1 | //===-- IO.cpp -- IO statement lowering -----------------------------------===// |
---|---|
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/ |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "flang/Lower/IO.h" |
14 | #include "flang/Common/uint128.h" |
15 | #include "flang/Evaluate/tools.h" |
16 | #include "flang/Lower/Allocatable.h" |
17 | #include "flang/Lower/Bridge.h" |
18 | #include "flang/Lower/CallInterface.h" |
19 | #include "flang/Lower/ConvertExpr.h" |
20 | #include "flang/Lower/ConvertVariable.h" |
21 | #include "flang/Lower/Mangler.h" |
22 | #include "flang/Lower/PFTBuilder.h" |
23 | #include "flang/Lower/Runtime.h" |
24 | #include "flang/Lower/StatementContext.h" |
25 | #include "flang/Lower/Support/Utils.h" |
26 | #include "flang/Lower/VectorSubscripts.h" |
27 | #include "flang/Optimizer/Builder/Character.h" |
28 | #include "flang/Optimizer/Builder/Complex.h" |
29 | #include "flang/Optimizer/Builder/FIRBuilder.h" |
30 | #include "flang/Optimizer/Builder/Runtime/RTBuilder.h" |
31 | #include "flang/Optimizer/Builder/Runtime/Stop.h" |
32 | #include "flang/Optimizer/Builder/Todo.h" |
33 | #include "flang/Optimizer/Dialect/FIRDialect.h" |
34 | #include "flang/Optimizer/Dialect/Support/FIRContext.h" |
35 | #include "flang/Optimizer/Support/InternalNames.h" |
36 | #include "flang/Parser/parse-tree.h" |
37 | #include "flang/Runtime/io-api.h" |
38 | #include "flang/Semantics/runtime-type-info.h" |
39 | #include "flang/Semantics/tools.h" |
40 | #include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h" |
41 | #include "llvm/Support/Debug.h" |
42 | #include <optional> |
43 | |
44 | #define DEBUG_TYPE "flang-lower-io" |
45 | |
46 | using namespace Fortran::runtime::io; |
47 | |
48 | #define mkIOKey(X) FirmkKey(IONAME(X)) |
49 | |
50 | namespace Fortran::lower { |
51 | /// Static table of IO runtime calls |
52 | /// |
53 | /// This logical map contains the name and type builder function for each IO |
54 | /// runtime function listed in the tuple. This table is fully constructed at |
55 | /// compile-time. Use the `mkIOKey` macro to access the table. |
56 | static constexpr std::tuple< |
57 | mkIOKey(BeginBackspace), mkIOKey(BeginClose), mkIOKey(BeginEndfile), |
58 | mkIOKey(BeginExternalFormattedInput), mkIOKey(BeginExternalFormattedOutput), |
59 | mkIOKey(BeginExternalListInput), mkIOKey(BeginExternalListOutput), |
60 | mkIOKey(BeginFlush), mkIOKey(BeginInquireFile), |
61 | mkIOKey(BeginInquireIoLength), mkIOKey(BeginInquireUnit), |
62 | mkIOKey(BeginInternalArrayFormattedInput), |
63 | mkIOKey(BeginInternalArrayFormattedOutput), |
64 | mkIOKey(BeginInternalArrayListInput), mkIOKey(BeginInternalArrayListOutput), |
65 | mkIOKey(BeginInternalFormattedInput), mkIOKey(BeginInternalFormattedOutput), |
66 | mkIOKey(BeginInternalListInput), mkIOKey(BeginInternalListOutput), |
67 | mkIOKey(BeginOpenNewUnit), mkIOKey(BeginOpenUnit), mkIOKey(BeginRewind), |
68 | mkIOKey(BeginUnformattedInput), mkIOKey(BeginUnformattedOutput), |
69 | mkIOKey(BeginWait), mkIOKey(BeginWaitAll), |
70 | mkIOKey(CheckUnitNumberInRange64), mkIOKey(CheckUnitNumberInRange128), |
71 | mkIOKey(EnableHandlers), mkIOKey(EndIoStatement), |
72 | mkIOKey(GetAsynchronousId), mkIOKey(GetIoLength), mkIOKey(GetIoMsg), |
73 | mkIOKey(GetNewUnit), mkIOKey(GetSize), mkIOKey(InputAscii), |
74 | mkIOKey(InputComplex32), mkIOKey(InputComplex64), mkIOKey(InputDerivedType), |
75 | mkIOKey(InputDescriptor), mkIOKey(InputInteger), mkIOKey(InputLogical), |
76 | mkIOKey(InputNamelist), mkIOKey(InputReal32), mkIOKey(InputReal64), |
77 | mkIOKey(InquireCharacter), mkIOKey(InquireInteger64), |
78 | mkIOKey(InquireLogical), mkIOKey(InquirePendingId), mkIOKey(OutputAscii), |
79 | mkIOKey(OutputComplex32), mkIOKey(OutputComplex64), |
80 | mkIOKey(OutputDerivedType), mkIOKey(OutputDescriptor), |
81 | mkIOKey(OutputInteger8), mkIOKey(OutputInteger16), mkIOKey(OutputInteger32), |
82 | mkIOKey(OutputInteger64), mkIOKey(OutputInteger128), mkIOKey(OutputLogical), |
83 | mkIOKey(OutputNamelist), mkIOKey(OutputReal32), mkIOKey(OutputReal64), |
84 | mkIOKey(SetAccess), mkIOKey(SetAction), mkIOKey(SetAdvance), |
85 | mkIOKey(SetAsynchronous), mkIOKey(SetBlank), mkIOKey(SetCarriagecontrol), |
86 | mkIOKey(SetConvert), mkIOKey(SetDecimal), mkIOKey(SetDelim), |
87 | mkIOKey(SetEncoding), mkIOKey(SetFile), mkIOKey(SetForm), mkIOKey(SetPad), |
88 | mkIOKey(SetPos), mkIOKey(SetPosition), mkIOKey(SetRec), mkIOKey(SetRecl), |
89 | mkIOKey(SetRound), mkIOKey(SetSign), mkIOKey(SetStatus)> |
90 | newIOTable; |
91 | } // namespace Fortran::lower |
92 | |
93 | namespace { |
94 | /// IO statements may require exceptional condition handling. A statement that |
95 | /// encounters an exceptional condition may branch to a label given on an ERR |
96 | /// (error), END (end-of-file), or EOR (end-of-record) specifier. An IOSTAT |
97 | /// specifier variable may be set to a value that indicates some condition, |
98 | /// and an IOMSG specifier variable may be set to a description of a condition. |
99 | struct ConditionSpecInfo { |
100 | const Fortran::lower::SomeExpr *ioStatExpr{}; |
101 | std::optional<fir::ExtendedValue> ioMsg; |
102 | bool hasErr{}; |
103 | bool hasEnd{}; |
104 | bool hasEor{}; |
105 | fir::IfOp bigUnitIfOp; |
106 | |
107 | /// Check for any condition specifier that applies to specifier processing. |
108 | bool hasErrorConditionSpec() const { return ioStatExpr != nullptr || hasErr; } |
109 | |
110 | /// Check for any condition specifier that applies to data transfer items |
111 | /// in a PRINT, READ, WRITE, or WAIT statement. (WAIT may be irrelevant.) |
112 | bool hasTransferConditionSpec() const { |
113 | return hasErrorConditionSpec() || hasEnd || hasEor; |
114 | } |
115 | |
116 | /// Check for any condition specifier, including IOMSG. |
117 | bool hasAnyConditionSpec() const { |
118 | return hasTransferConditionSpec() || ioMsg; |
119 | } |
120 | }; |
121 | } // namespace |
122 | |
123 | template <typename D> |
124 | static void genIoLoop(Fortran::lower::AbstractConverter &converter, |
125 | mlir::Value cookie, const D &ioImpliedDo, |
126 | bool isFormatted, bool checkResult, mlir::Value &ok, |
127 | bool inLoop); |
128 | |
129 | /// Helper function to retrieve the name of the IO function given the key `A` |
130 | template <typename A> |
131 | static constexpr const char *getName() { |
132 | return std::get<A>(Fortran::lower::newIOTable).name; |
133 | } |
134 | |
135 | /// Helper function to retrieve the type model signature builder of the IO |
136 | /// function as defined by the key `A` |
137 | template <typename A> |
138 | static constexpr fir::runtime::FuncTypeBuilderFunc getTypeModel() { |
139 | return std::get<A>(Fortran::lower::newIOTable).getTypeModel(); |
140 | } |
141 | |
142 | inline int64_t getLength(mlir::Type argTy) { |
143 | return mlir::cast<fir::SequenceType>(argTy).getShape()[0]; |
144 | } |
145 | |
146 | /// Generate calls to end an IO statement. Return the IOSTAT value, if any. |
147 | /// It is the caller's responsibility to generate branches on that value. |
148 | static mlir::Value genEndIO(Fortran::lower::AbstractConverter &converter, |
149 | mlir::Location loc, mlir::Value cookie, |
150 | ConditionSpecInfo &csi, |
151 | Fortran::lower::StatementContext &stmtCtx) { |
152 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
153 | if (csi.ioMsg) { |
154 | mlir::func::FuncOp getIoMsg = |
155 | fir::runtime::getIORuntimeFunc<mkIOKey(GetIoMsg)>(loc, builder); |
156 | builder.create<fir::CallOp>( |
157 | loc, getIoMsg, |
158 | mlir::ValueRange{ |
159 | cookie, |
160 | builder.createConvert(loc, getIoMsg.getFunctionType().getInput(1), |
161 | fir::getBase(*csi.ioMsg)), |
162 | builder.createConvert(loc, getIoMsg.getFunctionType().getInput(2), |
163 | fir::getLen(*csi.ioMsg))}); |
164 | } |
165 | mlir::func::FuncOp endIoStatement = |
166 | fir::runtime::getIORuntimeFunc<mkIOKey(EndIoStatement)>(loc, builder); |
167 | auto call = builder.create<fir::CallOp>(loc, endIoStatement, |
168 | mlir::ValueRange{cookie}); |
169 | mlir::Value iostat = call.getResult(0); |
170 | if (csi.bigUnitIfOp) { |
171 | stmtCtx.finalizeAndPop(); |
172 | builder.create<fir::ResultOp>(loc, iostat); |
173 | builder.setInsertionPointAfter(csi.bigUnitIfOp); |
174 | iostat = csi.bigUnitIfOp.getResult(0); |
175 | } |
176 | if (csi.ioStatExpr) { |
177 | mlir::Value ioStatVar = |
178 | fir::getBase(converter.genExprAddr(loc, csi.ioStatExpr, stmtCtx)); |
179 | mlir::Value ioStatResult = |
180 | builder.createConvert(loc, converter.genType(*csi.ioStatExpr), iostat); |
181 | builder.create<fir::StoreOp>(loc, ioStatResult, ioStatVar); |
182 | } |
183 | return csi.hasTransferConditionSpec() ? iostat : mlir::Value{}; |
184 | } |
185 | |
186 | /// Make the next call in the IO statement conditional on runtime result `ok`. |
187 | /// If a call returns `ok==false`, further suboperation calls for an IO |
188 | /// statement will be skipped. This may generate branch heavy, deeply nested |
189 | /// conditionals for IO statements with a large number of suboperations. |
190 | static void makeNextConditionalOn(fir::FirOpBuilder &builder, |
191 | mlir::Location loc, bool checkResult, |
192 | mlir::Value ok, bool inLoop = false) { |
193 | if (!checkResult || !ok) |
194 | // Either no IO calls need to be checked, or this will be the first call. |
195 | return; |
196 | |
197 | // A previous IO call for a statement returned the bool `ok`. If this call |
198 | // is in a fir.iterate_while loop, the result must be propagated up to the |
199 | // loop scope as an extra ifOp result. (The propagation is done in genIoLoop.) |
200 | mlir::TypeRange resTy; |
201 | // TypeRange does not own its contents, so make sure the the type object |
202 | // is live until the end of the function. |
203 | mlir::IntegerType boolTy = builder.getI1Type(); |
204 | if (inLoop) |
205 | resTy = boolTy; |
206 | auto ifOp = builder.create<fir::IfOp>(loc, resTy, ok, |
207 | /*withElseRegion=*/inLoop); |
208 | builder.setInsertionPointToStart(&ifOp.getThenRegion().front()); |
209 | } |
210 | |
211 | // Derived type symbols may each be mapped to up to 4 defined IO procedures. |
212 | using DefinedIoProcMap = std::multimap<const Fortran::semantics::Symbol *, |
213 | Fortran::semantics::NonTbpDefinedIo>; |
214 | |
215 | /// Get the current scope's non-type-bound defined IO procedures. |
216 | static DefinedIoProcMap |
217 | getDefinedIoProcMap(Fortran::lower::AbstractConverter &converter) { |
218 | const Fortran::semantics::Scope *scope = &converter.getCurrentScope(); |
219 | for (; !scope->IsGlobal(); scope = &scope->parent()) |
220 | if (scope->kind() == Fortran::semantics::Scope::Kind::MainProgram || |
221 | scope->kind() == Fortran::semantics::Scope::Kind::Subprogram || |
222 | scope->kind() == Fortran::semantics::Scope::Kind::BlockConstruct) |
223 | break; |
224 | return Fortran::semantics::CollectNonTbpDefinedIoGenericInterfaces(*scope, |
225 | false); |
226 | } |
227 | |
228 | /// Check a set of defined IO procedures for any procedure pointer or dummy |
229 | /// procedures. |
230 | static bool hasLocalDefinedIoProc(DefinedIoProcMap &definedIoProcMap) { |
231 | for (auto &iface : definedIoProcMap) { |
232 | const Fortran::semantics::Symbol *procSym = iface.second.subroutine; |
233 | if (!procSym) |
234 | continue; |
235 | procSym = &procSym->GetUltimate(); |
236 | if (Fortran::semantics::IsProcedurePointer(*procSym) || |
237 | Fortran::semantics::IsDummy(*procSym)) |
238 | return true; |
239 | } |
240 | return false; |
241 | } |
242 | |
243 | /// Retrieve or generate a runtime description of the non-type-bound defined |
244 | /// IO procedures in the current scope. If any procedure is a dummy or a |
245 | /// procedure pointer, the result is local. Otherwise the result is static. |
246 | /// If there are no procedures, return a scope-independent default table with |
247 | /// an empty procedure list, but with the `ignoreNonTbpEntries` flag set. The |
248 | /// form of the description is defined in runtime header file non-tbp-dio.h. |
249 | static mlir::Value |
250 | getNonTbpDefinedIoTableAddr(Fortran::lower::AbstractConverter &converter, |
251 | DefinedIoProcMap &definedIoProcMap) { |
252 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
253 | mlir::MLIRContext *context = builder.getContext(); |
254 | mlir::Location loc = converter.getCurrentLocation(); |
255 | mlir::Type refTy = fir::ReferenceType::get(mlir::NoneType::get(context)); |
256 | std::string suffix = ".nonTbpDefinedIoTable"; |
257 | std::string tableMangleName = |
258 | definedIoProcMap.empty() |
259 | ? fir::NameUniquer::doGenerated("default"+ suffix) |
260 | : converter.mangleName(suffix); |
261 | if (auto table = builder.getNamedGlobal(tableMangleName)) |
262 | return builder.createConvert( |
263 | loc, refTy, |
264 | builder.create<fir::AddrOfOp>(loc, table.resultType(), |
265 | table.getSymbol())); |
266 | |
267 | mlir::StringAttr linkOnce = builder.createLinkOnceLinkage(); |
268 | mlir::Type idxTy = builder.getIndexType(); |
269 | mlir::Type sizeTy = |
270 | fir::runtime::getModel<std::size_t>()(builder.getContext()); |
271 | mlir::Type intTy = fir::runtime::getModel<int>()(builder.getContext()); |
272 | mlir::Type boolTy = fir::runtime::getModel<bool>()(builder.getContext()); |
273 | mlir::Type listTy = fir::SequenceType::get( |
274 | definedIoProcMap.size(), |
275 | mlir::TupleType::get(context, {refTy, refTy, intTy, boolTy})); |
276 | mlir::Type tableTy = mlir::TupleType::get( |
277 | context, {sizeTy, fir::ReferenceType::get(listTy), boolTy}); |
278 | |
279 | // Define the list of NonTbpDefinedIo procedures. |
280 | bool tableIsLocal = |
281 | !definedIoProcMap.empty() && hasLocalDefinedIoProc(definedIoProcMap); |
282 | mlir::Value listAddr = |
283 | tableIsLocal ? builder.create<fir::AllocaOp>(loc, listTy) : mlir::Value{}; |
284 | std::string listMangleName = tableMangleName + ".list"; |
285 | auto listFunc = [&](fir::FirOpBuilder &builder) { |
286 | mlir::Value list = builder.create<fir::UndefOp>(loc, listTy); |
287 | mlir::IntegerAttr intAttr[4]; |
288 | for (int i = 0; i < 4; ++i) |
289 | intAttr[i] = builder.getIntegerAttr(idxTy, i); |
290 | llvm::SmallVector<mlir::Attribute, 2> idx = {mlir::Attribute{}, |
291 | mlir::Attribute{}}; |
292 | int n0 = 0, n1; |
293 | auto insert = [&](mlir::Value val) { |
294 | idx[1] = intAttr[n1++]; |
295 | list = builder.create<fir::InsertValueOp>(loc, listTy, list, val, |
296 | builder.getArrayAttr(idx)); |
297 | }; |
298 | for (auto &iface : definedIoProcMap) { |
299 | idx[0] = builder.getIntegerAttr(idxTy, n0++); |
300 | n1 = 0; |
301 | // derived type description [const typeInfo::DerivedType &derivedType] |
302 | const Fortran::semantics::Symbol &dtSym = iface.first->GetUltimate(); |
303 | std::string dtName = converter.mangleName(dtSym); |
304 | insert(builder.createConvert( |
305 | loc, refTy, |
306 | builder.create<fir::AddrOfOp>( |
307 | loc, fir::ReferenceType::get(converter.genType(dtSym)), |
308 | builder.getSymbolRefAttr(dtName)))); |
309 | // defined IO procedure [void (*subroutine)()], may be null |
310 | const Fortran::semantics::Symbol *procSym = iface.second.subroutine; |
311 | if (procSym) { |
312 | procSym = &procSym->GetUltimate(); |
313 | if (Fortran::semantics::IsProcedurePointer(*procSym)) { |
314 | TODO(loc, "defined IO procedure pointers"); |
315 | } else if (Fortran::semantics::IsDummy(*procSym)) { |
316 | Fortran::lower::StatementContext stmtCtx; |
317 | insert(builder.create<fir::BoxAddrOp>( |
318 | loc, refTy, |
319 | fir::getBase(converter.genExprAddr( |
320 | loc, |
321 | Fortran::lower::SomeExpr{ |
322 | Fortran::evaluate::ProcedureDesignator{*procSym}}, |
323 | stmtCtx)))); |
324 | } else { |
325 | mlir::func::FuncOp procDef = Fortran::lower::getOrDeclareFunction( |
326 | Fortran::evaluate::ProcedureDesignator{*procSym}, converter); |
327 | mlir::SymbolRefAttr nameAttr = |
328 | builder.getSymbolRefAttr(procDef.getSymName()); |
329 | insert(builder.createConvert( |
330 | loc, refTy, |
331 | builder.create<fir::AddrOfOp>(loc, procDef.getFunctionType(), |
332 | nameAttr))); |
333 | } |
334 | } else { |
335 | insert(builder.createNullConstant(loc, refTy)); |
336 | } |
337 | // defined IO variant, one of (read/write, formatted/unformatted) |
338 | // [common::DefinedIo definedIo] |
339 | insert(builder.createIntegerConstant( |
340 | loc, intTy, static_cast<int>(iface.second.definedIo))); |
341 | // polymorphic flag is set if first defined IO dummy arg is CLASS(T) |
342 | // [bool isDtvArgPolymorphic] |
343 | insert(builder.createIntegerConstant(loc, boolTy, |
344 | iface.second.isDtvArgPolymorphic)); |
345 | } |
346 | if (tableIsLocal) |
347 | builder.create<fir::StoreOp>(loc, list, listAddr); |
348 | else |
349 | builder.create<fir::HasValueOp>(loc, list); |
350 | }; |
351 | if (!definedIoProcMap.empty()) { |
352 | if (tableIsLocal) |
353 | listFunc(builder); |
354 | else |
355 | builder.createGlobalConstant(loc, listTy, listMangleName, listFunc, |
356 | linkOnce); |
357 | } |
358 | |
359 | // Define the NonTbpDefinedIoTable. |
360 | mlir::Value tableAddr = tableIsLocal |
361 | ? builder.create<fir::AllocaOp>(loc, tableTy) |
362 | : mlir::Value{}; |
363 | auto tableFunc = [&](fir::FirOpBuilder &builder) { |
364 | mlir::Value table = builder.create<fir::UndefOp>(loc, tableTy); |
365 | // list item count [std::size_t items] |
366 | table = builder.create<fir::InsertValueOp>( |
367 | loc, tableTy, table, |
368 | builder.createIntegerConstant(loc, sizeTy, definedIoProcMap.size()), |
369 | builder.getArrayAttr(builder.getIntegerAttr(idxTy, 0))); |
370 | // item list [const NonTbpDefinedIo *item] |
371 | if (definedIoProcMap.empty()) |
372 | listAddr = builder.createNullConstant(loc, builder.getRefType(listTy)); |
373 | else if (fir::GlobalOp list = builder.getNamedGlobal(listMangleName)) |
374 | listAddr = builder.create<fir::AddrOfOp>(loc, list.resultType(), |
375 | list.getSymbol()); |
376 | assert(listAddr && "missing namelist object list"); |
377 | table = builder.create<fir::InsertValueOp>( |
378 | loc, tableTy, table, listAddr, |
379 | builder.getArrayAttr(builder.getIntegerAttr(idxTy, 1))); |
380 | // [bool ignoreNonTbpEntries] conservatively set to true |
381 | table = builder.create<fir::InsertValueOp>( |
382 | loc, tableTy, table, builder.createIntegerConstant(loc, boolTy, true), |
383 | builder.getArrayAttr(builder.getIntegerAttr(idxTy, 2))); |
384 | if (tableIsLocal) |
385 | builder.create<fir::StoreOp>(loc, table, tableAddr); |
386 | else |
387 | builder.create<fir::HasValueOp>(loc, table); |
388 | }; |
389 | if (tableIsLocal) { |
390 | tableFunc(builder); |
391 | } else { |
392 | fir::GlobalOp table = builder.createGlobal( |
393 | loc, tableTy, tableMangleName, |
394 | /*isConst=*/true, /*isTarget=*/false, tableFunc, linkOnce); |
395 | tableAddr = builder.create<fir::AddrOfOp>( |
396 | loc, fir::ReferenceType::get(tableTy), table.getSymbol()); |
397 | } |
398 | assert(tableAddr && "missing NonTbpDefinedIo table result"); |
399 | return builder.createConvert(loc, refTy, tableAddr); |
400 | } |
401 | |
402 | static mlir::Value |
403 | getNonTbpDefinedIoTableAddr(Fortran::lower::AbstractConverter &converter) { |
404 | DefinedIoProcMap definedIoProcMap = getDefinedIoProcMap(converter); |
405 | return getNonTbpDefinedIoTableAddr(converter, definedIoProcMap); |
406 | } |
407 | |
408 | /// Retrieve or generate a runtime description of NAMELIST group \p symbol. |
409 | /// The form of the description is defined in runtime header file namelist.h. |
410 | /// Static descriptors are generated for global objects; local descriptors for |
411 | /// local objects. If all descriptors and defined IO procedures are static, |
412 | /// the NamelistGroup is static. |
413 | static mlir::Value |
414 | getNamelistGroup(Fortran::lower::AbstractConverter &converter, |
415 | const Fortran::semantics::Symbol &symbol, |
416 | Fortran::lower::StatementContext &stmtCtx) { |
417 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
418 | mlir::Location loc = converter.getCurrentLocation(); |
419 | std::string groupMangleName = converter.mangleName(symbol); |
420 | if (auto group = builder.getNamedGlobal(groupMangleName)) |
421 | return builder.create<fir::AddrOfOp>(loc, group.resultType(), |
422 | group.getSymbol()); |
423 | |
424 | const auto &details = |
425 | symbol.GetUltimate().get<Fortran::semantics::NamelistDetails>(); |
426 | mlir::MLIRContext *context = builder.getContext(); |
427 | mlir::StringAttr linkOnce = builder.createLinkOnceLinkage(); |
428 | mlir::Type idxTy = builder.getIndexType(); |
429 | mlir::Type sizeTy = |
430 | fir::runtime::getModel<std::size_t>()(builder.getContext()); |
431 | mlir::Type charRefTy = fir::ReferenceType::get(builder.getIntegerType(8)); |
432 | mlir::Type descRefTy = |
433 | fir::ReferenceType::get(fir::BoxType::get(mlir::NoneType::get(context))); |
434 | mlir::Type listTy = fir::SequenceType::get( |
435 | details.objects().size(), |
436 | mlir::TupleType::get(context, {charRefTy, descRefTy})); |
437 | mlir::Type groupTy = mlir::TupleType::get( |
438 | context, {charRefTy, sizeTy, fir::ReferenceType::get(listTy), |
439 | fir::ReferenceType::get(mlir::NoneType::get(context))}); |
440 | auto stringAddress = [&](const Fortran::semantics::Symbol &symbol) { |
441 | return fir::factory::createStringLiteral(builder, loc, |
442 | symbol.name().ToString() + '\0'); |
443 | }; |
444 | |
445 | // Define variable names, and static descriptors for global variables. |
446 | DefinedIoProcMap definedIoProcMap = getDefinedIoProcMap(converter); |
447 | bool groupIsLocal = hasLocalDefinedIoProc(definedIoProcMap); |
448 | stringAddress(symbol); |
449 | for (const Fortran::semantics::Symbol &s : details.objects()) { |
450 | stringAddress(s); |
451 | if (!Fortran::lower::symbolIsGlobal(s)) { |
452 | groupIsLocal = true; |
453 | continue; |
454 | } |
455 | // A global pointer or allocatable variable has a descriptor for typical |
456 | // accesses. Variables in multiple namelist groups may already have one. |
457 | // Create descriptors for other cases. |
458 | if (!IsAllocatableOrObjectPointer(&s)) { |
459 | std::string mangleName = |
460 | Fortran::lower::mangle::globalNamelistDescriptorName(s); |
461 | if (builder.getNamedGlobal(mangleName)) |
462 | continue; |
463 | const auto expr = Fortran::evaluate::AsGenericExpr(s); |
464 | fir::BoxType boxTy = |
465 | fir::BoxType::get(fir::PointerType::get(converter.genType(s))); |
466 | auto descFunc = [&](fir::FirOpBuilder &b) { |
467 | auto box = Fortran::lower::genInitialDataTarget( |
468 | converter, loc, boxTy, *expr, /*couldBeInEquivalence=*/true); |
469 | b.create<fir::HasValueOp>(loc, box); |
470 | }; |
471 | builder.createGlobalConstant(loc, boxTy, mangleName, descFunc, linkOnce); |
472 | } |
473 | } |
474 | |
475 | // Define the list of Items. |
476 | mlir::Value listAddr = |
477 | groupIsLocal ? builder.create<fir::AllocaOp>(loc, listTy) : mlir::Value{}; |
478 | std::string listMangleName = groupMangleName + ".list"; |
479 | auto listFunc = [&](fir::FirOpBuilder &builder) { |
480 | mlir::Value list = builder.create<fir::UndefOp>(loc, listTy); |
481 | mlir::IntegerAttr zero = builder.getIntegerAttr(idxTy, 0); |
482 | mlir::IntegerAttr one = builder.getIntegerAttr(idxTy, 1); |
483 | llvm::SmallVector<mlir::Attribute, 2> idx = {mlir::Attribute{}, |
484 | mlir::Attribute{}}; |
485 | int n = 0; |
486 | for (const Fortran::semantics::Symbol &s : details.objects()) { |
487 | idx[0] = builder.getIntegerAttr(idxTy, n++); |
488 | idx[1] = zero; |
489 | mlir::Value nameAddr = |
490 | builder.createConvert(loc, charRefTy, fir::getBase(stringAddress(s))); |
491 | list = builder.create<fir::InsertValueOp>(loc, listTy, list, nameAddr, |
492 | builder.getArrayAttr(idx)); |
493 | idx[1] = one; |
494 | mlir::Value descAddr; |
495 | if (auto desc = builder.getNamedGlobal( |
496 | Fortran::lower::mangle::globalNamelistDescriptorName(s))) { |
497 | descAddr = builder.create<fir::AddrOfOp>(loc, desc.resultType(), |
498 | desc.getSymbol()); |
499 | } else if (Fortran::semantics::FindCommonBlockContaining(s) && |
500 | IsAllocatableOrPointer(s)) { |
501 | mlir::Type symType = converter.genType(s); |
502 | const Fortran::semantics::Symbol *commonBlockSym = |
503 | Fortran::semantics::FindCommonBlockContaining(s); |
504 | std::string commonBlockName = converter.mangleName(*commonBlockSym); |
505 | fir::GlobalOp commonGlobal = builder.getNamedGlobal(commonBlockName); |
506 | mlir::Value commonBlockAddr = builder.create<fir::AddrOfOp>( |
507 | loc, commonGlobal.resultType(), commonGlobal.getSymbol()); |
508 | mlir::IntegerType i8Ty = builder.getIntegerType(8); |
509 | mlir::Type i8Ptr = builder.getRefType(i8Ty); |
510 | mlir::Type seqTy = builder.getRefType(builder.getVarLenSeqTy(i8Ty)); |
511 | mlir::Value base = builder.createConvert(loc, seqTy, commonBlockAddr); |
512 | std::size_t byteOffset = s.GetUltimate().offset(); |
513 | mlir::Value offs = builder.createIntegerConstant( |
514 | loc, builder.getIndexType(), byteOffset); |
515 | mlir::Value varAddr = builder.create<fir::CoordinateOp>( |
516 | loc, i8Ptr, base, mlir::ValueRange{offs}); |
517 | descAddr = |
518 | builder.createConvert(loc, builder.getRefType(symType), varAddr); |
519 | } else { |
520 | const auto expr = Fortran::evaluate::AsGenericExpr(s); |
521 | fir::ExtendedValue exv = converter.genExprAddr(*expr, stmtCtx); |
522 | mlir::Type type = fir::getBase(exv).getType(); |
523 | if (mlir::Type baseTy = fir::dyn_cast_ptrOrBoxEleTy(type)) |
524 | type = baseTy; |
525 | fir::BoxType boxType = fir::BoxType::get(fir::PointerType::get(type)); |
526 | descAddr = builder.createTemporary(loc, boxType); |
527 | fir::MutableBoxValue box = fir::MutableBoxValue(descAddr, {}, {}); |
528 | fir::factory::associateMutableBox(builder, loc, box, exv, |
529 | /*lbounds=*/std::nullopt); |
530 | } |
531 | descAddr = builder.createConvert(loc, descRefTy, descAddr); |
532 | list = builder.create<fir::InsertValueOp>(loc, listTy, list, descAddr, |
533 | builder.getArrayAttr(idx)); |
534 | } |
535 | if (groupIsLocal) |
536 | builder.create<fir::StoreOp>(loc, list, listAddr); |
537 | else |
538 | builder.create<fir::HasValueOp>(loc, list); |
539 | }; |
540 | if (groupIsLocal) |
541 | listFunc(builder); |
542 | else |
543 | builder.createGlobalConstant(loc, listTy, listMangleName, listFunc, |
544 | linkOnce); |
545 | |
546 | // Define the group. |
547 | mlir::Value groupAddr = groupIsLocal |
548 | ? builder.create<fir::AllocaOp>(loc, groupTy) |
549 | : mlir::Value{}; |
550 | auto groupFunc = [&](fir::FirOpBuilder &builder) { |
551 | mlir::Value group = builder.create<fir::UndefOp>(loc, groupTy); |
552 | // group name [const char *groupName] |
553 | group = builder.create<fir::InsertValueOp>( |
554 | loc, groupTy, group, |
555 | builder.createConvert(loc, charRefTy, |
556 | fir::getBase(stringAddress(symbol))), |
557 | builder.getArrayAttr(builder.getIntegerAttr(idxTy, 0))); |
558 | // list item count [std::size_t items] |
559 | group = builder.create<fir::InsertValueOp>( |
560 | loc, groupTy, group, |
561 | builder.createIntegerConstant(loc, sizeTy, details.objects().size()), |
562 | builder.getArrayAttr(builder.getIntegerAttr(idxTy, 1))); |
563 | // item list [const Item *item] |
564 | if (fir::GlobalOp list = builder.getNamedGlobal(listMangleName)) |
565 | listAddr = builder.create<fir::AddrOfOp>(loc, list.resultType(), |
566 | list.getSymbol()); |
567 | assert(listAddr && "missing namelist object list"); |
568 | group = builder.create<fir::InsertValueOp>( |
569 | loc, groupTy, group, listAddr, |
570 | builder.getArrayAttr(builder.getIntegerAttr(idxTy, 2))); |
571 | // non-type-bound defined IO procedures |
572 | // [const NonTbpDefinedIoTable *nonTbpDefinedIo] |
573 | group = builder.create<fir::InsertValueOp>( |
574 | loc, groupTy, group, |
575 | getNonTbpDefinedIoTableAddr(converter, definedIoProcMap), |
576 | builder.getArrayAttr(builder.getIntegerAttr(idxTy, 3))); |
577 | if (groupIsLocal) |
578 | builder.create<fir::StoreOp>(loc, group, groupAddr); |
579 | else |
580 | builder.create<fir::HasValueOp>(loc, group); |
581 | }; |
582 | if (groupIsLocal) { |
583 | groupFunc(builder); |
584 | } else { |
585 | fir::GlobalOp group = builder.createGlobal( |
586 | loc, groupTy, groupMangleName, |
587 | /*isConst=*/true, /*isTarget=*/false, groupFunc, linkOnce); |
588 | groupAddr = builder.create<fir::AddrOfOp>(loc, group.resultType(), |
589 | group.getSymbol()); |
590 | } |
591 | assert(groupAddr && "missing namelist group result"); |
592 | return groupAddr; |
593 | } |
594 | |
595 | /// Generate a namelist IO call. |
596 | static void genNamelistIO(Fortran::lower::AbstractConverter &converter, |
597 | mlir::Value cookie, mlir::func::FuncOp funcOp, |
598 | Fortran::semantics::Symbol &symbol, bool checkResult, |
599 | mlir::Value &ok, |
600 | Fortran::lower::StatementContext &stmtCtx) { |
601 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
602 | mlir::Location loc = converter.getCurrentLocation(); |
603 | makeNextConditionalOn(builder, loc, checkResult, ok); |
604 | mlir::Type argType = funcOp.getFunctionType().getInput(1); |
605 | mlir::Value groupAddr = |
606 | getNamelistGroup(converter, symbol.GetUltimate(), stmtCtx); |
607 | groupAddr = builder.createConvert(loc, argType, groupAddr); |
608 | llvm::SmallVector<mlir::Value> args = {cookie, groupAddr}; |
609 | ok = builder.create<fir::CallOp>(loc, funcOp, args).getResult(0); |
610 | } |
611 | |
612 | /// Is \p type a derived type or an array of derived type? |
613 | static bool containsDerivedType(mlir::Type type) { |
614 | mlir::Type argTy = fir::unwrapPassByRefType(fir::unwrapRefType(type)); |
615 | if (mlir::isa<fir::RecordType>(argTy)) |
616 | return true; |
617 | if (auto seqTy = mlir::dyn_cast<fir::SequenceType>(argTy)) |
618 | if (mlir::isa<fir::RecordType>(seqTy.getEleTy())) |
619 | return true; |
620 | return false; |
621 | } |
622 | |
623 | /// Get the output function to call for a value of the given type. |
624 | static mlir::func::FuncOp getOutputFunc(mlir::Location loc, |
625 | fir::FirOpBuilder &builder, |
626 | mlir::Type type, bool isFormatted) { |
627 | if (containsDerivedType(type)) |
628 | return fir::runtime::getIORuntimeFunc<mkIOKey(OutputDerivedType)>(loc, |
629 | builder); |
630 | if (!isFormatted) |
631 | return fir::runtime::getIORuntimeFunc<mkIOKey(OutputDescriptor)>(loc, |
632 | builder); |
633 | if (auto ty = mlir::dyn_cast<mlir::IntegerType>(type)) { |
634 | if (!ty.isUnsigned()) { |
635 | switch (ty.getWidth()) { |
636 | case 1: |
637 | return fir::runtime::getIORuntimeFunc<mkIOKey(OutputLogical)>(loc, |
638 | builder); |
639 | case 8: |
640 | return fir::runtime::getIORuntimeFunc<mkIOKey(OutputInteger8)>(loc, |
641 | builder); |
642 | case 16: |
643 | return fir::runtime::getIORuntimeFunc<mkIOKey(OutputInteger16)>( |
644 | loc, builder); |
645 | case 32: |
646 | return fir::runtime::getIORuntimeFunc<mkIOKey(OutputInteger32)>( |
647 | loc, builder); |
648 | case 64: |
649 | return fir::runtime::getIORuntimeFunc<mkIOKey(OutputInteger64)>( |
650 | loc, builder); |
651 | case 128: |
652 | return fir::runtime::getIORuntimeFunc<mkIOKey(OutputInteger128)>( |
653 | loc, builder); |
654 | } |
655 | llvm_unreachable("unknown OutputInteger kind"); |
656 | } |
657 | } |
658 | if (auto ty = mlir::dyn_cast<mlir::FloatType>(type)) { |
659 | if (auto width = ty.getWidth(); width == 32) |
660 | return fir::runtime::getIORuntimeFunc<mkIOKey(OutputReal32)>(loc, |
661 | builder); |
662 | else if (width == 64) |
663 | return fir::runtime::getIORuntimeFunc<mkIOKey(OutputReal64)>(loc, |
664 | builder); |
665 | } |
666 | auto kindMap = fir::getKindMapping(builder.getModule()); |
667 | if (auto ty = mlir::dyn_cast<mlir::ComplexType>(type)) { |
668 | // COMPLEX(KIND=k) corresponds to a pair of REAL(KIND=k). |
669 | auto width = mlir::cast<mlir::FloatType>(ty.getElementType()).getWidth(); |
670 | if (width == 32) |
671 | return fir::runtime::getIORuntimeFunc<mkIOKey(OutputComplex32)>(loc, |
672 | builder); |
673 | else if (width == 64) |
674 | return fir::runtime::getIORuntimeFunc<mkIOKey(OutputComplex64)>(loc, |
675 | builder); |
676 | } |
677 | if (mlir::isa<fir::LogicalType>(type)) |
678 | return fir::runtime::getIORuntimeFunc<mkIOKey(OutputLogical)>(loc, builder); |
679 | if (fir::factory::CharacterExprHelper::isCharacterScalar(type)) { |
680 | // TODO: What would it mean if the default CHARACTER KIND is set to a wide |
681 | // character encoding scheme? How do we handle UTF-8? Is it a distinct KIND |
682 | // value? For now, assume that if the default CHARACTER KIND is 8 bit, |
683 | // then it is an ASCII string and UTF-8 is unsupported. |
684 | auto asciiKind = kindMap.defaultCharacterKind(); |
685 | if (kindMap.getCharacterBitsize(asciiKind) == 8 && |
686 | fir::factory::CharacterExprHelper::getCharacterKind(type) == asciiKind) |
687 | return fir::runtime::getIORuntimeFunc<mkIOKey(OutputAscii)>(loc, builder); |
688 | } |
689 | return fir::runtime::getIORuntimeFunc<mkIOKey(OutputDescriptor)>(loc, |
690 | builder); |
691 | } |
692 | |
693 | /// Generate a sequence of output data transfer calls. |
694 | static void genOutputItemList( |
695 | Fortran::lower::AbstractConverter &converter, mlir::Value cookie, |
696 | const std::list<Fortran::parser::OutputItem> &items, bool isFormatted, |
697 | bool checkResult, mlir::Value &ok, bool inLoop) { |
698 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
699 | for (const Fortran::parser::OutputItem &item : items) { |
700 | if (const auto &impliedDo = std::get_if<1>(&item.u)) { |
701 | genIoLoop(converter, cookie, impliedDo->value(), isFormatted, checkResult, |
702 | ok, inLoop); |
703 | continue; |
704 | } |
705 | auto &pExpr = std::get<Fortran::parser::Expr>(item.u); |
706 | mlir::Location loc = converter.genLocation(pExpr.source); |
707 | makeNextConditionalOn(builder, loc, checkResult, ok, inLoop); |
708 | Fortran::lower::StatementContext stmtCtx; |
709 | |
710 | const auto *expr = Fortran::semantics::GetExpr(pExpr); |
711 | if (!expr) |
712 | fir::emitFatalError(loc, "internal error: could not get evaluate::Expr"); |
713 | mlir::Type itemTy = converter.genType(*expr); |
714 | mlir::func::FuncOp outputFunc = |
715 | getOutputFunc(loc, builder, itemTy, isFormatted); |
716 | mlir::Type argType = outputFunc.getFunctionType().getInput(1); |
717 | assert((isFormatted || mlir::isa<fir::BoxType>(argType)) && |
718 | "expect descriptor for unformatted IO runtime"); |
719 | llvm::SmallVector<mlir::Value> outputFuncArgs = {cookie}; |
720 | fir::factory::CharacterExprHelper helper{builder, loc}; |
721 | if (mlir::isa<fir::BoxType>(argType)) { |
722 | mlir::Value box = fir::getBase(converter.genExprBox(loc, *expr, stmtCtx)); |
723 | outputFuncArgs.push_back( |
724 | builder.createConvertWithVolatileCast(loc, argType, box)); |
725 | if (containsDerivedType(itemTy)) |
726 | outputFuncArgs.push_back(getNonTbpDefinedIoTableAddr(converter)); |
727 | } else if (helper.isCharacterScalar(itemTy)) { |
728 | fir::ExtendedValue exv = converter.genExprAddr(loc, expr, stmtCtx); |
729 | // scalar allocatable/pointer may also get here, not clear if |
730 | // genExprAddr will lower them as CharBoxValue or BoxValue. |
731 | if (!exv.getCharBox()) |
732 | llvm::report_fatal_error( |
733 | "internal error: scalar character not in CharBox"); |
734 | outputFuncArgs.push_back(builder.createConvertWithVolatileCast( |
735 | loc, outputFunc.getFunctionType().getInput(1), fir::getBase(exv))); |
736 | outputFuncArgs.push_back(builder.createConvertWithVolatileCast( |
737 | loc, outputFunc.getFunctionType().getInput(2), fir::getLen(exv))); |
738 | } else { |
739 | fir::ExtendedValue itemBox = converter.genExprValue(loc, expr, stmtCtx); |
740 | mlir::Value itemValue = fir::getBase(itemBox); |
741 | if (fir::isa_complex(itemTy)) { |
742 | auto parts = |
743 | fir::factory::Complex{builder, loc}.extractParts(itemValue); |
744 | outputFuncArgs.push_back(parts.first); |
745 | outputFuncArgs.push_back(parts.second); |
746 | } else { |
747 | itemValue = |
748 | builder.createConvertWithVolatileCast(loc, argType, itemValue); |
749 | outputFuncArgs.push_back(itemValue); |
750 | } |
751 | } |
752 | ok = builder.create<fir::CallOp>(loc, outputFunc, outputFuncArgs) |
753 | .getResult(0); |
754 | } |
755 | } |
756 | |
757 | /// Get the input function to call for a value of the given type. |
758 | static mlir::func::FuncOp getInputFunc(mlir::Location loc, |
759 | fir::FirOpBuilder &builder, |
760 | mlir::Type type, bool isFormatted) { |
761 | if (containsDerivedType(type)) |
762 | return fir::runtime::getIORuntimeFunc<mkIOKey(InputDerivedType)>(loc, |
763 | builder); |
764 | if (!isFormatted) |
765 | return fir::runtime::getIORuntimeFunc<mkIOKey(InputDescriptor)>(loc, |
766 | builder); |
767 | if (auto ty = mlir::dyn_cast<mlir::IntegerType>(type)) { |
768 | if (type.isUnsignedInteger()) |
769 | return fir::runtime::getIORuntimeFunc<mkIOKey(InputDescriptor)>(loc, |
770 | builder); |
771 | return ty.getWidth() == 1 |
772 | ? fir::runtime::getIORuntimeFunc<mkIOKey(InputLogical)>(loc, |
773 | builder) |
774 | : fir::runtime::getIORuntimeFunc<mkIOKey(InputInteger)>(loc, |
775 | builder); |
776 | } |
777 | if (auto ty = mlir::dyn_cast<mlir::FloatType>(type)) { |
778 | if (auto width = ty.getWidth(); width == 32) |
779 | return fir::runtime::getIORuntimeFunc<mkIOKey(InputReal32)>(loc, builder); |
780 | else if (width == 64) |
781 | return fir::runtime::getIORuntimeFunc<mkIOKey(InputReal64)>(loc, builder); |
782 | } |
783 | auto kindMap = fir::getKindMapping(builder.getModule()); |
784 | if (auto ty = mlir::dyn_cast<mlir::ComplexType>(type)) { |
785 | auto width = mlir::cast<mlir::FloatType>(ty.getElementType()).getWidth(); |
786 | if (width == 32) |
787 | return fir::runtime::getIORuntimeFunc<mkIOKey(InputComplex32)>(loc, |
788 | builder); |
789 | else if (width == 64) |
790 | return fir::runtime::getIORuntimeFunc<mkIOKey(InputComplex64)>(loc, |
791 | builder); |
792 | } |
793 | if (mlir::isa<fir::LogicalType>(type)) |
794 | return fir::runtime::getIORuntimeFunc<mkIOKey(InputLogical)>(loc, builder); |
795 | if (fir::factory::CharacterExprHelper::isCharacterScalar(type)) { |
796 | auto asciiKind = kindMap.defaultCharacterKind(); |
797 | if (kindMap.getCharacterBitsize(asciiKind) == 8 && |
798 | fir::factory::CharacterExprHelper::getCharacterKind(type) == asciiKind) |
799 | return fir::runtime::getIORuntimeFunc<mkIOKey(InputAscii)>(loc, builder); |
800 | } |
801 | return fir::runtime::getIORuntimeFunc<mkIOKey(InputDescriptor)>(loc, builder); |
802 | } |
803 | |
804 | /// Interpret the lowest byte of a LOGICAL and store that value into the full |
805 | /// storage of the LOGICAL. The load, convert, and store effectively (sign or |
806 | /// zero) extends the lowest byte into the full LOGICAL value storage, as the |
807 | /// runtime is unaware of the LOGICAL value's actual bit width (it was passed |
808 | /// as a `bool&` to the runtime in order to be set). |
809 | static void boolRefToLogical(mlir::Location loc, fir::FirOpBuilder &builder, |
810 | mlir::Value addr) { |
811 | auto boolType = builder.getRefType(builder.getI1Type()); |
812 | auto boolAddr = builder.createConvert(loc, boolType, addr); |
813 | auto boolValue = builder.create<fir::LoadOp>(loc, boolAddr); |
814 | auto logicalType = fir::unwrapPassByRefType(addr.getType()); |
815 | // The convert avoid making any assumptions about how LOGICALs are actually |
816 | // represented (it might end-up being either a signed or zero extension). |
817 | auto logicalValue = builder.createConvert(loc, logicalType, boolValue); |
818 | builder.create<fir::StoreOp>(loc, logicalValue, addr); |
819 | } |
820 | |
821 | static mlir::Value |
822 | createIoRuntimeCallForItem(Fortran::lower::AbstractConverter &converter, |
823 | mlir::Location loc, mlir::func::FuncOp inputFunc, |
824 | mlir::Value cookie, const fir::ExtendedValue &item) { |
825 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
826 | mlir::Type argType = inputFunc.getFunctionType().getInput(1); |
827 | llvm::SmallVector<mlir::Value> inputFuncArgs = {cookie}; |
828 | if (mlir::isa<fir::BaseBoxType>(argType)) { |
829 | mlir::Value box = fir::getBase(item); |
830 | auto boxTy = mlir::dyn_cast<fir::BaseBoxType>(box.getType()); |
831 | assert(boxTy && "must be previously emboxed"); |
832 | auto casted = builder.createConvertWithVolatileCast(loc, argType, box); |
833 | inputFuncArgs.push_back(casted); |
834 | if (containsDerivedType(boxTy)) |
835 | inputFuncArgs.push_back(getNonTbpDefinedIoTableAddr(converter)); |
836 | } else { |
837 | mlir::Value itemAddr = fir::getBase(item); |
838 | mlir::Type itemTy = fir::unwrapPassByRefType(itemAddr.getType()); |
839 | |
840 | // Handle conversion between volatile and non-volatile reference types |
841 | // Need to explicitly cast when volatility qualification differs |
842 | inputFuncArgs.push_back( |
843 | builder.createConvertWithVolatileCast(loc, argType, itemAddr)); |
844 | fir::factory::CharacterExprHelper charHelper{builder, loc}; |
845 | if (charHelper.isCharacterScalar(itemTy)) { |
846 | mlir::Value len = fir::getLen(item); |
847 | inputFuncArgs.push_back(builder.createConvert( |
848 | loc, inputFunc.getFunctionType().getInput(2), len)); |
849 | } else if (mlir::isa<mlir::IntegerType>(itemTy)) { |
850 | inputFuncArgs.push_back(builder.create<mlir::arith::ConstantOp>( |
851 | loc, builder.getI32IntegerAttr( |
852 | mlir::cast<mlir::IntegerType>(itemTy).getWidth() / 8))); |
853 | } |
854 | } |
855 | auto call = builder.create<fir::CallOp>(loc, inputFunc, inputFuncArgs); |
856 | auto itemAddr = fir::getBase(item); |
857 | auto itemTy = fir::unwrapRefType(itemAddr.getType()); |
858 | if (mlir::isa<fir::LogicalType>(itemTy)) |
859 | boolRefToLogical(loc, builder, itemAddr); |
860 | return call.getResult(0); |
861 | } |
862 | |
863 | /// Generate a sequence of input data transfer calls. |
864 | static void genInputItemList(Fortran::lower::AbstractConverter &converter, |
865 | mlir::Value cookie, |
866 | const std::list<Fortran::parser::InputItem> &items, |
867 | bool isFormatted, bool checkResult, |
868 | mlir::Value &ok, bool inLoop) { |
869 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
870 | for (const Fortran::parser::InputItem &item : items) { |
871 | if (const auto &impliedDo = std::get_if<1>(&item.u)) { |
872 | genIoLoop(converter, cookie, impliedDo->value(), isFormatted, checkResult, |
873 | ok, inLoop); |
874 | continue; |
875 | } |
876 | auto &pVar = std::get<Fortran::parser::Variable>(item.u); |
877 | mlir::Location loc = converter.genLocation(pVar.GetSource()); |
878 | makeNextConditionalOn(builder, loc, checkResult, ok, inLoop); |
879 | Fortran::lower::StatementContext stmtCtx; |
880 | const auto *expr = Fortran::semantics::GetExpr(pVar); |
881 | if (!expr) |
882 | fir::emitFatalError(loc, "internal error: could not get evaluate::Expr"); |
883 | if (Fortran::evaluate::HasVectorSubscript(*expr)) { |
884 | auto vectorSubscriptBox = |
885 | Fortran::lower::genVectorSubscriptBox(loc, converter, stmtCtx, *expr); |
886 | mlir::func::FuncOp inputFunc = getInputFunc( |
887 | loc, builder, vectorSubscriptBox.getElementType(), isFormatted); |
888 | const bool mustBox = |
889 | mlir::isa<fir::BoxType>(inputFunc.getFunctionType().getInput(1)); |
890 | if (!checkResult) { |
891 | auto elementalGenerator = [&](const fir::ExtendedValue &element) { |
892 | createIoRuntimeCallForItem(converter, loc, inputFunc, cookie, |
893 | mustBox ? builder.createBox(loc, element) |
894 | : element); |
895 | }; |
896 | vectorSubscriptBox.loopOverElements(builder, loc, elementalGenerator); |
897 | } else { |
898 | auto elementalGenerator = |
899 | [&](const fir::ExtendedValue &element) -> mlir::Value { |
900 | return createIoRuntimeCallForItem( |
901 | converter, loc, inputFunc, cookie, |
902 | mustBox ? builder.createBox(loc, element) : element); |
903 | }; |
904 | if (!ok) |
905 | ok = builder.createBool(loc, true); |
906 | ok = vectorSubscriptBox.loopOverElementsWhile(builder, loc, |
907 | elementalGenerator, ok); |
908 | } |
909 | continue; |
910 | } |
911 | mlir::Type itemTy = converter.genType(*expr); |
912 | mlir::func::FuncOp inputFunc = |
913 | getInputFunc(loc, builder, itemTy, isFormatted); |
914 | auto itemExv = |
915 | mlir::isa<fir::BoxType>(inputFunc.getFunctionType().getInput(1)) |
916 | ? converter.genExprBox(loc, *expr, stmtCtx) |
917 | : converter.genExprAddr(loc, expr, stmtCtx); |
918 | ok = createIoRuntimeCallForItem(converter, loc, inputFunc, cookie, itemExv); |
919 | } |
920 | } |
921 | |
922 | /// Generate an io-implied-do loop. |
923 | template <typename D> |
924 | static void genIoLoop(Fortran::lower::AbstractConverter &converter, |
925 | mlir::Value cookie, const D &ioImpliedDo, |
926 | bool isFormatted, bool checkResult, mlir::Value &ok, |
927 | bool inLoop) { |
928 | Fortran::lower::StatementContext stmtCtx; |
929 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
930 | mlir::Location loc = converter.getCurrentLocation(); |
931 | mlir::arith::IntegerOverflowFlags flags{}; |
932 | if (!converter.getLoweringOptions().getIntegerWrapAround()) |
933 | flags = bitEnumSet(flags, mlir::arith::IntegerOverflowFlags::nsw); |
934 | auto iofAttr = |
935 | mlir::arith::IntegerOverflowFlagsAttr::get(builder.getContext(), flags); |
936 | makeNextConditionalOn(builder, loc, checkResult, ok, inLoop); |
937 | const auto &itemList = std::get<0>(ioImpliedDo.t); |
938 | const auto &control = std::get<1>(ioImpliedDo.t); |
939 | const auto &loopSym = *control.name.thing.thing.symbol; |
940 | mlir::Value loopVar = fir::getBase(converter.genExprAddr( |
941 | Fortran::evaluate::AsGenericExpr(loopSym).value(), stmtCtx)); |
942 | auto genControlValue = [&](const Fortran::parser::ScalarIntExpr &expr) { |
943 | mlir::Value v = fir::getBase( |
944 | converter.genExprValue(*Fortran::semantics::GetExpr(expr), stmtCtx)); |
945 | return builder.createConvert(loc, builder.getIndexType(), v); |
946 | }; |
947 | mlir::Value lowerValue = genControlValue(control.lower); |
948 | mlir::Value upperValue = genControlValue(control.upper); |
949 | mlir::Value stepValue = |
950 | control.step.has_value() |
951 | ? genControlValue(*control.step) |
952 | : builder.create<mlir::arith::ConstantIndexOp>(loc, 1); |
953 | auto genItemList = [&](const D &ioImpliedDo) { |
954 | if constexpr (std::is_same_v<D, Fortran::parser::InputImpliedDo>) |
955 | genInputItemList(converter, cookie, itemList, isFormatted, checkResult, |
956 | ok, /*inLoop=*/true); |
957 | else |
958 | genOutputItemList(converter, cookie, itemList, isFormatted, checkResult, |
959 | ok, /*inLoop=*/true); |
960 | }; |
961 | if (!checkResult) { |
962 | // No IO call result checks - the loop is a fir.do_loop op. |
963 | auto doLoopOp = builder.create<fir::DoLoopOp>( |
964 | loc, lowerValue, upperValue, stepValue, /*unordered=*/false, |
965 | /*finalCountValue=*/true); |
966 | builder.setInsertionPointToStart(doLoopOp.getBody()); |
967 | mlir::Value lcv = builder.createConvert( |
968 | loc, fir::unwrapRefType(loopVar.getType()), doLoopOp.getInductionVar()); |
969 | builder.create<fir::StoreOp>(loc, lcv, loopVar); |
970 | genItemList(ioImpliedDo); |
971 | builder.setInsertionPointToEnd(doLoopOp.getBody()); |
972 | mlir::Value result = builder.create<mlir::arith::AddIOp>( |
973 | loc, doLoopOp.getInductionVar(), doLoopOp.getStep(), iofAttr); |
974 | builder.create<fir::ResultOp>(loc, result); |
975 | builder.setInsertionPointAfter(doLoopOp); |
976 | // The loop control variable may be used after the loop. |
977 | lcv = builder.createConvert(loc, fir::unwrapRefType(loopVar.getType()), |
978 | doLoopOp.getResult(0)); |
979 | builder.create<fir::StoreOp>(loc, lcv, loopVar); |
980 | return; |
981 | } |
982 | // Check IO call results - the loop is a fir.iterate_while op. |
983 | if (!ok) |
984 | ok = builder.createBool(loc, true); |
985 | auto iterWhileOp = builder.create<fir::IterWhileOp>( |
986 | loc, lowerValue, upperValue, stepValue, ok, /*finalCountValue*/ true); |
987 | builder.setInsertionPointToStart(iterWhileOp.getBody()); |
988 | mlir::Value lcv = |
989 | builder.createConvert(loc, fir::unwrapRefType(loopVar.getType()), |
990 | iterWhileOp.getInductionVar()); |
991 | builder.create<fir::StoreOp>(loc, lcv, loopVar); |
992 | ok = iterWhileOp.getIterateVar(); |
993 | mlir::Value falseValue = |
994 | builder.createIntegerConstant(loc, builder.getI1Type(), 0); |
995 | genItemList(ioImpliedDo); |
996 | // Unwind nested IO call scopes, filling in true and false ResultOp's. |
997 | for (mlir::Operation *op = builder.getBlock()->getParentOp(); |
998 | mlir::isa<fir::IfOp>(op); op = op->getBlock()->getParentOp()) { |
999 | auto ifOp = mlir::dyn_cast<fir::IfOp>(op); |
1000 | mlir::Operation *lastOp = &ifOp.getThenRegion().front().back(); |
1001 | builder.setInsertionPointAfter(lastOp); |
1002 | // The primary ifOp result is the result of an IO call or loop. |
1003 | if (mlir::isa<fir::CallOp, fir::IfOp>(*lastOp)) |
1004 | builder.create<fir::ResultOp>(loc, lastOp->getResult(0)); |
1005 | else |
1006 | builder.create<fir::ResultOp>(loc, ok); // loop result |
1007 | // The else branch propagates an early exit false result. |
1008 | builder.setInsertionPointToStart(&ifOp.getElseRegion().front()); |
1009 | builder.create<fir::ResultOp>(loc, falseValue); |
1010 | } |
1011 | builder.setInsertionPointToEnd(iterWhileOp.getBody()); |
1012 | mlir::OpResult iterateResult = builder.getBlock()->back().getResult(0); |
1013 | mlir::Value inductionResult0 = iterWhileOp.getInductionVar(); |
1014 | auto inductionResult1 = builder.create<mlir::arith::AddIOp>( |
1015 | loc, inductionResult0, iterWhileOp.getStep(), iofAttr); |
1016 | auto inductionResult = builder.create<mlir::arith::SelectOp>( |
1017 | loc, iterateResult, inductionResult1, inductionResult0); |
1018 | llvm::SmallVector<mlir::Value> results = {inductionResult, iterateResult}; |
1019 | builder.create<fir::ResultOp>(loc, results); |
1020 | ok = iterWhileOp.getResult(1); |
1021 | builder.setInsertionPointAfter(iterWhileOp); |
1022 | // The loop control variable may be used after the loop. |
1023 | lcv = builder.createConvert(loc, fir::unwrapRefType(loopVar.getType()), |
1024 | iterWhileOp.getResult(0)); |
1025 | builder.create<fir::StoreOp>(loc, lcv, loopVar); |
1026 | } |
1027 | |
1028 | //===----------------------------------------------------------------------===// |
1029 | // Default argument generation. |
1030 | //===----------------------------------------------------------------------===// |
1031 | |
1032 | static mlir::Value locToFilename(Fortran::lower::AbstractConverter &converter, |
1033 | mlir::Location loc, mlir::Type toType) { |
1034 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
1035 | return builder.createConvert(loc, toType, |
1036 | fir::factory::locationToFilename(builder, loc)); |
1037 | } |
1038 | |
1039 | static mlir::Value locToLineNo(Fortran::lower::AbstractConverter &converter, |
1040 | mlir::Location loc, mlir::Type toType) { |
1041 | return fir::factory::locationToLineNo(converter.getFirOpBuilder(), loc, |
1042 | toType); |
1043 | } |
1044 | |
1045 | static mlir::Value getDefaultScratch(fir::FirOpBuilder &builder, |
1046 | mlir::Location loc, mlir::Type toType) { |
1047 | mlir::Value null = builder.create<mlir::arith::ConstantOp>( |
1048 | loc, builder.getI64IntegerAttr(0)); |
1049 | return builder.createConvert(loc, toType, null); |
1050 | } |
1051 | |
1052 | static mlir::Value getDefaultScratchLen(fir::FirOpBuilder &builder, |
1053 | mlir::Location loc, mlir::Type toType) { |
1054 | return builder.create<mlir::arith::ConstantOp>( |
1055 | loc, builder.getIntegerAttr(toType, 0)); |
1056 | } |
1057 | |
1058 | /// Generate a reference to a buffer and the length of buffer given |
1059 | /// a character expression. An array expression will be cast to scalar |
1060 | /// character as long as they are contiguous. |
1061 | static std::tuple<mlir::Value, mlir::Value> |
1062 | genBuffer(Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
1063 | const Fortran::lower::SomeExpr &expr, mlir::Type strTy, |
1064 | mlir::Type lenTy, Fortran::lower::StatementContext &stmtCtx) { |
1065 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
1066 | fir::ExtendedValue exprAddr = converter.genExprAddr(expr, stmtCtx); |
1067 | fir::factory::CharacterExprHelper helper(builder, loc); |
1068 | using ValuePair = std::pair<mlir::Value, mlir::Value>; |
1069 | auto [buff, len] = exprAddr.match( |
1070 | [&](const fir::CharBoxValue &x) -> ValuePair { |
1071 | return {x.getBuffer(), x.getLen()}; |
1072 | }, |
1073 | [&](const fir::CharArrayBoxValue &x) -> ValuePair { |
1074 | fir::CharBoxValue scalar = helper.toScalarCharacter(x); |
1075 | return {scalar.getBuffer(), scalar.getLen()}; |
1076 | }, |
1077 | [&](const fir::BoxValue &) -> ValuePair { |
1078 | // May need to copy before after IO to handle contiguous |
1079 | // aspect. Not sure descriptor can get here though. |
1080 | TODO(loc, "character descriptor to contiguous buffer"); |
1081 | }, |
1082 | [&](const auto &) -> ValuePair { |
1083 | llvm::report_fatal_error( |
1084 | "internal error: IO buffer is not a character"); |
1085 | }); |
1086 | buff = builder.createConvert(loc, strTy, buff); |
1087 | len = builder.createConvert(loc, lenTy, len); |
1088 | return {buff, len}; |
1089 | } |
1090 | |
1091 | /// Lower a string literal. Many arguments to the runtime are conveyed as |
1092 | /// Fortran CHARACTER literals. |
1093 | template <typename A> |
1094 | static std::tuple<mlir::Value, mlir::Value, mlir::Value> |
1095 | lowerStringLit(Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
1096 | Fortran::lower::StatementContext &stmtCtx, const A &syntax, |
1097 | mlir::Type strTy, mlir::Type lenTy, mlir::Type ty2 = {}) { |
1098 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
1099 | auto *expr = Fortran::semantics::GetExpr(syntax); |
1100 | if (!expr) |
1101 | fir::emitFatalError(loc, "internal error: null semantic expr in IO"); |
1102 | auto [buff, len] = genBuffer(converter, loc, *expr, strTy, lenTy, stmtCtx); |
1103 | mlir::Value kind; |
1104 | if (ty2) { |
1105 | auto kindVal = expr->GetType().value().kind(); |
1106 | kind = builder.create<mlir::arith::ConstantOp>( |
1107 | loc, builder.getIntegerAttr(ty2, kindVal)); |
1108 | } |
1109 | return {buff, len, kind}; |
1110 | } |
1111 | |
1112 | /// Pass the body of the FORMAT statement in as if it were a CHARACTER literal |
1113 | /// constant. NB: This is the prescribed manner in which the front-end passes |
1114 | /// this information to lowering. |
1115 | static std::tuple<mlir::Value, mlir::Value, mlir::Value> |
1116 | lowerSourceTextAsStringLit(Fortran::lower::AbstractConverter &converter, |
1117 | mlir::Location loc, llvm::StringRef text, |
1118 | mlir::Type strTy, mlir::Type lenTy) { |
1119 | text = text.drop_front(text.find('(')); |
1120 | text = text.take_front(text.rfind(')') + 1); |
1121 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
1122 | mlir::Value addrGlobalStringLit = |
1123 | fir::getBase(fir::factory::createStringLiteral(builder, loc, text)); |
1124 | mlir::Value buff = builder.createConvert(loc, strTy, addrGlobalStringLit); |
1125 | mlir::Value len = builder.createIntegerConstant(loc, lenTy, text.size()); |
1126 | return {buff, len, mlir::Value{}}; |
1127 | } |
1128 | |
1129 | //===----------------------------------------------------------------------===// |
1130 | // Handle IO statement specifiers. |
1131 | // These are threaded together for a single statement via the passed cookie. |
1132 | //===----------------------------------------------------------------------===// |
1133 | |
1134 | /// Generic to build an integral argument to the runtime. |
1135 | template <typename A, typename B> |
1136 | mlir::Value genIntIOOption(Fortran::lower::AbstractConverter &converter, |
1137 | mlir::Location loc, mlir::Value cookie, |
1138 | const B &spec) { |
1139 | Fortran::lower::StatementContext localStatementCtx; |
1140 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
1141 | mlir::func::FuncOp ioFunc = fir::runtime::getIORuntimeFunc<A>(loc, builder); |
1142 | mlir::FunctionType ioFuncTy = ioFunc.getFunctionType(); |
1143 | mlir::Value expr = fir::getBase(converter.genExprValue( |
1144 | loc, Fortran::semantics::GetExpr(spec.v), localStatementCtx)); |
1145 | mlir::Value val = builder.createConvert(loc, ioFuncTy.getInput(1), expr); |
1146 | llvm::SmallVector<mlir::Value> ioArgs = {cookie, val}; |
1147 | return builder.create<fir::CallOp>(loc, ioFunc, ioArgs).getResult(0); |
1148 | } |
1149 | |
1150 | /// Generic to build a string argument to the runtime. This passes a CHARACTER |
1151 | /// as a pointer to the buffer and a LEN parameter. |
1152 | template <typename A, typename B> |
1153 | mlir::Value genCharIOOption(Fortran::lower::AbstractConverter &converter, |
1154 | mlir::Location loc, mlir::Value cookie, |
1155 | const B &spec) { |
1156 | Fortran::lower::StatementContext localStatementCtx; |
1157 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
1158 | mlir::func::FuncOp ioFunc = fir::runtime::getIORuntimeFunc<A>(loc, builder); |
1159 | mlir::FunctionType ioFuncTy = ioFunc.getFunctionType(); |
1160 | std::tuple<mlir::Value, mlir::Value, mlir::Value> tup = |
1161 | lowerStringLit(converter, loc, localStatementCtx, spec, |
1162 | ioFuncTy.getInput(1), ioFuncTy.getInput(2)); |
1163 | llvm::SmallVector<mlir::Value> ioArgs = {cookie, std::get<0>(tup), |
1164 | std::get<1>(tup)}; |
1165 | return builder.create<fir::CallOp>(loc, ioFunc, ioArgs).getResult(0); |
1166 | } |
1167 | |
1168 | template <typename A> |
1169 | mlir::Value genIOOption(Fortran::lower::AbstractConverter &converter, |
1170 | mlir::Location loc, mlir::Value cookie, const A &spec) { |
1171 | // These specifiers are processed in advance elsewhere - skip them here. |
1172 | using PreprocessedSpecs = |
1173 | std::tuple<Fortran::parser::EndLabel, Fortran::parser::EorLabel, |
1174 | Fortran::parser::ErrLabel, Fortran::parser::FileUnitNumber, |
1175 | Fortran::parser::Format, Fortran::parser::IoUnit, |
1176 | Fortran::parser::MsgVariable, Fortran::parser::Name, |
1177 | Fortran::parser::StatVariable>; |
1178 | static_assert(Fortran::common::HasMember<A, PreprocessedSpecs>, |
1179 | "missing genIOOPtion specialization"); |
1180 | return {}; |
1181 | } |
1182 | |
1183 | template <> |
1184 | mlir::Value genIOOption<Fortran::parser::FileNameExpr>( |
1185 | Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
1186 | mlir::Value cookie, const Fortran::parser::FileNameExpr &spec) { |
1187 | Fortran::lower::StatementContext localStatementCtx; |
1188 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
1189 | // has an extra KIND argument |
1190 | mlir::func::FuncOp ioFunc = |
1191 | fir::runtime::getIORuntimeFunc<mkIOKey(SetFile)>(loc, builder); |
1192 | mlir::FunctionType ioFuncTy = ioFunc.getFunctionType(); |
1193 | std::tuple<mlir::Value, mlir::Value, mlir::Value> tup = |
1194 | lowerStringLit(converter, loc, localStatementCtx, spec, |
1195 | ioFuncTy.getInput(1), ioFuncTy.getInput(2)); |
1196 | llvm::SmallVector<mlir::Value> ioArgs{cookie, std::get<0>(tup), |
1197 | std::get<1>(tup)}; |
1198 | return builder.create<fir::CallOp>(loc, ioFunc, ioArgs).getResult(0); |
1199 | } |
1200 | |
1201 | template <> |
1202 | mlir::Value genIOOption<Fortran::parser::ConnectSpec::CharExpr>( |
1203 | Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
1204 | mlir::Value cookie, const Fortran::parser::ConnectSpec::CharExpr &spec) { |
1205 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
1206 | mlir::func::FuncOp ioFunc; |
1207 | switch (std::get<Fortran::parser::ConnectSpec::CharExpr::Kind>(spec.t)) { |
1208 | case Fortran::parser::ConnectSpec::CharExpr::Kind::Access: |
1209 | ioFunc = fir::runtime::getIORuntimeFunc<mkIOKey(SetAccess)>(loc, builder); |
1210 | break; |
1211 | case Fortran::parser::ConnectSpec::CharExpr::Kind::Action: |
1212 | ioFunc = fir::runtime::getIORuntimeFunc<mkIOKey(SetAction)>(loc, builder); |
1213 | break; |
1214 | case Fortran::parser::ConnectSpec::CharExpr::Kind::Asynchronous: |
1215 | ioFunc = |
1216 | fir::runtime::getIORuntimeFunc<mkIOKey(SetAsynchronous)>(loc, builder); |
1217 | break; |
1218 | case Fortran::parser::ConnectSpec::CharExpr::Kind::Blank: |
1219 | ioFunc = fir::runtime::getIORuntimeFunc<mkIOKey(SetBlank)>(loc, builder); |
1220 | break; |
1221 | case Fortran::parser::ConnectSpec::CharExpr::Kind::Decimal: |
1222 | ioFunc = fir::runtime::getIORuntimeFunc<mkIOKey(SetDecimal)>(loc, builder); |
1223 | break; |
1224 | case Fortran::parser::ConnectSpec::CharExpr::Kind::Delim: |
1225 | ioFunc = fir::runtime::getIORuntimeFunc<mkIOKey(SetDelim)>(loc, builder); |
1226 | break; |
1227 | case Fortran::parser::ConnectSpec::CharExpr::Kind::Encoding: |
1228 | ioFunc = fir::runtime::getIORuntimeFunc<mkIOKey(SetEncoding)>(loc, builder); |
1229 | break; |
1230 | case Fortran::parser::ConnectSpec::CharExpr::Kind::Form: |
1231 | ioFunc = fir::runtime::getIORuntimeFunc<mkIOKey(SetForm)>(loc, builder); |
1232 | break; |
1233 | case Fortran::parser::ConnectSpec::CharExpr::Kind::Pad: |
1234 | ioFunc = fir::runtime::getIORuntimeFunc<mkIOKey(SetPad)>(loc, builder); |
1235 | break; |
1236 | case Fortran::parser::ConnectSpec::CharExpr::Kind::Position: |
1237 | ioFunc = fir::runtime::getIORuntimeFunc<mkIOKey(SetPosition)>(loc, builder); |
1238 | break; |
1239 | case Fortran::parser::ConnectSpec::CharExpr::Kind::Round: |
1240 | ioFunc = fir::runtime::getIORuntimeFunc<mkIOKey(SetRound)>(loc, builder); |
1241 | break; |
1242 | case Fortran::parser::ConnectSpec::CharExpr::Kind::Sign: |
1243 | ioFunc = fir::runtime::getIORuntimeFunc<mkIOKey(SetSign)>(loc, builder); |
1244 | break; |
1245 | case Fortran::parser::ConnectSpec::CharExpr::Kind::Carriagecontrol: |
1246 | ioFunc = fir::runtime::getIORuntimeFunc<mkIOKey(SetCarriagecontrol)>( |
1247 | loc, builder); |
1248 | break; |
1249 | case Fortran::parser::ConnectSpec::CharExpr::Kind::Convert: |
1250 | ioFunc = fir::runtime::getIORuntimeFunc<mkIOKey(SetConvert)>(loc, builder); |
1251 | break; |
1252 | case Fortran::parser::ConnectSpec::CharExpr::Kind::Dispose: |
1253 | TODO(loc, "DISPOSE not part of the runtime::io interface"); |
1254 | } |
1255 | Fortran::lower::StatementContext localStatementCtx; |
1256 | mlir::FunctionType ioFuncTy = ioFunc.getFunctionType(); |
1257 | std::tuple<mlir::Value, mlir::Value, mlir::Value> tup = |
1258 | lowerStringLit(converter, loc, localStatementCtx, |
1259 | std::get<Fortran::parser::ScalarDefaultCharExpr>(spec.t), |
1260 | ioFuncTy.getInput(1), ioFuncTy.getInput(2)); |
1261 | llvm::SmallVector<mlir::Value> ioArgs = {cookie, std::get<0>(tup), |
1262 | std::get<1>(tup)}; |
1263 | return builder.create<fir::CallOp>(loc, ioFunc, ioArgs).getResult(0); |
1264 | } |
1265 | |
1266 | template <> |
1267 | mlir::Value genIOOption<Fortran::parser::ConnectSpec::Recl>( |
1268 | Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
1269 | mlir::Value cookie, const Fortran::parser::ConnectSpec::Recl &spec) { |
1270 | return genIntIOOption<mkIOKey(SetRecl)>(converter, loc, cookie, spec); |
1271 | } |
1272 | |
1273 | template <> |
1274 | mlir::Value genIOOption<Fortran::parser::StatusExpr>( |
1275 | Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
1276 | mlir::Value cookie, const Fortran::parser::StatusExpr &spec) { |
1277 | return genCharIOOption<mkIOKey(SetStatus)>(converter, loc, cookie, spec.v); |
1278 | } |
1279 | |
1280 | template <> |
1281 | mlir::Value genIOOption<Fortran::parser::IoControlSpec::CharExpr>( |
1282 | Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
1283 | mlir::Value cookie, const Fortran::parser::IoControlSpec::CharExpr &spec) { |
1284 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
1285 | mlir::func::FuncOp ioFunc; |
1286 | switch (std::get<Fortran::parser::IoControlSpec::CharExpr::Kind>(spec.t)) { |
1287 | case Fortran::parser::IoControlSpec::CharExpr::Kind::Advance: |
1288 | ioFunc = fir::runtime::getIORuntimeFunc<mkIOKey(SetAdvance)>(loc, builder); |
1289 | break; |
1290 | case Fortran::parser::IoControlSpec::CharExpr::Kind::Blank: |
1291 | ioFunc = fir::runtime::getIORuntimeFunc<mkIOKey(SetBlank)>(loc, builder); |
1292 | break; |
1293 | case Fortran::parser::IoControlSpec::CharExpr::Kind::Decimal: |
1294 | ioFunc = fir::runtime::getIORuntimeFunc<mkIOKey(SetDecimal)>(loc, builder); |
1295 | break; |
1296 | case Fortran::parser::IoControlSpec::CharExpr::Kind::Delim: |
1297 | ioFunc = fir::runtime::getIORuntimeFunc<mkIOKey(SetDelim)>(loc, builder); |
1298 | break; |
1299 | case Fortran::parser::IoControlSpec::CharExpr::Kind::Pad: |
1300 | ioFunc = fir::runtime::getIORuntimeFunc<mkIOKey(SetPad)>(loc, builder); |
1301 | break; |
1302 | case Fortran::parser::IoControlSpec::CharExpr::Kind::Round: |
1303 | ioFunc = fir::runtime::getIORuntimeFunc<mkIOKey(SetRound)>(loc, builder); |
1304 | break; |
1305 | case Fortran::parser::IoControlSpec::CharExpr::Kind::Sign: |
1306 | ioFunc = fir::runtime::getIORuntimeFunc<mkIOKey(SetSign)>(loc, builder); |
1307 | break; |
1308 | } |
1309 | Fortran::lower::StatementContext localStatementCtx; |
1310 | mlir::FunctionType ioFuncTy = ioFunc.getFunctionType(); |
1311 | std::tuple<mlir::Value, mlir::Value, mlir::Value> tup = |
1312 | lowerStringLit(converter, loc, localStatementCtx, |
1313 | std::get<Fortran::parser::ScalarDefaultCharExpr>(spec.t), |
1314 | ioFuncTy.getInput(1), ioFuncTy.getInput(2)); |
1315 | llvm::SmallVector<mlir::Value> ioArgs = {cookie, std::get<0>(tup), |
1316 | std::get<1>(tup)}; |
1317 | return builder.create<fir::CallOp>(loc, ioFunc, ioArgs).getResult(0); |
1318 | } |
1319 | |
1320 | template <> |
1321 | mlir::Value genIOOption<Fortran::parser::IoControlSpec::Asynchronous>( |
1322 | Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
1323 | mlir::Value cookie, |
1324 | const Fortran::parser::IoControlSpec::Asynchronous &spec) { |
1325 | return genCharIOOption<mkIOKey(SetAsynchronous)>(converter, loc, cookie, |
1326 | spec.v); |
1327 | } |
1328 | |
1329 | template <> |
1330 | mlir::Value genIOOption<Fortran::parser::IoControlSpec::Pos>( |
1331 | Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
1332 | mlir::Value cookie, const Fortran::parser::IoControlSpec::Pos &spec) { |
1333 | return genIntIOOption<mkIOKey(SetPos)>(converter, loc, cookie, spec); |
1334 | } |
1335 | |
1336 | template <> |
1337 | mlir::Value genIOOption<Fortran::parser::IoControlSpec::Rec>( |
1338 | Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
1339 | mlir::Value cookie, const Fortran::parser::IoControlSpec::Rec &spec) { |
1340 | return genIntIOOption<mkIOKey(SetRec)>(converter, loc, cookie, spec); |
1341 | } |
1342 | |
1343 | /// Generate runtime call to set some control variable. |
1344 | /// Generates "VAR = IoRuntimeKey(cookie)". |
1345 | template <typename IoRuntimeKey, typename VAR> |
1346 | static void genIOGetVar(Fortran::lower::AbstractConverter &converter, |
1347 | mlir::Location loc, mlir::Value cookie, |
1348 | const VAR &parserVar) { |
1349 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
1350 | mlir::func::FuncOp ioFunc = |
1351 | fir::runtime::getIORuntimeFunc<IoRuntimeKey>(loc, builder); |
1352 | mlir::Value value = |
1353 | builder.create<fir::CallOp>(loc, ioFunc, mlir::ValueRange{cookie}) |
1354 | .getResult(0); |
1355 | Fortran::lower::StatementContext localStatementCtx; |
1356 | fir::ExtendedValue var = converter.genExprAddr( |
1357 | loc, Fortran::semantics::GetExpr(parserVar.v), localStatementCtx); |
1358 | builder.createStoreWithConvert(loc, value, fir::getBase(var)); |
1359 | } |
1360 | |
1361 | //===----------------------------------------------------------------------===// |
1362 | // Gather IO statement condition specifier information (if any). |
1363 | //===----------------------------------------------------------------------===// |
1364 | |
1365 | template <typename SEEK, typename A> |
1366 | static bool hasX(const A &list) { |
1367 | for (const auto &spec : list) |
1368 | if (std::holds_alternative<SEEK>(spec.u)) |
1369 | return true; |
1370 | return false; |
1371 | } |
1372 | |
1373 | template <typename SEEK, typename A> |
1374 | static bool hasSpec(const A &stmt) { |
1375 | return hasX<SEEK>(stmt.v); |
1376 | } |
1377 | |
1378 | /// Get the sought expression from the specifier list. |
1379 | template <typename SEEK, typename A> |
1380 | static const Fortran::lower::SomeExpr *getExpr(const A &stmt) { |
1381 | for (const auto &spec : stmt.v) |
1382 | if (auto *f = std::get_if<SEEK>(&spec.u)) |
1383 | return Fortran::semantics::GetExpr(f->v); |
1384 | llvm::report_fatal_error("must have a file unit"); |
1385 | } |
1386 | |
1387 | /// For each specifier, build the appropriate call, threading the cookie. |
1388 | template <typename A> |
1389 | static void threadSpecs(Fortran::lower::AbstractConverter &converter, |
1390 | mlir::Location loc, mlir::Value cookie, |
1391 | const A &specList, bool checkResult, mlir::Value &ok) { |
1392 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
1393 | for (const auto &spec : specList) { |
1394 | makeNextConditionalOn(builder, loc, checkResult, ok); |
1395 | ok = Fortran::common::visit( |
1396 | Fortran::common::visitors{ |
1397 | [&](const Fortran::parser::IoControlSpec::Size &x) -> mlir::Value { |
1398 | // Size must be queried after the related READ runtime calls, not |
1399 | // before. |
1400 | return ok; |
1401 | }, |
1402 | [&](const Fortran::parser::ConnectSpec::Newunit &x) -> mlir::Value { |
1403 | // Newunit must be queried after OPEN specifier runtime calls |
1404 | // that may fail to avoid modifying the newunit variable if |
1405 | // there is an error. |
1406 | return ok; |
1407 | }, |
1408 | [&](const Fortran::parser::IdVariable &) -> mlir::Value { |
1409 | // ID is queried after the transfer so that ASYNCHROUNOUS= has |
1410 | // been processed and also to set it to zero if the transfer is |
1411 | // already finished. |
1412 | return ok; |
1413 | }, |
1414 | [&](const auto &x) { |
1415 | return genIOOption(converter, loc, cookie, x); |
1416 | }}, |
1417 | spec.u); |
1418 | } |
1419 | } |
1420 | |
1421 | /// Most IO statements allow one or more of five optional exception condition |
1422 | /// handling specifiers: ERR, EOR, END, IOSTAT, and IOMSG. The first three |
1423 | /// cause control flow to transfer to another statement. The final two return |
1424 | /// information from the runtime, via a variable, about the nature of the |
1425 | /// condition that occurred. These condition specifiers are handled here. |
1426 | template <typename A> |
1427 | ConditionSpecInfo lowerErrorSpec(Fortran::lower::AbstractConverter &converter, |
1428 | mlir::Location loc, const A &specList) { |
1429 | ConditionSpecInfo csi; |
1430 | const Fortran::lower::SomeExpr *ioMsgExpr = nullptr; |
1431 | for (const auto &spec : specList) { |
1432 | Fortran::common::visit( |
1433 | Fortran::common::visitors{ |
1434 | [&](const Fortran::parser::StatVariable &var) { |
1435 | csi.ioStatExpr = Fortran::semantics::GetExpr(var); |
1436 | }, |
1437 | [&](const Fortran::parser::InquireSpec::IntVar &var) { |
1438 | if (std::get<Fortran::parser::InquireSpec::IntVar::Kind>(var.t) == |
1439 | Fortran::parser::InquireSpec::IntVar::Kind::Iostat) |
1440 | csi.ioStatExpr = Fortran::semantics::GetExpr( |
1441 | std::get<Fortran::parser::ScalarIntVariable>(var.t)); |
1442 | }, |
1443 | [&](const Fortran::parser::MsgVariable &var) { |
1444 | ioMsgExpr = Fortran::semantics::GetExpr(var); |
1445 | }, |
1446 | [&](const Fortran::parser::InquireSpec::CharVar &var) { |
1447 | if (std::get<Fortran::parser::InquireSpec::CharVar::Kind>( |
1448 | var.t) == |
1449 | Fortran::parser::InquireSpec::CharVar::Kind::Iomsg) |
1450 | ioMsgExpr = Fortran::semantics::GetExpr( |
1451 | std::get<Fortran::parser::ScalarDefaultCharVariable>( |
1452 | var.t)); |
1453 | }, |
1454 | [&](const Fortran::parser::EndLabel &) { csi.hasEnd = true; }, |
1455 | [&](const Fortran::parser::EorLabel &) { csi.hasEor = true; }, |
1456 | [&](const Fortran::parser::ErrLabel &) { csi.hasErr = true; }, |
1457 | [](const auto &) {}}, |
1458 | spec.u); |
1459 | } |
1460 | if (ioMsgExpr) { |
1461 | // iomsg is a variable, its evaluation may require temps, but it cannot |
1462 | // itself be a temp, and it is ok to us a local statement context here. |
1463 | Fortran::lower::StatementContext stmtCtx; |
1464 | csi.ioMsg = converter.genExprAddr(loc, ioMsgExpr, stmtCtx); |
1465 | } |
1466 | |
1467 | return csi; |
1468 | } |
1469 | template <typename A> |
1470 | static void |
1471 | genConditionHandlerCall(Fortran::lower::AbstractConverter &converter, |
1472 | mlir::Location loc, mlir::Value cookie, |
1473 | const A &specList, ConditionSpecInfo &csi) { |
1474 | if (!csi.hasAnyConditionSpec()) |
1475 | return; |
1476 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
1477 | mlir::func::FuncOp enableHandlers = |
1478 | fir::runtime::getIORuntimeFunc<mkIOKey(EnableHandlers)>(loc, builder); |
1479 | mlir::Type boolType = enableHandlers.getFunctionType().getInput(1); |
1480 | auto boolValue = [&](bool specifierIsPresent) { |
1481 | return builder.create<mlir::arith::ConstantOp>( |
1482 | loc, builder.getIntegerAttr(boolType, specifierIsPresent)); |
1483 | }; |
1484 | llvm::SmallVector<mlir::Value> ioArgs = {cookie, |
1485 | boolValue(csi.ioStatExpr != nullptr), |
1486 | boolValue(csi.hasErr), |
1487 | boolValue(csi.hasEnd), |
1488 | boolValue(csi.hasEor), |
1489 | boolValue(csi.ioMsg.has_value())}; |
1490 | builder.create<fir::CallOp>(loc, enableHandlers, ioArgs); |
1491 | } |
1492 | |
1493 | //===----------------------------------------------------------------------===// |
1494 | // Data transfer helpers |
1495 | //===----------------------------------------------------------------------===// |
1496 | |
1497 | template <typename SEEK, typename A> |
1498 | static bool hasIOControl(const A &stmt) { |
1499 | return hasX<SEEK>(stmt.controls); |
1500 | } |
1501 | |
1502 | template <typename SEEK, typename A> |
1503 | static const auto *getIOControl(const A &stmt) { |
1504 | for (const auto &spec : stmt.controls) |
1505 | if (const auto *result = std::get_if<SEEK>(&spec.u)) |
1506 | return result; |
1507 | return static_cast<const SEEK *>(nullptr); |
1508 | } |
1509 | |
1510 | /// Returns true iff the expression in the parse tree is not really a format but |
1511 | /// rather a namelist group. |
1512 | template <typename A> |
1513 | static bool formatIsActuallyNamelist(const A &format) { |
1514 | if (auto *e = std::get_if<Fortran::parser::Expr>(&format.u)) { |
1515 | auto *expr = Fortran::semantics::GetExpr(*e); |
1516 | if (const Fortran::semantics::Symbol *y = |
1517 | Fortran::evaluate::UnwrapWholeSymbolDataRef(*expr)) |
1518 | return y->has<Fortran::semantics::NamelistDetails>(); |
1519 | } |
1520 | return false; |
1521 | } |
1522 | |
1523 | template <typename A> |
1524 | static bool isDataTransferFormatted(const A &stmt) { |
1525 | if (stmt.format) |
1526 | return !formatIsActuallyNamelist(*stmt.format); |
1527 | return hasIOControl<Fortran::parser::Format>(stmt); |
1528 | } |
1529 | template <> |
1530 | constexpr bool isDataTransferFormatted<Fortran::parser::PrintStmt>( |
1531 | const Fortran::parser::PrintStmt &) { |
1532 | return true; // PRINT is always formatted |
1533 | } |
1534 | |
1535 | template <typename A> |
1536 | static bool isDataTransferList(const A &stmt) { |
1537 | if (stmt.format) |
1538 | return std::holds_alternative<Fortran::parser::Star>(stmt.format->u); |
1539 | if (auto *mem = getIOControl<Fortran::parser::Format>(stmt)) |
1540 | return std::holds_alternative<Fortran::parser::Star>(mem->u); |
1541 | return false; |
1542 | } |
1543 | template <> |
1544 | bool isDataTransferList<Fortran::parser::PrintStmt>( |
1545 | const Fortran::parser::PrintStmt &stmt) { |
1546 | return std::holds_alternative<Fortran::parser::Star>( |
1547 | std::get<Fortran::parser::Format>(stmt.t).u); |
1548 | } |
1549 | |
1550 | template <typename A> |
1551 | static bool isDataTransferInternal(const A &stmt) { |
1552 | if (stmt.iounit.has_value()) |
1553 | return std::holds_alternative<Fortran::parser::Variable>(stmt.iounit->u); |
1554 | if (auto *unit = getIOControl<Fortran::parser::IoUnit>(stmt)) |
1555 | return std::holds_alternative<Fortran::parser::Variable>(unit->u); |
1556 | return false; |
1557 | } |
1558 | template <> |
1559 | constexpr bool isDataTransferInternal<Fortran::parser::PrintStmt>( |
1560 | const Fortran::parser::PrintStmt &) { |
1561 | return false; |
1562 | } |
1563 | |
1564 | /// If the variable `var` is an array or of a KIND other than the default |
1565 | /// (normally 1), then a descriptor is required by the runtime IO API. This |
1566 | /// condition holds even in F77 sources. |
1567 | static std::optional<fir::ExtendedValue> getVariableBufferRequiredDescriptor( |
1568 | Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
1569 | const Fortran::parser::Variable &var, |
1570 | Fortran::lower::StatementContext &stmtCtx) { |
1571 | fir::ExtendedValue varBox = |
1572 | converter.genExprBox(loc, var.typedExpr->v.value(), stmtCtx); |
1573 | fir::KindTy defCharKind = converter.getKindMap().defaultCharacterKind(); |
1574 | mlir::Value varAddr = fir::getBase(varBox); |
1575 | if (fir::factory::CharacterExprHelper::getCharacterOrSequenceKind( |
1576 | varAddr.getType()) != defCharKind) |
1577 | return varBox; |
1578 | if (fir::factory::CharacterExprHelper::isArray(varAddr.getType())) |
1579 | return varBox; |
1580 | return std::nullopt; |
1581 | } |
1582 | |
1583 | template <typename A> |
1584 | static std::optional<fir::ExtendedValue> |
1585 | maybeGetInternalIODescriptor(Fortran::lower::AbstractConverter &converter, |
1586 | mlir::Location loc, const A &stmt, |
1587 | Fortran::lower::StatementContext &stmtCtx) { |
1588 | if (stmt.iounit.has_value()) |
1589 | if (auto *var = std::get_if<Fortran::parser::Variable>(&stmt.iounit->u)) |
1590 | return getVariableBufferRequiredDescriptor(converter, loc, *var, stmtCtx); |
1591 | if (auto *unit = getIOControl<Fortran::parser::IoUnit>(stmt)) |
1592 | if (auto *var = std::get_if<Fortran::parser::Variable>(&unit->u)) |
1593 | return getVariableBufferRequiredDescriptor(converter, loc, *var, stmtCtx); |
1594 | return std::nullopt; |
1595 | } |
1596 | template <> |
1597 | inline std::optional<fir::ExtendedValue> |
1598 | maybeGetInternalIODescriptor<Fortran::parser::PrintStmt>( |
1599 | Fortran::lower::AbstractConverter &, mlir::Location loc, |
1600 | const Fortran::parser::PrintStmt &, Fortran::lower::StatementContext &) { |
1601 | return std::nullopt; |
1602 | } |
1603 | |
1604 | template <typename A> |
1605 | static bool isDataTransferNamelist(const A &stmt) { |
1606 | if (stmt.format) |
1607 | return formatIsActuallyNamelist(*stmt.format); |
1608 | return hasIOControl<Fortran::parser::Name>(stmt); |
1609 | } |
1610 | template <> |
1611 | constexpr bool isDataTransferNamelist<Fortran::parser::PrintStmt>( |
1612 | const Fortran::parser::PrintStmt &) { |
1613 | return false; |
1614 | } |
1615 | |
1616 | /// Lowers a format statment that uses an assigned variable label reference as |
1617 | /// a select operation to allow for run-time selection of the format statement. |
1618 | static std::tuple<mlir::Value, mlir::Value, mlir::Value> |
1619 | lowerReferenceAsStringSelect(Fortran::lower::AbstractConverter &converter, |
1620 | mlir::Location loc, |
1621 | const Fortran::lower::SomeExpr &expr, |
1622 | mlir::Type strTy, mlir::Type lenTy, |
1623 | Fortran::lower::StatementContext &stmtCtx) { |
1624 | // Create the requisite blocks to inline a selectOp. |
1625 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
1626 | mlir::Block *startBlock = builder.getBlock(); |
1627 | mlir::Block *endBlock = startBlock->splitBlock(builder.getInsertionPoint()); |
1628 | mlir::Block *block = startBlock->splitBlock(builder.getInsertionPoint()); |
1629 | builder.setInsertionPointToEnd(block); |
1630 | |
1631 | llvm::SmallVector<int64_t> indexList; |
1632 | llvm::SmallVector<mlir::Block *> blockList; |
1633 | |
1634 | auto symbol = GetLastSymbol(&expr); |
1635 | Fortran::lower::pft::LabelSet labels; |
1636 | converter.lookupLabelSet(*symbol, labels); |
1637 | |
1638 | for (auto label : labels) { |
1639 | indexList.push_back(label); |
1640 | auto *eval = converter.lookupLabel(label); |
1641 | assert(eval && "Label is missing from the table"); |
1642 | |
1643 | llvm::StringRef text = toStringRef(eval->position); |
1644 | mlir::Value stringRef; |
1645 | mlir::Value stringLen; |
1646 | if (eval->isA<Fortran::parser::FormatStmt>()) { |
1647 | assert(text.contains('(') && "FORMAT is unexpectedly ill-formed"); |
1648 | // This is a format statement, so extract the spec from the text. |
1649 | std::tuple<mlir::Value, mlir::Value, mlir::Value> stringLit = |
1650 | lowerSourceTextAsStringLit(converter, loc, text, strTy, lenTy); |
1651 | stringRef = std::get<0>(stringLit); |
1652 | stringLen = std::get<1>(stringLit); |
1653 | } else { |
1654 | // This is not a format statement, so use null. |
1655 | stringRef = builder.createConvert( |
1656 | loc, strTy, |
1657 | builder.createIntegerConstant(loc, builder.getIndexType(), 0)); |
1658 | stringLen = builder.createIntegerConstant(loc, lenTy, 0); |
1659 | } |
1660 | |
1661 | // Pass the format string reference and the string length out of the select |
1662 | // statement. |
1663 | llvm::SmallVector<mlir::Value> args = {stringRef, stringLen}; |
1664 | builder.create<mlir::cf::BranchOp>(loc, endBlock, args); |
1665 | |
1666 | // Add block to the list of cases and make a new one. |
1667 | blockList.push_back(block); |
1668 | block = block->splitBlock(builder.getInsertionPoint()); |
1669 | builder.setInsertionPointToEnd(block); |
1670 | } |
1671 | |
1672 | // Create the unit case which should result in an error. |
1673 | auto *unitBlock = block->splitBlock(builder.getInsertionPoint()); |
1674 | builder.setInsertionPointToEnd(unitBlock); |
1675 | fir::runtime::genReportFatalUserError( |
1676 | builder, loc, |
1677 | "Assigned format variable '"+ symbol->name().ToString() + |
1678 | "' has not been assigned a valid format label"); |
1679 | builder.create<fir::UnreachableOp>(loc); |
1680 | blockList.push_back(unitBlock); |
1681 | |
1682 | // Lower the selectOp. |
1683 | builder.setInsertionPointToEnd(startBlock); |
1684 | auto label = fir::getBase(converter.genExprValue(loc, &expr, stmtCtx)); |
1685 | builder.create<fir::SelectOp>(loc, label, indexList, blockList); |
1686 | |
1687 | builder.setInsertionPointToEnd(endBlock); |
1688 | endBlock->addArgument(strTy, loc); |
1689 | endBlock->addArgument(lenTy, loc); |
1690 | |
1691 | // Handle and return the string reference and length selected by the selectOp. |
1692 | auto buff = endBlock->getArgument(0); |
1693 | auto len = endBlock->getArgument(1); |
1694 | |
1695 | return {buff, len, mlir::Value{}}; |
1696 | } |
1697 | |
1698 | /// Generate a reference to a format string. There are four cases - a format |
1699 | /// statement label, a character format expression, an integer that holds the |
1700 | /// label of a format statement, and the * case. The first three are done here. |
1701 | /// The * case is done elsewhere. |
1702 | static std::tuple<mlir::Value, mlir::Value, mlir::Value> |
1703 | genFormat(Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
1704 | const Fortran::parser::Format &format, mlir::Type strTy, |
1705 | mlir::Type lenTy, Fortran::lower::StatementContext &stmtCtx) { |
1706 | if (const auto *label = std::get_if<Fortran::parser::Label>(&format.u)) { |
1707 | // format statement label |
1708 | auto eval = converter.lookupLabel(*label); |
1709 | assert(eval && "FORMAT not found in PROCEDURE"); |
1710 | return lowerSourceTextAsStringLit( |
1711 | converter, loc, toStringRef(eval->position), strTy, lenTy); |
1712 | } |
1713 | const auto *pExpr = std::get_if<Fortran::parser::Expr>(&format.u); |
1714 | assert(pExpr && "missing format expression"); |
1715 | auto e = Fortran::semantics::GetExpr(*pExpr); |
1716 | if (Fortran::semantics::ExprHasTypeCategory( |
1717 | *e, Fortran::common::TypeCategory::Character)) { |
1718 | // character expression |
1719 | if (e->Rank()) |
1720 | // Array: return address(descriptor) and no length (and no kind value). |
1721 | return {fir::getBase(converter.genExprBox(loc, *e, stmtCtx)), |
1722 | mlir::Value{}, mlir::Value{}}; |
1723 | // Scalar: return address(format) and format length (and no kind value). |
1724 | return lowerStringLit(converter, loc, stmtCtx, *pExpr, strTy, lenTy); |
1725 | } |
1726 | |
1727 | if (Fortran::semantics::ExprHasTypeCategory( |
1728 | *e, Fortran::common::TypeCategory::Integer) && |
1729 | e->Rank() == 0 && Fortran::evaluate::UnwrapWholeSymbolDataRef(*e)) { |
1730 | // Treat as a scalar integer variable containing an ASSIGN label. |
1731 | return lowerReferenceAsStringSelect(converter, loc, *e, strTy, lenTy, |
1732 | stmtCtx); |
1733 | } |
1734 | |
1735 | // Legacy extension: it is possible that `*e` is not a scalar INTEGER |
1736 | // variable containing a label value. The output appears to be the source text |
1737 | // that initialized the variable? Needs more investigatation. |
1738 | TODO(loc, "io-control-spec contains a reference to a non-integer, " |
1739 | "non-scalar, or non-variable"); |
1740 | } |
1741 | |
1742 | template <typename A> |
1743 | std::tuple<mlir::Value, mlir::Value, mlir::Value> |
1744 | getFormat(Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
1745 | const A &stmt, mlir::Type strTy, mlir::Type lenTy, |
1746 | Fortran ::lower::StatementContext &stmtCtx) { |
1747 | if (stmt.format && !formatIsActuallyNamelist(*stmt.format)) |
1748 | return genFormat(converter, loc, *stmt.format, strTy, lenTy, stmtCtx); |
1749 | return genFormat(converter, loc, *getIOControl<Fortran::parser::Format>(stmt), |
1750 | strTy, lenTy, stmtCtx); |
1751 | } |
1752 | template <> |
1753 | std::tuple<mlir::Value, mlir::Value, mlir::Value> |
1754 | getFormat<Fortran::parser::PrintStmt>( |
1755 | Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
1756 | const Fortran::parser::PrintStmt &stmt, mlir::Type strTy, mlir::Type lenTy, |
1757 | Fortran::lower::StatementContext &stmtCtx) { |
1758 | return genFormat(converter, loc, std::get<Fortran::parser::Format>(stmt.t), |
1759 | strTy, lenTy, stmtCtx); |
1760 | } |
1761 | |
1762 | /// Get a buffer for an internal file data transfer. |
1763 | template <typename A> |
1764 | std::tuple<mlir::Value, mlir::Value> |
1765 | getBuffer(Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
1766 | const A &stmt, mlir::Type strTy, mlir::Type lenTy, |
1767 | Fortran::lower::StatementContext &stmtCtx) { |
1768 | const Fortran::parser::IoUnit *iounit = |
1769 | stmt.iounit ? &*stmt.iounit : getIOControl<Fortran::parser::IoUnit>(stmt); |
1770 | if (iounit) |
1771 | if (auto *var = std::get_if<Fortran::parser::Variable>(&iounit->u)) |
1772 | if (auto *expr = Fortran::semantics::GetExpr(*var)) |
1773 | return genBuffer(converter, loc, *expr, strTy, lenTy, stmtCtx); |
1774 | llvm::report_fatal_error("failed to get IoUnit expr"); |
1775 | } |
1776 | |
1777 | static mlir::Value genIOUnitNumber(Fortran::lower::AbstractConverter &converter, |
1778 | mlir::Location loc, |
1779 | const Fortran::lower::SomeExpr *iounit, |
1780 | mlir::Type ty, ConditionSpecInfo &csi, |
1781 | Fortran::lower::StatementContext &stmtCtx) { |
1782 | auto &builder = converter.getFirOpBuilder(); |
1783 | auto rawUnit = fir::getBase(converter.genExprValue(loc, iounit, stmtCtx)); |
1784 | unsigned rawUnitWidth = |
1785 | mlir::cast<mlir::IntegerType>(rawUnit.getType()).getWidth(); |
1786 | unsigned runtimeArgWidth = mlir::cast<mlir::IntegerType>(ty).getWidth(); |
1787 | // The IO runtime supports `int` unit numbers, if the unit number may |
1788 | // overflow when passed to the IO runtime, check that the unit number is |
1789 | // in range before calling the BeginXXX. |
1790 | if (rawUnitWidth > runtimeArgWidth) { |
1791 | mlir::func::FuncOp check = |
1792 | rawUnitWidth <= 64 |
1793 | ? fir::runtime::getIORuntimeFunc<mkIOKey(CheckUnitNumberInRange64)>( |
1794 | loc, builder) |
1795 | : fir::runtime::getIORuntimeFunc<mkIOKey( |
1796 | CheckUnitNumberInRange128)>(loc, builder); |
1797 | mlir::FunctionType funcTy = check.getFunctionType(); |
1798 | llvm::SmallVector<mlir::Value> args; |
1799 | args.push_back(builder.createConvert(loc, funcTy.getInput(0), rawUnit)); |
1800 | args.push_back(builder.createBool(loc, csi.hasErrorConditionSpec())); |
1801 | if (csi.ioMsg) { |
1802 | args.push_back(builder.createConvert(loc, funcTy.getInput(2), |
1803 | fir::getBase(*csi.ioMsg))); |
1804 | args.push_back(builder.createConvert(loc, funcTy.getInput(3), |
1805 | fir::getLen(*csi.ioMsg))); |
1806 | } else { |
1807 | args.push_back(builder.createNullConstant(loc, funcTy.getInput(2))); |
1808 | args.push_back( |
1809 | fir::factory::createZeroValue(builder, loc, funcTy.getInput(3))); |
1810 | } |
1811 | mlir::Value file = locToFilename(converter, loc, funcTy.getInput(4)); |
1812 | mlir::Value line = locToLineNo(converter, loc, funcTy.getInput(5)); |
1813 | args.push_back(file); |
1814 | args.push_back(line); |
1815 | auto checkCall = builder.create<fir::CallOp>(loc, check, args); |
1816 | if (csi.hasErrorConditionSpec()) { |
1817 | mlir::Value iostat = checkCall.getResult(0); |
1818 | mlir::Type iostatTy = iostat.getType(); |
1819 | mlir::Value zero = fir::factory::createZeroValue(builder, loc, iostatTy); |
1820 | mlir::Value unitIsOK = builder.create<mlir::arith::CmpIOp>( |
1821 | loc, mlir::arith::CmpIPredicate::eq, iostat, zero); |
1822 | auto ifOp = builder.create<fir::IfOp>(loc, iostatTy, unitIsOK, |
1823 | /*withElseRegion=*/true); |
1824 | builder.setInsertionPointToStart(&ifOp.getElseRegion().front()); |
1825 | builder.create<fir::ResultOp>(loc, iostat); |
1826 | builder.setInsertionPointToStart(&ifOp.getThenRegion().front()); |
1827 | stmtCtx.pushScope(); |
1828 | csi.bigUnitIfOp = ifOp; |
1829 | } |
1830 | } |
1831 | return builder.createConvert(loc, ty, rawUnit); |
1832 | } |
1833 | |
1834 | static mlir::Value genIOUnit(Fortran::lower::AbstractConverter &converter, |
1835 | mlir::Location loc, |
1836 | const Fortran::parser::IoUnit *iounit, |
1837 | mlir::Type ty, ConditionSpecInfo &csi, |
1838 | Fortran::lower::StatementContext &stmtCtx, |
1839 | int defaultUnitNumber) { |
1840 | auto &builder = converter.getFirOpBuilder(); |
1841 | if (iounit) |
1842 | if (auto *e = |
1843 | std::get_if<Fortran::common::Indirection<Fortran::parser::Expr>>( |
1844 | &iounit->u)) |
1845 | return genIOUnitNumber(converter, loc, Fortran::semantics::GetExpr(*e), |
1846 | ty, csi, stmtCtx); |
1847 | return builder.create<mlir::arith::ConstantOp>( |
1848 | loc, builder.getIntegerAttr(ty, defaultUnitNumber)); |
1849 | } |
1850 | |
1851 | template <typename A> |
1852 | static mlir::Value |
1853 | getIOUnit(Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
1854 | const A &stmt, mlir::Type ty, ConditionSpecInfo &csi, |
1855 | Fortran::lower::StatementContext &stmtCtx, int defaultUnitNumber) { |
1856 | const Fortran::parser::IoUnit *iounit = |
1857 | stmt.iounit ? &*stmt.iounit : getIOControl<Fortran::parser::IoUnit>(stmt); |
1858 | return genIOUnit(converter, loc, iounit, ty, csi, stmtCtx, defaultUnitNumber); |
1859 | } |
1860 | //===----------------------------------------------------------------------===// |
1861 | // Generators for each IO statement type. |
1862 | //===----------------------------------------------------------------------===// |
1863 | |
1864 | template <typename K, typename S> |
1865 | static mlir::Value genBasicIOStmt(Fortran::lower::AbstractConverter &converter, |
1866 | const S &stmt) { |
1867 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
1868 | Fortran::lower::StatementContext stmtCtx; |
1869 | mlir::Location loc = converter.getCurrentLocation(); |
1870 | ConditionSpecInfo csi = lowerErrorSpec(converter, loc, stmt.v); |
1871 | mlir::func::FuncOp beginFunc = |
1872 | fir::runtime::getIORuntimeFunc<K>(loc, builder); |
1873 | mlir::FunctionType beginFuncTy = beginFunc.getFunctionType(); |
1874 | mlir::Value unit = genIOUnitNumber( |
1875 | converter, loc, getExpr<Fortran::parser::FileUnitNumber>(stmt), |
1876 | beginFuncTy.getInput(0), csi, stmtCtx); |
1877 | mlir::Value un = builder.createConvert(loc, beginFuncTy.getInput(0), unit); |
1878 | mlir::Value file = locToFilename(converter, loc, beginFuncTy.getInput(1)); |
1879 | mlir::Value line = locToLineNo(converter, loc, beginFuncTy.getInput(2)); |
1880 | auto call = builder.create<fir::CallOp>(loc, beginFunc, |
1881 | mlir::ValueRange{un, file, line}); |
1882 | mlir::Value cookie = call.getResult(0); |
1883 | genConditionHandlerCall(converter, loc, cookie, stmt.v, csi); |
1884 | mlir::Value ok; |
1885 | auto insertPt = builder.saveInsertionPoint(); |
1886 | threadSpecs(converter, loc, cookie, stmt.v, csi.hasErrorConditionSpec(), ok); |
1887 | builder.restoreInsertionPoint(insertPt); |
1888 | return genEndIO(converter, converter.getCurrentLocation(), cookie, csi, |
1889 | stmtCtx); |
1890 | } |
1891 | |
1892 | mlir::Value Fortran::lower::genBackspaceStatement( |
1893 | Fortran::lower::AbstractConverter &converter, |
1894 | const Fortran::parser::BackspaceStmt &stmt) { |
1895 | return genBasicIOStmt<mkIOKey(BeginBackspace)>(converter, stmt); |
1896 | } |
1897 | |
1898 | mlir::Value Fortran::lower::genEndfileStatement( |
1899 | Fortran::lower::AbstractConverter &converter, |
1900 | const Fortran::parser::EndfileStmt &stmt) { |
1901 | return genBasicIOStmt<mkIOKey(BeginEndfile)>(converter, stmt); |
1902 | } |
1903 | |
1904 | mlir::Value |
1905 | Fortran::lower::genFlushStatement(Fortran::lower::AbstractConverter &converter, |
1906 | const Fortran::parser::FlushStmt &stmt) { |
1907 | return genBasicIOStmt<mkIOKey(BeginFlush)>(converter, stmt); |
1908 | } |
1909 | |
1910 | mlir::Value |
1911 | Fortran::lower::genRewindStatement(Fortran::lower::AbstractConverter &converter, |
1912 | const Fortran::parser::RewindStmt &stmt) { |
1913 | return genBasicIOStmt<mkIOKey(BeginRewind)>(converter, stmt); |
1914 | } |
1915 | |
1916 | static mlir::Value |
1917 | genNewunitSpec(Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
1918 | mlir::Value cookie, |
1919 | const std::list<Fortran::parser::ConnectSpec> &specList) { |
1920 | for (const auto &spec : specList) |
1921 | if (auto *newunit = |
1922 | std::get_if<Fortran::parser::ConnectSpec::Newunit>(&spec.u)) { |
1923 | Fortran::lower::StatementContext stmtCtx; |
1924 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
1925 | mlir::func::FuncOp ioFunc = |
1926 | fir::runtime::getIORuntimeFunc<mkIOKey(GetNewUnit)>(loc, builder); |
1927 | mlir::FunctionType ioFuncTy = ioFunc.getFunctionType(); |
1928 | const auto *var = Fortran::semantics::GetExpr(newunit->v); |
1929 | mlir::Value addr = builder.createConvert( |
1930 | loc, ioFuncTy.getInput(1), |
1931 | fir::getBase(converter.genExprAddr(loc, var, stmtCtx))); |
1932 | auto kind = builder.createIntegerConstant(loc, ioFuncTy.getInput(2), |
1933 | var->GetType().value().kind()); |
1934 | llvm::SmallVector<mlir::Value> ioArgs = {cookie, addr, kind}; |
1935 | return builder.create<fir::CallOp>(loc, ioFunc, ioArgs).getResult(0); |
1936 | } |
1937 | llvm_unreachable("missing Newunit spec"); |
1938 | } |
1939 | |
1940 | mlir::Value |
1941 | Fortran::lower::genOpenStatement(Fortran::lower::AbstractConverter &converter, |
1942 | const Fortran::parser::OpenStmt &stmt) { |
1943 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
1944 | Fortran::lower::StatementContext stmtCtx; |
1945 | mlir::func::FuncOp beginFunc; |
1946 | llvm::SmallVector<mlir::Value> beginArgs; |
1947 | mlir::Location loc = converter.getCurrentLocation(); |
1948 | ConditionSpecInfo csi = lowerErrorSpec(converter, loc, stmt.v); |
1949 | bool hasNewunitSpec = false; |
1950 | if (hasSpec<Fortran::parser::FileUnitNumber>(stmt)) { |
1951 | beginFunc = |
1952 | fir::runtime::getIORuntimeFunc<mkIOKey(BeginOpenUnit)>(loc, builder); |
1953 | mlir::FunctionType beginFuncTy = beginFunc.getFunctionType(); |
1954 | mlir::Value unit = genIOUnitNumber( |
1955 | converter, loc, getExpr<Fortran::parser::FileUnitNumber>(stmt), |
1956 | beginFuncTy.getInput(0), csi, stmtCtx); |
1957 | beginArgs.push_back(unit); |
1958 | beginArgs.push_back(locToFilename(converter, loc, beginFuncTy.getInput(1))); |
1959 | beginArgs.push_back(locToLineNo(converter, loc, beginFuncTy.getInput(2))); |
1960 | } else { |
1961 | hasNewunitSpec = hasSpec<Fortran::parser::ConnectSpec::Newunit>(stmt); |
1962 | assert(hasNewunitSpec && "missing unit specifier"); |
1963 | beginFunc = |
1964 | fir::runtime::getIORuntimeFunc<mkIOKey(BeginOpenNewUnit)>(loc, builder); |
1965 | mlir::FunctionType beginFuncTy = beginFunc.getFunctionType(); |
1966 | beginArgs.push_back(locToFilename(converter, loc, beginFuncTy.getInput(0))); |
1967 | beginArgs.push_back(locToLineNo(converter, loc, beginFuncTy.getInput(1))); |
1968 | } |
1969 | auto cookie = |
1970 | builder.create<fir::CallOp>(loc, beginFunc, beginArgs).getResult(0); |
1971 | genConditionHandlerCall(converter, loc, cookie, stmt.v, csi); |
1972 | mlir::Value ok; |
1973 | auto insertPt = builder.saveInsertionPoint(); |
1974 | threadSpecs(converter, loc, cookie, stmt.v, csi.hasErrorConditionSpec(), ok); |
1975 | if (hasNewunitSpec) |
1976 | genNewunitSpec(converter, loc, cookie, stmt.v); |
1977 | builder.restoreInsertionPoint(insertPt); |
1978 | return genEndIO(converter, loc, cookie, csi, stmtCtx); |
1979 | } |
1980 | |
1981 | mlir::Value |
1982 | Fortran::lower::genCloseStatement(Fortran::lower::AbstractConverter &converter, |
1983 | const Fortran::parser::CloseStmt &stmt) { |
1984 | return genBasicIOStmt<mkIOKey(BeginClose)>(converter, stmt); |
1985 | } |
1986 | |
1987 | mlir::Value |
1988 | Fortran::lower::genWaitStatement(Fortran::lower::AbstractConverter &converter, |
1989 | const Fortran::parser::WaitStmt &stmt) { |
1990 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
1991 | Fortran::lower::StatementContext stmtCtx; |
1992 | mlir::Location loc = converter.getCurrentLocation(); |
1993 | ConditionSpecInfo csi = lowerErrorSpec(converter, loc, stmt.v); |
1994 | bool hasId = hasSpec<Fortran::parser::IdExpr>(stmt); |
1995 | mlir::func::FuncOp beginFunc = |
1996 | hasId |
1997 | ? fir::runtime::getIORuntimeFunc<mkIOKey(BeginWait)>(loc, builder) |
1998 | : fir::runtime::getIORuntimeFunc<mkIOKey(BeginWaitAll)>(loc, builder); |
1999 | mlir::FunctionType beginFuncTy = beginFunc.getFunctionType(); |
2000 | mlir::Value unit = genIOUnitNumber( |
2001 | converter, loc, getExpr<Fortran::parser::FileUnitNumber>(stmt), |
2002 | beginFuncTy.getInput(0), csi, stmtCtx); |
2003 | llvm::SmallVector<mlir::Value> args{unit}; |
2004 | if (hasId) { |
2005 | mlir::Value id = fir::getBase(converter.genExprValue( |
2006 | loc, getExpr<Fortran::parser::IdExpr>(stmt), stmtCtx)); |
2007 | args.push_back(builder.createConvert(loc, beginFuncTy.getInput(1), id)); |
2008 | args.push_back(locToFilename(converter, loc, beginFuncTy.getInput(2))); |
2009 | args.push_back(locToLineNo(converter, loc, beginFuncTy.getInput(3))); |
2010 | } else { |
2011 | args.push_back(locToFilename(converter, loc, beginFuncTy.getInput(1))); |
2012 | args.push_back(locToLineNo(converter, loc, beginFuncTy.getInput(2))); |
2013 | } |
2014 | auto cookie = builder.create<fir::CallOp>(loc, beginFunc, args).getResult(0); |
2015 | genConditionHandlerCall(converter, loc, cookie, stmt.v, csi); |
2016 | return genEndIO(converter, converter.getCurrentLocation(), cookie, csi, |
2017 | stmtCtx); |
2018 | } |
2019 | |
2020 | //===----------------------------------------------------------------------===// |
2021 | // Data transfer statements. |
2022 | // |
2023 | // There are several dimensions to the API with regard to data transfer |
2024 | // statements that need to be considered. |
2025 | // |
2026 | // - input (READ) vs. output (WRITE, PRINT) |
2027 | // - unformatted vs. formatted vs. list vs. namelist |
2028 | // - synchronous vs. asynchronous |
2029 | // - external vs. internal |
2030 | //===----------------------------------------------------------------------===// |
2031 | |
2032 | // Get the begin data transfer IO function to call for the given values. |
2033 | template <bool isInput> |
2034 | mlir::func::FuncOp |
2035 | getBeginDataTransferFunc(mlir::Location loc, fir::FirOpBuilder &builder, |
2036 | bool isFormatted, bool isListOrNml, bool isInternal, |
2037 | bool isInternalWithDesc) { |
2038 | if constexpr (isInput) { |
2039 | if (isFormatted || isListOrNml) { |
2040 | if (isInternal) { |
2041 | if (isInternalWithDesc) { |
2042 | if (isListOrNml) |
2043 | return fir::runtime::getIORuntimeFunc<mkIOKey( |
2044 | BeginInternalArrayListInput)>(loc, builder); |
2045 | return fir::runtime::getIORuntimeFunc<mkIOKey( |
2046 | BeginInternalArrayFormattedInput)>(loc, builder); |
2047 | } |
2048 | if (isListOrNml) |
2049 | return fir::runtime::getIORuntimeFunc<mkIOKey( |
2050 | BeginInternalListInput)>(loc, builder); |
2051 | return fir::runtime::getIORuntimeFunc<mkIOKey( |
2052 | BeginInternalFormattedInput)>(loc, builder); |
2053 | } |
2054 | if (isListOrNml) |
2055 | return fir::runtime::getIORuntimeFunc<mkIOKey(BeginExternalListInput)>( |
2056 | loc, builder); |
2057 | return fir::runtime::getIORuntimeFunc<mkIOKey( |
2058 | BeginExternalFormattedInput)>(loc, builder); |
2059 | } |
2060 | return fir::runtime::getIORuntimeFunc<mkIOKey(BeginUnformattedInput)>( |
2061 | loc, builder); |
2062 | } else { |
2063 | if (isFormatted || isListOrNml) { |
2064 | if (isInternal) { |
2065 | if (isInternalWithDesc) { |
2066 | if (isListOrNml) |
2067 | return fir::runtime::getIORuntimeFunc<mkIOKey( |
2068 | BeginInternalArrayListOutput)>(loc, builder); |
2069 | return fir::runtime::getIORuntimeFunc<mkIOKey( |
2070 | BeginInternalArrayFormattedOutput)>(loc, builder); |
2071 | } |
2072 | if (isListOrNml) |
2073 | return fir::runtime::getIORuntimeFunc<mkIOKey( |
2074 | BeginInternalListOutput)>(loc, builder); |
2075 | return fir::runtime::getIORuntimeFunc<mkIOKey( |
2076 | BeginInternalFormattedOutput)>(loc, builder); |
2077 | } |
2078 | if (isListOrNml) |
2079 | return fir::runtime::getIORuntimeFunc<mkIOKey(BeginExternalListOutput)>( |
2080 | loc, builder); |
2081 | return fir::runtime::getIORuntimeFunc<mkIOKey( |
2082 | BeginExternalFormattedOutput)>(loc, builder); |
2083 | } |
2084 | return fir::runtime::getIORuntimeFunc<mkIOKey(BeginUnformattedOutput)>( |
2085 | loc, builder); |
2086 | } |
2087 | } |
2088 | |
2089 | /// Generate the arguments of a begin data transfer statement call. |
2090 | template <bool hasIOCtrl, int defaultUnitNumber, typename A> |
2091 | void genBeginDataTransferCallArgs( |
2092 | llvm::SmallVectorImpl<mlir::Value> &ioArgs, |
2093 | Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
2094 | const A &stmt, mlir::FunctionType ioFuncTy, bool isFormatted, |
2095 | bool isListOrNml, [[maybe_unused]] bool isInternal, |
2096 | const std::optional<fir::ExtendedValue> &descRef, ConditionSpecInfo &csi, |
2097 | Fortran::lower::StatementContext &stmtCtx) { |
2098 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
2099 | auto maybeGetFormatArgs = [&]() { |
2100 | if (!isFormatted || isListOrNml) |
2101 | return; |
2102 | std::tuple triple = |
2103 | getFormat(converter, loc, stmt, ioFuncTy.getInput(ioArgs.size()), |
2104 | ioFuncTy.getInput(ioArgs.size() + 1), stmtCtx); |
2105 | mlir::Value address = std::get<0>(triple); |
2106 | mlir::Value length = std::get<1>(triple); |
2107 | if (length) { |
2108 | // Scalar format: string arg + length arg; no format descriptor arg |
2109 | ioArgs.push_back(address); // format string |
2110 | ioArgs.push_back(length); // format length |
2111 | ioArgs.push_back( |
2112 | builder.createNullConstant(loc, ioFuncTy.getInput(ioArgs.size()))); |
2113 | return; |
2114 | } |
2115 | // Array format: no string arg, no length arg; format descriptor arg |
2116 | ioArgs.push_back( |
2117 | builder.createNullConstant(loc, ioFuncTy.getInput(ioArgs.size()))); |
2118 | ioArgs.push_back( |
2119 | builder.createNullConstant(loc, ioFuncTy.getInput(ioArgs.size()))); |
2120 | ioArgs.push_back( // format descriptor |
2121 | builder.createConvert(loc, ioFuncTy.getInput(ioArgs.size()), address)); |
2122 | }; |
2123 | if constexpr (hasIOCtrl) { // READ or WRITE |
2124 | if (isInternal) { |
2125 | // descriptor or scalar variable; maybe explicit format; scratch area |
2126 | if (descRef) { |
2127 | mlir::Value desc = builder.createBox(loc, *descRef); |
2128 | ioArgs.push_back( |
2129 | builder.createConvert(loc, ioFuncTy.getInput(ioArgs.size()), desc)); |
2130 | } else { |
2131 | std::tuple<mlir::Value, mlir::Value> pair = |
2132 | getBuffer(converter, loc, stmt, ioFuncTy.getInput(ioArgs.size()), |
2133 | ioFuncTy.getInput(ioArgs.size() + 1), stmtCtx); |
2134 | ioArgs.push_back(std::get<0>(pair)); // scalar character variable |
2135 | ioArgs.push_back(std::get<1>(pair)); // character length |
2136 | } |
2137 | maybeGetFormatArgs(); |
2138 | ioArgs.push_back( // internal scratch area buffer |
2139 | getDefaultScratch(builder, loc, ioFuncTy.getInput(ioArgs.size()))); |
2140 | ioArgs.push_back( // buffer length |
2141 | getDefaultScratchLen(builder, loc, ioFuncTy.getInput(ioArgs.size()))); |
2142 | } else { // external IO - maybe explicit format; unit |
2143 | maybeGetFormatArgs(); |
2144 | ioArgs.push_back(getIOUnit(converter, loc, stmt, |
2145 | ioFuncTy.getInput(ioArgs.size()), csi, stmtCtx, |
2146 | defaultUnitNumber)); |
2147 | } |
2148 | } else { // PRINT - maybe explicit format; default unit |
2149 | maybeGetFormatArgs(); |
2150 | ioArgs.push_back(builder.create<mlir::arith::ConstantOp>( |
2151 | loc, builder.getIntegerAttr(ioFuncTy.getInput(ioArgs.size()), |
2152 | defaultUnitNumber))); |
2153 | } |
2154 | // File name and line number are always the last two arguments. |
2155 | ioArgs.push_back( |
2156 | locToFilename(converter, loc, ioFuncTy.getInput(ioArgs.size()))); |
2157 | ioArgs.push_back( |
2158 | locToLineNo(converter, loc, ioFuncTy.getInput(ioArgs.size()))); |
2159 | } |
2160 | |
2161 | template <bool isInput, bool hasIOCtrl = true, typename A> |
2162 | static mlir::Value |
2163 | genDataTransferStmt(Fortran::lower::AbstractConverter &converter, |
2164 | const A &stmt) { |
2165 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
2166 | Fortran::lower::StatementContext stmtCtx; |
2167 | mlir::Location loc = converter.getCurrentLocation(); |
2168 | const bool isFormatted = isDataTransferFormatted(stmt); |
2169 | const bool isList = isFormatted ? isDataTransferList(stmt) : false; |
2170 | const bool isInternal = isDataTransferInternal(stmt); |
2171 | std::optional<fir::ExtendedValue> descRef = |
2172 | isInternal ? maybeGetInternalIODescriptor(converter, loc, stmt, stmtCtx) |
2173 | : std::nullopt; |
2174 | const bool isInternalWithDesc = descRef.has_value(); |
2175 | const bool isNml = isDataTransferNamelist(stmt); |
2176 | // Flang runtime currently implement asynchronous IO synchronously, so |
2177 | // asynchronous IO statements are lowered as regular IO statements |
2178 | // (except that GetAsynchronousId may be called to set the ID variable |
2179 | // and SetAsynchronous will be call to tell the runtime that this is supposed |
2180 | // to be (or not) an asynchronous IO statements). |
2181 | |
2182 | // Generate an EnableHandlers call and remaining specifier calls. |
2183 | ConditionSpecInfo csi; |
2184 | if constexpr (hasIOCtrl) { |
2185 | csi = lowerErrorSpec(converter, loc, stmt.controls); |
2186 | } |
2187 | |
2188 | // Generate the begin data transfer function call. |
2189 | mlir::func::FuncOp ioFunc = getBeginDataTransferFunc<isInput>( |
2190 | loc, builder, isFormatted, isList || isNml, isInternal, |
2191 | isInternalWithDesc); |
2192 | llvm::SmallVector<mlir::Value> ioArgs; |
2193 | genBeginDataTransferCallArgs< |
2194 | hasIOCtrl, isInput ? Fortran::runtime::io::DefaultInputUnit |
2195 | : Fortran::runtime::io::DefaultOutputUnit>( |
2196 | ioArgs, converter, loc, stmt, ioFunc.getFunctionType(), isFormatted, |
2197 | isList || isNml, isInternal, descRef, csi, stmtCtx); |
2198 | mlir::Value cookie = |
2199 | builder.create<fir::CallOp>(loc, ioFunc, ioArgs).getResult(0); |
2200 | |
2201 | auto insertPt = builder.saveInsertionPoint(); |
2202 | mlir::Value ok; |
2203 | if constexpr (hasIOCtrl) { |
2204 | genConditionHandlerCall(converter, loc, cookie, stmt.controls, csi); |
2205 | threadSpecs(converter, loc, cookie, stmt.controls, |
2206 | csi.hasErrorConditionSpec(), ok); |
2207 | } |
2208 | |
2209 | // Generate data transfer list calls. |
2210 | if constexpr (isInput) { // READ |
2211 | if (isNml) |
2212 | genNamelistIO( |
2213 | converter, cookie, |
2214 | fir::runtime::getIORuntimeFunc<mkIOKey(InputNamelist)>(loc, builder), |
2215 | *getIOControl<Fortran::parser::Name>(stmt)->symbol, |
2216 | csi.hasTransferConditionSpec(), ok, stmtCtx); |
2217 | else |
2218 | genInputItemList(converter, cookie, stmt.items, isFormatted, |
2219 | csi.hasTransferConditionSpec(), ok, /*inLoop=*/false); |
2220 | } else if constexpr (std::is_same_v<A, Fortran::parser::WriteStmt>) { |
2221 | if (isNml) |
2222 | genNamelistIO( |
2223 | converter, cookie, |
2224 | fir::runtime::getIORuntimeFunc<mkIOKey(OutputNamelist)>(loc, builder), |
2225 | *getIOControl<Fortran::parser::Name>(stmt)->symbol, |
2226 | csi.hasTransferConditionSpec(), ok, stmtCtx); |
2227 | else |
2228 | genOutputItemList(converter, cookie, stmt.items, isFormatted, |
2229 | csi.hasTransferConditionSpec(), ok, |
2230 | /*inLoop=*/false); |
2231 | } else { // PRINT |
2232 | genOutputItemList(converter, cookie, std::get<1>(stmt.t), isFormatted, |
2233 | csi.hasTransferConditionSpec(), ok, |
2234 | /*inLoop=*/false); |
2235 | } |
2236 | |
2237 | builder.restoreInsertionPoint(insertPt); |
2238 | if constexpr (hasIOCtrl) { |
2239 | for (const auto &spec : stmt.controls) |
2240 | if (const auto *size = |
2241 | std::get_if<Fortran::parser::IoControlSpec::Size>(&spec.u)) { |
2242 | // This call is not conditional on the current IO status (ok) because |
2243 | // the size needs to be filled even if some error condition |
2244 | // (end-of-file...) was met during the input statement (in which case |
2245 | // the runtime may return zero for the size read). |
2246 | genIOGetVar<mkIOKey(GetSize)>(converter, loc, cookie, *size); |
2247 | } else if (const auto *idVar = |
2248 | std::get_if<Fortran::parser::IdVariable>(&spec.u)) { |
2249 | genIOGetVar<mkIOKey(GetAsynchronousId)>(converter, loc, cookie, *idVar); |
2250 | } |
2251 | } |
2252 | // Generate end statement call/s. |
2253 | mlir::Value result = genEndIO(converter, loc, cookie, csi, stmtCtx); |
2254 | stmtCtx.finalizeAndReset(); |
2255 | return result; |
2256 | } |
2257 | |
2258 | void Fortran::lower::genPrintStatement( |
2259 | Fortran::lower::AbstractConverter &converter, |
2260 | const Fortran::parser::PrintStmt &stmt) { |
2261 | // PRINT does not take an io-control-spec. It only has a format specifier, so |
2262 | // it is a simplified case of WRITE. |
2263 | genDataTransferStmt</*isInput=*/false, /*ioCtrl=*/false>(converter, stmt); |
2264 | } |
2265 | |
2266 | mlir::Value |
2267 | Fortran::lower::genWriteStatement(Fortran::lower::AbstractConverter &converter, |
2268 | const Fortran::parser::WriteStmt &stmt) { |
2269 | return genDataTransferStmt</*isInput=*/false>(converter, stmt); |
2270 | } |
2271 | |
2272 | mlir::Value |
2273 | Fortran::lower::genReadStatement(Fortran::lower::AbstractConverter &converter, |
2274 | const Fortran::parser::ReadStmt &stmt) { |
2275 | return genDataTransferStmt</*isInput=*/true>(converter, stmt); |
2276 | } |
2277 | |
2278 | /// Get the file expression from the inquire spec list. Also return if the |
2279 | /// expression is a file name. |
2280 | static std::pair<const Fortran::lower::SomeExpr *, bool> |
2281 | getInquireFileExpr(const std::list<Fortran::parser::InquireSpec> *stmt) { |
2282 | if (!stmt) |
2283 | return {nullptr, /*filename?=*/false}; |
2284 | for (const Fortran::parser::InquireSpec &spec : *stmt) { |
2285 | if (auto *f = std::get_if<Fortran::parser::FileUnitNumber>(&spec.u)) |
2286 | return {Fortran::semantics::GetExpr(*f), /*filename?=*/false}; |
2287 | if (auto *f = std::get_if<Fortran::parser::FileNameExpr>(&spec.u)) |
2288 | return {Fortran::semantics::GetExpr(*f), /*filename?=*/true}; |
2289 | } |
2290 | // semantics should have already caught this condition |
2291 | llvm::report_fatal_error("inquire spec must have a file"); |
2292 | } |
2293 | |
2294 | /// Generate calls to the four distinct INQUIRE subhandlers. An INQUIRE may |
2295 | /// return values of type CHARACTER, INTEGER, or LOGICAL. There is one |
2296 | /// additional special case for INQUIRE with both PENDING and ID specifiers. |
2297 | template <typename A> |
2298 | static mlir::Value genInquireSpec(Fortran::lower::AbstractConverter &converter, |
2299 | mlir::Location loc, mlir::Value cookie, |
2300 | mlir::Value idExpr, const A &var, |
2301 | Fortran::lower::StatementContext &stmtCtx) { |
2302 | // default case: do nothing |
2303 | return {}; |
2304 | } |
2305 | /// Specialization for CHARACTER. |
2306 | template <> |
2307 | mlir::Value genInquireSpec<Fortran::parser::InquireSpec::CharVar>( |
2308 | Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
2309 | mlir::Value cookie, mlir::Value idExpr, |
2310 | const Fortran::parser::InquireSpec::CharVar &var, |
2311 | Fortran::lower::StatementContext &stmtCtx) { |
2312 | // IOMSG is handled with exception conditions |
2313 | if (std::get<Fortran::parser::InquireSpec::CharVar::Kind>(var.t) == |
2314 | Fortran::parser::InquireSpec::CharVar::Kind::Iomsg) |
2315 | return {}; |
2316 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
2317 | mlir::func::FuncOp specFunc = |
2318 | fir::runtime::getIORuntimeFunc<mkIOKey(InquireCharacter)>(loc, builder); |
2319 | mlir::FunctionType specFuncTy = specFunc.getFunctionType(); |
2320 | const auto *varExpr = Fortran::semantics::GetExpr( |
2321 | std::get<Fortran::parser::ScalarDefaultCharVariable>(var.t)); |
2322 | fir::ExtendedValue str = converter.genExprAddr(loc, varExpr, stmtCtx); |
2323 | llvm::SmallVector<mlir::Value> args = { |
2324 | builder.createConvert(loc, specFuncTy.getInput(0), cookie), |
2325 | builder.createIntegerConstant( |
2326 | loc, specFuncTy.getInput(1), |
2327 | Fortran::runtime::io::HashInquiryKeyword(std::string{ |
2328 | Fortran::parser::InquireSpec::CharVar::EnumToString( |
2329 | std::get<Fortran::parser::InquireSpec::CharVar::Kind>(var.t))} |
2330 | .c_str())), |
2331 | builder.createConvert(loc, specFuncTy.getInput(2), fir::getBase(str)), |
2332 | builder.createConvert(loc, specFuncTy.getInput(3), fir::getLen(str))}; |
2333 | return builder.create<fir::CallOp>(loc, specFunc, args).getResult(0); |
2334 | } |
2335 | /// Specialization for INTEGER. |
2336 | template <> |
2337 | mlir::Value genInquireSpec<Fortran::parser::InquireSpec::IntVar>( |
2338 | Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
2339 | mlir::Value cookie, mlir::Value idExpr, |
2340 | const Fortran::parser::InquireSpec::IntVar &var, |
2341 | Fortran::lower::StatementContext &stmtCtx) { |
2342 | // IOSTAT is handled with exception conditions |
2343 | if (std::get<Fortran::parser::InquireSpec::IntVar::Kind>(var.t) == |
2344 | Fortran::parser::InquireSpec::IntVar::Kind::Iostat) |
2345 | return {}; |
2346 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
2347 | mlir::func::FuncOp specFunc = |
2348 | fir::runtime::getIORuntimeFunc<mkIOKey(InquireInteger64)>(loc, builder); |
2349 | mlir::FunctionType specFuncTy = specFunc.getFunctionType(); |
2350 | const auto *varExpr = Fortran::semantics::GetExpr( |
2351 | std::get<Fortran::parser::ScalarIntVariable>(var.t)); |
2352 | mlir::Value addr = fir::getBase(converter.genExprAddr(loc, varExpr, stmtCtx)); |
2353 | mlir::Type eleTy = fir::dyn_cast_ptrEleTy(addr.getType()); |
2354 | if (!eleTy) |
2355 | fir::emitFatalError(loc, |
2356 | "internal error: expected a memory reference type"); |
2357 | auto width = mlir::cast<mlir::IntegerType>(eleTy).getWidth(); |
2358 | mlir::IndexType idxTy = builder.getIndexType(); |
2359 | mlir::Value kind = builder.createIntegerConstant(loc, idxTy, width / 8); |
2360 | llvm::SmallVector<mlir::Value> args = { |
2361 | builder.createConvert(loc, specFuncTy.getInput(0), cookie), |
2362 | builder.createIntegerConstant( |
2363 | loc, specFuncTy.getInput(1), |
2364 | Fortran::runtime::io::HashInquiryKeyword(std::string{ |
2365 | Fortran::parser::InquireSpec::IntVar::EnumToString( |
2366 | std::get<Fortran::parser::InquireSpec::IntVar::Kind>(var.t))} |
2367 | .c_str())), |
2368 | builder.createConvert(loc, specFuncTy.getInput(2), addr), |
2369 | builder.createConvert(loc, specFuncTy.getInput(3), kind)}; |
2370 | return builder.create<fir::CallOp>(loc, specFunc, args).getResult(0); |
2371 | } |
2372 | /// Specialization for LOGICAL and (PENDING + ID). |
2373 | template <> |
2374 | mlir::Value genInquireSpec<Fortran::parser::InquireSpec::LogVar>( |
2375 | Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
2376 | mlir::Value cookie, mlir::Value idExpr, |
2377 | const Fortran::parser::InquireSpec::LogVar &var, |
2378 | Fortran::lower::StatementContext &stmtCtx) { |
2379 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
2380 | auto logVarKind = std::get<Fortran::parser::InquireSpec::LogVar::Kind>(var.t); |
2381 | bool pendId = |
2382 | idExpr && |
2383 | logVarKind == Fortran::parser::InquireSpec::LogVar::Kind::Pending; |
2384 | mlir::func::FuncOp specFunc = |
2385 | pendId ? fir::runtime::getIORuntimeFunc<mkIOKey(InquirePendingId)>( |
2386 | loc, builder) |
2387 | : fir::runtime::getIORuntimeFunc<mkIOKey(InquireLogical)>(loc, |
2388 | builder); |
2389 | mlir::FunctionType specFuncTy = specFunc.getFunctionType(); |
2390 | mlir::Value addr = fir::getBase(converter.genExprAddr( |
2391 | loc, |
2392 | Fortran::semantics::GetExpr( |
2393 | std::get<Fortran::parser::Scalar< |
2394 | Fortran::parser::Logical<Fortran::parser::Variable>>>(var.t)), |
2395 | stmtCtx)); |
2396 | llvm::SmallVector<mlir::Value> args = { |
2397 | builder.createConvert(loc, specFuncTy.getInput(0), cookie)}; |
2398 | if (pendId) |
2399 | args.push_back(builder.createConvert(loc, specFuncTy.getInput(1), idExpr)); |
2400 | else |
2401 | args.push_back(builder.createIntegerConstant( |
2402 | loc, specFuncTy.getInput(1), |
2403 | Fortran::runtime::io::HashInquiryKeyword(std::string{ |
2404 | Fortran::parser::InquireSpec::LogVar::EnumToString(logVarKind)} |
2405 | .c_str()))); |
2406 | args.push_back(builder.createConvert(loc, specFuncTy.getInput(2), addr)); |
2407 | auto call = builder.create<fir::CallOp>(loc, specFunc, args); |
2408 | boolRefToLogical(loc, builder, addr); |
2409 | return call.getResult(0); |
2410 | } |
2411 | |
2412 | /// If there is an IdExpr in the list of inquire-specs, then lower it and return |
2413 | /// the resulting Value. Otherwise, return null. |
2414 | static mlir::Value |
2415 | lowerIdExpr(Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
2416 | const std::list<Fortran::parser::InquireSpec> &ispecs, |
2417 | Fortran::lower::StatementContext &stmtCtx) { |
2418 | for (const Fortran::parser::InquireSpec &spec : ispecs) |
2419 | if (mlir::Value v = Fortran::common::visit( |
2420 | Fortran::common::visitors{ |
2421 | [&](const Fortran::parser::IdExpr &idExpr) { |
2422 | return fir::getBase(converter.genExprValue( |
2423 | loc, Fortran::semantics::GetExpr(idExpr), stmtCtx)); |
2424 | }, |
2425 | [](const auto &) { return mlir::Value{}; }}, |
2426 | spec.u)) |
2427 | return v; |
2428 | return {}; |
2429 | } |
2430 | |
2431 | /// For each inquire-spec, build the appropriate call, threading the cookie. |
2432 | static void threadInquire(Fortran::lower::AbstractConverter &converter, |
2433 | mlir::Location loc, mlir::Value cookie, |
2434 | const std::list<Fortran::parser::InquireSpec> &ispecs, |
2435 | bool checkResult, mlir::Value &ok, |
2436 | Fortran::lower::StatementContext &stmtCtx) { |
2437 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
2438 | mlir::Value idExpr = lowerIdExpr(converter, loc, ispecs, stmtCtx); |
2439 | for (const Fortran::parser::InquireSpec &spec : ispecs) { |
2440 | makeNextConditionalOn(builder, loc, checkResult, ok); |
2441 | ok = Fortran::common::visit(Fortran::common::visitors{[&](const auto &x) { |
2442 | return genInquireSpec(converter, loc, cookie, |
2443 | idExpr, x, stmtCtx); |
2444 | }}, |
2445 | spec.u); |
2446 | } |
2447 | } |
2448 | |
2449 | mlir::Value Fortran::lower::genInquireStatement( |
2450 | Fortran::lower::AbstractConverter &converter, |
2451 | const Fortran::parser::InquireStmt &stmt) { |
2452 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
2453 | Fortran::lower::StatementContext stmtCtx; |
2454 | mlir::Location loc = converter.getCurrentLocation(); |
2455 | mlir::func::FuncOp beginFunc; |
2456 | llvm::SmallVector<mlir::Value> beginArgs; |
2457 | const auto *list = |
2458 | std::get_if<std::list<Fortran::parser::InquireSpec>>(&stmt.u); |
2459 | auto exprPair = getInquireFileExpr(list); |
2460 | auto inquireFileUnit = [&]() -> bool { |
2461 | return exprPair.first && !exprPair.second; |
2462 | }; |
2463 | auto inquireFileName = [&]() -> bool { |
2464 | return exprPair.first && exprPair.second; |
2465 | }; |
2466 | |
2467 | ConditionSpecInfo csi = |
2468 | list ? lowerErrorSpec(converter, loc, *list) : ConditionSpecInfo{}; |
2469 | |
2470 | // Make one of three BeginInquire calls. |
2471 | if (inquireFileUnit()) { |
2472 | // Inquire by unit -- [UNIT=]file-unit-number. |
2473 | beginFunc = |
2474 | fir::runtime::getIORuntimeFunc<mkIOKey(BeginInquireUnit)>(loc, builder); |
2475 | mlir::FunctionType beginFuncTy = beginFunc.getFunctionType(); |
2476 | mlir::Value unit = genIOUnitNumber(converter, loc, exprPair.first, |
2477 | beginFuncTy.getInput(0), csi, stmtCtx); |
2478 | beginArgs = {unit, locToFilename(converter, loc, beginFuncTy.getInput(1)), |
2479 | locToLineNo(converter, loc, beginFuncTy.getInput(2))}; |
2480 | } else if (inquireFileName()) { |
2481 | // Inquire by file -- FILE=file-name-expr. |
2482 | beginFunc = |
2483 | fir::runtime::getIORuntimeFunc<mkIOKey(BeginInquireFile)>(loc, builder); |
2484 | mlir::FunctionType beginFuncTy = beginFunc.getFunctionType(); |
2485 | fir::ExtendedValue file = |
2486 | converter.genExprAddr(loc, exprPair.first, stmtCtx); |
2487 | beginArgs = { |
2488 | builder.createConvert(loc, beginFuncTy.getInput(0), fir::getBase(file)), |
2489 | builder.createConvert(loc, beginFuncTy.getInput(1), fir::getLen(file)), |
2490 | locToFilename(converter, loc, beginFuncTy.getInput(2)), |
2491 | locToLineNo(converter, loc, beginFuncTy.getInput(3))}; |
2492 | } else { |
2493 | // Inquire by output list -- IOLENGTH=scalar-int-variable. |
2494 | const auto *ioLength = |
2495 | std::get_if<Fortran::parser::InquireStmt::Iolength>(&stmt.u); |
2496 | assert(ioLength && "must have an IOLENGTH specifier"); |
2497 | beginFunc = fir::runtime::getIORuntimeFunc<mkIOKey(BeginInquireIoLength)>( |
2498 | loc, builder); |
2499 | mlir::FunctionType beginFuncTy = beginFunc.getFunctionType(); |
2500 | beginArgs = {locToFilename(converter, loc, beginFuncTy.getInput(0)), |
2501 | locToLineNo(converter, loc, beginFuncTy.getInput(1))}; |
2502 | auto cookie = |
2503 | builder.create<fir::CallOp>(loc, beginFunc, beginArgs).getResult(0); |
2504 | mlir::Value ok; |
2505 | genOutputItemList( |
2506 | converter, cookie, |
2507 | std::get<std::list<Fortran::parser::OutputItem>>(ioLength->t), |
2508 | /*isFormatted=*/false, /*checkResult=*/false, ok, /*inLoop=*/false); |
2509 | auto *ioLengthVar = Fortran::semantics::GetExpr( |
2510 | std::get<Fortran::parser::ScalarIntVariable>(ioLength->t)); |
2511 | mlir::Value ioLengthVarAddr = |
2512 | fir::getBase(converter.genExprAddr(loc, ioLengthVar, stmtCtx)); |
2513 | llvm::SmallVector<mlir::Value> args = {cookie}; |
2514 | mlir::Value length = |
2515 | builder |
2516 | .create<fir::CallOp>( |
2517 | loc, |
2518 | fir::runtime::getIORuntimeFunc<mkIOKey(GetIoLength)>(loc, |
2519 | builder), |
2520 | args) |
2521 | .getResult(0); |
2522 | mlir::Value length1 = |
2523 | builder.createConvert(loc, converter.genType(*ioLengthVar), length); |
2524 | builder.create<fir::StoreOp>(loc, length1, ioLengthVarAddr); |
2525 | return genEndIO(converter, loc, cookie, csi, stmtCtx); |
2526 | } |
2527 | |
2528 | // Common handling for inquire by unit or file. |
2529 | assert(list && "inquire-spec list must be present"); |
2530 | auto cookie = |
2531 | builder.create<fir::CallOp>(loc, beginFunc, beginArgs).getResult(0); |
2532 | genConditionHandlerCall(converter, loc, cookie, *list, csi); |
2533 | // Handle remaining arguments in specifier list. |
2534 | mlir::Value ok; |
2535 | auto insertPt = builder.saveInsertionPoint(); |
2536 | threadInquire(converter, loc, cookie, *list, csi.hasErrorConditionSpec(), ok, |
2537 | stmtCtx); |
2538 | builder.restoreInsertionPoint(insertPt); |
2539 | // Generate end statement call. |
2540 | return genEndIO(converter, loc, cookie, csi, stmtCtx); |
2541 | } |
2542 |
Definitions
- newIOTable
- ConditionSpecInfo
- hasErrorConditionSpec
- hasTransferConditionSpec
- hasAnyConditionSpec
- getName
- getTypeModel
- getLength
- genEndIO
- makeNextConditionalOn
- getDefinedIoProcMap
- hasLocalDefinedIoProc
- getNonTbpDefinedIoTableAddr
- getNonTbpDefinedIoTableAddr
- getNamelistGroup
- genNamelistIO
- containsDerivedType
- getOutputFunc
- genOutputItemList
- getInputFunc
- boolRefToLogical
- createIoRuntimeCallForItem
- genInputItemList
- genIoLoop
- locToFilename
- locToLineNo
- getDefaultScratch
- getDefaultScratchLen
- genBuffer
- lowerStringLit
- lowerSourceTextAsStringLit
- genIntIOOption
- genCharIOOption
- genIOOption
- genIOGetVar
- hasX
- hasSpec
- getExpr
- threadSpecs
- lowerErrorSpec
- genConditionHandlerCall
- hasIOControl
- getIOControl
- formatIsActuallyNamelist
- isDataTransferFormatted
- isDataTransferList
- isDataTransferInternal
- getVariableBufferRequiredDescriptor
- maybeGetInternalIODescriptor
- isDataTransferNamelist
- lowerReferenceAsStringSelect
- genFormat
- getFormat
- getBuffer
- genIOUnitNumber
- genIOUnit
- getIOUnit
- genBasicIOStmt
- genBackspaceStatement
- genEndfileStatement
- genFlushStatement
- genRewindStatement
- genNewunitSpec
- genOpenStatement
- genCloseStatement
- genWaitStatement
- getBeginDataTransferFunc
Learn to use CMake with our Intro Training
Find out more