value, mlir::Value, mlir::Value> |
1089 | lowerStringLit(Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
1090 | Fortran::lower::StatementContext &stmtCtx, const A &syntax, |
1091 | mlir::Type strTy, mlir::Type lenTy, mlir::Type ty2 = {}) { |
1092 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
1093 | auto *expr = Fortran::semantics::GetExpr(syntax); |
1094 | if (!expr) |
1095 | fir::emitFatalError(loc, "internal error: null semantic expr in IO" ); |
1096 | auto [buff, len] = genBuffer(converter, loc, *expr, strTy, lenTy, stmtCtx); |
1097 | mlir::Value kind; |
1098 | if (ty2) { |
1099 | auto kindVal = expr->GetType().value().kind(); |
1100 | kind = builder.create<mlir::arith::ConstantOp>( |
1101 | loc, builder.getIntegerAttr(ty2, kindVal)); |
1102 | } |
1103 | return {buff, len, kind}; |
1104 | } |
1105 | |
1106 | /// Pass the body of the FORMAT statement in as if it were a CHARACTER literal |
1107 | /// constant. NB: This is the prescribed manner in which the front-end passes |
1108 | /// this information to lowering. |
1109 | static std::tuple<mlir::Value, mlir::Value, mlir::Value> |
1110 | lowerSourceTextAsStringLit(Fortran::lower::AbstractConverter &converter, |
1111 | mlir::Location loc, llvm::StringRef text, |
1112 | mlir::Type strTy, mlir::Type lenTy) { |
1113 | text = text.drop_front(text.find('(')); |
1114 | text = text.take_front(text.rfind(')') + 1); |
1115 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
1116 | mlir::Value addrGlobalStringLit = |
1117 | fir::getBase(fir::factory::createStringLiteral(builder, loc, text)); |
1118 | mlir::Value buff = builder.createConvert(loc, strTy, addrGlobalStringLit); |
1119 | mlir::Value len = builder.createIntegerConstant(loc, lenTy, text.size()); |
1120 | return {buff, len, mlir::Value{}}; |
1121 | } |
1122 | |
1123 | //===----------------------------------------------------------------------===// |
1124 | // Handle IO statement specifiers. |
1125 | // These are threaded together for a single statement via the passed cookie. |
1126 | //===----------------------------------------------------------------------===// |
1127 | |
1128 | /// Generic to build an integral argument to the runtime. |
1129 | template <typename A, typename B> |
1130 | mlir::Value genIntIOOption(Fortran::lower::AbstractConverter &converter, |
1131 | mlir::Location loc, mlir::Value cookie, |
1132 | const B &spec) { |
1133 | Fortran::lower::StatementContext localStatementCtx; |
1134 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
1135 | mlir::func::FuncOp ioFunc = getIORuntimeFunc<A>(loc, builder); |
1136 | mlir::FunctionType ioFuncTy = ioFunc.getFunctionType(); |
1137 | mlir::Value expr = fir::getBase(converter.genExprValue( |
1138 | loc, Fortran::semantics::GetExpr(spec.v), localStatementCtx)); |
1139 | mlir::Value val = builder.createConvert(loc, ioFuncTy.getInput(1), expr); |
1140 | llvm::SmallVector<mlir::Value> ioArgs = {cookie, val}; |
1141 | return builder.create<fir::CallOp>(loc, ioFunc, ioArgs).getResult(0); |
1142 | } |
1143 | |
1144 | /// Generic to build a string argument to the runtime. This passes a CHARACTER |
1145 | /// as a pointer to the buffer and a LEN parameter. |
1146 | template <typename A, typename B> |
1147 | mlir::Value genCharIOOption(Fortran::lower::AbstractConverter &converter, |
1148 | mlir::Location loc, mlir::Value cookie, |
1149 | const B &spec) { |
1150 | Fortran::lower::StatementContext localStatementCtx; |
1151 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
1152 | mlir::func::FuncOp ioFunc = getIORuntimeFunc<A>(loc, builder); |
1153 | mlir::FunctionType ioFuncTy = ioFunc.getFunctionType(); |
1154 | std::tuple<mlir::Value, mlir::Value, mlir::Value> tup = |
1155 | lowerStringLit(converter, loc, localStatementCtx, spec, |
1156 | ioFuncTy.getInput(1), ioFuncTy.getInput(2)); |
1157 | llvm::SmallVector<mlir::Value> ioArgs = {cookie, std::get<0>(tup), |
1158 | std::get<1>(tup)}; |
1159 | return builder.create<fir::CallOp>(loc, ioFunc, ioArgs).getResult(0); |
1160 | } |
1161 | |
1162 | template <typename A> |
1163 | mlir::Value genIOOption(Fortran::lower::AbstractConverter &converter, |
1164 | mlir::Location loc, mlir::Value cookie, const A &spec) { |
1165 | // These specifiers are processed in advance elsewhere - skip them here. |
1166 | using PreprocessedSpecs = |
1167 | std::tuple<Fortran::parser::EndLabel, Fortran::parser::EorLabel, |
1168 | Fortran::parser::ErrLabel, Fortran::parser::FileUnitNumber, |
1169 | Fortran::parser::Format, Fortran::parser::IoUnit, |
1170 | Fortran::parser::MsgVariable, Fortran::parser::Name, |
1171 | Fortran::parser::StatVariable>; |
1172 | static_assert(Fortran::common::HasMember<A, PreprocessedSpecs>, |
1173 | "missing genIOOPtion specialization" ); |
1174 | return {}; |
1175 | } |
1176 | |
1177 | template <> |
1178 | mlir::Value genIOOption<Fortran::parser::FileNameExpr>( |
1179 | Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
1180 | mlir::Value cookie, const Fortran::parser::FileNameExpr &spec) { |
1181 | Fortran::lower::StatementContext localStatementCtx; |
1182 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
1183 | // has an extra KIND argument |
1184 | mlir::func::FuncOp ioFunc = getIORuntimeFunc<mkIOKey(SetFile)>(loc, builder); |
1185 | mlir::FunctionType ioFuncTy = ioFunc.getFunctionType(); |
1186 | std::tuple<mlir::Value, mlir::Value, mlir::Value> tup = |
1187 | lowerStringLit(converter, loc, localStatementCtx, spec, |
1188 | ioFuncTy.getInput(1), ioFuncTy.getInput(2)); |
1189 | llvm::SmallVector<mlir::Value> ioArgs{cookie, std::get<0>(tup), |
1190 | std::get<1>(tup)}; |
1191 | return builder.create<fir::CallOp>(loc, ioFunc, ioArgs).getResult(0); |
1192 | } |
1193 | |
1194 | template <> |
1195 | mlir::Value genIOOption<Fortran::parser::ConnectSpec::CharExpr>( |
1196 | Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
1197 | mlir::Value cookie, const Fortran::parser::ConnectSpec::CharExpr &spec) { |
1198 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
1199 | mlir::func::FuncOp ioFunc; |
1200 | switch (std::get<Fortran::parser::ConnectSpec::CharExpr::Kind>(spec.t)) { |
1201 | case Fortran::parser::ConnectSpec::CharExpr::Kind::Access: |
1202 | ioFunc = getIORuntimeFunc<mkIOKey(SetAccess)>(loc, builder); |
1203 | break; |
1204 | case Fortran::parser::ConnectSpec::CharExpr::Kind::Action: |
1205 | ioFunc = getIORuntimeFunc<mkIOKey(SetAction)>(loc, builder); |
1206 | break; |
1207 | case Fortran::parser::ConnectSpec::CharExpr::Kind::Asynchronous: |
1208 | ioFunc = getIORuntimeFunc<mkIOKey(SetAsynchronous)>(loc, builder); |
1209 | break; |
1210 | case Fortran::parser::ConnectSpec::CharExpr::Kind::Blank: |
1211 | ioFunc = getIORuntimeFunc<mkIOKey(SetBlank)>(loc, builder); |
1212 | break; |
1213 | case Fortran::parser::ConnectSpec::CharExpr::Kind::Decimal: |
1214 | ioFunc = getIORuntimeFunc<mkIOKey(SetDecimal)>(loc, builder); |
1215 | break; |
1216 | case Fortran::parser::ConnectSpec::CharExpr::Kind::Delim: |
1217 | ioFunc = getIORuntimeFunc<mkIOKey(SetDelim)>(loc, builder); |
1218 | break; |
1219 | case Fortran::parser::ConnectSpec::CharExpr::Kind::Encoding: |
1220 | ioFunc = getIORuntimeFunc<mkIOKey(SetEncoding)>(loc, builder); |
1221 | break; |
1222 | case Fortran::parser::ConnectSpec::CharExpr::Kind::Form: |
1223 | ioFunc = getIORuntimeFunc<mkIOKey(SetForm)>(loc, builder); |
1224 | break; |
1225 | case Fortran::parser::ConnectSpec::CharExpr::Kind::Pad: |
1226 | ioFunc = getIORuntimeFunc<mkIOKey(SetPad)>(loc, builder); |
1227 | break; |
1228 | case Fortran::parser::ConnectSpec::CharExpr::Kind::Position: |
1229 | ioFunc = getIORuntimeFunc<mkIOKey(SetPosition)>(loc, builder); |
1230 | break; |
1231 | case Fortran::parser::ConnectSpec::CharExpr::Kind::Round: |
1232 | ioFunc = getIORuntimeFunc<mkIOKey(SetRound)>(loc, builder); |
1233 | break; |
1234 | case Fortran::parser::ConnectSpec::CharExpr::Kind::Sign: |
1235 | ioFunc = getIORuntimeFunc<mkIOKey(SetSign)>(loc, builder); |
1236 | break; |
1237 | case Fortran::parser::ConnectSpec::CharExpr::Kind::Carriagecontrol: |
1238 | ioFunc = getIORuntimeFunc<mkIOKey(SetCarriagecontrol)>(loc, builder); |
1239 | break; |
1240 | case Fortran::parser::ConnectSpec::CharExpr::Kind::Convert: |
1241 | ioFunc = getIORuntimeFunc<mkIOKey(SetConvert)>(loc, builder); |
1242 | break; |
1243 | case Fortran::parser::ConnectSpec::CharExpr::Kind::Dispose: |
1244 | TODO(loc, "DISPOSE not part of the runtime::io interface" ); |
1245 | } |
1246 | Fortran::lower::StatementContext localStatementCtx; |
1247 | mlir::FunctionType ioFuncTy = ioFunc.getFunctionType(); |
1248 | std::tuple<mlir::Value, mlir::Value, mlir::Value> tup = |
1249 | lowerStringLit(converter, loc, localStatementCtx, |
1250 | std::get<Fortran::parser::ScalarDefaultCharExpr>(spec.t), |
1251 | ioFuncTy.getInput(1), ioFuncTy.getInput(2)); |
1252 | llvm::SmallVector<mlir::Value> ioArgs = {cookie, std::get<0>(tup), |
1253 | std::get<1>(tup)}; |
1254 | return builder.create<fir::CallOp>(loc, ioFunc, ioArgs).getResult(0); |
1255 | } |
1256 | |
1257 | template <> |
1258 | mlir::Value genIOOption<Fortran::parser::ConnectSpec::Recl>( |
1259 | Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
1260 | mlir::Value cookie, const Fortran::parser::ConnectSpec::Recl &spec) { |
1261 | return genIntIOOption<mkIOKey(SetRecl)>(converter, loc, cookie, spec); |
1262 | } |
1263 | |
1264 | template <> |
1265 | mlir::Value genIOOption<Fortran::parser::StatusExpr>( |
1266 | Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
1267 | mlir::Value cookie, const Fortran::parser::StatusExpr &spec) { |
1268 | return genCharIOOption<mkIOKey(SetStatus)>(converter, loc, cookie, spec.v); |
1269 | } |
1270 | |
1271 | template <> |
1272 | mlir::Value genIOOption<Fortran::parser::IoControlSpec::CharExpr>( |
1273 | Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
1274 | mlir::Value cookie, const Fortran::parser::IoControlSpec::CharExpr &spec) { |
1275 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
1276 | mlir::func::FuncOp ioFunc; |
1277 | switch (std::get<Fortran::parser::IoControlSpec::CharExpr::Kind>(spec.t)) { |
1278 | case Fortran::parser::IoControlSpec::CharExpr::Kind::Advance: |
1279 | ioFunc = getIORuntimeFunc<mkIOKey(SetAdvance)>(loc, builder); |
1280 | break; |
1281 | case Fortran::parser::IoControlSpec::CharExpr::Kind::Blank: |
1282 | ioFunc = getIORuntimeFunc<mkIOKey(SetBlank)>(loc, builder); |
1283 | break; |
1284 | case Fortran::parser::IoControlSpec::CharExpr::Kind::Decimal: |
1285 | ioFunc = getIORuntimeFunc<mkIOKey(SetDecimal)>(loc, builder); |
1286 | break; |
1287 | case Fortran::parser::IoControlSpec::CharExpr::Kind::Delim: |
1288 | ioFunc = getIORuntimeFunc<mkIOKey(SetDelim)>(loc, builder); |
1289 | break; |
1290 | case Fortran::parser::IoControlSpec::CharExpr::Kind::Pad: |
1291 | ioFunc = getIORuntimeFunc<mkIOKey(SetPad)>(loc, builder); |
1292 | break; |
1293 | case Fortran::parser::IoControlSpec::CharExpr::Kind::Round: |
1294 | ioFunc = getIORuntimeFunc<mkIOKey(SetRound)>(loc, builder); |
1295 | break; |
1296 | case Fortran::parser::IoControlSpec::CharExpr::Kind::Sign: |
1297 | ioFunc = getIORuntimeFunc<mkIOKey(SetSign)>(loc, builder); |
1298 | break; |
1299 | } |
1300 | Fortran::lower::StatementContext localStatementCtx; |
1301 | mlir::FunctionType ioFuncTy = ioFunc.getFunctionType(); |
1302 | std::tuple<mlir::Value, mlir::Value, mlir::Value> tup = |
1303 | lowerStringLit(converter, loc, localStatementCtx, |
1304 | std::get<Fortran::parser::ScalarDefaultCharExpr>(spec.t), |
1305 | ioFuncTy.getInput(1), ioFuncTy.getInput(2)); |
1306 | llvm::SmallVector<mlir::Value> ioArgs = {cookie, std::get<0>(tup), |
1307 | std::get<1>(tup)}; |
1308 | return builder.create<fir::CallOp>(loc, ioFunc, ioArgs).getResult(0); |
1309 | } |
1310 | |
1311 | template <> |
1312 | mlir::Value genIOOption<Fortran::parser::IoControlSpec::Asynchronous>( |
1313 | Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
1314 | mlir::Value cookie, |
1315 | const Fortran::parser::IoControlSpec::Asynchronous &spec) { |
1316 | return genCharIOOption<mkIOKey(SetAsynchronous)>(converter, loc, cookie, |
1317 | spec.v); |
1318 | } |
1319 | |
1320 | template <> |
1321 | mlir::Value genIOOption<Fortran::parser::IoControlSpec::Pos>( |
1322 | Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
1323 | mlir::Value cookie, const Fortran::parser::IoControlSpec::Pos &spec) { |
1324 | return genIntIOOption<mkIOKey(SetPos)>(converter, loc, cookie, spec); |
1325 | } |
1326 | |
1327 | template <> |
1328 | mlir::Value genIOOption<Fortran::parser::IoControlSpec::Rec>( |
1329 | Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
1330 | mlir::Value cookie, const Fortran::parser::IoControlSpec::Rec &spec) { |
1331 | return genIntIOOption<mkIOKey(SetRec)>(converter, loc, cookie, spec); |
1332 | } |
1333 | |
1334 | /// Generate runtime call to set some control variable. |
1335 | /// Generates "VAR = IoRuntimeKey(cookie)". |
1336 | template <typename IoRuntimeKey, typename VAR> |
1337 | static void genIOGetVar(Fortran::lower::AbstractConverter &converter, |
1338 | mlir::Location loc, mlir::Value cookie, |
1339 | const VAR &parserVar) { |
1340 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
1341 | mlir::func::FuncOp ioFunc = getIORuntimeFunc<IoRuntimeKey>(loc, builder); |
1342 | mlir::Value value = |
1343 | builder.create<fir::CallOp>(loc, ioFunc, mlir::ValueRange{cookie}) |
1344 | .getResult(0); |
1345 | Fortran::lower::StatementContext localStatementCtx; |
1346 | fir::ExtendedValue var = converter.genExprAddr( |
1347 | loc, Fortran::semantics::GetExpr(parserVar.v), localStatementCtx); |
1348 | builder.createStoreWithConvert(loc, value, fir::getBase(var)); |
1349 | } |
1350 | |
1351 | //===----------------------------------------------------------------------===// |
1352 | // Gather IO statement condition specifier information (if any). |
1353 | //===----------------------------------------------------------------------===// |
1354 | |
1355 | template <typename SEEK, typename A> |
1356 | static bool hasX(const A &list) { |
1357 | for (const auto &spec : list) |
1358 | if (std::holds_alternative<SEEK>(spec.u)) |
1359 | return true; |
1360 | return false; |
1361 | } |
1362 | |
1363 | template <typename SEEK, typename A> |
1364 | static bool hasSpec(const A &stmt) { |
1365 | return hasX<SEEK>(stmt.v); |
1366 | } |
1367 | |
1368 | /// Get the sought expression from the specifier list. |
1369 | template <typename SEEK, typename A> |
1370 | static const Fortran::lower::SomeExpr *getExpr(const A &stmt) { |
1371 | for (const auto &spec : stmt.v) |
1372 | if (auto *f = std::get_if<SEEK>(&spec.u)) |
1373 | return Fortran::semantics::GetExpr(f->v); |
1374 | llvm::report_fatal_error("must have a file unit" ); |
1375 | } |
1376 | |
1377 | /// For each specifier, build the appropriate call, threading the cookie. |
1378 | template <typename A> |
1379 | static void threadSpecs(Fortran::lower::AbstractConverter &converter, |
1380 | mlir::Location loc, mlir::Value cookie, |
1381 | const A &specList, bool checkResult, mlir::Value &ok) { |
1382 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
1383 | for (const auto &spec : specList) { |
1384 | makeNextConditionalOn(builder, loc, checkResult, ok); |
1385 | ok = std::visit( |
1386 | Fortran::common::visitors{ |
1387 | [&](const Fortran::parser::IoControlSpec::Size &x) -> mlir::Value { |
1388 | // Size must be queried after the related READ runtime calls, not |
1389 | // before. |
1390 | return ok; |
1391 | }, |
1392 | [&](const Fortran::parser::ConnectSpec::Newunit &x) -> mlir::Value { |
1393 | // Newunit must be queried after OPEN specifier runtime calls |
1394 | // that may fail to avoid modifying the newunit variable if |
1395 | // there is an error. |
1396 | return ok; |
1397 | }, |
1398 | [&](const Fortran::parser::IdVariable &) -> mlir::Value { |
1399 | // ID is queried after the transfer so that ASYNCHROUNOUS= has |
1400 | // been processed and also to set it to zero if the transfer is |
1401 | // already finished. |
1402 | return ok; |
1403 | }, |
1404 | [&](const auto &x) { |
1405 | return genIOOption(converter, loc, cookie, x); |
1406 | }}, |
1407 | spec.u); |
1408 | } |
1409 | } |
1410 | |
1411 | /// Most IO statements allow one or more of five optional exception condition |
1412 | /// handling specifiers: ERR, EOR, END, IOSTAT, and IOMSG. The first three |
1413 | /// cause control flow to transfer to another statement. The final two return |
1414 | /// information from the runtime, via a variable, about the nature of the |
1415 | /// condition that occurred. These condition specifiers are handled here. |
1416 | template <typename A> |
1417 | ConditionSpecInfo lowerErrorSpec(Fortran::lower::AbstractConverter &converter, |
1418 | mlir::Location loc, const A &specList) { |
1419 | ConditionSpecInfo csi; |
1420 | const Fortran::lower::SomeExpr *ioMsgExpr = nullptr; |
1421 | for (const auto &spec : specList) { |
1422 | std::visit( |
1423 | Fortran::common::visitors{ |
1424 | [&](const Fortran::parser::StatVariable &var) { |
1425 | csi.ioStatExpr = Fortran::semantics::GetExpr(var); |
1426 | }, |
1427 | [&](const Fortran::parser::InquireSpec::IntVar &var) { |
1428 | if (std::get<Fortran::parser::InquireSpec::IntVar::Kind>(var.t) == |
1429 | Fortran::parser::InquireSpec::IntVar::Kind::Iostat) |
1430 | csi.ioStatExpr = Fortran::semantics::GetExpr( |
1431 | std::get<Fortran::parser::ScalarIntVariable>(var.t)); |
1432 | }, |
1433 | [&](const Fortran::parser::MsgVariable &var) { |
1434 | ioMsgExpr = Fortran::semantics::GetExpr(var); |
1435 | }, |
1436 | [&](const Fortran::parser::InquireSpec::CharVar &var) { |
1437 | if (std::get<Fortran::parser::InquireSpec::CharVar::Kind>( |
1438 | var.t) == |
1439 | Fortran::parser::InquireSpec::CharVar::Kind::Iomsg) |
1440 | ioMsgExpr = Fortran::semantics::GetExpr( |
1441 | std::get<Fortran::parser::ScalarDefaultCharVariable>( |
1442 | var.t)); |
1443 | }, |
1444 | [&](const Fortran::parser::EndLabel &) { csi.hasEnd = true; }, |
1445 | [&](const Fortran::parser::EorLabel &) { csi.hasEor = true; }, |
1446 | [&](const Fortran::parser::ErrLabel &) { csi.hasErr = true; }, |
1447 | [](const auto &) {}}, |
1448 | spec.u); |
1449 | } |
1450 | if (ioMsgExpr) { |
1451 | // iomsg is a variable, its evaluation may require temps, but it cannot |
1452 | // itself be a temp, and it is ok to us a local statement context here. |
1453 | Fortran::lower::StatementContext stmtCtx; |
1454 | csi.ioMsg = converter.genExprAddr(loc, ioMsgExpr, stmtCtx); |
1455 | } |
1456 | |
1457 | return csi; |
1458 | } |
1459 | template <typename A> |
1460 | static void |
1461 | genConditionHandlerCall(Fortran::lower::AbstractConverter &converter, |
1462 | mlir::Location loc, mlir::Value cookie, |
1463 | const A &specList, ConditionSpecInfo &csi) { |
1464 | if (!csi.hasAnyConditionSpec()) |
1465 | return; |
1466 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
1467 | mlir::func::FuncOp enableHandlers = |
1468 | getIORuntimeFunc<mkIOKey(EnableHandlers)>(loc, builder); |
1469 | mlir::Type boolType = enableHandlers.getFunctionType().getInput(1); |
1470 | auto boolValue = [&](bool specifierIsPresent) { |
1471 | return builder.create<mlir::arith::ConstantOp>( |
1472 | loc, builder.getIntegerAttr(boolType, specifierIsPresent)); |
1473 | }; |
1474 | llvm::SmallVector<mlir::Value> ioArgs = {cookie, |
1475 | boolValue(csi.ioStatExpr != nullptr), |
1476 | boolValue(csi.hasErr), |
1477 | boolValue(csi.hasEnd), |
1478 | boolValue(csi.hasEor), |
1479 | boolValue(csi.ioMsg.has_value())}; |
1480 | builder.create<fir::CallOp>(loc, enableHandlers, ioArgs); |
1481 | } |
1482 | |
1483 | //===----------------------------------------------------------------------===// |
1484 | // Data transfer helpers |
1485 | //===----------------------------------------------------------------------===// |
1486 | |
1487 | template <typename SEEK, typename A> |
1488 | static bool hasIOControl(const A &stmt) { |
1489 | return hasX<SEEK>(stmt.controls); |
1490 | } |
1491 | |
1492 | template <typename SEEK, typename A> |
1493 | static const auto *getIOControl(const A &stmt) { |
1494 | for (const auto &spec : stmt.controls) |
1495 | if (const auto *result = std::get_if<SEEK>(&spec.u)) |
1496 | return result; |
1497 | return static_cast<const SEEK *>(nullptr); |
1498 | } |
1499 | |
1500 | /// Returns true iff the expression in the parse tree is not really a format but |
1501 | /// rather a namelist group. |
1502 | template <typename A> |
1503 | static bool formatIsActuallyNamelist(const A &format) { |
1504 | if (auto *e = std::get_if<Fortran::parser::Expr>(&format.u)) { |
1505 | auto *expr = Fortran::semantics::GetExpr(*e); |
1506 | if (const Fortran::semantics::Symbol *y = |
1507 | Fortran::evaluate::UnwrapWholeSymbolDataRef(*expr)) |
1508 | return y->has<Fortran::semantics::NamelistDetails>(); |
1509 | } |
1510 | return false; |
1511 | } |
1512 | |
1513 | template <typename A> |
1514 | static bool isDataTransferFormatted(const A &stmt) { |
1515 | if (stmt.format) |
1516 | return !formatIsActuallyNamelist(*stmt.format); |
1517 | return hasIOControl<Fortran::parser::Format>(stmt); |
1518 | } |
1519 | template <> |
1520 | constexpr bool isDataTransferFormatted<Fortran::parser::PrintStmt>( |
1521 | const Fortran::parser::PrintStmt &) { |
1522 | return true; // PRINT is always formatted |
1523 | } |
1524 | |
1525 | template <typename A> |
1526 | static bool isDataTransferList(const A &stmt) { |
1527 | if (stmt.format) |
1528 | return std::holds_alternative<Fortran::parser::Star>(stmt.format->u); |
1529 | if (auto *mem = getIOControl<Fortran::parser::Format>(stmt)) |
1530 | return std::holds_alternative<Fortran::parser::Star>(mem->u); |
1531 | return false; |
1532 | } |
1533 | template <> |
1534 | bool isDataTransferList<Fortran::parser::PrintStmt>( |
1535 | const Fortran::parser::PrintStmt &stmt) { |
1536 | return std::holds_alternative<Fortran::parser::Star>( |
1537 | std::get<Fortran::parser::Format>(stmt.t).u); |
1538 | } |
1539 | |
1540 | template <typename A> |
1541 | static bool isDataTransferInternal(const A &stmt) { |
1542 | if (stmt.iounit.has_value()) |
1543 | return std::holds_alternative<Fortran::parser::Variable>(stmt.iounit->u); |
1544 | if (auto *unit = getIOControl<Fortran::parser::IoUnit>(stmt)) |
1545 | return std::holds_alternative<Fortran::parser::Variable>(unit->u); |
1546 | return false; |
1547 | } |
1548 | template <> |
1549 | constexpr bool isDataTransferInternal<Fortran::parser::PrintStmt>( |
1550 | const Fortran::parser::PrintStmt &) { |
1551 | return false; |
1552 | } |
1553 | |
1554 | /// If the variable `var` is an array or of a KIND other than the default |
1555 | /// (normally 1), then a descriptor is required by the runtime IO API. This |
1556 | /// condition holds even in F77 sources. |
1557 | static std::optional<fir::ExtendedValue> getVariableBufferRequiredDescriptor( |
1558 | Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
1559 | const Fortran::parser::Variable &var, |
1560 | Fortran::lower::StatementContext &stmtCtx) { |
1561 | fir::ExtendedValue varBox = |
1562 | converter.genExprBox(loc, var.typedExpr->v.value(), stmtCtx); |
1563 | fir::KindTy defCharKind = converter.getKindMap().defaultCharacterKind(); |
1564 | mlir::Value varAddr = fir::getBase(varBox); |
1565 | if (fir::factory::CharacterExprHelper::getCharacterOrSequenceKind( |
1566 | varAddr.getType()) != defCharKind) |
1567 | return varBox; |
1568 | if (fir::factory::CharacterExprHelper::isArray(varAddr.getType())) |
1569 | return varBox; |
1570 | return std::nullopt; |
1571 | } |
1572 | |
1573 | template <typename A> |
1574 | static std::optional<fir::ExtendedValue> |
1575 | maybeGetInternalIODescriptor(Fortran::lower::AbstractConverter &converter, |
1576 | mlir::Location loc, const A &stmt, |
1577 | Fortran::lower::StatementContext &stmtCtx) { |
1578 | if (stmt.iounit.has_value()) |
1579 | if (auto *var = std::get_if<Fortran::parser::Variable>(&stmt.iounit->u)) |
1580 | return getVariableBufferRequiredDescriptor(converter, loc, *var, stmtCtx); |
1581 | if (auto *unit = getIOControl<Fortran::parser::IoUnit>(stmt)) |
1582 | if (auto *var = std::get_if<Fortran::parser::Variable>(&unit->u)) |
1583 | return getVariableBufferRequiredDescriptor(converter, loc, *var, stmtCtx); |
1584 | return std::nullopt; |
1585 | } |
1586 | template <> |
1587 | inline std::optional<fir::ExtendedValue> |
1588 | maybeGetInternalIODescriptor<Fortran::parser::PrintStmt>( |
1589 | Fortran::lower::AbstractConverter &, mlir::Location loc, |
1590 | const Fortran::parser::PrintStmt &, Fortran::lower::StatementContext &) { |
1591 | return std::nullopt; |
1592 | } |
1593 | |
1594 | template <typename A> |
1595 | static bool isDataTransferNamelist(const A &stmt) { |
1596 | if (stmt.format) |
1597 | return formatIsActuallyNamelist(*stmt.format); |
1598 | return hasIOControl<Fortran::parser::Name>(stmt); |
1599 | } |
1600 | template <> |
1601 | constexpr bool isDataTransferNamelist<Fortran::parser::PrintStmt>( |
1602 | const Fortran::parser::PrintStmt &) { |
1603 | return false; |
1604 | } |
1605 | |
1606 | /// Lowers a format statment that uses an assigned variable label reference as |
1607 | /// a select operation to allow for run-time selection of the format statement. |
1608 | static std::tuple<mlir::Value, mlir::Value, mlir::Value> |
1609 | lowerReferenceAsStringSelect(Fortran::lower::AbstractConverter &converter, |
1610 | mlir::Location loc, |
1611 | const Fortran::lower::SomeExpr &expr, |
1612 | mlir::Type strTy, mlir::Type lenTy, |
1613 | Fortran::lower::StatementContext &stmtCtx) { |
1614 | // Create the requisite blocks to inline a selectOp. |
1615 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
1616 | mlir::Block *startBlock = builder.getBlock(); |
1617 | mlir::Block *endBlock = startBlock->splitBlock(builder.getInsertionPoint()); |
1618 | mlir::Block *block = startBlock->splitBlock(builder.getInsertionPoint()); |
1619 | builder.setInsertionPointToEnd(block); |
1620 | |
1621 | llvm::SmallVector<int64_t> indexList; |
1622 | llvm::SmallVector<mlir::Block *> blockList; |
1623 | |
1624 | auto symbol = GetLastSymbol(&expr); |
1625 | Fortran::lower::pft::LabelSet labels; |
1626 | converter.lookupLabelSet(*symbol, labels); |
1627 | |
1628 | for (auto label : labels) { |
1629 | indexList.push_back(label); |
1630 | auto *eval = converter.lookupLabel(label); |
1631 | assert(eval && "Label is missing from the table" ); |
1632 | |
1633 | llvm::StringRef text = toStringRef(eval->position); |
1634 | mlir::Value stringRef; |
1635 | mlir::Value stringLen; |
1636 | if (eval->isA<Fortran::parser::FormatStmt>()) { |
1637 | assert(text.contains('(') && "FORMAT is unexpectedly ill-formed" ); |
1638 | // This is a format statement, so extract the spec from the text. |
1639 | std::tuple<mlir::Value, mlir::Value, mlir::Value> stringLit = |
1640 | lowerSourceTextAsStringLit(converter, loc, text, strTy, lenTy); |
1641 | stringRef = std::get<0>(stringLit); |
1642 | stringLen = std::get<1>(stringLit); |
1643 | } else { |
1644 | // This is not a format statement, so use null. |
1645 | stringRef = builder.createConvert( |
1646 | loc, strTy, |
1647 | builder.createIntegerConstant(loc, builder.getIndexType(), 0)); |
1648 | stringLen = builder.createIntegerConstant(loc, lenTy, 0); |
1649 | } |
1650 | |
1651 | // Pass the format string reference and the string length out of the select |
1652 | // statement. |
1653 | llvm::SmallVector<mlir::Value> args = {stringRef, stringLen}; |
1654 | builder.create<mlir::cf::BranchOp>(loc, endBlock, args); |
1655 | |
1656 | // Add block to the list of cases and make a new one. |
1657 | blockList.push_back(block); |
1658 | block = block->splitBlock(builder.getInsertionPoint()); |
1659 | builder.setInsertionPointToEnd(block); |
1660 | } |
1661 | |
1662 | // Create the unit case which should result in an error. |
1663 | auto *unitBlock = block->splitBlock(builder.getInsertionPoint()); |
1664 | builder.setInsertionPointToEnd(unitBlock); |
1665 | fir::runtime::genReportFatalUserError( |
1666 | builder, loc, |
1667 | "Assigned format variable '" + symbol->name().ToString() + |
1668 | "' has not been assigned a valid format label" ); |
1669 | builder.create<fir::UnreachableOp>(loc); |
1670 | blockList.push_back(unitBlock); |
1671 | |
1672 | // Lower the selectOp. |
1673 | builder.setInsertionPointToEnd(startBlock); |
1674 | auto label = fir::getBase(converter.genExprValue(loc, &expr, stmtCtx)); |
1675 | builder.create<fir::SelectOp>(loc, label, indexList, blockList); |
1676 | |
1677 | builder.setInsertionPointToEnd(endBlock); |
1678 | endBlock->addArgument(strTy, loc); |
1679 | endBlock->addArgument(lenTy, loc); |
1680 | |
1681 | // Handle and return the string reference and length selected by the selectOp. |
1682 | auto buff = endBlock->getArgument(0); |
1683 | auto len = endBlock->getArgument(1); |
1684 | |
1685 | return {buff, len, mlir::Value{}}; |
1686 | } |
1687 | |
1688 | /// Generate a reference to a format string. There are four cases - a format |
1689 | /// statement label, a character format expression, an integer that holds the |
1690 | /// label of a format statement, and the * case. The first three are done here. |
1691 | /// The * case is done elsewhere. |
1692 | static std::tuple<mlir::Value, mlir::Value, mlir::Value> |
1693 | genFormat(Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
1694 | const Fortran::parser::Format &format, mlir::Type strTy, |
1695 | mlir::Type lenTy, Fortran::lower::StatementContext &stmtCtx) { |
1696 | if (const auto *label = std::get_if<Fortran::parser::Label>(&format.u)) { |
1697 | // format statement label |
1698 | auto eval = converter.lookupLabel(*label); |
1699 | assert(eval && "FORMAT not found in PROCEDURE" ); |
1700 | return lowerSourceTextAsStringLit( |
1701 | converter, loc, toStringRef(eval->position), strTy, lenTy); |
1702 | } |
1703 | const auto *pExpr = std::get_if<Fortran::parser::Expr>(&format.u); |
1704 | assert(pExpr && "missing format expression" ); |
1705 | auto e = Fortran::semantics::GetExpr(*pExpr); |
1706 | if (Fortran::semantics::ExprHasTypeCategory( |
1707 | *e, Fortran::common::TypeCategory::Character)) { |
1708 | // character expression |
1709 | if (e->Rank()) |
1710 | // Array: return address(descriptor) and no length (and no kind value). |
1711 | return {fir::getBase(converter.genExprBox(loc, *e, stmtCtx)), |
1712 | mlir::Value{}, mlir::Value{}}; |
1713 | // Scalar: return address(format) and format length (and no kind value). |
1714 | return lowerStringLit(converter, loc, stmtCtx, *pExpr, strTy, lenTy); |
1715 | } |
1716 | |
1717 | if (Fortran::semantics::ExprHasTypeCategory( |
1718 | *e, Fortran::common::TypeCategory::Integer) && |
1719 | e->Rank() == 0 && Fortran::evaluate::UnwrapWholeSymbolDataRef(*e)) { |
1720 | // Treat as a scalar integer variable containing an ASSIGN label. |
1721 | return lowerReferenceAsStringSelect(converter, loc, *e, strTy, lenTy, |
1722 | stmtCtx); |
1723 | } |
1724 | |
1725 | // Legacy extension: it is possible that `*e` is not a scalar INTEGER |
1726 | // variable containing a label value. The output appears to be the source text |
1727 | // that initialized the variable? Needs more investigatation. |
1728 | TODO(loc, "io-control-spec contains a reference to a non-integer, " |
1729 | "non-scalar, or non-variable" ); |
1730 | } |
1731 | |
1732 | template <typename A> |
1733 | std::tuple<mlir::Value, mlir::Value, mlir::Value> |
1734 | getFormat(Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
1735 | const A &stmt, mlir::Type strTy, mlir::Type lenTy, |
1736 | Fortran ::lower::StatementContext &stmtCtx) { |
1737 | if (stmt.format && !formatIsActuallyNamelist(*stmt.format)) |
1738 | return genFormat(converter, loc, *stmt.format, strTy, lenTy, stmtCtx); |
1739 | return genFormat(converter, loc, *getIOControl<Fortran::parser::Format>(stmt), |
1740 | strTy, lenTy, stmtCtx); |
1741 | } |
1742 | template <> |
1743 | std::tuple<mlir::Value, mlir::Value, mlir::Value> |
1744 | getFormat<Fortran::parser::PrintStmt>( |
1745 | Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
1746 | const Fortran::parser::PrintStmt &stmt, mlir::Type strTy, mlir::Type lenTy, |
1747 | Fortran::lower::StatementContext &stmtCtx) { |
1748 | return genFormat(converter, loc, std::get<Fortran::parser::Format>(stmt.t), |
1749 | strTy, lenTy, stmtCtx); |
1750 | } |
1751 | |
1752 | /// Get a buffer for an internal file data transfer. |
1753 | template <typename A> |
1754 | std::tuple<mlir::Value, mlir::Value> |
1755 | getBuffer(Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
1756 | const A &stmt, mlir::Type strTy, mlir::Type lenTy, |
1757 | Fortran::lower::StatementContext &stmtCtx) { |
1758 | const Fortran::parser::IoUnit *iounit = |
1759 | stmt.iounit ? &*stmt.iounit : getIOControl<Fortran::parser::IoUnit>(stmt); |
1760 | if (iounit) |
1761 | if (auto *var = std::get_if<Fortran::parser::Variable>(&iounit->u)) |
1762 | if (auto *expr = Fortran::semantics::GetExpr(*var)) |
1763 | return genBuffer(converter, loc, *expr, strTy, lenTy, stmtCtx); |
1764 | llvm::report_fatal_error("failed to get IoUnit expr" ); |
1765 | } |
1766 | |
1767 | static mlir::Value genIOUnitNumber(Fortran::lower::AbstractConverter &converter, |
1768 | mlir::Location loc, |
1769 | const Fortran::lower::SomeExpr *iounit, |
1770 | mlir::Type ty, ConditionSpecInfo &csi, |
1771 | Fortran::lower::StatementContext &stmtCtx) { |
1772 | auto &builder = converter.getFirOpBuilder(); |
1773 | auto rawUnit = fir::getBase(converter.genExprValue(loc, iounit, stmtCtx)); |
1774 | unsigned rawUnitWidth = |
1775 | rawUnit.getType().cast<mlir::IntegerType>().getWidth(); |
1776 | unsigned runtimeArgWidth = ty.cast<mlir::IntegerType>().getWidth(); |
1777 | // The IO runtime supports `int` unit numbers, if the unit number may |
1778 | // overflow when passed to the IO runtime, check that the unit number is |
1779 | // in range before calling the BeginXXX. |
1780 | if (rawUnitWidth > runtimeArgWidth) { |
1781 | mlir::func::FuncOp check = |
1782 | rawUnitWidth <= 64 |
1783 | ? getIORuntimeFunc<mkIOKey(CheckUnitNumberInRange64)>(loc, builder) |
1784 | : getIORuntimeFunc<mkIOKey(CheckUnitNumberInRange128)>(loc, |
1785 | builder); |
1786 | mlir::FunctionType funcTy = check.getFunctionType(); |
1787 | llvm::SmallVector<mlir::Value> args; |
1788 | args.push_back(builder.createConvert(loc, funcTy.getInput(0), rawUnit)); |
1789 | args.push_back(builder.createBool(loc, csi.hasErrorConditionSpec())); |
1790 | if (csi.ioMsg) { |
1791 | args.push_back(builder.createConvert(loc, funcTy.getInput(2), |
1792 | fir::getBase(*csi.ioMsg))); |
1793 | args.push_back(builder.createConvert(loc, funcTy.getInput(3), |
1794 | fir::getLen(*csi.ioMsg))); |
1795 | } else { |
1796 | args.push_back(builder.createNullConstant(loc, funcTy.getInput(2))); |
1797 | args.push_back( |
1798 | fir::factory::createZeroValue(builder, loc, funcTy.getInput(3))); |
1799 | } |
1800 | mlir::Value file = locToFilename(converter, loc, funcTy.getInput(4)); |
1801 | mlir::Value line = locToLineNo(converter, loc, funcTy.getInput(5)); |
1802 | args.push_back(file); |
1803 | args.push_back(line); |
1804 | auto checkCall = builder.create<fir::CallOp>(loc, check, args); |
1805 | if (csi.hasErrorConditionSpec()) { |
1806 | mlir::Value iostat = checkCall.getResult(0); |
1807 | mlir::Type iostatTy = iostat.getType(); |
1808 | mlir::Value zero = fir::factory::createZeroValue(builder, loc, iostatTy); |
1809 | mlir::Value unitIsOK = builder.create<mlir::arith::CmpIOp>( |
1810 | loc, mlir::arith::CmpIPredicate::eq, iostat, zero); |
1811 | auto ifOp = builder.create<fir::IfOp>(loc, iostatTy, unitIsOK, |
1812 | /*withElseRegion=*/true); |
1813 | builder.setInsertionPointToStart(&ifOp.getElseRegion().front()); |
1814 | builder.create<fir::ResultOp>(loc, iostat); |
1815 | builder.setInsertionPointToStart(&ifOp.getThenRegion().front()); |
1816 | stmtCtx.pushScope(); |
1817 | csi.bigUnitIfOp = ifOp; |
1818 | } |
1819 | } |
1820 | return builder.createConvert(loc, ty, rawUnit); |
1821 | } |
1822 | |
1823 | static mlir::Value genIOUnit(Fortran::lower::AbstractConverter &converter, |
1824 | mlir::Location loc, |
1825 | const Fortran::parser::IoUnit *iounit, |
1826 | mlir::Type ty, ConditionSpecInfo &csi, |
1827 | Fortran::lower::StatementContext &stmtCtx, |
1828 | int defaultUnitNumber) { |
1829 | auto &builder = converter.getFirOpBuilder(); |
1830 | if (iounit) |
1831 | if (auto *e = std::get_if<Fortran::parser::FileUnitNumber>(&iounit->u)) |
1832 | return genIOUnitNumber(converter, loc, Fortran::semantics::GetExpr(*e), |
1833 | ty, csi, stmtCtx); |
1834 | return builder.create<mlir::arith::ConstantOp>( |
1835 | loc, builder.getIntegerAttr(ty, defaultUnitNumber)); |
1836 | } |
1837 | |
1838 | template <typename A> |
1839 | static mlir::Value |
1840 | getIOUnit(Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
1841 | const A &stmt, mlir::Type ty, ConditionSpecInfo &csi, |
1842 | Fortran::lower::StatementContext &stmtCtx, int defaultUnitNumber) { |
1843 | const Fortran::parser::IoUnit *iounit = |
1844 | stmt.iounit ? &*stmt.iounit : getIOControl<Fortran::parser::IoUnit>(stmt); |
1845 | return genIOUnit(converter, loc, iounit, ty, csi, stmtCtx, defaultUnitNumber); |
1846 | } |
1847 | //===----------------------------------------------------------------------===// |
1848 | // Generators for each IO statement type. |
1849 | //===----------------------------------------------------------------------===// |
1850 | |
1851 | template <typename K, typename S> |
1852 | static mlir::Value genBasicIOStmt(Fortran::lower::AbstractConverter &converter, |
1853 | const S &stmt) { |
1854 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
1855 | Fortran::lower::StatementContext stmtCtx; |
1856 | mlir::Location loc = converter.getCurrentLocation(); |
1857 | ConditionSpecInfo csi = lowerErrorSpec(converter, loc, stmt.v); |
1858 | mlir::func::FuncOp beginFunc = getIORuntimeFunc<K>(loc, builder); |
1859 | mlir::FunctionType beginFuncTy = beginFunc.getFunctionType(); |
1860 | mlir::Value unit = genIOUnitNumber( |
1861 | converter, loc, getExpr<Fortran::parser::FileUnitNumber>(stmt), |
1862 | beginFuncTy.getInput(0), csi, stmtCtx); |
1863 | mlir::Value un = builder.createConvert(loc, beginFuncTy.getInput(0), unit); |
1864 | mlir::Value file = locToFilename(converter, loc, beginFuncTy.getInput(1)); |
1865 | mlir::Value line = locToLineNo(converter, loc, beginFuncTy.getInput(2)); |
1866 | auto call = builder.create<fir::CallOp>(loc, beginFunc, |
1867 | mlir::ValueRange{un, file, line}); |
1868 | mlir::Value cookie = call.getResult(0); |
1869 | genConditionHandlerCall(converter, loc, cookie, stmt.v, csi); |
1870 | mlir::Value ok; |
1871 | auto insertPt = builder.saveInsertionPoint(); |
1872 | threadSpecs(converter, loc, cookie, stmt.v, csi.hasErrorConditionSpec(), ok); |
1873 | builder.restoreInsertionPoint(insertPt); |
1874 | return genEndIO(converter, converter.getCurrentLocation(), cookie, csi, |
1875 | stmtCtx); |
1876 | } |
1877 | |
1878 | mlir::Value Fortran::lower::genBackspaceStatement( |
1879 | Fortran::lower::AbstractConverter &converter, |
1880 | const Fortran::parser::BackspaceStmt &stmt) { |
1881 | return genBasicIOStmt<mkIOKey(BeginBackspace)>(converter, stmt); |
1882 | } |
1883 | |
1884 | mlir::Value Fortran::lower::genEndfileStatement( |
1885 | Fortran::lower::AbstractConverter &converter, |
1886 | const Fortran::parser::EndfileStmt &stmt) { |
1887 | return genBasicIOStmt<mkIOKey(BeginEndfile)>(converter, stmt); |
1888 | } |
1889 | |
1890 | mlir::Value |
1891 | Fortran::lower::genFlushStatement(Fortran::lower::AbstractConverter &converter, |
1892 | const Fortran::parser::FlushStmt &stmt) { |
1893 | return genBasicIOStmt<mkIOKey(BeginFlush)>(converter, stmt); |
1894 | } |
1895 | |
1896 | mlir::Value |
1897 | Fortran::lower::genRewindStatement(Fortran::lower::AbstractConverter &converter, |
1898 | const Fortran::parser::RewindStmt &stmt) { |
1899 | return genBasicIOStmt<mkIOKey(BeginRewind)>(converter, stmt); |
1900 | } |
1901 | |
1902 | static mlir::Value |
1903 | genNewunitSpec(Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
1904 | mlir::Value cookie, |
1905 | const std::list<Fortran::parser::ConnectSpec> &specList) { |
1906 | for (const auto &spec : specList) |
1907 | if (auto *newunit = |
1908 | std::get_if<Fortran::parser::ConnectSpec::Newunit>(&spec.u)) { |
1909 | Fortran::lower::StatementContext stmtCtx; |
1910 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
1911 | mlir::func::FuncOp ioFunc = |
1912 | getIORuntimeFunc<mkIOKey(GetNewUnit)>(loc, builder); |
1913 | mlir::FunctionType ioFuncTy = ioFunc.getFunctionType(); |
1914 | const auto *var = Fortran::semantics::GetExpr(newunit->v); |
1915 | mlir::Value addr = builder.createConvert( |
1916 | loc, ioFuncTy.getInput(1), |
1917 | fir::getBase(converter.genExprAddr(loc, var, stmtCtx))); |
1918 | auto kind = builder.createIntegerConstant(loc, ioFuncTy.getInput(2), |
1919 | var->GetType().value().kind()); |
1920 | llvm::SmallVector<mlir::Value> ioArgs = {cookie, addr, kind}; |
1921 | return builder.create<fir::CallOp>(loc, ioFunc, ioArgs).getResult(0); |
1922 | } |
1923 | llvm_unreachable("missing Newunit spec" ); |
1924 | } |
1925 | |
1926 | mlir::Value |
1927 | Fortran::lower::genOpenStatement(Fortran::lower::AbstractConverter &converter, |
1928 | const Fortran::parser::OpenStmt &stmt) { |
1929 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
1930 | Fortran::lower::StatementContext stmtCtx; |
1931 | mlir::func::FuncOp beginFunc; |
1932 | llvm::SmallVector<mlir::Value> beginArgs; |
1933 | mlir::Location loc = converter.getCurrentLocation(); |
1934 | ConditionSpecInfo csi = lowerErrorSpec(converter, loc, stmt.v); |
1935 | bool hasNewunitSpec = false; |
1936 | if (hasSpec<Fortran::parser::FileUnitNumber>(stmt)) { |
1937 | beginFunc = getIORuntimeFunc<mkIOKey(BeginOpenUnit)>(loc, builder); |
1938 | mlir::FunctionType beginFuncTy = beginFunc.getFunctionType(); |
1939 | mlir::Value unit = genIOUnitNumber( |
1940 | converter, loc, getExpr<Fortran::parser::FileUnitNumber>(stmt), |
1941 | beginFuncTy.getInput(0), csi, stmtCtx); |
1942 | beginArgs.push_back(unit); |
1943 | beginArgs.push_back(locToFilename(converter, loc, beginFuncTy.getInput(1))); |
1944 | beginArgs.push_back(locToLineNo(converter, loc, beginFuncTy.getInput(2))); |
1945 | } else { |
1946 | hasNewunitSpec = hasSpec<Fortran::parser::ConnectSpec::Newunit>(stmt); |
1947 | assert(hasNewunitSpec && "missing unit specifier" ); |
1948 | beginFunc = getIORuntimeFunc<mkIOKey(BeginOpenNewUnit)>(loc, builder); |
1949 | mlir::FunctionType beginFuncTy = beginFunc.getFunctionType(); |
1950 | beginArgs.push_back(locToFilename(converter, loc, beginFuncTy.getInput(0))); |
1951 | beginArgs.push_back(locToLineNo(converter, loc, beginFuncTy.getInput(1))); |
1952 | } |
1953 | auto cookie = |
1954 | builder.create<fir::CallOp>(loc, beginFunc, beginArgs).getResult(0); |
1955 | genConditionHandlerCall(converter, loc, cookie, stmt.v, csi); |
1956 | mlir::Value ok; |
1957 | auto insertPt = builder.saveInsertionPoint(); |
1958 | threadSpecs(converter, loc, cookie, stmt.v, csi.hasErrorConditionSpec(), ok); |
1959 | if (hasNewunitSpec) |
1960 | genNewunitSpec(converter, loc, cookie, stmt.v); |
1961 | builder.restoreInsertionPoint(insertPt); |
1962 | return genEndIO(converter, loc, cookie, csi, stmtCtx); |
1963 | } |
1964 | |
1965 | mlir::Value |
1966 | Fortran::lower::genCloseStatement(Fortran::lower::AbstractConverter &converter, |
1967 | const Fortran::parser::CloseStmt &stmt) { |
1968 | return genBasicIOStmt<mkIOKey(BeginClose)>(converter, stmt); |
1969 | } |
1970 | |
1971 | mlir::Value |
1972 | Fortran::lower::genWaitStatement(Fortran::lower::AbstractConverter &converter, |
1973 | const Fortran::parser::WaitStmt &stmt) { |
1974 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
1975 | Fortran::lower::StatementContext stmtCtx; |
1976 | mlir::Location loc = converter.getCurrentLocation(); |
1977 | ConditionSpecInfo csi = lowerErrorSpec(converter, loc, stmt.v); |
1978 | bool hasId = hasSpec<Fortran::parser::IdExpr>(stmt); |
1979 | mlir::func::FuncOp beginFunc = |
1980 | hasId ? getIORuntimeFunc<mkIOKey(BeginWait)>(loc, builder) |
1981 | : getIORuntimeFunc<mkIOKey(BeginWaitAll)>(loc, builder); |
1982 | mlir::FunctionType beginFuncTy = beginFunc.getFunctionType(); |
1983 | mlir::Value unit = genIOUnitNumber( |
1984 | converter, loc, getExpr<Fortran::parser::FileUnitNumber>(stmt), |
1985 | beginFuncTy.getInput(0), csi, stmtCtx); |
1986 | llvm::SmallVector<mlir::Value> args{unit}; |
1987 | if (hasId) { |
1988 | mlir::Value id = fir::getBase(converter.genExprValue( |
1989 | loc, getExpr<Fortran::parser::IdExpr>(stmt), stmtCtx)); |
1990 | args.push_back(builder.createConvert(loc, beginFuncTy.getInput(1), id)); |
1991 | args.push_back(locToFilename(converter, loc, beginFuncTy.getInput(2))); |
1992 | args.push_back(locToLineNo(converter, loc, beginFuncTy.getInput(3))); |
1993 | } else { |
1994 | args.push_back(locToFilename(converter, loc, beginFuncTy.getInput(1))); |
1995 | args.push_back(locToLineNo(converter, loc, beginFuncTy.getInput(2))); |
1996 | } |
1997 | auto cookie = builder.create<fir::CallOp>(loc, beginFunc, args).getResult(0); |
1998 | genConditionHandlerCall(converter, loc, cookie, stmt.v, csi); |
1999 | return genEndIO(converter, converter.getCurrentLocation(), cookie, csi, |
2000 | stmtCtx); |
2001 | } |
2002 | |
2003 | //===----------------------------------------------------------------------===// |
2004 | // Data transfer statements. |
2005 | // |
2006 | // There are several dimensions to the API with regard to data transfer |
2007 | // statements that need to be considered. |
2008 | // |
2009 | // - input (READ) vs. output (WRITE, PRINT) |
2010 | // - unformatted vs. formatted vs. list vs. namelist |
2011 | // - synchronous vs. asynchronous |
2012 | // - external vs. internal |
2013 | //===----------------------------------------------------------------------===// |
2014 | |
2015 | // Get the begin data transfer IO function to call for the given values. |
2016 | template <bool isInput> |
2017 | mlir::func::FuncOp |
2018 | getBeginDataTransferFunc(mlir::Location loc, fir::FirOpBuilder &builder, |
2019 | bool isFormatted, bool isListOrNml, bool isInternal, |
2020 | bool isInternalWithDesc) { |
2021 | if constexpr (isInput) { |
2022 | if (isFormatted || isListOrNml) { |
2023 | if (isInternal) { |
2024 | if (isInternalWithDesc) { |
2025 | if (isListOrNml) |
2026 | return getIORuntimeFunc<mkIOKey(BeginInternalArrayListInput)>( |
2027 | loc, builder); |
2028 | return getIORuntimeFunc<mkIOKey(BeginInternalArrayFormattedInput)>( |
2029 | loc, builder); |
2030 | } |
2031 | if (isListOrNml) |
2032 | return getIORuntimeFunc<mkIOKey(BeginInternalListInput)>(loc, |
2033 | builder); |
2034 | return getIORuntimeFunc<mkIOKey(BeginInternalFormattedInput)>(loc, |
2035 | builder); |
2036 | } |
2037 | if (isListOrNml) |
2038 | return getIORuntimeFunc<mkIOKey(BeginExternalListInput)>(loc, builder); |
2039 | return getIORuntimeFunc<mkIOKey(BeginExternalFormattedInput)>(loc, |
2040 | builder); |
2041 | } |
2042 | return getIORuntimeFunc<mkIOKey(BeginUnformattedInput)>(loc, builder); |
2043 | } else { |
2044 | if (isFormatted || isListOrNml) { |
2045 | if (isInternal) { |
2046 | if (isInternalWithDesc) { |
2047 | if (isListOrNml) |
2048 | return getIORuntimeFunc<mkIOKey(BeginInternalArrayListOutput)>( |
2049 | loc, builder); |
2050 | return getIORuntimeFunc<mkIOKey(BeginInternalArrayFormattedOutput)>( |
2051 | loc, builder); |
2052 | } |
2053 | if (isListOrNml) |
2054 | return getIORuntimeFunc<mkIOKey(BeginInternalListOutput)>(loc, |
2055 | builder); |
2056 | return getIORuntimeFunc<mkIOKey(BeginInternalFormattedOutput)>(loc, |
2057 | builder); |
2058 | } |
2059 | if (isListOrNml) |
2060 | return getIORuntimeFunc<mkIOKey(BeginExternalListOutput)>(loc, builder); |
2061 | return getIORuntimeFunc<mkIOKey(BeginExternalFormattedOutput)>(loc, |
2062 | builder); |
2063 | } |
2064 | return getIORuntimeFunc<mkIOKey(BeginUnformattedOutput)>(loc, builder); |
2065 | } |
2066 | } |
2067 | |
2068 | /// Generate the arguments of a begin data transfer statement call. |
2069 | template <bool hasIOCtrl, int defaultUnitNumber, typename A> |
2070 | void genBeginDataTransferCallArgs( |
2071 | llvm::SmallVectorImpl<mlir::Value> &ioArgs, |
2072 | Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
2073 | const A &stmt, mlir::FunctionType ioFuncTy, bool isFormatted, |
2074 | bool isListOrNml, [[maybe_unused]] bool isInternal, |
2075 | const std::optional<fir::ExtendedValue> &descRef, ConditionSpecInfo &csi, |
2076 | Fortran::lower::StatementContext &stmtCtx) { |
2077 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
2078 | auto maybeGetFormatArgs = [&]() { |
2079 | if (!isFormatted || isListOrNml) |
2080 | return; |
2081 | std::tuple triple = |
2082 | getFormat(converter, loc, stmt, ioFuncTy.getInput(ioArgs.size()), |
2083 | ioFuncTy.getInput(ioArgs.size() + 1), stmtCtx); |
2084 | mlir::Value address = std::get<0>(triple); |
2085 | mlir::Value length = std::get<1>(triple); |
2086 | if (length) { |
2087 | // Scalar format: string arg + length arg; no format descriptor arg |
2088 | ioArgs.push_back(address); // format string |
2089 | ioArgs.push_back(length); // format length |
2090 | ioArgs.push_back( |
2091 | builder.createNullConstant(loc, ioFuncTy.getInput(ioArgs.size()))); |
2092 | return; |
2093 | } |
2094 | // Array format: no string arg, no length arg; format descriptor arg |
2095 | ioArgs.push_back( |
2096 | builder.createNullConstant(loc, ioFuncTy.getInput(ioArgs.size()))); |
2097 | ioArgs.push_back( |
2098 | builder.createNullConstant(loc, ioFuncTy.getInput(ioArgs.size()))); |
2099 | ioArgs.push_back( // format descriptor |
2100 | builder.createConvert(loc, ioFuncTy.getInput(ioArgs.size()), address)); |
2101 | }; |
2102 | if constexpr (hasIOCtrl) { // READ or WRITE |
2103 | if (isInternal) { |
2104 | // descriptor or scalar variable; maybe explicit format; scratch area |
2105 | if (descRef) { |
2106 | mlir::Value desc = builder.createBox(loc, *descRef); |
2107 | ioArgs.push_back( |
2108 | builder.createConvert(loc, ioFuncTy.getInput(ioArgs.size()), desc)); |
2109 | } else { |
2110 | std::tuple<mlir::Value, mlir::Value> pair = |
2111 | getBuffer(converter, loc, stmt, ioFuncTy.getInput(ioArgs.size()), |
2112 | ioFuncTy.getInput(ioArgs.size() + 1), stmtCtx); |
2113 | ioArgs.push_back(std::get<0>(pair)); // scalar character variable |
2114 | ioArgs.push_back(std::get<1>(pair)); // character length |
2115 | } |
2116 | maybeGetFormatArgs(); |
2117 | ioArgs.push_back( // internal scratch area buffer |
2118 | getDefaultScratch(builder, loc, ioFuncTy.getInput(ioArgs.size()))); |
2119 | ioArgs.push_back( // buffer length |
2120 | getDefaultScratchLen(builder, loc, ioFuncTy.getInput(ioArgs.size()))); |
2121 | } else { // external IO - maybe explicit format; unit |
2122 | maybeGetFormatArgs(); |
2123 | ioArgs.push_back(getIOUnit(converter, loc, stmt, |
2124 | ioFuncTy.getInput(ioArgs.size()), csi, stmtCtx, |
2125 | defaultUnitNumber)); |
2126 | } |
2127 | } else { // PRINT - maybe explicit format; default unit |
2128 | maybeGetFormatArgs(); |
2129 | ioArgs.push_back(builder.create<mlir::arith::ConstantOp>( |
2130 | loc, builder.getIntegerAttr(ioFuncTy.getInput(ioArgs.size()), |
2131 | defaultUnitNumber))); |
2132 | } |
2133 | // File name and line number are always the last two arguments. |
2134 | ioArgs.push_back( |
2135 | locToFilename(converter, loc, ioFuncTy.getInput(ioArgs.size()))); |
2136 | ioArgs.push_back( |
2137 | locToLineNo(converter, loc, ioFuncTy.getInput(ioArgs.size()))); |
2138 | } |
2139 | |
2140 | template <bool isInput, bool hasIOCtrl = true, typename A> |
2141 | static mlir::Value |
2142 | genDataTransferStmt(Fortran::lower::AbstractConverter &converter, |
2143 | const A &stmt) { |
2144 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
2145 | Fortran::lower::StatementContext stmtCtx; |
2146 | mlir::Location loc = converter.getCurrentLocation(); |
2147 | const bool isFormatted = isDataTransferFormatted(stmt); |
2148 | const bool isList = isFormatted ? isDataTransferList(stmt) : false; |
2149 | const bool isInternal = isDataTransferInternal(stmt); |
2150 | std::optional<fir::ExtendedValue> descRef = |
2151 | isInternal ? maybeGetInternalIODescriptor(converter, loc, stmt, stmtCtx) |
2152 | : std::nullopt; |
2153 | const bool isInternalWithDesc = descRef.has_value(); |
2154 | const bool isNml = isDataTransferNamelist(stmt); |
2155 | // Flang runtime currently implement asynchronous IO synchronously, so |
2156 | // asynchronous IO statements are lowered as regular IO statements |
2157 | // (except that GetAsynchronousId may be called to set the ID variable |
2158 | // and SetAsynchronous will be call to tell the runtime that this is supposed |
2159 | // to be (or not) an asynchronous IO statements). |
2160 | |
2161 | // Generate an EnableHandlers call and remaining specifier calls. |
2162 | ConditionSpecInfo csi; |
2163 | if constexpr (hasIOCtrl) { |
2164 | csi = lowerErrorSpec(converter, loc, stmt.controls); |
2165 | } |
2166 | |
2167 | // Generate the begin data transfer function call. |
2168 | mlir::func::FuncOp ioFunc = getBeginDataTransferFunc<isInput>( |
2169 | loc, builder, isFormatted, isList || isNml, isInternal, |
2170 | isInternalWithDesc); |
2171 | llvm::SmallVector<mlir::Value> ioArgs; |
2172 | genBeginDataTransferCallArgs< |
2173 | hasIOCtrl, isInput ? Fortran::runtime::io::DefaultInputUnit |
2174 | : Fortran::runtime::io::DefaultOutputUnit>( |
2175 | ioArgs, converter, loc, stmt, ioFunc.getFunctionType(), isFormatted, |
2176 | isList || isNml, isInternal, descRef, csi, stmtCtx); |
2177 | mlir::Value cookie = |
2178 | builder.create<fir::CallOp>(loc, ioFunc, ioArgs).getResult(0); |
2179 | |
2180 | auto insertPt = builder.saveInsertionPoint(); |
2181 | mlir::Value ok; |
2182 | if constexpr (hasIOCtrl) { |
2183 | genConditionHandlerCall(converter, loc, cookie, stmt.controls, csi); |
2184 | threadSpecs(converter, loc, cookie, stmt.controls, |
2185 | csi.hasErrorConditionSpec(), ok); |
2186 | } |
2187 | |
2188 | // Generate data transfer list calls. |
2189 | if constexpr (isInput) { // READ |
2190 | if (isNml) |
2191 | genNamelistIO(converter, cookie, |
2192 | getIORuntimeFunc<mkIOKey(InputNamelist)>(loc, builder), |
2193 | *getIOControl<Fortran::parser::Name>(stmt)->symbol, |
2194 | csi.hasTransferConditionSpec(), ok, stmtCtx); |
2195 | else |
2196 | genInputItemList(converter, cookie, stmt.items, isFormatted, |
2197 | csi.hasTransferConditionSpec(), ok, /*inLoop=*/false); |
2198 | } else if constexpr (std::is_same_v<A, Fortran::parser::WriteStmt>) { |
2199 | if (isNml) |
2200 | genNamelistIO(converter, cookie, |
2201 | getIORuntimeFunc<mkIOKey(OutputNamelist)>(loc, builder), |
2202 | *getIOControl<Fortran::parser::Name>(stmt)->symbol, |
2203 | csi.hasTransferConditionSpec(), ok, stmtCtx); |
2204 | else |
2205 | genOutputItemList(converter, cookie, stmt.items, isFormatted, |
2206 | csi.hasTransferConditionSpec(), ok, |
2207 | /*inLoop=*/false); |
2208 | } else { // PRINT |
2209 | genOutputItemList(converter, cookie, std::get<1>(stmt.t), isFormatted, |
2210 | csi.hasTransferConditionSpec(), ok, |
2211 | /*inLoop=*/false); |
2212 | } |
2213 | |
2214 | builder.restoreInsertionPoint(insertPt); |
2215 | if constexpr (hasIOCtrl) { |
2216 | for (const auto &spec : stmt.controls) |
2217 | if (const auto *size = |
2218 | std::get_if<Fortran::parser::IoControlSpec::Size>(&spec.u)) { |
2219 | // This call is not conditional on the current IO status (ok) because |
2220 | // the size needs to be filled even if some error condition |
2221 | // (end-of-file...) was met during the input statement (in which case |
2222 | // the runtime may return zero for the size read). |
2223 | genIOGetVar<mkIOKey(GetSize)>(converter, loc, cookie, *size); |
2224 | } else if (const auto *idVar = |
2225 | std::get_if<Fortran::parser::IdVariable>(&spec.u)) { |
2226 | genIOGetVar<mkIOKey(GetAsynchronousId)>(converter, loc, cookie, *idVar); |
2227 | } |
2228 | } |
2229 | // Generate end statement call/s. |
2230 | mlir::Value result = genEndIO(converter, loc, cookie, csi, stmtCtx); |
2231 | stmtCtx.finalizeAndReset(); |
2232 | return result; |
2233 | } |
2234 | |
2235 | void Fortran::lower::genPrintStatement( |
2236 | Fortran::lower::AbstractConverter &converter, |
2237 | const Fortran::parser::PrintStmt &stmt) { |
2238 | // PRINT does not take an io-control-spec. It only has a format specifier, so |
2239 | // it is a simplified case of WRITE. |
2240 | genDataTransferStmt</*isInput=*/false, /*ioCtrl=*/false>(converter, stmt); |
2241 | } |
2242 | |
2243 | mlir::Value |
2244 | Fortran::lower::genWriteStatement(Fortran::lower::AbstractConverter &converter, |
2245 | const Fortran::parser::WriteStmt &stmt) { |
2246 | return genDataTransferStmt</*isInput=*/false>(converter, stmt); |
2247 | } |
2248 | |
2249 | mlir::Value |
2250 | Fortran::lower::genReadStatement(Fortran::lower::AbstractConverter &converter, |
2251 | const Fortran::parser::ReadStmt &stmt) { |
2252 | return genDataTransferStmt</*isInput=*/true>(converter, stmt); |
2253 | } |
2254 | |
2255 | /// Get the file expression from the inquire spec list. Also return if the |
2256 | /// expression is a file name. |
2257 | static std::pair<const Fortran::lower::SomeExpr *, bool> |
2258 | getInquireFileExpr(const std::list<Fortran::parser::InquireSpec> *stmt) { |
2259 | if (!stmt) |
2260 | return {nullptr, /*filename?=*/false}; |
2261 | for (const Fortran::parser::InquireSpec &spec : *stmt) { |
2262 | if (auto *f = std::get_if<Fortran::parser::FileUnitNumber>(&spec.u)) |
2263 | return {Fortran::semantics::GetExpr(*f), /*filename?=*/false}; |
2264 | if (auto *f = std::get_if<Fortran::parser::FileNameExpr>(&spec.u)) |
2265 | return {Fortran::semantics::GetExpr(*f), /*filename?=*/true}; |
2266 | } |
2267 | // semantics should have already caught this condition |
2268 | llvm::report_fatal_error("inquire spec must have a file" ); |
2269 | } |
2270 | |
2271 | /// Generate calls to the four distinct INQUIRE subhandlers. An INQUIRE may |
2272 | /// return values of type CHARACTER, INTEGER, or LOGICAL. There is one |
2273 | /// additional special case for INQUIRE with both PENDING and ID specifiers. |
2274 | template <typename A> |
2275 | static mlir::Value genInquireSpec(Fortran::lower::AbstractConverter &converter, |
2276 | mlir::Location loc, mlir::Value cookie, |
2277 | mlir::Value idExpr, const A &var, |
2278 | Fortran::lower::StatementContext &stmtCtx) { |
2279 | // default case: do nothing |
2280 | return {}; |
2281 | } |
2282 | /// Specialization for CHARACTER. |
2283 | template <> |
2284 | mlir::Value genInquireSpec<Fortran::parser::InquireSpec::CharVar>( |
2285 | Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
2286 | mlir::Value cookie, mlir::Value idExpr, |
2287 | const Fortran::parser::InquireSpec::CharVar &var, |
2288 | Fortran::lower::StatementContext &stmtCtx) { |
2289 | // IOMSG is handled with exception conditions |
2290 | if (std::get<Fortran::parser::InquireSpec::CharVar::Kind>(var.t) == |
2291 | Fortran::parser::InquireSpec::CharVar::Kind::Iomsg) |
2292 | return {}; |
2293 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
2294 | mlir::func::FuncOp specFunc = |
2295 | getIORuntimeFunc<mkIOKey(InquireCharacter)>(loc, builder); |
2296 | mlir::FunctionType specFuncTy = specFunc.getFunctionType(); |
2297 | const auto *varExpr = Fortran::semantics::GetExpr( |
2298 | std::get<Fortran::parser::ScalarDefaultCharVariable>(var.t)); |
2299 | fir::ExtendedValue str = converter.genExprAddr(loc, varExpr, stmtCtx); |
2300 | llvm::SmallVector<mlir::Value> args = { |
2301 | builder.createConvert(loc, specFuncTy.getInput(0), cookie), |
2302 | builder.createIntegerConstant( |
2303 | loc, specFuncTy.getInput(1), |
2304 | Fortran::runtime::io::HashInquiryKeyword(std::string{ |
2305 | Fortran::parser::InquireSpec::CharVar::EnumToString( |
2306 | std::get<Fortran::parser::InquireSpec::CharVar::Kind>(var.t))} |
2307 | .c_str())), |
2308 | builder.createConvert(loc, specFuncTy.getInput(2), fir::getBase(str)), |
2309 | builder.createConvert(loc, specFuncTy.getInput(3), fir::getLen(str))}; |
2310 | return builder.create<fir::CallOp>(loc, specFunc, args).getResult(0); |
2311 | } |
2312 | /// Specialization for INTEGER. |
2313 | template <> |
2314 | mlir::Value genInquireSpec<Fortran::parser::InquireSpec::IntVar>( |
2315 | Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
2316 | mlir::Value cookie, mlir::Value idExpr, |
2317 | const Fortran::parser::InquireSpec::IntVar &var, |
2318 | Fortran::lower::StatementContext &stmtCtx) { |
2319 | // IOSTAT is handled with exception conditions |
2320 | if (std::get<Fortran::parser::InquireSpec::IntVar::Kind>(var.t) == |
2321 | Fortran::parser::InquireSpec::IntVar::Kind::Iostat) |
2322 | return {}; |
2323 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
2324 | mlir::func::FuncOp specFunc = |
2325 | getIORuntimeFunc<mkIOKey(InquireInteger64)>(loc, builder); |
2326 | mlir::FunctionType specFuncTy = specFunc.getFunctionType(); |
2327 | const auto *varExpr = Fortran::semantics::GetExpr( |
2328 | std::get<Fortran::parser::ScalarIntVariable>(var.t)); |
2329 | mlir::Value addr = fir::getBase(converter.genExprAddr(loc, varExpr, stmtCtx)); |
2330 | mlir::Type eleTy = fir::dyn_cast_ptrEleTy(addr.getType()); |
2331 | if (!eleTy) |
2332 | fir::emitFatalError(loc, |
2333 | "internal error: expected a memory reference type" ); |
2334 | auto width = eleTy.cast<mlir::IntegerType>().getWidth(); |
2335 | mlir::IndexType idxTy = builder.getIndexType(); |
2336 | mlir::Value kind = builder.createIntegerConstant(loc, idxTy, width / 8); |
2337 | llvm::SmallVector<mlir::Value> args = { |
2338 | builder.createConvert(loc, specFuncTy.getInput(0), cookie), |
2339 | builder.createIntegerConstant( |
2340 | loc, specFuncTy.getInput(1), |
2341 | Fortran::runtime::io::HashInquiryKeyword(std::string{ |
2342 | Fortran::parser::InquireSpec::IntVar::EnumToString( |
2343 | std::get<Fortran::parser::InquireSpec::IntVar::Kind>(var.t))} |
2344 | .c_str())), |
2345 | builder.createConvert(loc, specFuncTy.getInput(2), addr), |
2346 | builder.createConvert(loc, specFuncTy.getInput(3), kind)}; |
2347 | return builder.create<fir::CallOp>(loc, specFunc, args).getResult(0); |
2348 | } |
2349 | /// Specialization for LOGICAL and (PENDING + ID). |
2350 | template <> |
2351 | mlir::Value genInquireSpec<Fortran::parser::InquireSpec::LogVar>( |
2352 | Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
2353 | mlir::Value cookie, mlir::Value idExpr, |
2354 | const Fortran::parser::InquireSpec::LogVar &var, |
2355 | Fortran::lower::StatementContext &stmtCtx) { |
2356 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
2357 | auto logVarKind = std::get<Fortran::parser::InquireSpec::LogVar::Kind>(var.t); |
2358 | bool pendId = |
2359 | idExpr && |
2360 | logVarKind == Fortran::parser::InquireSpec::LogVar::Kind::Pending; |
2361 | mlir::func::FuncOp specFunc = |
2362 | pendId ? getIORuntimeFunc<mkIOKey(InquirePendingId)>(loc, builder) |
2363 | : getIORuntimeFunc<mkIOKey(InquireLogical)>(loc, builder); |
2364 | mlir::FunctionType specFuncTy = specFunc.getFunctionType(); |
2365 | mlir::Value addr = fir::getBase(converter.genExprAddr( |
2366 | loc, |
2367 | Fortran::semantics::GetExpr( |
2368 | std::get<Fortran::parser::Scalar< |
2369 | Fortran::parser::Logical<Fortran::parser::Variable>>>(var.t)), |
2370 | stmtCtx)); |
2371 | llvm::SmallVector<mlir::Value> args = { |
2372 | builder.createConvert(loc, specFuncTy.getInput(0), cookie)}; |
2373 | if (pendId) |
2374 | args.push_back(builder.createConvert(loc, specFuncTy.getInput(1), idExpr)); |
2375 | else |
2376 | args.push_back(builder.createIntegerConstant( |
2377 | loc, specFuncTy.getInput(1), |
2378 | Fortran::runtime::io::HashInquiryKeyword(std::string{ |
2379 | Fortran::parser::InquireSpec::LogVar::EnumToString(logVarKind)} |
2380 | .c_str()))); |
2381 | args.push_back(builder.createConvert(loc, specFuncTy.getInput(2), addr)); |
2382 | auto call = builder.create<fir::CallOp>(loc, specFunc, args); |
2383 | boolRefToLogical(loc, builder, addr); |
2384 | return call.getResult(0); |
2385 | } |
2386 | |
2387 | /// If there is an IdExpr in the list of inquire-specs, then lower it and return |
2388 | /// the resulting Value. Otherwise, return null. |
2389 | static mlir::Value |
2390 | lowerIdExpr(Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
2391 | const std::list<Fortran::parser::InquireSpec> &ispecs, |
2392 | Fortran::lower::StatementContext &stmtCtx) { |
2393 | for (const Fortran::parser::InquireSpec &spec : ispecs) |
2394 | if (mlir::Value v = std::visit( |
2395 | Fortran::common::visitors{ |
2396 | [&](const Fortran::parser::IdExpr &idExpr) { |
2397 | return fir::getBase(converter.genExprValue( |
2398 | loc, Fortran::semantics::GetExpr(idExpr), stmtCtx)); |
2399 | }, |
2400 | [](const auto &) { return mlir::Value{}; }}, |
2401 | spec.u)) |
2402 | return v; |
2403 | return {}; |
2404 | } |
2405 | |
2406 | /// For each inquire-spec, build the appropriate call, threading the cookie. |
2407 | static void threadInquire(Fortran::lower::AbstractConverter &converter, |
2408 | mlir::Location loc, mlir::Value cookie, |
2409 | const std::list<Fortran::parser::InquireSpec> &ispecs, |
2410 | bool checkResult, mlir::Value &ok, |
2411 | Fortran::lower::StatementContext &stmtCtx) { |
2412 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
2413 | mlir::Value idExpr = lowerIdExpr(converter, loc, ispecs, stmtCtx); |
2414 | for (const Fortran::parser::InquireSpec &spec : ispecs) { |
2415 | makeNextConditionalOn(builder, loc, checkResult, ok); |
2416 | ok = std::visit(Fortran::common::visitors{[&](const auto &x) { |
2417 | return genInquireSpec(converter, loc, cookie, idExpr, x, |
2418 | stmtCtx); |
2419 | }}, |
2420 | spec.u); |
2421 | } |
2422 | } |
2423 | |
2424 | mlir::Value Fortran::lower::genInquireStatement( |
2425 | Fortran::lower::AbstractConverter &converter, |
2426 | const Fortran::parser::InquireStmt &stmt) { |
2427 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
2428 | Fortran::lower::StatementContext stmtCtx; |
2429 | mlir::Location loc = converter.getCurrentLocation(); |
2430 | mlir::func::FuncOp beginFunc; |
2431 | llvm::SmallVector<mlir::Value> beginArgs; |
2432 | const auto *list = |
2433 | std::get_if<std::list<Fortran::parser::InquireSpec>>(&stmt.u); |
2434 | auto exprPair = getInquireFileExpr(list); |
2435 | auto inquireFileUnit = [&]() -> bool { |
2436 | return exprPair.first && !exprPair.second; |
2437 | }; |
2438 | auto inquireFileName = [&]() -> bool { |
2439 | return exprPair.first && exprPair.second; |
2440 | }; |
2441 | |
2442 | ConditionSpecInfo csi = |
2443 | list ? lowerErrorSpec(converter, loc, *list) : ConditionSpecInfo{}; |
2444 | |
2445 | // Make one of three BeginInquire calls. |
2446 | if (inquireFileUnit()) { |
2447 | // Inquire by unit -- [UNIT=]file-unit-number. |
2448 | beginFunc = getIORuntimeFunc<mkIOKey(BeginInquireUnit)>(loc, builder); |
2449 | mlir::FunctionType beginFuncTy = beginFunc.getFunctionType(); |
2450 | mlir::Value unit = genIOUnitNumber(converter, loc, exprPair.first, |
2451 | beginFuncTy.getInput(0), csi, stmtCtx); |
2452 | beginArgs = {unit, locToFilename(converter, loc, beginFuncTy.getInput(1)), |
2453 | locToLineNo(converter, loc, beginFuncTy.getInput(2))}; |
2454 | } else if (inquireFileName()) { |
2455 | // Inquire by file -- FILE=file-name-expr. |
2456 | beginFunc = getIORuntimeFunc<mkIOKey(BeginInquireFile)>(loc, builder); |
2457 | mlir::FunctionType beginFuncTy = beginFunc.getFunctionType(); |
2458 | fir::ExtendedValue file = |
2459 | converter.genExprAddr(loc, exprPair.first, stmtCtx); |
2460 | beginArgs = { |
2461 | builder.createConvert(loc, beginFuncTy.getInput(0), fir::getBase(file)), |
2462 | builder.createConvert(loc, beginFuncTy.getInput(1), fir::getLen(file)), |
2463 | locToFilename(converter, loc, beginFuncTy.getInput(2)), |
2464 | locToLineNo(converter, loc, beginFuncTy.getInput(3))}; |
2465 | } else { |
2466 | // Inquire by output list -- IOLENGTH=scalar-int-variable. |
2467 | const auto *ioLength = |
2468 | std::get_if<Fortran::parser::InquireStmt::Iolength>(&stmt.u); |
2469 | assert(ioLength && "must have an IOLENGTH specifier" ); |
2470 | beginFunc = getIORuntimeFunc<mkIOKey(BeginInquireIoLength)>(loc, builder); |
2471 | mlir::FunctionType beginFuncTy = beginFunc.getFunctionType(); |
2472 | beginArgs = {locToFilename(converter, loc, beginFuncTy.getInput(0)), |
2473 | locToLineNo(converter, loc, beginFuncTy.getInput(1))}; |
2474 | auto cookie = |
2475 | builder.create<fir::CallOp>(loc, beginFunc, beginArgs).getResult(0); |
2476 | mlir::Value ok; |
2477 | genOutputItemList( |
2478 | converter, cookie, |
2479 | std::get<std::list<Fortran::parser::OutputItem>>(ioLength->t), |
2480 | /*isFormatted=*/false, /*checkResult=*/false, ok, /*inLoop=*/false); |
2481 | auto *ioLengthVar = Fortran::semantics::GetExpr( |
2482 | std::get<Fortran::parser::ScalarIntVariable>(ioLength->t)); |
2483 | mlir::Value ioLengthVarAddr = |
2484 | fir::getBase(converter.genExprAddr(loc, ioLengthVar, stmtCtx)); |
2485 | llvm::SmallVector<mlir::Value> args = {cookie}; |
2486 | mlir::Value length = |
2487 | builder |
2488 | .create<fir::CallOp>( |
2489 | loc, getIORuntimeFunc<mkIOKey(GetIoLength)>(loc, builder), args) |
2490 | .getResult(0); |
2491 | mlir::Value length1 = |
2492 | builder.createConvert(loc, converter.genType(*ioLengthVar), length); |
2493 | builder.create<fir::StoreOp>(loc, length1, ioLengthVarAddr); |
2494 | return genEndIO(converter, loc, cookie, csi, stmtCtx); |
2495 | } |
2496 | |
2497 | // Common handling for inquire by unit or file. |
2498 | assert(list && "inquire-spec list must be present" ); |
2499 | auto cookie = |
2500 | builder.create<fir::CallOp>(loc, beginFunc, beginArgs).getResult(0); |
2501 | genConditionHandlerCall(converter, loc, cookie, *list, csi); |
2502 | // Handle remaining arguments in specifier list. |
2503 | mlir::Value ok; |
2504 | auto insertPt = builder.saveInsertionPoint(); |
2505 | threadInquire(converter, loc, cookie, *list, csi.hasErrorConditionSpec(), ok, |
2506 | stmtCtx); |
2507 | builder.restoreInsertionPoint(insertPt); |
2508 | // Generate end statement call. |
2509 | return genEndIO(converter, loc, cookie, csi, stmtCtx); |
2510 | } |
2511 | |