| 1 | //===-- IO.cpp -- IO statement lowering -----------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/ |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "flang/Lower/IO.h" |
| 14 | #include "flang/Common/uint128.h" |
| 15 | #include "flang/Evaluate/tools.h" |
| 16 | #include "flang/Lower/Allocatable.h" |
| 17 | #include "flang/Lower/Bridge.h" |
| 18 | #include "flang/Lower/CallInterface.h" |
| 19 | #include "flang/Lower/ConvertExpr.h" |
| 20 | #include "flang/Lower/ConvertVariable.h" |
| 21 | #include "flang/Lower/Mangler.h" |
| 22 | #include "flang/Lower/PFTBuilder.h" |
| 23 | #include "flang/Lower/Runtime.h" |
| 24 | #include "flang/Lower/StatementContext.h" |
| 25 | #include "flang/Lower/Support/Utils.h" |
| 26 | #include "flang/Lower/VectorSubscripts.h" |
| 27 | #include "flang/Optimizer/Builder/Character.h" |
| 28 | #include "flang/Optimizer/Builder/Complex.h" |
| 29 | #include "flang/Optimizer/Builder/FIRBuilder.h" |
| 30 | #include "flang/Optimizer/Builder/Runtime/RTBuilder.h" |
| 31 | #include "flang/Optimizer/Builder/Runtime/Stop.h" |
| 32 | #include "flang/Optimizer/Builder/Todo.h" |
| 33 | #include "flang/Optimizer/Dialect/FIRDialect.h" |
| 34 | #include "flang/Optimizer/Dialect/Support/FIRContext.h" |
| 35 | #include "flang/Optimizer/Support/InternalNames.h" |
| 36 | #include "flang/Parser/parse-tree.h" |
| 37 | #include "flang/Runtime/io-api.h" |
| 38 | #include "flang/Semantics/runtime-type-info.h" |
| 39 | #include "flang/Semantics/tools.h" |
| 40 | #include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h" |
| 41 | #include "llvm/Support/Debug.h" |
| 42 | #include <optional> |
| 43 | |
| 44 | #define DEBUG_TYPE "flang-lower-io" |
| 45 | |
| 46 | using namespace Fortran::runtime::io; |
| 47 | |
| 48 | #define mkIOKey(X) FirmkKey(IONAME(X)) |
| 49 | |
| 50 | namespace Fortran::lower { |
| 51 | /// Static table of IO runtime calls |
| 52 | /// |
| 53 | /// This logical map contains the name and type builder function for each IO |
| 54 | /// runtime function listed in the tuple. This table is fully constructed at |
| 55 | /// compile-time. Use the `mkIOKey` macro to access the table. |
| 56 | static constexpr std::tuple< |
| 57 | mkIOKey(BeginBackspace), mkIOKey(BeginClose), mkIOKey(BeginEndfile), |
| 58 | mkIOKey(BeginExternalFormattedInput), mkIOKey(BeginExternalFormattedOutput), |
| 59 | mkIOKey(BeginExternalListInput), mkIOKey(BeginExternalListOutput), |
| 60 | mkIOKey(BeginFlush), mkIOKey(BeginInquireFile), |
| 61 | mkIOKey(BeginInquireIoLength), mkIOKey(BeginInquireUnit), |
| 62 | mkIOKey(BeginInternalArrayFormattedInput), |
| 63 | mkIOKey(BeginInternalArrayFormattedOutput), |
| 64 | mkIOKey(BeginInternalArrayListInput), mkIOKey(BeginInternalArrayListOutput), |
| 65 | mkIOKey(BeginInternalFormattedInput), mkIOKey(BeginInternalFormattedOutput), |
| 66 | mkIOKey(BeginInternalListInput), mkIOKey(BeginInternalListOutput), |
| 67 | mkIOKey(BeginOpenNewUnit), mkIOKey(BeginOpenUnit), mkIOKey(BeginRewind), |
| 68 | mkIOKey(BeginUnformattedInput), mkIOKey(BeginUnformattedOutput), |
| 69 | mkIOKey(BeginWait), mkIOKey(BeginWaitAll), |
| 70 | mkIOKey(CheckUnitNumberInRange64), mkIOKey(CheckUnitNumberInRange128), |
| 71 | mkIOKey(EnableHandlers), mkIOKey(EndIoStatement), |
| 72 | mkIOKey(GetAsynchronousId), mkIOKey(GetIoLength), mkIOKey(GetIoMsg), |
| 73 | mkIOKey(GetNewUnit), mkIOKey(GetSize), mkIOKey(InputAscii), |
| 74 | mkIOKey(InputComplex32), mkIOKey(InputComplex64), mkIOKey(InputDerivedType), |
| 75 | mkIOKey(InputDescriptor), mkIOKey(InputInteger), mkIOKey(InputLogical), |
| 76 | mkIOKey(InputNamelist), mkIOKey(InputReal32), mkIOKey(InputReal64), |
| 77 | mkIOKey(InquireCharacter), mkIOKey(InquireInteger64), |
| 78 | mkIOKey(InquireLogical), mkIOKey(InquirePendingId), mkIOKey(OutputAscii), |
| 79 | mkIOKey(OutputComplex32), mkIOKey(OutputComplex64), |
| 80 | mkIOKey(OutputDerivedType), mkIOKey(OutputDescriptor), |
| 81 | mkIOKey(OutputInteger8), mkIOKey(OutputInteger16), mkIOKey(OutputInteger32), |
| 82 | mkIOKey(OutputInteger64), mkIOKey(OutputInteger128), mkIOKey(OutputLogical), |
| 83 | mkIOKey(OutputNamelist), mkIOKey(OutputReal32), mkIOKey(OutputReal64), |
| 84 | mkIOKey(SetAccess), mkIOKey(SetAction), mkIOKey(SetAdvance), |
| 85 | mkIOKey(SetAsynchronous), mkIOKey(SetBlank), mkIOKey(SetCarriagecontrol), |
| 86 | mkIOKey(SetConvert), mkIOKey(SetDecimal), mkIOKey(SetDelim), |
| 87 | mkIOKey(SetEncoding), mkIOKey(SetFile), mkIOKey(SetForm), mkIOKey(SetPad), |
| 88 | mkIOKey(SetPos), mkIOKey(SetPosition), mkIOKey(SetRec), mkIOKey(SetRecl), |
| 89 | mkIOKey(SetRound), mkIOKey(SetSign), mkIOKey(SetStatus)> |
| 90 | newIOTable; |
| 91 | } // namespace Fortran::lower |
| 92 | |
| 93 | namespace { |
| 94 | /// IO statements may require exceptional condition handling. A statement that |
| 95 | /// encounters an exceptional condition may branch to a label given on an ERR |
| 96 | /// (error), END (end-of-file), or EOR (end-of-record) specifier. An IOSTAT |
| 97 | /// specifier variable may be set to a value that indicates some condition, |
| 98 | /// and an IOMSG specifier variable may be set to a description of a condition. |
| 99 | struct ConditionSpecInfo { |
| 100 | const Fortran::lower::SomeExpr *ioStatExpr{}; |
| 101 | std::optional<fir::ExtendedValue> ioMsg; |
| 102 | bool hasErr{}; |
| 103 | bool hasEnd{}; |
| 104 | bool hasEor{}; |
| 105 | fir::IfOp bigUnitIfOp; |
| 106 | |
| 107 | /// Check for any condition specifier that applies to specifier processing. |
| 108 | bool hasErrorConditionSpec() const { return ioStatExpr != nullptr || hasErr; } |
| 109 | |
| 110 | /// Check for any condition specifier that applies to data transfer items |
| 111 | /// in a PRINT, READ, WRITE, or WAIT statement. (WAIT may be irrelevant.) |
| 112 | bool hasTransferConditionSpec() const { |
| 113 | return hasErrorConditionSpec() || hasEnd || hasEor; |
| 114 | } |
| 115 | |
| 116 | /// Check for any condition specifier, including IOMSG. |
| 117 | bool hasAnyConditionSpec() const { |
| 118 | return hasTransferConditionSpec() || ioMsg; |
| 119 | } |
| 120 | }; |
| 121 | } // namespace |
| 122 | |
| 123 | template <typename D> |
| 124 | static void genIoLoop(Fortran::lower::AbstractConverter &converter, |
| 125 | mlir::Value cookie, const D &ioImpliedDo, |
| 126 | bool isFormatted, bool checkResult, mlir::Value &ok, |
| 127 | bool inLoop); |
| 128 | |
| 129 | /// Helper function to retrieve the name of the IO function given the key `A` |
| 130 | template <typename A> |
| 131 | static constexpr const char *getName() { |
| 132 | return std::get<A>(Fortran::lower::newIOTable).name; |
| 133 | } |
| 134 | |
| 135 | /// Helper function to retrieve the type model signature builder of the IO |
| 136 | /// function as defined by the key `A` |
| 137 | template <typename A> |
| 138 | static constexpr fir::runtime::FuncTypeBuilderFunc getTypeModel() { |
| 139 | return std::get<A>(Fortran::lower::newIOTable).getTypeModel(); |
| 140 | } |
| 141 | |
| 142 | inline int64_t getLength(mlir::Type argTy) { |
| 143 | return mlir::cast<fir::SequenceType>(argTy).getShape()[0]; |
| 144 | } |
| 145 | |
| 146 | /// Generate calls to end an IO statement. Return the IOSTAT value, if any. |
| 147 | /// It is the caller's responsibility to generate branches on that value. |
| 148 | static mlir::Value genEndIO(Fortran::lower::AbstractConverter &converter, |
| 149 | mlir::Location loc, mlir::Value cookie, |
| 150 | ConditionSpecInfo &csi, |
| 151 | Fortran::lower::StatementContext &stmtCtx) { |
| 152 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 153 | if (csi.ioMsg) { |
| 154 | mlir::func::FuncOp getIoMsg = |
| 155 | fir::runtime::getIORuntimeFunc<mkIOKey(GetIoMsg)>(loc, builder); |
| 156 | builder.create<fir::CallOp>( |
| 157 | loc, getIoMsg, |
| 158 | mlir::ValueRange{ |
| 159 | cookie, |
| 160 | builder.createConvert(loc, getIoMsg.getFunctionType().getInput(1), |
| 161 | fir::getBase(*csi.ioMsg)), |
| 162 | builder.createConvert(loc, getIoMsg.getFunctionType().getInput(2), |
| 163 | fir::getLen(*csi.ioMsg))}); |
| 164 | } |
| 165 | mlir::func::FuncOp endIoStatement = |
| 166 | fir::runtime::getIORuntimeFunc<mkIOKey(EndIoStatement)>(loc, builder); |
| 167 | auto call = builder.create<fir::CallOp>(loc, endIoStatement, |
| 168 | mlir::ValueRange{cookie}); |
| 169 | mlir::Value iostat = call.getResult(0); |
| 170 | if (csi.bigUnitIfOp) { |
| 171 | stmtCtx.finalizeAndPop(); |
| 172 | builder.create<fir::ResultOp>(loc, iostat); |
| 173 | builder.setInsertionPointAfter(csi.bigUnitIfOp); |
| 174 | iostat = csi.bigUnitIfOp.getResult(0); |
| 175 | } |
| 176 | if (csi.ioStatExpr) { |
| 177 | mlir::Value ioStatVar = |
| 178 | fir::getBase(converter.genExprAddr(loc, csi.ioStatExpr, stmtCtx)); |
| 179 | mlir::Value ioStatResult = |
| 180 | builder.createConvert(loc, converter.genType(*csi.ioStatExpr), iostat); |
| 181 | builder.create<fir::StoreOp>(loc, ioStatResult, ioStatVar); |
| 182 | } |
| 183 | return csi.hasTransferConditionSpec() ? iostat : mlir::Value{}; |
| 184 | } |
| 185 | |
| 186 | /// Make the next call in the IO statement conditional on runtime result `ok`. |
| 187 | /// If a call returns `ok==false`, further suboperation calls for an IO |
| 188 | /// statement will be skipped. This may generate branch heavy, deeply nested |
| 189 | /// conditionals for IO statements with a large number of suboperations. |
| 190 | static void makeNextConditionalOn(fir::FirOpBuilder &builder, |
| 191 | mlir::Location loc, bool checkResult, |
| 192 | mlir::Value ok, bool inLoop = false) { |
| 193 | if (!checkResult || !ok) |
| 194 | // Either no IO calls need to be checked, or this will be the first call. |
| 195 | return; |
| 196 | |
| 197 | // A previous IO call for a statement returned the bool `ok`. If this call |
| 198 | // is in a fir.iterate_while loop, the result must be propagated up to the |
| 199 | // loop scope as an extra ifOp result. (The propagation is done in genIoLoop.) |
| 200 | mlir::TypeRange resTy; |
| 201 | // TypeRange does not own its contents, so make sure the the type object |
| 202 | // is live until the end of the function. |
| 203 | mlir::IntegerType boolTy = builder.getI1Type(); |
| 204 | if (inLoop) |
| 205 | resTy = boolTy; |
| 206 | auto ifOp = builder.create<fir::IfOp>(loc, resTy, ok, |
| 207 | /*withElseRegion=*/inLoop); |
| 208 | builder.setInsertionPointToStart(&ifOp.getThenRegion().front()); |
| 209 | } |
| 210 | |
| 211 | // Derived type symbols may each be mapped to up to 4 defined IO procedures. |
| 212 | using DefinedIoProcMap = std::multimap<const Fortran::semantics::Symbol *, |
| 213 | Fortran::semantics::NonTbpDefinedIo>; |
| 214 | |
| 215 | /// Get the current scope's non-type-bound defined IO procedures. |
| 216 | static DefinedIoProcMap |
| 217 | getDefinedIoProcMap(Fortran::lower::AbstractConverter &converter) { |
| 218 | const Fortran::semantics::Scope *scope = &converter.getCurrentScope(); |
| 219 | for (; !scope->IsGlobal(); scope = &scope->parent()) |
| 220 | if (scope->kind() == Fortran::semantics::Scope::Kind::MainProgram || |
| 221 | scope->kind() == Fortran::semantics::Scope::Kind::Subprogram || |
| 222 | scope->kind() == Fortran::semantics::Scope::Kind::BlockConstruct) |
| 223 | break; |
| 224 | return Fortran::semantics::CollectNonTbpDefinedIoGenericInterfaces(*scope, |
| 225 | false); |
| 226 | } |
| 227 | |
| 228 | /// Check a set of defined IO procedures for any procedure pointer or dummy |
| 229 | /// procedures. |
| 230 | static bool hasLocalDefinedIoProc(DefinedIoProcMap &definedIoProcMap) { |
| 231 | for (auto &iface : definedIoProcMap) { |
| 232 | const Fortran::semantics::Symbol *procSym = iface.second.subroutine; |
| 233 | if (!procSym) |
| 234 | continue; |
| 235 | procSym = &procSym->GetUltimate(); |
| 236 | if (Fortran::semantics::IsProcedurePointer(*procSym) || |
| 237 | Fortran::semantics::IsDummy(*procSym)) |
| 238 | return true; |
| 239 | } |
| 240 | return false; |
| 241 | } |
| 242 | |
| 243 | /// Retrieve or generate a runtime description of the non-type-bound defined |
| 244 | /// IO procedures in the current scope. If any procedure is a dummy or a |
| 245 | /// procedure pointer, the result is local. Otherwise the result is static. |
| 246 | /// If there are no procedures, return a scope-independent default table with |
| 247 | /// an empty procedure list, but with the `ignoreNonTbpEntries` flag set. The |
| 248 | /// form of the description is defined in runtime header file non-tbp-dio.h. |
| 249 | static mlir::Value |
| 250 | getNonTbpDefinedIoTableAddr(Fortran::lower::AbstractConverter &converter, |
| 251 | DefinedIoProcMap &definedIoProcMap) { |
| 252 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 253 | mlir::MLIRContext *context = builder.getContext(); |
| 254 | mlir::Location loc = converter.getCurrentLocation(); |
| 255 | mlir::Type refTy = fir::ReferenceType::get(mlir::NoneType::get(context)); |
| 256 | std::string suffix = ".nonTbpDefinedIoTable" ; |
| 257 | std::string tableMangleName = |
| 258 | definedIoProcMap.empty() |
| 259 | ? fir::NameUniquer::doGenerated("default" + suffix) |
| 260 | : converter.mangleName(suffix); |
| 261 | if (auto table = builder.getNamedGlobal(tableMangleName)) |
| 262 | return builder.createConvert( |
| 263 | loc, refTy, |
| 264 | builder.create<fir::AddrOfOp>(loc, table.resultType(), |
| 265 | table.getSymbol())); |
| 266 | |
| 267 | mlir::StringAttr linkOnce = builder.createLinkOnceLinkage(); |
| 268 | mlir::Type idxTy = builder.getIndexType(); |
| 269 | mlir::Type sizeTy = |
| 270 | fir::runtime::getModel<std::size_t>()(builder.getContext()); |
| 271 | mlir::Type intTy = fir::runtime::getModel<int>()(builder.getContext()); |
| 272 | mlir::Type boolTy = fir::runtime::getModel<bool>()(builder.getContext()); |
| 273 | mlir::Type listTy = fir::SequenceType::get( |
| 274 | definedIoProcMap.size(), |
| 275 | mlir::TupleType::get(context, {refTy, refTy, intTy, boolTy})); |
| 276 | mlir::Type tableTy = mlir::TupleType::get( |
| 277 | context, {sizeTy, fir::ReferenceType::get(listTy), boolTy}); |
| 278 | |
| 279 | // Define the list of NonTbpDefinedIo procedures. |
| 280 | bool tableIsLocal = |
| 281 | !definedIoProcMap.empty() && hasLocalDefinedIoProc(definedIoProcMap); |
| 282 | mlir::Value listAddr = |
| 283 | tableIsLocal ? builder.create<fir::AllocaOp>(loc, listTy) : mlir::Value{}; |
| 284 | std::string listMangleName = tableMangleName + ".list" ; |
| 285 | auto listFunc = [&](fir::FirOpBuilder &builder) { |
| 286 | mlir::Value list = builder.create<fir::UndefOp>(loc, listTy); |
| 287 | mlir::IntegerAttr intAttr[4]; |
| 288 | for (int i = 0; i < 4; ++i) |
| 289 | intAttr[i] = builder.getIntegerAttr(idxTy, i); |
| 290 | llvm::SmallVector<mlir::Attribute, 2> idx = {mlir::Attribute{}, |
| 291 | mlir::Attribute{}}; |
| 292 | int n0 = 0, n1; |
| 293 | auto insert = [&](mlir::Value val) { |
| 294 | idx[1] = intAttr[n1++]; |
| 295 | list = builder.create<fir::InsertValueOp>(loc, listTy, list, val, |
| 296 | builder.getArrayAttr(idx)); |
| 297 | }; |
| 298 | for (auto &iface : definedIoProcMap) { |
| 299 | idx[0] = builder.getIntegerAttr(idxTy, n0++); |
| 300 | n1 = 0; |
| 301 | // derived type description [const typeInfo::DerivedType &derivedType] |
| 302 | const Fortran::semantics::Symbol &dtSym = iface.first->GetUltimate(); |
| 303 | std::string dtName = converter.mangleName(dtSym); |
| 304 | insert(builder.createConvert( |
| 305 | loc, refTy, |
| 306 | builder.create<fir::AddrOfOp>( |
| 307 | loc, fir::ReferenceType::get(converter.genType(dtSym)), |
| 308 | builder.getSymbolRefAttr(dtName)))); |
| 309 | // defined IO procedure [void (*subroutine)()], may be null |
| 310 | const Fortran::semantics::Symbol *procSym = iface.second.subroutine; |
| 311 | if (procSym) { |
| 312 | procSym = &procSym->GetUltimate(); |
| 313 | if (Fortran::semantics::IsProcedurePointer(*procSym)) { |
| 314 | TODO(loc, "defined IO procedure pointers" ); |
| 315 | } else if (Fortran::semantics::IsDummy(*procSym)) { |
| 316 | Fortran::lower::StatementContext stmtCtx; |
| 317 | insert(builder.create<fir::BoxAddrOp>( |
| 318 | loc, refTy, |
| 319 | fir::getBase(converter.genExprAddr( |
| 320 | loc, |
| 321 | Fortran::lower::SomeExpr{ |
| 322 | Fortran::evaluate::ProcedureDesignator{*procSym}}, |
| 323 | stmtCtx)))); |
| 324 | } else { |
| 325 | mlir::func::FuncOp procDef = Fortran::lower::getOrDeclareFunction( |
| 326 | Fortran::evaluate::ProcedureDesignator{*procSym}, converter); |
| 327 | mlir::SymbolRefAttr nameAttr = |
| 328 | builder.getSymbolRefAttr(procDef.getSymName()); |
| 329 | insert(builder.createConvert( |
| 330 | loc, refTy, |
| 331 | builder.create<fir::AddrOfOp>(loc, procDef.getFunctionType(), |
| 332 | nameAttr))); |
| 333 | } |
| 334 | } else { |
| 335 | insert(builder.createNullConstant(loc, refTy)); |
| 336 | } |
| 337 | // defined IO variant, one of (read/write, formatted/unformatted) |
| 338 | // [common::DefinedIo definedIo] |
| 339 | insert(builder.createIntegerConstant( |
| 340 | loc, intTy, static_cast<int>(iface.second.definedIo))); |
| 341 | // polymorphic flag is set if first defined IO dummy arg is CLASS(T) |
| 342 | // [bool isDtvArgPolymorphic] |
| 343 | insert(builder.createIntegerConstant(loc, boolTy, |
| 344 | iface.second.isDtvArgPolymorphic)); |
| 345 | } |
| 346 | if (tableIsLocal) |
| 347 | builder.create<fir::StoreOp>(loc, list, listAddr); |
| 348 | else |
| 349 | builder.create<fir::HasValueOp>(loc, list); |
| 350 | }; |
| 351 | if (!definedIoProcMap.empty()) { |
| 352 | if (tableIsLocal) |
| 353 | listFunc(builder); |
| 354 | else |
| 355 | builder.createGlobalConstant(loc, listTy, listMangleName, listFunc, |
| 356 | linkOnce); |
| 357 | } |
| 358 | |
| 359 | // Define the NonTbpDefinedIoTable. |
| 360 | mlir::Value tableAddr = tableIsLocal |
| 361 | ? builder.create<fir::AllocaOp>(loc, tableTy) |
| 362 | : mlir::Value{}; |
| 363 | auto tableFunc = [&](fir::FirOpBuilder &builder) { |
| 364 | mlir::Value table = builder.create<fir::UndefOp>(loc, tableTy); |
| 365 | // list item count [std::size_t items] |
| 366 | table = builder.create<fir::InsertValueOp>( |
| 367 | loc, tableTy, table, |
| 368 | builder.createIntegerConstant(loc, sizeTy, definedIoProcMap.size()), |
| 369 | builder.getArrayAttr(builder.getIntegerAttr(idxTy, 0))); |
| 370 | // item list [const NonTbpDefinedIo *item] |
| 371 | if (definedIoProcMap.empty()) |
| 372 | listAddr = builder.createNullConstant(loc, builder.getRefType(listTy)); |
| 373 | else if (fir::GlobalOp list = builder.getNamedGlobal(listMangleName)) |
| 374 | listAddr = builder.create<fir::AddrOfOp>(loc, list.resultType(), |
| 375 | list.getSymbol()); |
| 376 | assert(listAddr && "missing namelist object list" ); |
| 377 | table = builder.create<fir::InsertValueOp>( |
| 378 | loc, tableTy, table, listAddr, |
| 379 | builder.getArrayAttr(builder.getIntegerAttr(idxTy, 1))); |
| 380 | // [bool ignoreNonTbpEntries] conservatively set to true |
| 381 | table = builder.create<fir::InsertValueOp>( |
| 382 | loc, tableTy, table, builder.createIntegerConstant(loc, boolTy, true), |
| 383 | builder.getArrayAttr(builder.getIntegerAttr(idxTy, 2))); |
| 384 | if (tableIsLocal) |
| 385 | builder.create<fir::StoreOp>(loc, table, tableAddr); |
| 386 | else |
| 387 | builder.create<fir::HasValueOp>(loc, table); |
| 388 | }; |
| 389 | if (tableIsLocal) { |
| 390 | tableFunc(builder); |
| 391 | } else { |
| 392 | fir::GlobalOp table = builder.createGlobal( |
| 393 | loc, tableTy, tableMangleName, |
| 394 | /*isConst=*/true, /*isTarget=*/false, tableFunc, linkOnce); |
| 395 | tableAddr = builder.create<fir::AddrOfOp>( |
| 396 | loc, fir::ReferenceType::get(tableTy), table.getSymbol()); |
| 397 | } |
| 398 | assert(tableAddr && "missing NonTbpDefinedIo table result" ); |
| 399 | return builder.createConvert(loc, refTy, tableAddr); |
| 400 | } |
| 401 | |
| 402 | static mlir::Value |
| 403 | getNonTbpDefinedIoTableAddr(Fortran::lower::AbstractConverter &converter) { |
| 404 | DefinedIoProcMap definedIoProcMap = getDefinedIoProcMap(converter); |
| 405 | return getNonTbpDefinedIoTableAddr(converter, definedIoProcMap); |
| 406 | } |
| 407 | |
| 408 | /// Retrieve or generate a runtime description of NAMELIST group \p symbol. |
| 409 | /// The form of the description is defined in runtime header file namelist.h. |
| 410 | /// Static descriptors are generated for global objects; local descriptors for |
| 411 | /// local objects. If all descriptors and defined IO procedures are static, |
| 412 | /// the NamelistGroup is static. |
| 413 | static mlir::Value |
| 414 | getNamelistGroup(Fortran::lower::AbstractConverter &converter, |
| 415 | const Fortran::semantics::Symbol &symbol, |
| 416 | Fortran::lower::StatementContext &stmtCtx) { |
| 417 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 418 | mlir::Location loc = converter.getCurrentLocation(); |
| 419 | std::string groupMangleName = converter.mangleName(symbol); |
| 420 | if (auto group = builder.getNamedGlobal(groupMangleName)) |
| 421 | return builder.create<fir::AddrOfOp>(loc, group.resultType(), |
| 422 | group.getSymbol()); |
| 423 | |
| 424 | const auto &details = |
| 425 | symbol.GetUltimate().get<Fortran::semantics::NamelistDetails>(); |
| 426 | mlir::MLIRContext *context = builder.getContext(); |
| 427 | mlir::StringAttr linkOnce = builder.createLinkOnceLinkage(); |
| 428 | mlir::Type idxTy = builder.getIndexType(); |
| 429 | mlir::Type sizeTy = |
| 430 | fir::runtime::getModel<std::size_t>()(builder.getContext()); |
| 431 | mlir::Type charRefTy = fir::ReferenceType::get(builder.getIntegerType(8)); |
| 432 | mlir::Type descRefTy = |
| 433 | fir::ReferenceType::get(fir::BoxType::get(mlir::NoneType::get(context))); |
| 434 | mlir::Type listTy = fir::SequenceType::get( |
| 435 | details.objects().size(), |
| 436 | mlir::TupleType::get(context, {charRefTy, descRefTy})); |
| 437 | mlir::Type groupTy = mlir::TupleType::get( |
| 438 | context, {charRefTy, sizeTy, fir::ReferenceType::get(listTy), |
| 439 | fir::ReferenceType::get(mlir::NoneType::get(context))}); |
| 440 | auto stringAddress = [&](const Fortran::semantics::Symbol &symbol) { |
| 441 | return fir::factory::createStringLiteral(builder, loc, |
| 442 | symbol.name().ToString() + '\0'); |
| 443 | }; |
| 444 | |
| 445 | // Define variable names, and static descriptors for global variables. |
| 446 | DefinedIoProcMap definedIoProcMap = getDefinedIoProcMap(converter); |
| 447 | bool groupIsLocal = hasLocalDefinedIoProc(definedIoProcMap); |
| 448 | stringAddress(symbol); |
| 449 | for (const Fortran::semantics::Symbol &s : details.objects()) { |
| 450 | stringAddress(s); |
| 451 | if (!Fortran::lower::symbolIsGlobal(s)) { |
| 452 | groupIsLocal = true; |
| 453 | continue; |
| 454 | } |
| 455 | // A global pointer or allocatable variable has a descriptor for typical |
| 456 | // accesses. Variables in multiple namelist groups may already have one. |
| 457 | // Create descriptors for other cases. |
| 458 | if (!IsAllocatableOrObjectPointer(&s)) { |
| 459 | std::string mangleName = |
| 460 | Fortran::lower::mangle::globalNamelistDescriptorName(s); |
| 461 | if (builder.getNamedGlobal(mangleName)) |
| 462 | continue; |
| 463 | const auto expr = Fortran::evaluate::AsGenericExpr(s); |
| 464 | fir::BoxType boxTy = |
| 465 | fir::BoxType::get(fir::PointerType::get(converter.genType(s))); |
| 466 | auto descFunc = [&](fir::FirOpBuilder &b) { |
| 467 | auto box = Fortran::lower::genInitialDataTarget( |
| 468 | converter, loc, boxTy, *expr, /*couldBeInEquivalence=*/true); |
| 469 | b.create<fir::HasValueOp>(loc, box); |
| 470 | }; |
| 471 | builder.createGlobalConstant(loc, boxTy, mangleName, descFunc, linkOnce); |
| 472 | } |
| 473 | } |
| 474 | |
| 475 | // Define the list of Items. |
| 476 | mlir::Value listAddr = |
| 477 | groupIsLocal ? builder.create<fir::AllocaOp>(loc, listTy) : mlir::Value{}; |
| 478 | std::string listMangleName = groupMangleName + ".list" ; |
| 479 | auto listFunc = [&](fir::FirOpBuilder &builder) { |
| 480 | mlir::Value list = builder.create<fir::UndefOp>(loc, listTy); |
| 481 | mlir::IntegerAttr zero = builder.getIntegerAttr(idxTy, 0); |
| 482 | mlir::IntegerAttr one = builder.getIntegerAttr(idxTy, 1); |
| 483 | llvm::SmallVector<mlir::Attribute, 2> idx = {mlir::Attribute{}, |
| 484 | mlir::Attribute{}}; |
| 485 | int n = 0; |
| 486 | for (const Fortran::semantics::Symbol &s : details.objects()) { |
| 487 | idx[0] = builder.getIntegerAttr(idxTy, n++); |
| 488 | idx[1] = zero; |
| 489 | mlir::Value nameAddr = |
| 490 | builder.createConvert(loc, charRefTy, fir::getBase(stringAddress(s))); |
| 491 | list = builder.create<fir::InsertValueOp>(loc, listTy, list, nameAddr, |
| 492 | builder.getArrayAttr(idx)); |
| 493 | idx[1] = one; |
| 494 | mlir::Value descAddr; |
| 495 | if (auto desc = builder.getNamedGlobal( |
| 496 | Fortran::lower::mangle::globalNamelistDescriptorName(s))) { |
| 497 | descAddr = builder.create<fir::AddrOfOp>(loc, desc.resultType(), |
| 498 | desc.getSymbol()); |
| 499 | } else if (Fortran::semantics::FindCommonBlockContaining(s) && |
| 500 | IsAllocatableOrPointer(s)) { |
| 501 | mlir::Type symType = converter.genType(s); |
| 502 | const Fortran::semantics::Symbol *commonBlockSym = |
| 503 | Fortran::semantics::FindCommonBlockContaining(s); |
| 504 | std::string commonBlockName = converter.mangleName(*commonBlockSym); |
| 505 | fir::GlobalOp commonGlobal = builder.getNamedGlobal(commonBlockName); |
| 506 | mlir::Value commonBlockAddr = builder.create<fir::AddrOfOp>( |
| 507 | loc, commonGlobal.resultType(), commonGlobal.getSymbol()); |
| 508 | mlir::IntegerType i8Ty = builder.getIntegerType(8); |
| 509 | mlir::Type i8Ptr = builder.getRefType(i8Ty); |
| 510 | mlir::Type seqTy = builder.getRefType(builder.getVarLenSeqTy(i8Ty)); |
| 511 | mlir::Value base = builder.createConvert(loc, seqTy, commonBlockAddr); |
| 512 | std::size_t byteOffset = s.GetUltimate().offset(); |
| 513 | mlir::Value offs = builder.createIntegerConstant( |
| 514 | loc, builder.getIndexType(), byteOffset); |
| 515 | mlir::Value varAddr = builder.create<fir::CoordinateOp>( |
| 516 | loc, i8Ptr, base, mlir::ValueRange{offs}); |
| 517 | descAddr = |
| 518 | builder.createConvert(loc, builder.getRefType(symType), varAddr); |
| 519 | } else { |
| 520 | const auto expr = Fortran::evaluate::AsGenericExpr(s); |
| 521 | fir::ExtendedValue exv = converter.genExprAddr(*expr, stmtCtx); |
| 522 | mlir::Type type = fir::getBase(exv).getType(); |
| 523 | if (mlir::Type baseTy = fir::dyn_cast_ptrOrBoxEleTy(type)) |
| 524 | type = baseTy; |
| 525 | fir::BoxType boxType = fir::BoxType::get(fir::PointerType::get(type)); |
| 526 | descAddr = builder.createTemporary(loc, boxType); |
| 527 | fir::MutableBoxValue box = fir::MutableBoxValue(descAddr, {}, {}); |
| 528 | fir::factory::associateMutableBox(builder, loc, box, exv, |
| 529 | /*lbounds=*/std::nullopt); |
| 530 | } |
| 531 | descAddr = builder.createConvert(loc, descRefTy, descAddr); |
| 532 | list = builder.create<fir::InsertValueOp>(loc, listTy, list, descAddr, |
| 533 | builder.getArrayAttr(idx)); |
| 534 | } |
| 535 | if (groupIsLocal) |
| 536 | builder.create<fir::StoreOp>(loc, list, listAddr); |
| 537 | else |
| 538 | builder.create<fir::HasValueOp>(loc, list); |
| 539 | }; |
| 540 | if (groupIsLocal) |
| 541 | listFunc(builder); |
| 542 | else |
| 543 | builder.createGlobalConstant(loc, listTy, listMangleName, listFunc, |
| 544 | linkOnce); |
| 545 | |
| 546 | // Define the group. |
| 547 | mlir::Value groupAddr = groupIsLocal |
| 548 | ? builder.create<fir::AllocaOp>(loc, groupTy) |
| 549 | : mlir::Value{}; |
| 550 | auto groupFunc = [&](fir::FirOpBuilder &builder) { |
| 551 | mlir::Value group = builder.create<fir::UndefOp>(loc, groupTy); |
| 552 | // group name [const char *groupName] |
| 553 | group = builder.create<fir::InsertValueOp>( |
| 554 | loc, groupTy, group, |
| 555 | builder.createConvert(loc, charRefTy, |
| 556 | fir::getBase(stringAddress(symbol))), |
| 557 | builder.getArrayAttr(builder.getIntegerAttr(idxTy, 0))); |
| 558 | // list item count [std::size_t items] |
| 559 | group = builder.create<fir::InsertValueOp>( |
| 560 | loc, groupTy, group, |
| 561 | builder.createIntegerConstant(loc, sizeTy, details.objects().size()), |
| 562 | builder.getArrayAttr(builder.getIntegerAttr(idxTy, 1))); |
| 563 | // item list [const Item *item] |
| 564 | if (fir::GlobalOp list = builder.getNamedGlobal(listMangleName)) |
| 565 | listAddr = builder.create<fir::AddrOfOp>(loc, list.resultType(), |
| 566 | list.getSymbol()); |
| 567 | assert(listAddr && "missing namelist object list" ); |
| 568 | group = builder.create<fir::InsertValueOp>( |
| 569 | loc, groupTy, group, listAddr, |
| 570 | builder.getArrayAttr(builder.getIntegerAttr(idxTy, 2))); |
| 571 | // non-type-bound defined IO procedures |
| 572 | // [const NonTbpDefinedIoTable *nonTbpDefinedIo] |
| 573 | group = builder.create<fir::InsertValueOp>( |
| 574 | loc, groupTy, group, |
| 575 | getNonTbpDefinedIoTableAddr(converter, definedIoProcMap), |
| 576 | builder.getArrayAttr(builder.getIntegerAttr(idxTy, 3))); |
| 577 | if (groupIsLocal) |
| 578 | builder.create<fir::StoreOp>(loc, group, groupAddr); |
| 579 | else |
| 580 | builder.create<fir::HasValueOp>(loc, group); |
| 581 | }; |
| 582 | if (groupIsLocal) { |
| 583 | groupFunc(builder); |
| 584 | } else { |
| 585 | fir::GlobalOp group = builder.createGlobal( |
| 586 | loc, groupTy, groupMangleName, |
| 587 | /*isConst=*/true, /*isTarget=*/false, groupFunc, linkOnce); |
| 588 | groupAddr = builder.create<fir::AddrOfOp>(loc, group.resultType(), |
| 589 | group.getSymbol()); |
| 590 | } |
| 591 | assert(groupAddr && "missing namelist group result" ); |
| 592 | return groupAddr; |
| 593 | } |
| 594 | |
| 595 | /// Generate a namelist IO call. |
| 596 | static void genNamelistIO(Fortran::lower::AbstractConverter &converter, |
| 597 | mlir::Value cookie, mlir::func::FuncOp funcOp, |
| 598 | Fortran::semantics::Symbol &symbol, bool checkResult, |
| 599 | mlir::Value &ok, |
| 600 | Fortran::lower::StatementContext &stmtCtx) { |
| 601 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 602 | mlir::Location loc = converter.getCurrentLocation(); |
| 603 | makeNextConditionalOn(builder, loc, checkResult, ok); |
| 604 | mlir::Type argType = funcOp.getFunctionType().getInput(1); |
| 605 | mlir::Value groupAddr = |
| 606 | getNamelistGroup(converter, symbol.GetUltimate(), stmtCtx); |
| 607 | groupAddr = builder.createConvert(loc, argType, groupAddr); |
| 608 | llvm::SmallVector<mlir::Value> args = {cookie, groupAddr}; |
| 609 | ok = builder.create<fir::CallOp>(loc, funcOp, args).getResult(0); |
| 610 | } |
| 611 | |
| 612 | /// Is \p type a derived type or an array of derived type? |
| 613 | static bool containsDerivedType(mlir::Type type) { |
| 614 | mlir::Type argTy = fir::unwrapPassByRefType(fir::unwrapRefType(type)); |
| 615 | if (mlir::isa<fir::RecordType>(argTy)) |
| 616 | return true; |
| 617 | if (auto seqTy = mlir::dyn_cast<fir::SequenceType>(argTy)) |
| 618 | if (mlir::isa<fir::RecordType>(seqTy.getEleTy())) |
| 619 | return true; |
| 620 | return false; |
| 621 | } |
| 622 | |
| 623 | /// Get the output function to call for a value of the given type. |
| 624 | static mlir::func::FuncOp getOutputFunc(mlir::Location loc, |
| 625 | fir::FirOpBuilder &builder, |
| 626 | mlir::Type type, bool isFormatted) { |
| 627 | if (containsDerivedType(type)) |
| 628 | return fir::runtime::getIORuntimeFunc<mkIOKey(OutputDerivedType)>(loc, |
| 629 | builder); |
| 630 | if (!isFormatted) |
| 631 | return fir::runtime::getIORuntimeFunc<mkIOKey(OutputDescriptor)>(loc, |
| 632 | builder); |
| 633 | if (auto ty = mlir::dyn_cast<mlir::IntegerType>(type)) { |
| 634 | if (!ty.isUnsigned()) { |
| 635 | switch (ty.getWidth()) { |
| 636 | case 1: |
| 637 | return fir::runtime::getIORuntimeFunc<mkIOKey(OutputLogical)>(loc, |
| 638 | builder); |
| 639 | case 8: |
| 640 | return fir::runtime::getIORuntimeFunc<mkIOKey(OutputInteger8)>(loc, |
| 641 | builder); |
| 642 | case 16: |
| 643 | return fir::runtime::getIORuntimeFunc<mkIOKey(OutputInteger16)>( |
| 644 | loc, builder); |
| 645 | case 32: |
| 646 | return fir::runtime::getIORuntimeFunc<mkIOKey(OutputInteger32)>( |
| 647 | loc, builder); |
| 648 | case 64: |
| 649 | return fir::runtime::getIORuntimeFunc<mkIOKey(OutputInteger64)>( |
| 650 | loc, builder); |
| 651 | case 128: |
| 652 | return fir::runtime::getIORuntimeFunc<mkIOKey(OutputInteger128)>( |
| 653 | loc, builder); |
| 654 | } |
| 655 | llvm_unreachable("unknown OutputInteger kind" ); |
| 656 | } |
| 657 | } |
| 658 | if (auto ty = mlir::dyn_cast<mlir::FloatType>(type)) { |
| 659 | if (auto width = ty.getWidth(); width == 32) |
| 660 | return fir::runtime::getIORuntimeFunc<mkIOKey(OutputReal32)>(loc, |
| 661 | builder); |
| 662 | else if (width == 64) |
| 663 | return fir::runtime::getIORuntimeFunc<mkIOKey(OutputReal64)>(loc, |
| 664 | builder); |
| 665 | } |
| 666 | auto kindMap = fir::getKindMapping(builder.getModule()); |
| 667 | if (auto ty = mlir::dyn_cast<mlir::ComplexType>(type)) { |
| 668 | // COMPLEX(KIND=k) corresponds to a pair of REAL(KIND=k). |
| 669 | auto width = mlir::cast<mlir::FloatType>(ty.getElementType()).getWidth(); |
| 670 | if (width == 32) |
| 671 | return fir::runtime::getIORuntimeFunc<mkIOKey(OutputComplex32)>(loc, |
| 672 | builder); |
| 673 | else if (width == 64) |
| 674 | return fir::runtime::getIORuntimeFunc<mkIOKey(OutputComplex64)>(loc, |
| 675 | builder); |
| 676 | } |
| 677 | if (mlir::isa<fir::LogicalType>(type)) |
| 678 | return fir::runtime::getIORuntimeFunc<mkIOKey(OutputLogical)>(loc, builder); |
| 679 | if (fir::factory::CharacterExprHelper::isCharacterScalar(type)) { |
| 680 | // TODO: What would it mean if the default CHARACTER KIND is set to a wide |
| 681 | // character encoding scheme? How do we handle UTF-8? Is it a distinct KIND |
| 682 | // value? For now, assume that if the default CHARACTER KIND is 8 bit, |
| 683 | // then it is an ASCII string and UTF-8 is unsupported. |
| 684 | auto asciiKind = kindMap.defaultCharacterKind(); |
| 685 | if (kindMap.getCharacterBitsize(asciiKind) == 8 && |
| 686 | fir::factory::CharacterExprHelper::getCharacterKind(type) == asciiKind) |
| 687 | return fir::runtime::getIORuntimeFunc<mkIOKey(OutputAscii)>(loc, builder); |
| 688 | } |
| 689 | return fir::runtime::getIORuntimeFunc<mkIOKey(OutputDescriptor)>(loc, |
| 690 | builder); |
| 691 | } |
| 692 | |
| 693 | /// Generate a sequence of output data transfer calls. |
| 694 | static void genOutputItemList( |
| 695 | Fortran::lower::AbstractConverter &converter, mlir::Value cookie, |
| 696 | const std::list<Fortran::parser::OutputItem> &items, bool isFormatted, |
| 697 | bool checkResult, mlir::Value &ok, bool inLoop) { |
| 698 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 699 | for (const Fortran::parser::OutputItem &item : items) { |
| 700 | if (const auto &impliedDo = std::get_if<1>(&item.u)) { |
| 701 | genIoLoop(converter, cookie, impliedDo->value(), isFormatted, checkResult, |
| 702 | ok, inLoop); |
| 703 | continue; |
| 704 | } |
| 705 | auto &pExpr = std::get<Fortran::parser::Expr>(item.u); |
| 706 | mlir::Location loc = converter.genLocation(pExpr.source); |
| 707 | makeNextConditionalOn(builder, loc, checkResult, ok, inLoop); |
| 708 | Fortran::lower::StatementContext stmtCtx; |
| 709 | |
| 710 | const auto *expr = Fortran::semantics::GetExpr(pExpr); |
| 711 | if (!expr) |
| 712 | fir::emitFatalError(loc, "internal error: could not get evaluate::Expr" ); |
| 713 | mlir::Type itemTy = converter.genType(*expr); |
| 714 | mlir::func::FuncOp outputFunc = |
| 715 | getOutputFunc(loc, builder, itemTy, isFormatted); |
| 716 | mlir::Type argType = outputFunc.getFunctionType().getInput(1); |
| 717 | assert((isFormatted || mlir::isa<fir::BoxType>(argType)) && |
| 718 | "expect descriptor for unformatted IO runtime" ); |
| 719 | llvm::SmallVector<mlir::Value> outputFuncArgs = {cookie}; |
| 720 | fir::factory::CharacterExprHelper helper{builder, loc}; |
| 721 | if (mlir::isa<fir::BoxType>(argType)) { |
| 722 | mlir::Value box = fir::getBase(converter.genExprBox(loc, *expr, stmtCtx)); |
| 723 | outputFuncArgs.push_back( |
| 724 | builder.createConvertWithVolatileCast(loc, argType, box)); |
| 725 | if (containsDerivedType(itemTy)) |
| 726 | outputFuncArgs.push_back(getNonTbpDefinedIoTableAddr(converter)); |
| 727 | } else if (helper.isCharacterScalar(itemTy)) { |
| 728 | fir::ExtendedValue exv = converter.genExprAddr(loc, expr, stmtCtx); |
| 729 | // scalar allocatable/pointer may also get here, not clear if |
| 730 | // genExprAddr will lower them as CharBoxValue or BoxValue. |
| 731 | if (!exv.getCharBox()) |
| 732 | llvm::report_fatal_error( |
| 733 | "internal error: scalar character not in CharBox" ); |
| 734 | outputFuncArgs.push_back(builder.createConvertWithVolatileCast( |
| 735 | loc, outputFunc.getFunctionType().getInput(1), fir::getBase(exv))); |
| 736 | outputFuncArgs.push_back(builder.createConvertWithVolatileCast( |
| 737 | loc, outputFunc.getFunctionType().getInput(2), fir::getLen(exv))); |
| 738 | } else { |
| 739 | fir::ExtendedValue itemBox = converter.genExprValue(loc, expr, stmtCtx); |
| 740 | mlir::Value itemValue = fir::getBase(itemBox); |
| 741 | if (fir::isa_complex(itemTy)) { |
| 742 | auto parts = |
| 743 | fir::factory::Complex{builder, loc}.extractParts(itemValue); |
| 744 | outputFuncArgs.push_back(parts.first); |
| 745 | outputFuncArgs.push_back(parts.second); |
| 746 | } else { |
| 747 | itemValue = |
| 748 | builder.createConvertWithVolatileCast(loc, argType, itemValue); |
| 749 | outputFuncArgs.push_back(itemValue); |
| 750 | } |
| 751 | } |
| 752 | ok = builder.create<fir::CallOp>(loc, outputFunc, outputFuncArgs) |
| 753 | .getResult(0); |
| 754 | } |
| 755 | } |
| 756 | |
| 757 | /// Get the input function to call for a value of the given type. |
| 758 | static mlir::func::FuncOp getInputFunc(mlir::Location loc, |
| 759 | fir::FirOpBuilder &builder, |
| 760 | mlir::Type type, bool isFormatted) { |
| 761 | if (containsDerivedType(type)) |
| 762 | return fir::runtime::getIORuntimeFunc<mkIOKey(InputDerivedType)>(loc, |
| 763 | builder); |
| 764 | if (!isFormatted) |
| 765 | return fir::runtime::getIORuntimeFunc<mkIOKey(InputDescriptor)>(loc, |
| 766 | builder); |
| 767 | if (auto ty = mlir::dyn_cast<mlir::IntegerType>(type)) { |
| 768 | if (type.isUnsignedInteger()) |
| 769 | return fir::runtime::getIORuntimeFunc<mkIOKey(InputDescriptor)>(loc, |
| 770 | builder); |
| 771 | return ty.getWidth() == 1 |
| 772 | ? fir::runtime::getIORuntimeFunc<mkIOKey(InputLogical)>(loc, |
| 773 | builder) |
| 774 | : fir::runtime::getIORuntimeFunc<mkIOKey(InputInteger)>(loc, |
| 775 | builder); |
| 776 | } |
| 777 | if (auto ty = mlir::dyn_cast<mlir::FloatType>(type)) { |
| 778 | if (auto width = ty.getWidth(); width == 32) |
| 779 | return fir::runtime::getIORuntimeFunc<mkIOKey(InputReal32)>(loc, builder); |
| 780 | else if (width == 64) |
| 781 | return fir::runtime::getIORuntimeFunc<mkIOKey(InputReal64)>(loc, builder); |
| 782 | } |
| 783 | auto kindMap = fir::getKindMapping(builder.getModule()); |
| 784 | if (auto ty = mlir::dyn_cast<mlir::ComplexType>(type)) { |
| 785 | auto width = mlir::cast<mlir::FloatType>(ty.getElementType()).getWidth(); |
| 786 | if (width == 32) |
| 787 | return fir::runtime::getIORuntimeFunc<mkIOKey(InputComplex32)>(loc, |
| 788 | builder); |
| 789 | else if (width == 64) |
| 790 | return fir::runtime::getIORuntimeFunc<mkIOKey(InputComplex64)>(loc, |
| 791 | builder); |
| 792 | } |
| 793 | if (mlir::isa<fir::LogicalType>(type)) |
| 794 | return fir::runtime::getIORuntimeFunc<mkIOKey(InputLogical)>(loc, builder); |
| 795 | if (fir::factory::CharacterExprHelper::isCharacterScalar(type)) { |
| 796 | auto asciiKind = kindMap.defaultCharacterKind(); |
| 797 | if (kindMap.getCharacterBitsize(asciiKind) == 8 && |
| 798 | fir::factory::CharacterExprHelper::getCharacterKind(type) == asciiKind) |
| 799 | return fir::runtime::getIORuntimeFunc<mkIOKey(InputAscii)>(loc, builder); |
| 800 | } |
| 801 | return fir::runtime::getIORuntimeFunc<mkIOKey(InputDescriptor)>(loc, builder); |
| 802 | } |
| 803 | |
| 804 | /// Interpret the lowest byte of a LOGICAL and store that value into the full |
| 805 | /// storage of the LOGICAL. The load, convert, and store effectively (sign or |
| 806 | /// zero) extends the lowest byte into the full LOGICAL value storage, as the |
| 807 | /// runtime is unaware of the LOGICAL value's actual bit width (it was passed |
| 808 | /// as a `bool&` to the runtime in order to be set). |
| 809 | static void boolRefToLogical(mlir::Location loc, fir::FirOpBuilder &builder, |
| 810 | mlir::Value addr) { |
| 811 | auto boolType = builder.getRefType(builder.getI1Type()); |
| 812 | auto boolAddr = builder.createConvert(loc, boolType, addr); |
| 813 | auto boolValue = builder.create<fir::LoadOp>(loc, boolAddr); |
| 814 | auto logicalType = fir::unwrapPassByRefType(addr.getType()); |
| 815 | // The convert avoid making any assumptions about how LOGICALs are actually |
| 816 | // represented (it might end-up being either a signed or zero extension). |
| 817 | auto logicalValue = builder.createConvert(loc, logicalType, boolValue); |
| 818 | builder.create<fir::StoreOp>(loc, logicalValue, addr); |
| 819 | } |
| 820 | |
| 821 | static mlir::Value |
| 822 | createIoRuntimeCallForItem(Fortran::lower::AbstractConverter &converter, |
| 823 | mlir::Location loc, mlir::func::FuncOp inputFunc, |
| 824 | mlir::Value cookie, const fir::ExtendedValue &item) { |
| 825 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 826 | mlir::Type argType = inputFunc.getFunctionType().getInput(1); |
| 827 | llvm::SmallVector<mlir::Value> inputFuncArgs = {cookie}; |
| 828 | if (mlir::isa<fir::BaseBoxType>(argType)) { |
| 829 | mlir::Value box = fir::getBase(item); |
| 830 | auto boxTy = mlir::dyn_cast<fir::BaseBoxType>(box.getType()); |
| 831 | assert(boxTy && "must be previously emboxed" ); |
| 832 | auto casted = builder.createConvertWithVolatileCast(loc, argType, box); |
| 833 | inputFuncArgs.push_back(casted); |
| 834 | if (containsDerivedType(boxTy)) |
| 835 | inputFuncArgs.push_back(getNonTbpDefinedIoTableAddr(converter)); |
| 836 | } else { |
| 837 | mlir::Value itemAddr = fir::getBase(item); |
| 838 | mlir::Type itemTy = fir::unwrapPassByRefType(itemAddr.getType()); |
| 839 | |
| 840 | // Handle conversion between volatile and non-volatile reference types |
| 841 | // Need to explicitly cast when volatility qualification differs |
| 842 | inputFuncArgs.push_back( |
| 843 | builder.createConvertWithVolatileCast(loc, argType, itemAddr)); |
| 844 | fir::factory::CharacterExprHelper charHelper{builder, loc}; |
| 845 | if (charHelper.isCharacterScalar(itemTy)) { |
| 846 | mlir::Value len = fir::getLen(item); |
| 847 | inputFuncArgs.push_back(builder.createConvert( |
| 848 | loc, inputFunc.getFunctionType().getInput(2), len)); |
| 849 | } else if (mlir::isa<mlir::IntegerType>(itemTy)) { |
| 850 | inputFuncArgs.push_back(builder.create<mlir::arith::ConstantOp>( |
| 851 | loc, builder.getI32IntegerAttr( |
| 852 | mlir::cast<mlir::IntegerType>(itemTy).getWidth() / 8))); |
| 853 | } |
| 854 | } |
| 855 | auto call = builder.create<fir::CallOp>(loc, inputFunc, inputFuncArgs); |
| 856 | auto itemAddr = fir::getBase(item); |
| 857 | auto itemTy = fir::unwrapRefType(itemAddr.getType()); |
| 858 | if (mlir::isa<fir::LogicalType>(itemTy)) |
| 859 | boolRefToLogical(loc, builder, itemAddr); |
| 860 | return call.getResult(0); |
| 861 | } |
| 862 | |
| 863 | /// Generate a sequence of input data transfer calls. |
| 864 | static void genInputItemList(Fortran::lower::AbstractConverter &converter, |
| 865 | mlir::Value cookie, |
| 866 | const std::list<Fortran::parser::InputItem> &items, |
| 867 | bool isFormatted, bool checkResult, |
| 868 | mlir::Value &ok, bool inLoop) { |
| 869 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 870 | for (const Fortran::parser::InputItem &item : items) { |
| 871 | if (const auto &impliedDo = std::get_if<1>(&item.u)) { |
| 872 | genIoLoop(converter, cookie, impliedDo->value(), isFormatted, checkResult, |
| 873 | ok, inLoop); |
| 874 | continue; |
| 875 | } |
| 876 | auto &pVar = std::get<Fortran::parser::Variable>(item.u); |
| 877 | mlir::Location loc = converter.genLocation(pVar.GetSource()); |
| 878 | makeNextConditionalOn(builder, loc, checkResult, ok, inLoop); |
| 879 | Fortran::lower::StatementContext stmtCtx; |
| 880 | const auto *expr = Fortran::semantics::GetExpr(pVar); |
| 881 | if (!expr) |
| 882 | fir::emitFatalError(loc, "internal error: could not get evaluate::Expr" ); |
| 883 | if (Fortran::evaluate::HasVectorSubscript(*expr)) { |
| 884 | auto vectorSubscriptBox = |
| 885 | Fortran::lower::genVectorSubscriptBox(loc, converter, stmtCtx, *expr); |
| 886 | mlir::func::FuncOp inputFunc = getInputFunc( |
| 887 | loc, builder, vectorSubscriptBox.getElementType(), isFormatted); |
| 888 | const bool mustBox = |
| 889 | mlir::isa<fir::BoxType>(inputFunc.getFunctionType().getInput(1)); |
| 890 | if (!checkResult) { |
| 891 | auto elementalGenerator = [&](const fir::ExtendedValue &element) { |
| 892 | createIoRuntimeCallForItem(converter, loc, inputFunc, cookie, |
| 893 | mustBox ? builder.createBox(loc, element) |
| 894 | : element); |
| 895 | }; |
| 896 | vectorSubscriptBox.loopOverElements(builder, loc, elementalGenerator); |
| 897 | } else { |
| 898 | auto elementalGenerator = |
| 899 | [&](const fir::ExtendedValue &element) -> mlir::Value { |
| 900 | return createIoRuntimeCallForItem( |
| 901 | converter, loc, inputFunc, cookie, |
| 902 | mustBox ? builder.createBox(loc, element) : element); |
| 903 | }; |
| 904 | if (!ok) |
| 905 | ok = builder.createBool(loc, true); |
| 906 | ok = vectorSubscriptBox.loopOverElementsWhile(builder, loc, |
| 907 | elementalGenerator, ok); |
| 908 | } |
| 909 | continue; |
| 910 | } |
| 911 | mlir::Type itemTy = converter.genType(*expr); |
| 912 | mlir::func::FuncOp inputFunc = |
| 913 | getInputFunc(loc, builder, itemTy, isFormatted); |
| 914 | auto itemExv = |
| 915 | mlir::isa<fir::BoxType>(inputFunc.getFunctionType().getInput(1)) |
| 916 | ? converter.genExprBox(loc, *expr, stmtCtx) |
| 917 | : converter.genExprAddr(loc, expr, stmtCtx); |
| 918 | ok = createIoRuntimeCallForItem(converter, loc, inputFunc, cookie, itemExv); |
| 919 | } |
| 920 | } |
| 921 | |
| 922 | /// Generate an io-implied-do loop. |
| 923 | template <typename D> |
| 924 | static void genIoLoop(Fortran::lower::AbstractConverter &converter, |
| 925 | mlir::Value cookie, const D &ioImpliedDo, |
| 926 | bool isFormatted, bool checkResult, mlir::Value &ok, |
| 927 | bool inLoop) { |
| 928 | Fortran::lower::StatementContext stmtCtx; |
| 929 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 930 | mlir::Location loc = converter.getCurrentLocation(); |
| 931 | mlir::arith::IntegerOverflowFlags flags{}; |
| 932 | if (!converter.getLoweringOptions().getIntegerWrapAround()) |
| 933 | flags = bitEnumSet(flags, mlir::arith::IntegerOverflowFlags::nsw); |
| 934 | auto iofAttr = |
| 935 | mlir::arith::IntegerOverflowFlagsAttr::get(builder.getContext(), flags); |
| 936 | makeNextConditionalOn(builder, loc, checkResult, ok, inLoop); |
| 937 | const auto &itemList = std::get<0>(ioImpliedDo.t); |
| 938 | const auto &control = std::get<1>(ioImpliedDo.t); |
| 939 | const auto &loopSym = *control.name.thing.thing.symbol; |
| 940 | mlir::Value loopVar = fir::getBase(converter.genExprAddr( |
| 941 | Fortran::evaluate::AsGenericExpr(loopSym).value(), stmtCtx)); |
| 942 | auto genControlValue = [&](const Fortran::parser::ScalarIntExpr &expr) { |
| 943 | mlir::Value v = fir::getBase( |
| 944 | converter.genExprValue(*Fortran::semantics::GetExpr(expr), stmtCtx)); |
| 945 | return builder.createConvert(loc, builder.getIndexType(), v); |
| 946 | }; |
| 947 | mlir::Value lowerValue = genControlValue(control.lower); |
| 948 | mlir::Value upperValue = genControlValue(control.upper); |
| 949 | mlir::Value stepValue = |
| 950 | control.step.has_value() |
| 951 | ? genControlValue(*control.step) |
| 952 | : builder.create<mlir::arith::ConstantIndexOp>(loc, 1); |
| 953 | auto genItemList = [&](const D &ioImpliedDo) { |
| 954 | if constexpr (std::is_same_v<D, Fortran::parser::InputImpliedDo>) |
| 955 | genInputItemList(converter, cookie, itemList, isFormatted, checkResult, |
| 956 | ok, /*inLoop=*/true); |
| 957 | else |
| 958 | genOutputItemList(converter, cookie, itemList, isFormatted, checkResult, |
| 959 | ok, /*inLoop=*/true); |
| 960 | }; |
| 961 | if (!checkResult) { |
| 962 | // No IO call result checks - the loop is a fir.do_loop op. |
| 963 | auto doLoopOp = builder.create<fir::DoLoopOp>( |
| 964 | loc, lowerValue, upperValue, stepValue, /*unordered=*/false, |
| 965 | /*finalCountValue=*/true); |
| 966 | builder.setInsertionPointToStart(doLoopOp.getBody()); |
| 967 | mlir::Value lcv = builder.createConvert( |
| 968 | loc, fir::unwrapRefType(loopVar.getType()), doLoopOp.getInductionVar()); |
| 969 | builder.create<fir::StoreOp>(loc, lcv, loopVar); |
| 970 | genItemList(ioImpliedDo); |
| 971 | builder.setInsertionPointToEnd(doLoopOp.getBody()); |
| 972 | mlir::Value result = builder.create<mlir::arith::AddIOp>( |
| 973 | loc, doLoopOp.getInductionVar(), doLoopOp.getStep(), iofAttr); |
| 974 | builder.create<fir::ResultOp>(loc, result); |
| 975 | builder.setInsertionPointAfter(doLoopOp); |
| 976 | // The loop control variable may be used after the loop. |
| 977 | lcv = builder.createConvert(loc, fir::unwrapRefType(loopVar.getType()), |
| 978 | doLoopOp.getResult(0)); |
| 979 | builder.create<fir::StoreOp>(loc, lcv, loopVar); |
| 980 | return; |
| 981 | } |
| 982 | // Check IO call results - the loop is a fir.iterate_while op. |
| 983 | if (!ok) |
| 984 | ok = builder.createBool(loc, true); |
| 985 | auto iterWhileOp = builder.create<fir::IterWhileOp>( |
| 986 | loc, lowerValue, upperValue, stepValue, ok, /*finalCountValue*/ true); |
| 987 | builder.setInsertionPointToStart(iterWhileOp.getBody()); |
| 988 | mlir::Value lcv = |
| 989 | builder.createConvert(loc, fir::unwrapRefType(loopVar.getType()), |
| 990 | iterWhileOp.getInductionVar()); |
| 991 | builder.create<fir::StoreOp>(loc, lcv, loopVar); |
| 992 | ok = iterWhileOp.getIterateVar(); |
| 993 | mlir::Value falseValue = |
| 994 | builder.createIntegerConstant(loc, builder.getI1Type(), 0); |
| 995 | genItemList(ioImpliedDo); |
| 996 | // Unwind nested IO call scopes, filling in true and false ResultOp's. |
| 997 | for (mlir::Operation *op = builder.getBlock()->getParentOp(); |
| 998 | mlir::isa<fir::IfOp>(op); op = op->getBlock()->getParentOp()) { |
| 999 | auto ifOp = mlir::dyn_cast<fir::IfOp>(op); |
| 1000 | mlir::Operation *lastOp = &ifOp.getThenRegion().front().back(); |
| 1001 | builder.setInsertionPointAfter(lastOp); |
| 1002 | // The primary ifOp result is the result of an IO call or loop. |
| 1003 | if (mlir::isa<fir::CallOp, fir::IfOp>(*lastOp)) |
| 1004 | builder.create<fir::ResultOp>(loc, lastOp->getResult(0)); |
| 1005 | else |
| 1006 | builder.create<fir::ResultOp>(loc, ok); // loop result |
| 1007 | // The else branch propagates an early exit false result. |
| 1008 | builder.setInsertionPointToStart(&ifOp.getElseRegion().front()); |
| 1009 | builder.create<fir::ResultOp>(loc, falseValue); |
| 1010 | } |
| 1011 | builder.setInsertionPointToEnd(iterWhileOp.getBody()); |
| 1012 | mlir::OpResult iterateResult = builder.getBlock()->back().getResult(0); |
| 1013 | mlir::Value inductionResult0 = iterWhileOp.getInductionVar(); |
| 1014 | auto inductionResult1 = builder.create<mlir::arith::AddIOp>( |
| 1015 | loc, inductionResult0, iterWhileOp.getStep(), iofAttr); |
| 1016 | auto inductionResult = builder.create<mlir::arith::SelectOp>( |
| 1017 | loc, iterateResult, inductionResult1, inductionResult0); |
| 1018 | llvm::SmallVector<mlir::Value> results = {inductionResult, iterateResult}; |
| 1019 | builder.create<fir::ResultOp>(loc, results); |
| 1020 | ok = iterWhileOp.getResult(1); |
| 1021 | builder.setInsertionPointAfter(iterWhileOp); |
| 1022 | // The loop control variable may be used after the loop. |
| 1023 | lcv = builder.createConvert(loc, fir::unwrapRefType(loopVar.getType()), |
| 1024 | iterWhileOp.getResult(0)); |
| 1025 | builder.create<fir::StoreOp>(loc, lcv, loopVar); |
| 1026 | } |
| 1027 | |
| 1028 | //===----------------------------------------------------------------------===// |
| 1029 | // Default argument generation. |
| 1030 | //===----------------------------------------------------------------------===// |
| 1031 | |
| 1032 | static mlir::Value locToFilename(Fortran::lower::AbstractConverter &converter, |
| 1033 | mlir::Location loc, mlir::Type toType) { |
| 1034 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 1035 | return builder.createConvert(loc, toType, |
| 1036 | fir::factory::locationToFilename(builder, loc)); |
| 1037 | } |
| 1038 | |
| 1039 | static mlir::Value locToLineNo(Fortran::lower::AbstractConverter &converter, |
| 1040 | mlir::Location loc, mlir::Type toType) { |
| 1041 | return fir::factory::locationToLineNo(converter.getFirOpBuilder(), loc, |
| 1042 | toType); |
| 1043 | } |
| 1044 | |
| 1045 | static mlir::Value getDefaultScratch(fir::FirOpBuilder &builder, |
| 1046 | mlir::Location loc, mlir::Type toType) { |
| 1047 | mlir::Value null = builder.create<mlir::arith::ConstantOp>( |
| 1048 | loc, builder.getI64IntegerAttr(0)); |
| 1049 | return builder.createConvert(loc, toType, null); |
| 1050 | } |
| 1051 | |
| 1052 | static mlir::Value getDefaultScratchLen(fir::FirOpBuilder &builder, |
| 1053 | mlir::Location loc, mlir::Type toType) { |
| 1054 | return builder.create<mlir::arith::ConstantOp>( |
| 1055 | loc, builder.getIntegerAttr(toType, 0)); |
| 1056 | } |
| 1057 | |
| 1058 | /// Generate a reference to a buffer and the length of buffer given |
| 1059 | /// a character expression. An array expression will be cast to scalar |
| 1060 | /// character as long as they are contiguous. |
| 1061 | static std::tuple<mlir::Value, mlir::Value> |
| 1062 | genBuffer(Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
| 1063 | const Fortran::lower::SomeExpr &expr, mlir::Type strTy, |
| 1064 | mlir::Type lenTy, Fortran::lower::StatementContext &stmtCtx) { |
| 1065 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 1066 | fir::ExtendedValue exprAddr = converter.genExprAddr(expr, stmtCtx); |
| 1067 | fir::factory::CharacterExprHelper helper(builder, loc); |
| 1068 | using ValuePair = std::pair<mlir::Value, mlir::Value>; |
| 1069 | auto [buff, len] = exprAddr.match( |
| 1070 | [&](const fir::CharBoxValue &x) -> ValuePair { |
| 1071 | return {x.getBuffer(), x.getLen()}; |
| 1072 | }, |
| 1073 | [&](const fir::CharArrayBoxValue &x) -> ValuePair { |
| 1074 | fir::CharBoxValue scalar = helper.toScalarCharacter(x); |
| 1075 | return {scalar.getBuffer(), scalar.getLen()}; |
| 1076 | }, |
| 1077 | [&](const fir::BoxValue &) -> ValuePair { |
| 1078 | // May need to copy before after IO to handle contiguous |
| 1079 | // aspect. Not sure descriptor can get here though. |
| 1080 | TODO(loc, "character descriptor to contiguous buffer" ); |
| 1081 | }, |
| 1082 | [&](const auto &) -> ValuePair { |
| 1083 | llvm::report_fatal_error( |
| 1084 | "internal error: IO buffer is not a character" ); |
| 1085 | }); |
| 1086 | buff = builder.createConvert(loc, strTy, buff); |
| 1087 | len = builder.createConvert(loc, lenTy, len); |
| 1088 | return {buff, len}; |
| 1089 | } |
| 1090 | |
| 1091 | /// Lower a string literal. Many arguments to the runtime are conveyed as |
| 1092 | /// Fortran CHARACTER literals. |
| 1093 | template <typename A> |
| 1094 | static std::tuple<mlir::Value, mlir::Value, mlir::Value> |
| 1095 | lowerStringLit(Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
| 1096 | Fortran::lower::StatementContext &stmtCtx, const A &syntax, |
| 1097 | mlir::Type strTy, mlir::Type lenTy, mlir::Type ty2 = {}) { |
| 1098 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 1099 | auto *expr = Fortran::semantics::GetExpr(syntax); |
| 1100 | if (!expr) |
| 1101 | fir::emitFatalError(loc, "internal error: null semantic expr in IO" ); |
| 1102 | auto [buff, len] = genBuffer(converter, loc, *expr, strTy, lenTy, stmtCtx); |
| 1103 | mlir::Value kind; |
| 1104 | if (ty2) { |
| 1105 | auto kindVal = expr->GetType().value().kind(); |
| 1106 | kind = builder.create<mlir::arith::ConstantOp>( |
| 1107 | loc, builder.getIntegerAttr(ty2, kindVal)); |
| 1108 | } |
| 1109 | return {buff, len, kind}; |
| 1110 | } |
| 1111 | |
| 1112 | /// Pass the body of the FORMAT statement in as if it were a CHARACTER literal |
| 1113 | /// constant. NB: This is the prescribed manner in which the front-end passes |
| 1114 | /// this information to lowering. |
| 1115 | static std::tuple<mlir::Value, mlir::Value, mlir::Value> |
| 1116 | lowerSourceTextAsStringLit(Fortran::lower::AbstractConverter &converter, |
| 1117 | mlir::Location loc, llvm::StringRef text, |
| 1118 | mlir::Type strTy, mlir::Type lenTy) { |
| 1119 | text = text.drop_front(text.find('(')); |
| 1120 | text = text.take_front(text.rfind(')') + 1); |
| 1121 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 1122 | mlir::Value addrGlobalStringLit = |
| 1123 | fir::getBase(fir::factory::createStringLiteral(builder, loc, text)); |
| 1124 | mlir::Value buff = builder.createConvert(loc, strTy, addrGlobalStringLit); |
| 1125 | mlir::Value len = builder.createIntegerConstant(loc, lenTy, text.size()); |
| 1126 | return {buff, len, mlir::Value{}}; |
| 1127 | } |
| 1128 | |
| 1129 | //===----------------------------------------------------------------------===// |
| 1130 | // Handle IO statement specifiers. |
| 1131 | // These are threaded together for a single statement via the passed cookie. |
| 1132 | //===----------------------------------------------------------------------===// |
| 1133 | |
| 1134 | /// Generic to build an integral argument to the runtime. |
| 1135 | template <typename A, typename B> |
| 1136 | mlir::Value genIntIOOption(Fortran::lower::AbstractConverter &converter, |
| 1137 | mlir::Location loc, mlir::Value cookie, |
| 1138 | const B &spec) { |
| 1139 | Fortran::lower::StatementContext localStatementCtx; |
| 1140 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 1141 | mlir::func::FuncOp ioFunc = fir::runtime::getIORuntimeFunc<A>(loc, builder); |
| 1142 | mlir::FunctionType ioFuncTy = ioFunc.getFunctionType(); |
| 1143 | mlir::Value expr = fir::getBase(converter.genExprValue( |
| 1144 | loc, Fortran::semantics::GetExpr(spec.v), localStatementCtx)); |
| 1145 | mlir::Value val = builder.createConvert(loc, ioFuncTy.getInput(1), expr); |
| 1146 | llvm::SmallVector<mlir::Value> ioArgs = {cookie, val}; |
| 1147 | return builder.create<fir::CallOp>(loc, ioFunc, ioArgs).getResult(0); |
| 1148 | } |
| 1149 | |
| 1150 | /// Generic to build a string argument to the runtime. This passes a CHARACTER |
| 1151 | /// as a pointer to the buffer and a LEN parameter. |
| 1152 | template <typename A, typename B> |
| 1153 | mlir::Value genCharIOOption(Fortran::lower::AbstractConverter &converter, |
| 1154 | mlir::Location loc, mlir::Value cookie, |
| 1155 | const B &spec) { |
| 1156 | Fortran::lower::StatementContext localStatementCtx; |
| 1157 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 1158 | mlir::func::FuncOp ioFunc = fir::runtime::getIORuntimeFunc<A>(loc, builder); |
| 1159 | mlir::FunctionType ioFuncTy = ioFunc.getFunctionType(); |
| 1160 | std::tuple<mlir::Value, mlir::Value, mlir::Value> tup = |
| 1161 | lowerStringLit(converter, loc, localStatementCtx, spec, |
| 1162 | ioFuncTy.getInput(1), ioFuncTy.getInput(2)); |
| 1163 | llvm::SmallVector<mlir::Value> ioArgs = {cookie, std::get<0>(tup), |
| 1164 | std::get<1>(tup)}; |
| 1165 | return builder.create<fir::CallOp>(loc, ioFunc, ioArgs).getResult(0); |
| 1166 | } |
| 1167 | |
| 1168 | template <typename A> |
| 1169 | mlir::Value genIOOption(Fortran::lower::AbstractConverter &converter, |
| 1170 | mlir::Location loc, mlir::Value cookie, const A &spec) { |
| 1171 | // These specifiers are processed in advance elsewhere - skip them here. |
| 1172 | using PreprocessedSpecs = |
| 1173 | std::tuple<Fortran::parser::EndLabel, Fortran::parser::EorLabel, |
| 1174 | Fortran::parser::ErrLabel, Fortran::parser::FileUnitNumber, |
| 1175 | Fortran::parser::Format, Fortran::parser::IoUnit, |
| 1176 | Fortran::parser::MsgVariable, Fortran::parser::Name, |
| 1177 | Fortran::parser::StatVariable>; |
| 1178 | static_assert(Fortran::common::HasMember<A, PreprocessedSpecs>, |
| 1179 | "missing genIOOPtion specialization" ); |
| 1180 | return {}; |
| 1181 | } |
| 1182 | |
| 1183 | template <> |
| 1184 | mlir::Value genIOOption<Fortran::parser::FileNameExpr>( |
| 1185 | Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
| 1186 | mlir::Value cookie, const Fortran::parser::FileNameExpr &spec) { |
| 1187 | Fortran::lower::StatementContext localStatementCtx; |
| 1188 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 1189 | // has an extra KIND argument |
| 1190 | mlir::func::FuncOp ioFunc = |
| 1191 | fir::runtime::getIORuntimeFunc<mkIOKey(SetFile)>(loc, builder); |
| 1192 | mlir::FunctionType ioFuncTy = ioFunc.getFunctionType(); |
| 1193 | std::tuple<mlir::Value, mlir::Value, mlir::Value> tup = |
| 1194 | lowerStringLit(converter, loc, localStatementCtx, spec, |
| 1195 | ioFuncTy.getInput(1), ioFuncTy.getInput(2)); |
| 1196 | llvm::SmallVector<mlir::Value> ioArgs{cookie, std::get<0>(tup), |
| 1197 | std::get<1>(tup)}; |
| 1198 | return builder.create<fir::CallOp>(loc, ioFunc, ioArgs).getResult(0); |
| 1199 | } |
| 1200 | |
| 1201 | template <> |
| 1202 | mlir::Value genIOOption<Fortran::parser::ConnectSpec::CharExpr>( |
| 1203 | Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
| 1204 | mlir::Value cookie, const Fortran::parser::ConnectSpec::CharExpr &spec) { |
| 1205 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 1206 | mlir::func::FuncOp ioFunc; |
| 1207 | switch (std::get<Fortran::parser::ConnectSpec::CharExpr::Kind>(spec.t)) { |
| 1208 | case Fortran::parser::ConnectSpec::CharExpr::Kind::Access: |
| 1209 | ioFunc = fir::runtime::getIORuntimeFunc<mkIOKey(SetAccess)>(loc, builder); |
| 1210 | break; |
| 1211 | case Fortran::parser::ConnectSpec::CharExpr::Kind::Action: |
| 1212 | ioFunc = fir::runtime::getIORuntimeFunc<mkIOKey(SetAction)>(loc, builder); |
| 1213 | break; |
| 1214 | case Fortran::parser::ConnectSpec::CharExpr::Kind::Asynchronous: |
| 1215 | ioFunc = |
| 1216 | fir::runtime::getIORuntimeFunc<mkIOKey(SetAsynchronous)>(loc, builder); |
| 1217 | break; |
| 1218 | case Fortran::parser::ConnectSpec::CharExpr::Kind::Blank: |
| 1219 | ioFunc = fir::runtime::getIORuntimeFunc<mkIOKey(SetBlank)>(loc, builder); |
| 1220 | break; |
| 1221 | case Fortran::parser::ConnectSpec::CharExpr::Kind::Decimal: |
| 1222 | ioFunc = fir::runtime::getIORuntimeFunc<mkIOKey(SetDecimal)>(loc, builder); |
| 1223 | break; |
| 1224 | case Fortran::parser::ConnectSpec::CharExpr::Kind::Delim: |
| 1225 | ioFunc = fir::runtime::getIORuntimeFunc<mkIOKey(SetDelim)>(loc, builder); |
| 1226 | break; |
| 1227 | case Fortran::parser::ConnectSpec::CharExpr::Kind::Encoding: |
| 1228 | ioFunc = fir::runtime::getIORuntimeFunc<mkIOKey(SetEncoding)>(loc, builder); |
| 1229 | break; |
| 1230 | case Fortran::parser::ConnectSpec::CharExpr::Kind::Form: |
| 1231 | ioFunc = fir::runtime::getIORuntimeFunc<mkIOKey(SetForm)>(loc, builder); |
| 1232 | break; |
| 1233 | case Fortran::parser::ConnectSpec::CharExpr::Kind::Pad: |
| 1234 | ioFunc = fir::runtime::getIORuntimeFunc<mkIOKey(SetPad)>(loc, builder); |
| 1235 | break; |
| 1236 | case Fortran::parser::ConnectSpec::CharExpr::Kind::Position: |
| 1237 | ioFunc = fir::runtime::getIORuntimeFunc<mkIOKey(SetPosition)>(loc, builder); |
| 1238 | break; |
| 1239 | case Fortran::parser::ConnectSpec::CharExpr::Kind::Round: |
| 1240 | ioFunc = fir::runtime::getIORuntimeFunc<mkIOKey(SetRound)>(loc, builder); |
| 1241 | break; |
| 1242 | case Fortran::parser::ConnectSpec::CharExpr::Kind::Sign: |
| 1243 | ioFunc = fir::runtime::getIORuntimeFunc<mkIOKey(SetSign)>(loc, builder); |
| 1244 | break; |
| 1245 | case Fortran::parser::ConnectSpec::CharExpr::Kind::Carriagecontrol: |
| 1246 | ioFunc = fir::runtime::getIORuntimeFunc<mkIOKey(SetCarriagecontrol)>( |
| 1247 | loc, builder); |
| 1248 | break; |
| 1249 | case Fortran::parser::ConnectSpec::CharExpr::Kind::Convert: |
| 1250 | ioFunc = fir::runtime::getIORuntimeFunc<mkIOKey(SetConvert)>(loc, builder); |
| 1251 | break; |
| 1252 | case Fortran::parser::ConnectSpec::CharExpr::Kind::Dispose: |
| 1253 | TODO(loc, "DISPOSE not part of the runtime::io interface" ); |
| 1254 | } |
| 1255 | Fortran::lower::StatementContext localStatementCtx; |
| 1256 | mlir::FunctionType ioFuncTy = ioFunc.getFunctionType(); |
| 1257 | std::tuple<mlir::Value, mlir::Value, mlir::Value> tup = |
| 1258 | lowerStringLit(converter, loc, localStatementCtx, |
| 1259 | std::get<Fortran::parser::ScalarDefaultCharExpr>(spec.t), |
| 1260 | ioFuncTy.getInput(1), ioFuncTy.getInput(2)); |
| 1261 | llvm::SmallVector<mlir::Value> ioArgs = {cookie, std::get<0>(tup), |
| 1262 | std::get<1>(tup)}; |
| 1263 | return builder.create<fir::CallOp>(loc, ioFunc, ioArgs).getResult(0); |
| 1264 | } |
| 1265 | |
| 1266 | template <> |
| 1267 | mlir::Value genIOOption<Fortran::parser::ConnectSpec::Recl>( |
| 1268 | Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
| 1269 | mlir::Value cookie, const Fortran::parser::ConnectSpec::Recl &spec) { |
| 1270 | return genIntIOOption<mkIOKey(SetRecl)>(converter, loc, cookie, spec); |
| 1271 | } |
| 1272 | |
| 1273 | template <> |
| 1274 | mlir::Value genIOOption<Fortran::parser::StatusExpr>( |
| 1275 | Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
| 1276 | mlir::Value cookie, const Fortran::parser::StatusExpr &spec) { |
| 1277 | return genCharIOOption<mkIOKey(SetStatus)>(converter, loc, cookie, spec.v); |
| 1278 | } |
| 1279 | |
| 1280 | template <> |
| 1281 | mlir::Value genIOOption<Fortran::parser::IoControlSpec::CharExpr>( |
| 1282 | Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
| 1283 | mlir::Value cookie, const Fortran::parser::IoControlSpec::CharExpr &spec) { |
| 1284 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 1285 | mlir::func::FuncOp ioFunc; |
| 1286 | switch (std::get<Fortran::parser::IoControlSpec::CharExpr::Kind>(spec.t)) { |
| 1287 | case Fortran::parser::IoControlSpec::CharExpr::Kind::Advance: |
| 1288 | ioFunc = fir::runtime::getIORuntimeFunc<mkIOKey(SetAdvance)>(loc, builder); |
| 1289 | break; |
| 1290 | case Fortran::parser::IoControlSpec::CharExpr::Kind::Blank: |
| 1291 | ioFunc = fir::runtime::getIORuntimeFunc<mkIOKey(SetBlank)>(loc, builder); |
| 1292 | break; |
| 1293 | case Fortran::parser::IoControlSpec::CharExpr::Kind::Decimal: |
| 1294 | ioFunc = fir::runtime::getIORuntimeFunc<mkIOKey(SetDecimal)>(loc, builder); |
| 1295 | break; |
| 1296 | case Fortran::parser::IoControlSpec::CharExpr::Kind::Delim: |
| 1297 | ioFunc = fir::runtime::getIORuntimeFunc<mkIOKey(SetDelim)>(loc, builder); |
| 1298 | break; |
| 1299 | case Fortran::parser::IoControlSpec::CharExpr::Kind::Pad: |
| 1300 | ioFunc = fir::runtime::getIORuntimeFunc<mkIOKey(SetPad)>(loc, builder); |
| 1301 | break; |
| 1302 | case Fortran::parser::IoControlSpec::CharExpr::Kind::Round: |
| 1303 | ioFunc = fir::runtime::getIORuntimeFunc<mkIOKey(SetRound)>(loc, builder); |
| 1304 | break; |
| 1305 | case Fortran::parser::IoControlSpec::CharExpr::Kind::Sign: |
| 1306 | ioFunc = fir::runtime::getIORuntimeFunc<mkIOKey(SetSign)>(loc, builder); |
| 1307 | break; |
| 1308 | } |
| 1309 | Fortran::lower::StatementContext localStatementCtx; |
| 1310 | mlir::FunctionType ioFuncTy = ioFunc.getFunctionType(); |
| 1311 | std::tuple<mlir::Value, mlir::Value, mlir::Value> tup = |
| 1312 | lowerStringLit(converter, loc, localStatementCtx, |
| 1313 | std::get<Fortran::parser::ScalarDefaultCharExpr>(spec.t), |
| 1314 | ioFuncTy.getInput(1), ioFuncTy.getInput(2)); |
| 1315 | llvm::SmallVector<mlir::Value> ioArgs = {cookie, std::get<0>(tup), |
| 1316 | std::get<1>(tup)}; |
| 1317 | return builder.create<fir::CallOp>(loc, ioFunc, ioArgs).getResult(0); |
| 1318 | } |
| 1319 | |
| 1320 | template <> |
| 1321 | mlir::Value genIOOption<Fortran::parser::IoControlSpec::Asynchronous>( |
| 1322 | Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
| 1323 | mlir::Value cookie, |
| 1324 | const Fortran::parser::IoControlSpec::Asynchronous &spec) { |
| 1325 | return genCharIOOption<mkIOKey(SetAsynchronous)>(converter, loc, cookie, |
| 1326 | spec.v); |
| 1327 | } |
| 1328 | |
| 1329 | template <> |
| 1330 | mlir::Value genIOOption<Fortran::parser::IoControlSpec::Pos>( |
| 1331 | Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
| 1332 | mlir::Value cookie, const Fortran::parser::IoControlSpec::Pos &spec) { |
| 1333 | return genIntIOOption<mkIOKey(SetPos)>(converter, loc, cookie, spec); |
| 1334 | } |
| 1335 | |
| 1336 | template <> |
| 1337 | mlir::Value genIOOption<Fortran::parser::IoControlSpec::Rec>( |
| 1338 | Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
| 1339 | mlir::Value cookie, const Fortran::parser::IoControlSpec::Rec &spec) { |
| 1340 | return genIntIOOption<mkIOKey(SetRec)>(converter, loc, cookie, spec); |
| 1341 | } |
| 1342 | |
| 1343 | /// Generate runtime call to set some control variable. |
| 1344 | /// Generates "VAR = IoRuntimeKey(cookie)". |
| 1345 | template <typename IoRuntimeKey, typename VAR> |
| 1346 | static void genIOGetVar(Fortran::lower::AbstractConverter &converter, |
| 1347 | mlir::Location loc, mlir::Value cookie, |
| 1348 | const VAR &parserVar) { |
| 1349 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 1350 | mlir::func::FuncOp ioFunc = |
| 1351 | fir::runtime::getIORuntimeFunc<IoRuntimeKey>(loc, builder); |
| 1352 | mlir::Value value = |
| 1353 | builder.create<fir::CallOp>(loc, ioFunc, mlir::ValueRange{cookie}) |
| 1354 | .getResult(0); |
| 1355 | Fortran::lower::StatementContext localStatementCtx; |
| 1356 | fir::ExtendedValue var = converter.genExprAddr( |
| 1357 | loc, Fortran::semantics::GetExpr(parserVar.v), localStatementCtx); |
| 1358 | builder.createStoreWithConvert(loc, value, fir::getBase(var)); |
| 1359 | } |
| 1360 | |
| 1361 | //===----------------------------------------------------------------------===// |
| 1362 | // Gather IO statement condition specifier information (if any). |
| 1363 | //===----------------------------------------------------------------------===// |
| 1364 | |
| 1365 | template <typename SEEK, typename A> |
| 1366 | static bool hasX(const A &list) { |
| 1367 | for (const auto &spec : list) |
| 1368 | if (std::holds_alternative<SEEK>(spec.u)) |
| 1369 | return true; |
| 1370 | return false; |
| 1371 | } |
| 1372 | |
| 1373 | template <typename SEEK, typename A> |
| 1374 | static bool hasSpec(const A &stmt) { |
| 1375 | return hasX<SEEK>(stmt.v); |
| 1376 | } |
| 1377 | |
| 1378 | /// Get the sought expression from the specifier list. |
| 1379 | template <typename SEEK, typename A> |
| 1380 | static const Fortran::lower::SomeExpr *getExpr(const A &stmt) { |
| 1381 | for (const auto &spec : stmt.v) |
| 1382 | if (auto *f = std::get_if<SEEK>(&spec.u)) |
| 1383 | return Fortran::semantics::GetExpr(f->v); |
| 1384 | llvm::report_fatal_error("must have a file unit" ); |
| 1385 | } |
| 1386 | |
| 1387 | /// For each specifier, build the appropriate call, threading the cookie. |
| 1388 | template <typename A> |
| 1389 | static void threadSpecs(Fortran::lower::AbstractConverter &converter, |
| 1390 | mlir::Location loc, mlir::Value cookie, |
| 1391 | const A &specList, bool checkResult, mlir::Value &ok) { |
| 1392 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 1393 | for (const auto &spec : specList) { |
| 1394 | makeNextConditionalOn(builder, loc, checkResult, ok); |
| 1395 | ok = Fortran::common::visit( |
| 1396 | Fortran::common::visitors{ |
| 1397 | [&](const Fortran::parser::IoControlSpec::Size &x) -> mlir::Value { |
| 1398 | // Size must be queried after the related READ runtime calls, not |
| 1399 | // before. |
| 1400 | return ok; |
| 1401 | }, |
| 1402 | [&](const Fortran::parser::ConnectSpec::Newunit &x) -> mlir::Value { |
| 1403 | // Newunit must be queried after OPEN specifier runtime calls |
| 1404 | // that may fail to avoid modifying the newunit variable if |
| 1405 | // there is an error. |
| 1406 | return ok; |
| 1407 | }, |
| 1408 | [&](const Fortran::parser::IdVariable &) -> mlir::Value { |
| 1409 | // ID is queried after the transfer so that ASYNCHROUNOUS= has |
| 1410 | // been processed and also to set it to zero if the transfer is |
| 1411 | // already finished. |
| 1412 | return ok; |
| 1413 | }, |
| 1414 | [&](const auto &x) { |
| 1415 | return genIOOption(converter, loc, cookie, x); |
| 1416 | }}, |
| 1417 | spec.u); |
| 1418 | } |
| 1419 | } |
| 1420 | |
| 1421 | /// Most IO statements allow one or more of five optional exception condition |
| 1422 | /// handling specifiers: ERR, EOR, END, IOSTAT, and IOMSG. The first three |
| 1423 | /// cause control flow to transfer to another statement. The final two return |
| 1424 | /// information from the runtime, via a variable, about the nature of the |
| 1425 | /// condition that occurred. These condition specifiers are handled here. |
| 1426 | template <typename A> |
| 1427 | ConditionSpecInfo lowerErrorSpec(Fortran::lower::AbstractConverter &converter, |
| 1428 | mlir::Location loc, const A &specList) { |
| 1429 | ConditionSpecInfo csi; |
| 1430 | const Fortran::lower::SomeExpr *ioMsgExpr = nullptr; |
| 1431 | for (const auto &spec : specList) { |
| 1432 | Fortran::common::visit( |
| 1433 | Fortran::common::visitors{ |
| 1434 | [&](const Fortran::parser::StatVariable &var) { |
| 1435 | csi.ioStatExpr = Fortran::semantics::GetExpr(var); |
| 1436 | }, |
| 1437 | [&](const Fortran::parser::InquireSpec::IntVar &var) { |
| 1438 | if (std::get<Fortran::parser::InquireSpec::IntVar::Kind>(var.t) == |
| 1439 | Fortran::parser::InquireSpec::IntVar::Kind::Iostat) |
| 1440 | csi.ioStatExpr = Fortran::semantics::GetExpr( |
| 1441 | std::get<Fortran::parser::ScalarIntVariable>(var.t)); |
| 1442 | }, |
| 1443 | [&](const Fortran::parser::MsgVariable &var) { |
| 1444 | ioMsgExpr = Fortran::semantics::GetExpr(var); |
| 1445 | }, |
| 1446 | [&](const Fortran::parser::InquireSpec::CharVar &var) { |
| 1447 | if (std::get<Fortran::parser::InquireSpec::CharVar::Kind>( |
| 1448 | var.t) == |
| 1449 | Fortran::parser::InquireSpec::CharVar::Kind::Iomsg) |
| 1450 | ioMsgExpr = Fortran::semantics::GetExpr( |
| 1451 | std::get<Fortran::parser::ScalarDefaultCharVariable>( |
| 1452 | var.t)); |
| 1453 | }, |
| 1454 | [&](const Fortran::parser::EndLabel &) { csi.hasEnd = true; }, |
| 1455 | [&](const Fortran::parser::EorLabel &) { csi.hasEor = true; }, |
| 1456 | [&](const Fortran::parser::ErrLabel &) { csi.hasErr = true; }, |
| 1457 | [](const auto &) {}}, |
| 1458 | spec.u); |
| 1459 | } |
| 1460 | if (ioMsgExpr) { |
| 1461 | // iomsg is a variable, its evaluation may require temps, but it cannot |
| 1462 | // itself be a temp, and it is ok to us a local statement context here. |
| 1463 | Fortran::lower::StatementContext stmtCtx; |
| 1464 | csi.ioMsg = converter.genExprAddr(loc, ioMsgExpr, stmtCtx); |
| 1465 | } |
| 1466 | |
| 1467 | return csi; |
| 1468 | } |
| 1469 | template <typename A> |
| 1470 | static void |
| 1471 | genConditionHandlerCall(Fortran::lower::AbstractConverter &converter, |
| 1472 | mlir::Location loc, mlir::Value cookie, |
| 1473 | const A &specList, ConditionSpecInfo &csi) { |
| 1474 | if (!csi.hasAnyConditionSpec()) |
| 1475 | return; |
| 1476 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 1477 | mlir::func::FuncOp enableHandlers = |
| 1478 | fir::runtime::getIORuntimeFunc<mkIOKey(EnableHandlers)>(loc, builder); |
| 1479 | mlir::Type boolType = enableHandlers.getFunctionType().getInput(1); |
| 1480 | auto boolValue = [&](bool specifierIsPresent) { |
| 1481 | return builder.create<mlir::arith::ConstantOp>( |
| 1482 | loc, builder.getIntegerAttr(boolType, specifierIsPresent)); |
| 1483 | }; |
| 1484 | llvm::SmallVector<mlir::Value> ioArgs = {cookie, |
| 1485 | boolValue(csi.ioStatExpr != nullptr), |
| 1486 | boolValue(csi.hasErr), |
| 1487 | boolValue(csi.hasEnd), |
| 1488 | boolValue(csi.hasEor), |
| 1489 | boolValue(csi.ioMsg.has_value())}; |
| 1490 | builder.create<fir::CallOp>(loc, enableHandlers, ioArgs); |
| 1491 | } |
| 1492 | |
| 1493 | //===----------------------------------------------------------------------===// |
| 1494 | // Data transfer helpers |
| 1495 | //===----------------------------------------------------------------------===// |
| 1496 | |
| 1497 | template <typename SEEK, typename A> |
| 1498 | static bool hasIOControl(const A &stmt) { |
| 1499 | return hasX<SEEK>(stmt.controls); |
| 1500 | } |
| 1501 | |
| 1502 | template <typename SEEK, typename A> |
| 1503 | static const auto *getIOControl(const A &stmt) { |
| 1504 | for (const auto &spec : stmt.controls) |
| 1505 | if (const auto *result = std::get_if<SEEK>(&spec.u)) |
| 1506 | return result; |
| 1507 | return static_cast<const SEEK *>(nullptr); |
| 1508 | } |
| 1509 | |
| 1510 | /// Returns true iff the expression in the parse tree is not really a format but |
| 1511 | /// rather a namelist group. |
| 1512 | template <typename A> |
| 1513 | static bool formatIsActuallyNamelist(const A &format) { |
| 1514 | if (auto *e = std::get_if<Fortran::parser::Expr>(&format.u)) { |
| 1515 | auto *expr = Fortran::semantics::GetExpr(*e); |
| 1516 | if (const Fortran::semantics::Symbol *y = |
| 1517 | Fortran::evaluate::UnwrapWholeSymbolDataRef(*expr)) |
| 1518 | return y->has<Fortran::semantics::NamelistDetails>(); |
| 1519 | } |
| 1520 | return false; |
| 1521 | } |
| 1522 | |
| 1523 | template <typename A> |
| 1524 | static bool isDataTransferFormatted(const A &stmt) { |
| 1525 | if (stmt.format) |
| 1526 | return !formatIsActuallyNamelist(*stmt.format); |
| 1527 | return hasIOControl<Fortran::parser::Format>(stmt); |
| 1528 | } |
| 1529 | template <> |
| 1530 | constexpr bool isDataTransferFormatted<Fortran::parser::PrintStmt>( |
| 1531 | const Fortran::parser::PrintStmt &) { |
| 1532 | return true; // PRINT is always formatted |
| 1533 | } |
| 1534 | |
| 1535 | template <typename A> |
| 1536 | static bool isDataTransferList(const A &stmt) { |
| 1537 | if (stmt.format) |
| 1538 | return std::holds_alternative<Fortran::parser::Star>(stmt.format->u); |
| 1539 | if (auto *mem = getIOControl<Fortran::parser::Format>(stmt)) |
| 1540 | return std::holds_alternative<Fortran::parser::Star>(mem->u); |
| 1541 | return false; |
| 1542 | } |
| 1543 | template <> |
| 1544 | bool isDataTransferList<Fortran::parser::PrintStmt>( |
| 1545 | const Fortran::parser::PrintStmt &stmt) { |
| 1546 | return std::holds_alternative<Fortran::parser::Star>( |
| 1547 | std::get<Fortran::parser::Format>(stmt.t).u); |
| 1548 | } |
| 1549 | |
| 1550 | template <typename A> |
| 1551 | static bool isDataTransferInternal(const A &stmt) { |
| 1552 | if (stmt.iounit.has_value()) |
| 1553 | return std::holds_alternative<Fortran::parser::Variable>(stmt.iounit->u); |
| 1554 | if (auto *unit = getIOControl<Fortran::parser::IoUnit>(stmt)) |
| 1555 | return std::holds_alternative<Fortran::parser::Variable>(unit->u); |
| 1556 | return false; |
| 1557 | } |
| 1558 | template <> |
| 1559 | constexpr bool isDataTransferInternal<Fortran::parser::PrintStmt>( |
| 1560 | const Fortran::parser::PrintStmt &) { |
| 1561 | return false; |
| 1562 | } |
| 1563 | |
| 1564 | /// If the variable `var` is an array or of a KIND other than the default |
| 1565 | /// (normally 1), then a descriptor is required by the runtime IO API. This |
| 1566 | /// condition holds even in F77 sources. |
| 1567 | static std::optional<fir::ExtendedValue> getVariableBufferRequiredDescriptor( |
| 1568 | Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
| 1569 | const Fortran::parser::Variable &var, |
| 1570 | Fortran::lower::StatementContext &stmtCtx) { |
| 1571 | fir::ExtendedValue varBox = |
| 1572 | converter.genExprBox(loc, var.typedExpr->v.value(), stmtCtx); |
| 1573 | fir::KindTy defCharKind = converter.getKindMap().defaultCharacterKind(); |
| 1574 | mlir::Value varAddr = fir::getBase(varBox); |
| 1575 | if (fir::factory::CharacterExprHelper::getCharacterOrSequenceKind( |
| 1576 | varAddr.getType()) != defCharKind) |
| 1577 | return varBox; |
| 1578 | if (fir::factory::CharacterExprHelper::isArray(varAddr.getType())) |
| 1579 | return varBox; |
| 1580 | return std::nullopt; |
| 1581 | } |
| 1582 | |
| 1583 | template <typename A> |
| 1584 | static std::optional<fir::ExtendedValue> |
| 1585 | maybeGetInternalIODescriptor(Fortran::lower::AbstractConverter &converter, |
| 1586 | mlir::Location loc, const A &stmt, |
| 1587 | Fortran::lower::StatementContext &stmtCtx) { |
| 1588 | if (stmt.iounit.has_value()) |
| 1589 | if (auto *var = std::get_if<Fortran::parser::Variable>(&stmt.iounit->u)) |
| 1590 | return getVariableBufferRequiredDescriptor(converter, loc, *var, stmtCtx); |
| 1591 | if (auto *unit = getIOControl<Fortran::parser::IoUnit>(stmt)) |
| 1592 | if (auto *var = std::get_if<Fortran::parser::Variable>(&unit->u)) |
| 1593 | return getVariableBufferRequiredDescriptor(converter, loc, *var, stmtCtx); |
| 1594 | return std::nullopt; |
| 1595 | } |
| 1596 | template <> |
| 1597 | inline std::optional<fir::ExtendedValue> |
| 1598 | maybeGetInternalIODescriptor<Fortran::parser::PrintStmt>( |
| 1599 | Fortran::lower::AbstractConverter &, mlir::Location loc, |
| 1600 | const Fortran::parser::PrintStmt &, Fortran::lower::StatementContext &) { |
| 1601 | return std::nullopt; |
| 1602 | } |
| 1603 | |
| 1604 | template <typename A> |
| 1605 | static bool isDataTransferNamelist(const A &stmt) { |
| 1606 | if (stmt.format) |
| 1607 | return formatIsActuallyNamelist(*stmt.format); |
| 1608 | return hasIOControl<Fortran::parser::Name>(stmt); |
| 1609 | } |
| 1610 | template <> |
| 1611 | constexpr bool isDataTransferNamelist<Fortran::parser::PrintStmt>( |
| 1612 | const Fortran::parser::PrintStmt &) { |
| 1613 | return false; |
| 1614 | } |
| 1615 | |
| 1616 | /// Lowers a format statment that uses an assigned variable label reference as |
| 1617 | /// a select operation to allow for run-time selection of the format statement. |
| 1618 | static std::tuple<mlir::Value, mlir::Value, mlir::Value> |
| 1619 | lowerReferenceAsStringSelect(Fortran::lower::AbstractConverter &converter, |
| 1620 | mlir::Location loc, |
| 1621 | const Fortran::lower::SomeExpr &expr, |
| 1622 | mlir::Type strTy, mlir::Type lenTy, |
| 1623 | Fortran::lower::StatementContext &stmtCtx) { |
| 1624 | // Create the requisite blocks to inline a selectOp. |
| 1625 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 1626 | mlir::Block *startBlock = builder.getBlock(); |
| 1627 | mlir::Block *endBlock = startBlock->splitBlock(builder.getInsertionPoint()); |
| 1628 | mlir::Block *block = startBlock->splitBlock(builder.getInsertionPoint()); |
| 1629 | builder.setInsertionPointToEnd(block); |
| 1630 | |
| 1631 | llvm::SmallVector<int64_t> indexList; |
| 1632 | llvm::SmallVector<mlir::Block *> blockList; |
| 1633 | |
| 1634 | auto symbol = GetLastSymbol(&expr); |
| 1635 | Fortran::lower::pft::LabelSet labels; |
| 1636 | converter.lookupLabelSet(*symbol, labels); |
| 1637 | |
| 1638 | for (auto label : labels) { |
| 1639 | indexList.push_back(label); |
| 1640 | auto *eval = converter.lookupLabel(label); |
| 1641 | assert(eval && "Label is missing from the table" ); |
| 1642 | |
| 1643 | llvm::StringRef text = toStringRef(eval->position); |
| 1644 | mlir::Value stringRef; |
| 1645 | mlir::Value stringLen; |
| 1646 | if (eval->isA<Fortran::parser::FormatStmt>()) { |
| 1647 | assert(text.contains('(') && "FORMAT is unexpectedly ill-formed" ); |
| 1648 | // This is a format statement, so extract the spec from the text. |
| 1649 | std::tuple<mlir::Value, mlir::Value, mlir::Value> stringLit = |
| 1650 | lowerSourceTextAsStringLit(converter, loc, text, strTy, lenTy); |
| 1651 | stringRef = std::get<0>(stringLit); |
| 1652 | stringLen = std::get<1>(stringLit); |
| 1653 | } else { |
| 1654 | // This is not a format statement, so use null. |
| 1655 | stringRef = builder.createConvert( |
| 1656 | loc, strTy, |
| 1657 | builder.createIntegerConstant(loc, builder.getIndexType(), 0)); |
| 1658 | stringLen = builder.createIntegerConstant(loc, lenTy, 0); |
| 1659 | } |
| 1660 | |
| 1661 | // Pass the format string reference and the string length out of the select |
| 1662 | // statement. |
| 1663 | llvm::SmallVector<mlir::Value> args = {stringRef, stringLen}; |
| 1664 | builder.create<mlir::cf::BranchOp>(loc, endBlock, args); |
| 1665 | |
| 1666 | // Add block to the list of cases and make a new one. |
| 1667 | blockList.push_back(block); |
| 1668 | block = block->splitBlock(builder.getInsertionPoint()); |
| 1669 | builder.setInsertionPointToEnd(block); |
| 1670 | } |
| 1671 | |
| 1672 | // Create the unit case which should result in an error. |
| 1673 | auto *unitBlock = block->splitBlock(builder.getInsertionPoint()); |
| 1674 | builder.setInsertionPointToEnd(unitBlock); |
| 1675 | fir::runtime::genReportFatalUserError( |
| 1676 | builder, loc, |
| 1677 | "Assigned format variable '" + symbol->name().ToString() + |
| 1678 | "' has not been assigned a valid format label" ); |
| 1679 | builder.create<fir::UnreachableOp>(loc); |
| 1680 | blockList.push_back(unitBlock); |
| 1681 | |
| 1682 | // Lower the selectOp. |
| 1683 | builder.setInsertionPointToEnd(startBlock); |
| 1684 | auto label = fir::getBase(converter.genExprValue(loc, &expr, stmtCtx)); |
| 1685 | builder.create<fir::SelectOp>(loc, label, indexList, blockList); |
| 1686 | |
| 1687 | builder.setInsertionPointToEnd(endBlock); |
| 1688 | endBlock->addArgument(strTy, loc); |
| 1689 | endBlock->addArgument(lenTy, loc); |
| 1690 | |
| 1691 | // Handle and return the string reference and length selected by the selectOp. |
| 1692 | auto buff = endBlock->getArgument(0); |
| 1693 | auto len = endBlock->getArgument(1); |
| 1694 | |
| 1695 | return {buff, len, mlir::Value{}}; |
| 1696 | } |
| 1697 | |
| 1698 | /// Generate a reference to a format string. There are four cases - a format |
| 1699 | /// statement label, a character format expression, an integer that holds the |
| 1700 | /// label of a format statement, and the * case. The first three are done here. |
| 1701 | /// The * case is done elsewhere. |
| 1702 | static std::tuple<mlir::Value, mlir::Value, mlir::Value> |
| 1703 | genFormat(Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
| 1704 | const Fortran::parser::Format &format, mlir::Type strTy, |
| 1705 | mlir::Type lenTy, Fortran::lower::StatementContext &stmtCtx) { |
| 1706 | if (const auto *label = std::get_if<Fortran::parser::Label>(&format.u)) { |
| 1707 | // format statement label |
| 1708 | auto eval = converter.lookupLabel(*label); |
| 1709 | assert(eval && "FORMAT not found in PROCEDURE" ); |
| 1710 | return lowerSourceTextAsStringLit( |
| 1711 | converter, loc, toStringRef(eval->position), strTy, lenTy); |
| 1712 | } |
| 1713 | const auto *pExpr = std::get_if<Fortran::parser::Expr>(&format.u); |
| 1714 | assert(pExpr && "missing format expression" ); |
| 1715 | auto e = Fortran::semantics::GetExpr(*pExpr); |
| 1716 | if (Fortran::semantics::ExprHasTypeCategory( |
| 1717 | *e, Fortran::common::TypeCategory::Character)) { |
| 1718 | // character expression |
| 1719 | if (e->Rank()) |
| 1720 | // Array: return address(descriptor) and no length (and no kind value). |
| 1721 | return {fir::getBase(converter.genExprBox(loc, *e, stmtCtx)), |
| 1722 | mlir::Value{}, mlir::Value{}}; |
| 1723 | // Scalar: return address(format) and format length (and no kind value). |
| 1724 | return lowerStringLit(converter, loc, stmtCtx, *pExpr, strTy, lenTy); |
| 1725 | } |
| 1726 | |
| 1727 | if (Fortran::semantics::ExprHasTypeCategory( |
| 1728 | *e, Fortran::common::TypeCategory::Integer) && |
| 1729 | e->Rank() == 0 && Fortran::evaluate::UnwrapWholeSymbolDataRef(*e)) { |
| 1730 | // Treat as a scalar integer variable containing an ASSIGN label. |
| 1731 | return lowerReferenceAsStringSelect(converter, loc, *e, strTy, lenTy, |
| 1732 | stmtCtx); |
| 1733 | } |
| 1734 | |
| 1735 | // Legacy extension: it is possible that `*e` is not a scalar INTEGER |
| 1736 | // variable containing a label value. The output appears to be the source text |
| 1737 | // that initialized the variable? Needs more investigatation. |
| 1738 | TODO(loc, "io-control-spec contains a reference to a non-integer, " |
| 1739 | "non-scalar, or non-variable" ); |
| 1740 | } |
| 1741 | |
| 1742 | template <typename A> |
| 1743 | std::tuple<mlir::Value, mlir::Value, mlir::Value> |
| 1744 | getFormat(Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
| 1745 | const A &stmt, mlir::Type strTy, mlir::Type lenTy, |
| 1746 | Fortran ::lower::StatementContext &stmtCtx) { |
| 1747 | if (stmt.format && !formatIsActuallyNamelist(*stmt.format)) |
| 1748 | return genFormat(converter, loc, *stmt.format, strTy, lenTy, stmtCtx); |
| 1749 | return genFormat(converter, loc, *getIOControl<Fortran::parser::Format>(stmt), |
| 1750 | strTy, lenTy, stmtCtx); |
| 1751 | } |
| 1752 | template <> |
| 1753 | std::tuple<mlir::Value, mlir::Value, mlir::Value> |
| 1754 | getFormat<Fortran::parser::PrintStmt>( |
| 1755 | Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
| 1756 | const Fortran::parser::PrintStmt &stmt, mlir::Type strTy, mlir::Type lenTy, |
| 1757 | Fortran::lower::StatementContext &stmtCtx) { |
| 1758 | return genFormat(converter, loc, std::get<Fortran::parser::Format>(stmt.t), |
| 1759 | strTy, lenTy, stmtCtx); |
| 1760 | } |
| 1761 | |
| 1762 | /// Get a buffer for an internal file data transfer. |
| 1763 | template <typename A> |
| 1764 | std::tuple<mlir::Value, mlir::Value> |
| 1765 | getBuffer(Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
| 1766 | const A &stmt, mlir::Type strTy, mlir::Type lenTy, |
| 1767 | Fortran::lower::StatementContext &stmtCtx) { |
| 1768 | const Fortran::parser::IoUnit *iounit = |
| 1769 | stmt.iounit ? &*stmt.iounit : getIOControl<Fortran::parser::IoUnit>(stmt); |
| 1770 | if (iounit) |
| 1771 | if (auto *var = std::get_if<Fortran::parser::Variable>(&iounit->u)) |
| 1772 | if (auto *expr = Fortran::semantics::GetExpr(*var)) |
| 1773 | return genBuffer(converter, loc, *expr, strTy, lenTy, stmtCtx); |
| 1774 | llvm::report_fatal_error("failed to get IoUnit expr" ); |
| 1775 | } |
| 1776 | |
| 1777 | static mlir::Value genIOUnitNumber(Fortran::lower::AbstractConverter &converter, |
| 1778 | mlir::Location loc, |
| 1779 | const Fortran::lower::SomeExpr *iounit, |
| 1780 | mlir::Type ty, ConditionSpecInfo &csi, |
| 1781 | Fortran::lower::StatementContext &stmtCtx) { |
| 1782 | auto &builder = converter.getFirOpBuilder(); |
| 1783 | auto rawUnit = fir::getBase(converter.genExprValue(loc, iounit, stmtCtx)); |
| 1784 | unsigned rawUnitWidth = |
| 1785 | mlir::cast<mlir::IntegerType>(rawUnit.getType()).getWidth(); |
| 1786 | unsigned runtimeArgWidth = mlir::cast<mlir::IntegerType>(ty).getWidth(); |
| 1787 | // The IO runtime supports `int` unit numbers, if the unit number may |
| 1788 | // overflow when passed to the IO runtime, check that the unit number is |
| 1789 | // in range before calling the BeginXXX. |
| 1790 | if (rawUnitWidth > runtimeArgWidth) { |
| 1791 | mlir::func::FuncOp check = |
| 1792 | rawUnitWidth <= 64 |
| 1793 | ? fir::runtime::getIORuntimeFunc<mkIOKey(CheckUnitNumberInRange64)>( |
| 1794 | loc, builder) |
| 1795 | : fir::runtime::getIORuntimeFunc<mkIOKey( |
| 1796 | CheckUnitNumberInRange128)>(loc, builder); |
| 1797 | mlir::FunctionType funcTy = check.getFunctionType(); |
| 1798 | llvm::SmallVector<mlir::Value> args; |
| 1799 | args.push_back(builder.createConvert(loc, funcTy.getInput(0), rawUnit)); |
| 1800 | args.push_back(builder.createBool(loc, csi.hasErrorConditionSpec())); |
| 1801 | if (csi.ioMsg) { |
| 1802 | args.push_back(builder.createConvert(loc, funcTy.getInput(2), |
| 1803 | fir::getBase(*csi.ioMsg))); |
| 1804 | args.push_back(builder.createConvert(loc, funcTy.getInput(3), |
| 1805 | fir::getLen(*csi.ioMsg))); |
| 1806 | } else { |
| 1807 | args.push_back(builder.createNullConstant(loc, funcTy.getInput(2))); |
| 1808 | args.push_back( |
| 1809 | fir::factory::createZeroValue(builder, loc, funcTy.getInput(3))); |
| 1810 | } |
| 1811 | mlir::Value file = locToFilename(converter, loc, funcTy.getInput(4)); |
| 1812 | mlir::Value line = locToLineNo(converter, loc, funcTy.getInput(5)); |
| 1813 | args.push_back(file); |
| 1814 | args.push_back(line); |
| 1815 | auto checkCall = builder.create<fir::CallOp>(loc, check, args); |
| 1816 | if (csi.hasErrorConditionSpec()) { |
| 1817 | mlir::Value iostat = checkCall.getResult(0); |
| 1818 | mlir::Type iostatTy = iostat.getType(); |
| 1819 | mlir::Value zero = fir::factory::createZeroValue(builder, loc, iostatTy); |
| 1820 | mlir::Value unitIsOK = builder.create<mlir::arith::CmpIOp>( |
| 1821 | loc, mlir::arith::CmpIPredicate::eq, iostat, zero); |
| 1822 | auto ifOp = builder.create<fir::IfOp>(loc, iostatTy, unitIsOK, |
| 1823 | /*withElseRegion=*/true); |
| 1824 | builder.setInsertionPointToStart(&ifOp.getElseRegion().front()); |
| 1825 | builder.create<fir::ResultOp>(loc, iostat); |
| 1826 | builder.setInsertionPointToStart(&ifOp.getThenRegion().front()); |
| 1827 | stmtCtx.pushScope(); |
| 1828 | csi.bigUnitIfOp = ifOp; |
| 1829 | } |
| 1830 | } |
| 1831 | return builder.createConvert(loc, ty, rawUnit); |
| 1832 | } |
| 1833 | |
| 1834 | static mlir::Value genIOUnit(Fortran::lower::AbstractConverter &converter, |
| 1835 | mlir::Location loc, |
| 1836 | const Fortran::parser::IoUnit *iounit, |
| 1837 | mlir::Type ty, ConditionSpecInfo &csi, |
| 1838 | Fortran::lower::StatementContext &stmtCtx, |
| 1839 | int defaultUnitNumber) { |
| 1840 | auto &builder = converter.getFirOpBuilder(); |
| 1841 | if (iounit) |
| 1842 | if (auto *e = |
| 1843 | std::get_if<Fortran::common::Indirection<Fortran::parser::Expr>>( |
| 1844 | &iounit->u)) |
| 1845 | return genIOUnitNumber(converter, loc, Fortran::semantics::GetExpr(*e), |
| 1846 | ty, csi, stmtCtx); |
| 1847 | return builder.create<mlir::arith::ConstantOp>( |
| 1848 | loc, builder.getIntegerAttr(ty, defaultUnitNumber)); |
| 1849 | } |
| 1850 | |
| 1851 | template <typename A> |
| 1852 | static mlir::Value |
| 1853 | getIOUnit(Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
| 1854 | const A &stmt, mlir::Type ty, ConditionSpecInfo &csi, |
| 1855 | Fortran::lower::StatementContext &stmtCtx, int defaultUnitNumber) { |
| 1856 | const Fortran::parser::IoUnit *iounit = |
| 1857 | stmt.iounit ? &*stmt.iounit : getIOControl<Fortran::parser::IoUnit>(stmt); |
| 1858 | return genIOUnit(converter, loc, iounit, ty, csi, stmtCtx, defaultUnitNumber); |
| 1859 | } |
| 1860 | //===----------------------------------------------------------------------===// |
| 1861 | // Generators for each IO statement type. |
| 1862 | //===----------------------------------------------------------------------===// |
| 1863 | |
| 1864 | template <typename K, typename S> |
| 1865 | static mlir::Value genBasicIOStmt(Fortran::lower::AbstractConverter &converter, |
| 1866 | const S &stmt) { |
| 1867 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 1868 | Fortran::lower::StatementContext stmtCtx; |
| 1869 | mlir::Location loc = converter.getCurrentLocation(); |
| 1870 | ConditionSpecInfo csi = lowerErrorSpec(converter, loc, stmt.v); |
| 1871 | mlir::func::FuncOp beginFunc = |
| 1872 | fir::runtime::getIORuntimeFunc<K>(loc, builder); |
| 1873 | mlir::FunctionType beginFuncTy = beginFunc.getFunctionType(); |
| 1874 | mlir::Value unit = genIOUnitNumber( |
| 1875 | converter, loc, getExpr<Fortran::parser::FileUnitNumber>(stmt), |
| 1876 | beginFuncTy.getInput(0), csi, stmtCtx); |
| 1877 | mlir::Value un = builder.createConvert(loc, beginFuncTy.getInput(0), unit); |
| 1878 | mlir::Value file = locToFilename(converter, loc, beginFuncTy.getInput(1)); |
| 1879 | mlir::Value line = locToLineNo(converter, loc, beginFuncTy.getInput(2)); |
| 1880 | auto call = builder.create<fir::CallOp>(loc, beginFunc, |
| 1881 | mlir::ValueRange{un, file, line}); |
| 1882 | mlir::Value cookie = call.getResult(0); |
| 1883 | genConditionHandlerCall(converter, loc, cookie, stmt.v, csi); |
| 1884 | mlir::Value ok; |
| 1885 | auto insertPt = builder.saveInsertionPoint(); |
| 1886 | threadSpecs(converter, loc, cookie, stmt.v, csi.hasErrorConditionSpec(), ok); |
| 1887 | builder.restoreInsertionPoint(insertPt); |
| 1888 | return genEndIO(converter, converter.getCurrentLocation(), cookie, csi, |
| 1889 | stmtCtx); |
| 1890 | } |
| 1891 | |
| 1892 | mlir::Value Fortran::lower::genBackspaceStatement( |
| 1893 | Fortran::lower::AbstractConverter &converter, |
| 1894 | const Fortran::parser::BackspaceStmt &stmt) { |
| 1895 | return genBasicIOStmt<mkIOKey(BeginBackspace)>(converter, stmt); |
| 1896 | } |
| 1897 | |
| 1898 | mlir::Value Fortran::lower::genEndfileStatement( |
| 1899 | Fortran::lower::AbstractConverter &converter, |
| 1900 | const Fortran::parser::EndfileStmt &stmt) { |
| 1901 | return genBasicIOStmt<mkIOKey(BeginEndfile)>(converter, stmt); |
| 1902 | } |
| 1903 | |
| 1904 | mlir::Value |
| 1905 | Fortran::lower::genFlushStatement(Fortran::lower::AbstractConverter &converter, |
| 1906 | const Fortran::parser::FlushStmt &stmt) { |
| 1907 | return genBasicIOStmt<mkIOKey(BeginFlush)>(converter, stmt); |
| 1908 | } |
| 1909 | |
| 1910 | mlir::Value |
| 1911 | Fortran::lower::genRewindStatement(Fortran::lower::AbstractConverter &converter, |
| 1912 | const Fortran::parser::RewindStmt &stmt) { |
| 1913 | return genBasicIOStmt<mkIOKey(BeginRewind)>(converter, stmt); |
| 1914 | } |
| 1915 | |
| 1916 | static mlir::Value |
| 1917 | genNewunitSpec(Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
| 1918 | mlir::Value cookie, |
| 1919 | const std::list<Fortran::parser::ConnectSpec> &specList) { |
| 1920 | for (const auto &spec : specList) |
| 1921 | if (auto *newunit = |
| 1922 | std::get_if<Fortran::parser::ConnectSpec::Newunit>(&spec.u)) { |
| 1923 | Fortran::lower::StatementContext stmtCtx; |
| 1924 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 1925 | mlir::func::FuncOp ioFunc = |
| 1926 | fir::runtime::getIORuntimeFunc<mkIOKey(GetNewUnit)>(loc, builder); |
| 1927 | mlir::FunctionType ioFuncTy = ioFunc.getFunctionType(); |
| 1928 | const auto *var = Fortran::semantics::GetExpr(newunit->v); |
| 1929 | mlir::Value addr = builder.createConvert( |
| 1930 | loc, ioFuncTy.getInput(1), |
| 1931 | fir::getBase(converter.genExprAddr(loc, var, stmtCtx))); |
| 1932 | auto kind = builder.createIntegerConstant(loc, ioFuncTy.getInput(2), |
| 1933 | var->GetType().value().kind()); |
| 1934 | llvm::SmallVector<mlir::Value> ioArgs = {cookie, addr, kind}; |
| 1935 | return builder.create<fir::CallOp>(loc, ioFunc, ioArgs).getResult(0); |
| 1936 | } |
| 1937 | llvm_unreachable("missing Newunit spec" ); |
| 1938 | } |
| 1939 | |
| 1940 | mlir::Value |
| 1941 | Fortran::lower::genOpenStatement(Fortran::lower::AbstractConverter &converter, |
| 1942 | const Fortran::parser::OpenStmt &stmt) { |
| 1943 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 1944 | Fortran::lower::StatementContext stmtCtx; |
| 1945 | mlir::func::FuncOp beginFunc; |
| 1946 | llvm::SmallVector<mlir::Value> beginArgs; |
| 1947 | mlir::Location loc = converter.getCurrentLocation(); |
| 1948 | ConditionSpecInfo csi = lowerErrorSpec(converter, loc, stmt.v); |
| 1949 | bool hasNewunitSpec = false; |
| 1950 | if (hasSpec<Fortran::parser::FileUnitNumber>(stmt)) { |
| 1951 | beginFunc = |
| 1952 | fir::runtime::getIORuntimeFunc<mkIOKey(BeginOpenUnit)>(loc, builder); |
| 1953 | mlir::FunctionType beginFuncTy = beginFunc.getFunctionType(); |
| 1954 | mlir::Value unit = genIOUnitNumber( |
| 1955 | converter, loc, getExpr<Fortran::parser::FileUnitNumber>(stmt), |
| 1956 | beginFuncTy.getInput(0), csi, stmtCtx); |
| 1957 | beginArgs.push_back(unit); |
| 1958 | beginArgs.push_back(locToFilename(converter, loc, beginFuncTy.getInput(1))); |
| 1959 | beginArgs.push_back(locToLineNo(converter, loc, beginFuncTy.getInput(2))); |
| 1960 | } else { |
| 1961 | hasNewunitSpec = hasSpec<Fortran::parser::ConnectSpec::Newunit>(stmt); |
| 1962 | assert(hasNewunitSpec && "missing unit specifier" ); |
| 1963 | beginFunc = |
| 1964 | fir::runtime::getIORuntimeFunc<mkIOKey(BeginOpenNewUnit)>(loc, builder); |
| 1965 | mlir::FunctionType beginFuncTy = beginFunc.getFunctionType(); |
| 1966 | beginArgs.push_back(locToFilename(converter, loc, beginFuncTy.getInput(0))); |
| 1967 | beginArgs.push_back(locToLineNo(converter, loc, beginFuncTy.getInput(1))); |
| 1968 | } |
| 1969 | auto cookie = |
| 1970 | builder.create<fir::CallOp>(loc, beginFunc, beginArgs).getResult(0); |
| 1971 | genConditionHandlerCall(converter, loc, cookie, stmt.v, csi); |
| 1972 | mlir::Value ok; |
| 1973 | auto insertPt = builder.saveInsertionPoint(); |
| 1974 | threadSpecs(converter, loc, cookie, stmt.v, csi.hasErrorConditionSpec(), ok); |
| 1975 | if (hasNewunitSpec) |
| 1976 | genNewunitSpec(converter, loc, cookie, stmt.v); |
| 1977 | builder.restoreInsertionPoint(insertPt); |
| 1978 | return genEndIO(converter, loc, cookie, csi, stmtCtx); |
| 1979 | } |
| 1980 | |
| 1981 | mlir::Value |
| 1982 | Fortran::lower::genCloseStatement(Fortran::lower::AbstractConverter &converter, |
| 1983 | const Fortran::parser::CloseStmt &stmt) { |
| 1984 | return genBasicIOStmt<mkIOKey(BeginClose)>(converter, stmt); |
| 1985 | } |
| 1986 | |
| 1987 | mlir::Value |
| 1988 | Fortran::lower::genWaitStatement(Fortran::lower::AbstractConverter &converter, |
| 1989 | const Fortran::parser::WaitStmt &stmt) { |
| 1990 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 1991 | Fortran::lower::StatementContext stmtCtx; |
| 1992 | mlir::Location loc = converter.getCurrentLocation(); |
| 1993 | ConditionSpecInfo csi = lowerErrorSpec(converter, loc, stmt.v); |
| 1994 | bool hasId = hasSpec<Fortran::parser::IdExpr>(stmt); |
| 1995 | mlir::func::FuncOp beginFunc = |
| 1996 | hasId |
| 1997 | ? fir::runtime::getIORuntimeFunc<mkIOKey(BeginWait)>(loc, builder) |
| 1998 | : fir::runtime::getIORuntimeFunc<mkIOKey(BeginWaitAll)>(loc, builder); |
| 1999 | mlir::FunctionType beginFuncTy = beginFunc.getFunctionType(); |
| 2000 | mlir::Value unit = genIOUnitNumber( |
| 2001 | converter, loc, getExpr<Fortran::parser::FileUnitNumber>(stmt), |
| 2002 | beginFuncTy.getInput(0), csi, stmtCtx); |
| 2003 | llvm::SmallVector<mlir::Value> args{unit}; |
| 2004 | if (hasId) { |
| 2005 | mlir::Value id = fir::getBase(converter.genExprValue( |
| 2006 | loc, getExpr<Fortran::parser::IdExpr>(stmt), stmtCtx)); |
| 2007 | args.push_back(builder.createConvert(loc, beginFuncTy.getInput(1), id)); |
| 2008 | args.push_back(locToFilename(converter, loc, beginFuncTy.getInput(2))); |
| 2009 | args.push_back(locToLineNo(converter, loc, beginFuncTy.getInput(3))); |
| 2010 | } else { |
| 2011 | args.push_back(locToFilename(converter, loc, beginFuncTy.getInput(1))); |
| 2012 | args.push_back(locToLineNo(converter, loc, beginFuncTy.getInput(2))); |
| 2013 | } |
| 2014 | auto cookie = builder.create<fir::CallOp>(loc, beginFunc, args).getResult(0); |
| 2015 | genConditionHandlerCall(converter, loc, cookie, stmt.v, csi); |
| 2016 | return genEndIO(converter, converter.getCurrentLocation(), cookie, csi, |
| 2017 | stmtCtx); |
| 2018 | } |
| 2019 | |
| 2020 | //===----------------------------------------------------------------------===// |
| 2021 | // Data transfer statements. |
| 2022 | // |
| 2023 | // There are several dimensions to the API with regard to data transfer |
| 2024 | // statements that need to be considered. |
| 2025 | // |
| 2026 | // - input (READ) vs. output (WRITE, PRINT) |
| 2027 | // - unformatted vs. formatted vs. list vs. namelist |
| 2028 | // - synchronous vs. asynchronous |
| 2029 | // - external vs. internal |
| 2030 | //===----------------------------------------------------------------------===// |
| 2031 | |
| 2032 | // Get the begin data transfer IO function to call for the given values. |
| 2033 | template <bool isInput> |
| 2034 | mlir::func::FuncOp |
| 2035 | getBeginDataTransferFunc(mlir::Location loc, fir::FirOpBuilder &builder, |
| 2036 | bool isFormatted, bool isListOrNml, bool isInternal, |
| 2037 | bool isInternalWithDesc) { |
| 2038 | if constexpr (isInput) { |
| 2039 | if (isFormatted || isListOrNml) { |
| 2040 | if (isInternal) { |
| 2041 | if (isInternalWithDesc) { |
| 2042 | if (isListOrNml) |
| 2043 | return fir::runtime::getIORuntimeFunc<mkIOKey( |
| 2044 | BeginInternalArrayListInput)>(loc, builder); |
| 2045 | return fir::runtime::getIORuntimeFunc<mkIOKey( |
| 2046 | BeginInternalArrayFormattedInput)>(loc, builder); |
| 2047 | } |
| 2048 | if (isListOrNml) |
| 2049 | return fir::runtime::getIORuntimeFunc<mkIOKey( |
| 2050 | BeginInternalListInput)>(loc, builder); |
| 2051 | return fir::runtime::getIORuntimeFunc<mkIOKey( |
| 2052 | BeginInternalFormattedInput)>(loc, builder); |
| 2053 | } |
| 2054 | if (isListOrNml) |
| 2055 | return fir::runtime::getIORuntimeFunc<mkIOKey(BeginExternalListInput)>( |
| 2056 | loc, builder); |
| 2057 | return fir::runtime::getIORuntimeFunc<mkIOKey( |
| 2058 | BeginExternalFormattedInput)>(loc, builder); |
| 2059 | } |
| 2060 | return fir::runtime::getIORuntimeFunc<mkIOKey(BeginUnformattedInput)>( |
| 2061 | loc, builder); |
| 2062 | } else { |
| 2063 | if (isFormatted || isListOrNml) { |
| 2064 | if (isInternal) { |
| 2065 | if (isInternalWithDesc) { |
| 2066 | if (isListOrNml) |
| 2067 | return fir::runtime::getIORuntimeFunc<mkIOKey( |
| 2068 | BeginInternalArrayListOutput)>(loc, builder); |
| 2069 | return fir::runtime::getIORuntimeFunc<mkIOKey( |
| 2070 | BeginInternalArrayFormattedOutput)>(loc, builder); |
| 2071 | } |
| 2072 | if (isListOrNml) |
| 2073 | return fir::runtime::getIORuntimeFunc<mkIOKey( |
| 2074 | BeginInternalListOutput)>(loc, builder); |
| 2075 | return fir::runtime::getIORuntimeFunc<mkIOKey( |
| 2076 | BeginInternalFormattedOutput)>(loc, builder); |
| 2077 | } |
| 2078 | if (isListOrNml) |
| 2079 | return fir::runtime::getIORuntimeFunc<mkIOKey(BeginExternalListOutput)>( |
| 2080 | loc, builder); |
| 2081 | return fir::runtime::getIORuntimeFunc<mkIOKey( |
| 2082 | BeginExternalFormattedOutput)>(loc, builder); |
| 2083 | } |
| 2084 | return fir::runtime::getIORuntimeFunc<mkIOKey(BeginUnformattedOutput)>( |
| 2085 | loc, builder); |
| 2086 | } |
| 2087 | } |
| 2088 | |
| 2089 | /// Generate the arguments of a begin data transfer statement call. |
| 2090 | template <bool hasIOCtrl, int defaultUnitNumber, typename A> |
| 2091 | void genBeginDataTransferCallArgs( |
| 2092 | llvm::SmallVectorImpl<mlir::Value> &ioArgs, |
| 2093 | Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
| 2094 | const A &stmt, mlir::FunctionType ioFuncTy, bool isFormatted, |
| 2095 | bool isListOrNml, [[maybe_unused]] bool isInternal, |
| 2096 | const std::optional<fir::ExtendedValue> &descRef, ConditionSpecInfo &csi, |
| 2097 | Fortran::lower::StatementContext &stmtCtx) { |
| 2098 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 2099 | auto maybeGetFormatArgs = [&]() { |
| 2100 | if (!isFormatted || isListOrNml) |
| 2101 | return; |
| 2102 | std::tuple triple = |
| 2103 | getFormat(converter, loc, stmt, ioFuncTy.getInput(ioArgs.size()), |
| 2104 | ioFuncTy.getInput(ioArgs.size() + 1), stmtCtx); |
| 2105 | mlir::Value address = std::get<0>(triple); |
| 2106 | mlir::Value length = std::get<1>(triple); |
| 2107 | if (length) { |
| 2108 | // Scalar format: string arg + length arg; no format descriptor arg |
| 2109 | ioArgs.push_back(address); // format string |
| 2110 | ioArgs.push_back(length); // format length |
| 2111 | ioArgs.push_back( |
| 2112 | builder.createNullConstant(loc, ioFuncTy.getInput(ioArgs.size()))); |
| 2113 | return; |
| 2114 | } |
| 2115 | // Array format: no string arg, no length arg; format descriptor arg |
| 2116 | ioArgs.push_back( |
| 2117 | builder.createNullConstant(loc, ioFuncTy.getInput(ioArgs.size()))); |
| 2118 | ioArgs.push_back( |
| 2119 | builder.createNullConstant(loc, ioFuncTy.getInput(ioArgs.size()))); |
| 2120 | ioArgs.push_back( // format descriptor |
| 2121 | builder.createConvert(loc, ioFuncTy.getInput(ioArgs.size()), address)); |
| 2122 | }; |
| 2123 | if constexpr (hasIOCtrl) { // READ or WRITE |
| 2124 | if (isInternal) { |
| 2125 | // descriptor or scalar variable; maybe explicit format; scratch area |
| 2126 | if (descRef) { |
| 2127 | mlir::Value desc = builder.createBox(loc, *descRef); |
| 2128 | ioArgs.push_back( |
| 2129 | builder.createConvert(loc, ioFuncTy.getInput(ioArgs.size()), desc)); |
| 2130 | } else { |
| 2131 | std::tuple<mlir::Value, mlir::Value> pair = |
| 2132 | getBuffer(converter, loc, stmt, ioFuncTy.getInput(ioArgs.size()), |
| 2133 | ioFuncTy.getInput(ioArgs.size() + 1), stmtCtx); |
| 2134 | ioArgs.push_back(std::get<0>(pair)); // scalar character variable |
| 2135 | ioArgs.push_back(std::get<1>(pair)); // character length |
| 2136 | } |
| 2137 | maybeGetFormatArgs(); |
| 2138 | ioArgs.push_back( // internal scratch area buffer |
| 2139 | getDefaultScratch(builder, loc, ioFuncTy.getInput(ioArgs.size()))); |
| 2140 | ioArgs.push_back( // buffer length |
| 2141 | getDefaultScratchLen(builder, loc, ioFuncTy.getInput(ioArgs.size()))); |
| 2142 | } else { // external IO - maybe explicit format; unit |
| 2143 | maybeGetFormatArgs(); |
| 2144 | ioArgs.push_back(getIOUnit(converter, loc, stmt, |
| 2145 | ioFuncTy.getInput(ioArgs.size()), csi, stmtCtx, |
| 2146 | defaultUnitNumber)); |
| 2147 | } |
| 2148 | } else { // PRINT - maybe explicit format; default unit |
| 2149 | maybeGetFormatArgs(); |
| 2150 | ioArgs.push_back(builder.create<mlir::arith::ConstantOp>( |
| 2151 | loc, builder.getIntegerAttr(ioFuncTy.getInput(ioArgs.size()), |
| 2152 | defaultUnitNumber))); |
| 2153 | } |
| 2154 | // File name and line number are always the last two arguments. |
| 2155 | ioArgs.push_back( |
| 2156 | locToFilename(converter, loc, ioFuncTy.getInput(ioArgs.size()))); |
| 2157 | ioArgs.push_back( |
| 2158 | locToLineNo(converter, loc, ioFuncTy.getInput(ioArgs.size()))); |
| 2159 | } |
| 2160 | |
| 2161 | template <bool isInput, bool hasIOCtrl = true, typename A> |
| 2162 | static mlir::Value |
| 2163 | genDataTransferStmt(Fortran::lower::AbstractConverter &converter, |
| 2164 | const A &stmt) { |
| 2165 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 2166 | Fortran::lower::StatementContext stmtCtx; |
| 2167 | mlir::Location loc = converter.getCurrentLocation(); |
| 2168 | const bool isFormatted = isDataTransferFormatted(stmt); |
| 2169 | const bool isList = isFormatted ? isDataTransferList(stmt) : false; |
| 2170 | const bool isInternal = isDataTransferInternal(stmt); |
| 2171 | std::optional<fir::ExtendedValue> descRef = |
| 2172 | isInternal ? maybeGetInternalIODescriptor(converter, loc, stmt, stmtCtx) |
| 2173 | : std::nullopt; |
| 2174 | const bool isInternalWithDesc = descRef.has_value(); |
| 2175 | const bool isNml = isDataTransferNamelist(stmt); |
| 2176 | // Flang runtime currently implement asynchronous IO synchronously, so |
| 2177 | // asynchronous IO statements are lowered as regular IO statements |
| 2178 | // (except that GetAsynchronousId may be called to set the ID variable |
| 2179 | // and SetAsynchronous will be call to tell the runtime that this is supposed |
| 2180 | // to be (or not) an asynchronous IO statements). |
| 2181 | |
| 2182 | // Generate an EnableHandlers call and remaining specifier calls. |
| 2183 | ConditionSpecInfo csi; |
| 2184 | if constexpr (hasIOCtrl) { |
| 2185 | csi = lowerErrorSpec(converter, loc, stmt.controls); |
| 2186 | } |
| 2187 | |
| 2188 | // Generate the begin data transfer function call. |
| 2189 | mlir::func::FuncOp ioFunc = getBeginDataTransferFunc<isInput>( |
| 2190 | loc, builder, isFormatted, isList || isNml, isInternal, |
| 2191 | isInternalWithDesc); |
| 2192 | llvm::SmallVector<mlir::Value> ioArgs; |
| 2193 | genBeginDataTransferCallArgs< |
| 2194 | hasIOCtrl, isInput ? Fortran::runtime::io::DefaultInputUnit |
| 2195 | : Fortran::runtime::io::DefaultOutputUnit>( |
| 2196 | ioArgs, converter, loc, stmt, ioFunc.getFunctionType(), isFormatted, |
| 2197 | isList || isNml, isInternal, descRef, csi, stmtCtx); |
| 2198 | mlir::Value cookie = |
| 2199 | builder.create<fir::CallOp>(loc, ioFunc, ioArgs).getResult(0); |
| 2200 | |
| 2201 | auto insertPt = builder.saveInsertionPoint(); |
| 2202 | mlir::Value ok; |
| 2203 | if constexpr (hasIOCtrl) { |
| 2204 | genConditionHandlerCall(converter, loc, cookie, stmt.controls, csi); |
| 2205 | threadSpecs(converter, loc, cookie, stmt.controls, |
| 2206 | csi.hasErrorConditionSpec(), ok); |
| 2207 | } |
| 2208 | |
| 2209 | // Generate data transfer list calls. |
| 2210 | if constexpr (isInput) { // READ |
| 2211 | if (isNml) |
| 2212 | genNamelistIO( |
| 2213 | converter, cookie, |
| 2214 | fir::runtime::getIORuntimeFunc<mkIOKey(InputNamelist)>(loc, builder), |
| 2215 | *getIOControl<Fortran::parser::Name>(stmt)->symbol, |
| 2216 | csi.hasTransferConditionSpec(), ok, stmtCtx); |
| 2217 | else |
| 2218 | genInputItemList(converter, cookie, stmt.items, isFormatted, |
| 2219 | csi.hasTransferConditionSpec(), ok, /*inLoop=*/false); |
| 2220 | } else if constexpr (std::is_same_v<A, Fortran::parser::WriteStmt>) { |
| 2221 | if (isNml) |
| 2222 | genNamelistIO( |
| 2223 | converter, cookie, |
| 2224 | fir::runtime::getIORuntimeFunc<mkIOKey(OutputNamelist)>(loc, builder), |
| 2225 | *getIOControl<Fortran::parser::Name>(stmt)->symbol, |
| 2226 | csi.hasTransferConditionSpec(), ok, stmtCtx); |
| 2227 | else |
| 2228 | genOutputItemList(converter, cookie, stmt.items, isFormatted, |
| 2229 | csi.hasTransferConditionSpec(), ok, |
| 2230 | /*inLoop=*/false); |
| 2231 | } else { // PRINT |
| 2232 | genOutputItemList(converter, cookie, std::get<1>(stmt.t), isFormatted, |
| 2233 | csi.hasTransferConditionSpec(), ok, |
| 2234 | /*inLoop=*/false); |
| 2235 | } |
| 2236 | |
| 2237 | builder.restoreInsertionPoint(insertPt); |
| 2238 | if constexpr (hasIOCtrl) { |
| 2239 | for (const auto &spec : stmt.controls) |
| 2240 | if (const auto *size = |
| 2241 | std::get_if<Fortran::parser::IoControlSpec::Size>(&spec.u)) { |
| 2242 | // This call is not conditional on the current IO status (ok) because |
| 2243 | // the size needs to be filled even if some error condition |
| 2244 | // (end-of-file...) was met during the input statement (in which case |
| 2245 | // the runtime may return zero for the size read). |
| 2246 | genIOGetVar<mkIOKey(GetSize)>(converter, loc, cookie, *size); |
| 2247 | } else if (const auto *idVar = |
| 2248 | std::get_if<Fortran::parser::IdVariable>(&spec.u)) { |
| 2249 | genIOGetVar<mkIOKey(GetAsynchronousId)>(converter, loc, cookie, *idVar); |
| 2250 | } |
| 2251 | } |
| 2252 | // Generate end statement call/s. |
| 2253 | mlir::Value result = genEndIO(converter, loc, cookie, csi, stmtCtx); |
| 2254 | stmtCtx.finalizeAndReset(); |
| 2255 | return result; |
| 2256 | } |
| 2257 | |
| 2258 | void Fortran::lower::genPrintStatement( |
| 2259 | Fortran::lower::AbstractConverter &converter, |
| 2260 | const Fortran::parser::PrintStmt &stmt) { |
| 2261 | // PRINT does not take an io-control-spec. It only has a format specifier, so |
| 2262 | // it is a simplified case of WRITE. |
| 2263 | genDataTransferStmt</*isInput=*/false, /*ioCtrl=*/false>(converter, stmt); |
| 2264 | } |
| 2265 | |
| 2266 | mlir::Value |
| 2267 | Fortran::lower::genWriteStatement(Fortran::lower::AbstractConverter &converter, |
| 2268 | const Fortran::parser::WriteStmt &stmt) { |
| 2269 | return genDataTransferStmt</*isInput=*/false>(converter, stmt); |
| 2270 | } |
| 2271 | |
| 2272 | mlir::Value |
| 2273 | Fortran::lower::genReadStatement(Fortran::lower::AbstractConverter &converter, |
| 2274 | const Fortran::parser::ReadStmt &stmt) { |
| 2275 | return genDataTransferStmt</*isInput=*/true>(converter, stmt); |
| 2276 | } |
| 2277 | |
| 2278 | /// Get the file expression from the inquire spec list. Also return if the |
| 2279 | /// expression is a file name. |
| 2280 | static std::pair<const Fortran::lower::SomeExpr *, bool> |
| 2281 | getInquireFileExpr(const std::list<Fortran::parser::InquireSpec> *stmt) { |
| 2282 | if (!stmt) |
| 2283 | return {nullptr, /*filename?=*/false}; |
| 2284 | for (const Fortran::parser::InquireSpec &spec : *stmt) { |
| 2285 | if (auto *f = std::get_if<Fortran::parser::FileUnitNumber>(&spec.u)) |
| 2286 | return {Fortran::semantics::GetExpr(*f), /*filename?=*/false}; |
| 2287 | if (auto *f = std::get_if<Fortran::parser::FileNameExpr>(&spec.u)) |
| 2288 | return {Fortran::semantics::GetExpr(*f), /*filename?=*/true}; |
| 2289 | } |
| 2290 | // semantics should have already caught this condition |
| 2291 | llvm::report_fatal_error("inquire spec must have a file" ); |
| 2292 | } |
| 2293 | |
| 2294 | /// Generate calls to the four distinct INQUIRE subhandlers. An INQUIRE may |
| 2295 | /// return values of type CHARACTER, INTEGER, or LOGICAL. There is one |
| 2296 | /// additional special case for INQUIRE with both PENDING and ID specifiers. |
| 2297 | template <typename A> |
| 2298 | static mlir::Value genInquireSpec(Fortran::lower::AbstractConverter &converter, |
| 2299 | mlir::Location loc, mlir::Value cookie, |
| 2300 | mlir::Value idExpr, const A &var, |
| 2301 | Fortran::lower::StatementContext &stmtCtx) { |
| 2302 | // default case: do nothing |
| 2303 | return {}; |
| 2304 | } |
| 2305 | /// Specialization for CHARACTER. |
| 2306 | template <> |
| 2307 | mlir::Value genInquireSpec<Fortran::parser::InquireSpec::CharVar>( |
| 2308 | Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
| 2309 | mlir::Value cookie, mlir::Value idExpr, |
| 2310 | const Fortran::parser::InquireSpec::CharVar &var, |
| 2311 | Fortran::lower::StatementContext &stmtCtx) { |
| 2312 | // IOMSG is handled with exception conditions |
| 2313 | if (std::get<Fortran::parser::InquireSpec::CharVar::Kind>(var.t) == |
| 2314 | Fortran::parser::InquireSpec::CharVar::Kind::Iomsg) |
| 2315 | return {}; |
| 2316 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 2317 | mlir::func::FuncOp specFunc = |
| 2318 | fir::runtime::getIORuntimeFunc<mkIOKey(InquireCharacter)>(loc, builder); |
| 2319 | mlir::FunctionType specFuncTy = specFunc.getFunctionType(); |
| 2320 | const auto *varExpr = Fortran::semantics::GetExpr( |
| 2321 | std::get<Fortran::parser::ScalarDefaultCharVariable>(var.t)); |
| 2322 | fir::ExtendedValue str = converter.genExprAddr(loc, varExpr, stmtCtx); |
| 2323 | llvm::SmallVector<mlir::Value> args = { |
| 2324 | builder.createConvert(loc, specFuncTy.getInput(0), cookie), |
| 2325 | builder.createIntegerConstant( |
| 2326 | loc, specFuncTy.getInput(1), |
| 2327 | Fortran::runtime::io::HashInquiryKeyword(std::string{ |
| 2328 | Fortran::parser::InquireSpec::CharVar::EnumToString( |
| 2329 | std::get<Fortran::parser::InquireSpec::CharVar::Kind>(var.t))} |
| 2330 | .c_str())), |
| 2331 | builder.createConvert(loc, specFuncTy.getInput(2), fir::getBase(str)), |
| 2332 | builder.createConvert(loc, specFuncTy.getInput(3), fir::getLen(str))}; |
| 2333 | return builder.create<fir::CallOp>(loc, specFunc, args).getResult(0); |
| 2334 | } |
| 2335 | /// Specialization for INTEGER. |
| 2336 | template <> |
| 2337 | mlir::Value genInquireSpec<Fortran::parser::InquireSpec::IntVar>( |
| 2338 | Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
| 2339 | mlir::Value cookie, mlir::Value idExpr, |
| 2340 | const Fortran::parser::InquireSpec::IntVar &var, |
| 2341 | Fortran::lower::StatementContext &stmtCtx) { |
| 2342 | // IOSTAT is handled with exception conditions |
| 2343 | if (std::get<Fortran::parser::InquireSpec::IntVar::Kind>(var.t) == |
| 2344 | Fortran::parser::InquireSpec::IntVar::Kind::Iostat) |
| 2345 | return {}; |
| 2346 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 2347 | mlir::func::FuncOp specFunc = |
| 2348 | fir::runtime::getIORuntimeFunc<mkIOKey(InquireInteger64)>(loc, builder); |
| 2349 | mlir::FunctionType specFuncTy = specFunc.getFunctionType(); |
| 2350 | const auto *varExpr = Fortran::semantics::GetExpr( |
| 2351 | std::get<Fortran::parser::ScalarIntVariable>(var.t)); |
| 2352 | mlir::Value addr = fir::getBase(converter.genExprAddr(loc, varExpr, stmtCtx)); |
| 2353 | mlir::Type eleTy = fir::dyn_cast_ptrEleTy(addr.getType()); |
| 2354 | if (!eleTy) |
| 2355 | fir::emitFatalError(loc, |
| 2356 | "internal error: expected a memory reference type" ); |
| 2357 | auto width = mlir::cast<mlir::IntegerType>(eleTy).getWidth(); |
| 2358 | mlir::IndexType idxTy = builder.getIndexType(); |
| 2359 | mlir::Value kind = builder.createIntegerConstant(loc, idxTy, width / 8); |
| 2360 | llvm::SmallVector<mlir::Value> args = { |
| 2361 | builder.createConvert(loc, specFuncTy.getInput(0), cookie), |
| 2362 | builder.createIntegerConstant( |
| 2363 | loc, specFuncTy.getInput(1), |
| 2364 | Fortran::runtime::io::HashInquiryKeyword(std::string{ |
| 2365 | Fortran::parser::InquireSpec::IntVar::EnumToString( |
| 2366 | std::get<Fortran::parser::InquireSpec::IntVar::Kind>(var.t))} |
| 2367 | .c_str())), |
| 2368 | builder.createConvert(loc, specFuncTy.getInput(2), addr), |
| 2369 | builder.createConvert(loc, specFuncTy.getInput(3), kind)}; |
| 2370 | return builder.create<fir::CallOp>(loc, specFunc, args).getResult(0); |
| 2371 | } |
| 2372 | /// Specialization for LOGICAL and (PENDING + ID). |
| 2373 | template <> |
| 2374 | mlir::Value genInquireSpec<Fortran::parser::InquireSpec::LogVar>( |
| 2375 | Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
| 2376 | mlir::Value cookie, mlir::Value idExpr, |
| 2377 | const Fortran::parser::InquireSpec::LogVar &var, |
| 2378 | Fortran::lower::StatementContext &stmtCtx) { |
| 2379 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 2380 | auto logVarKind = std::get<Fortran::parser::InquireSpec::LogVar::Kind>(var.t); |
| 2381 | bool pendId = |
| 2382 | idExpr && |
| 2383 | logVarKind == Fortran::parser::InquireSpec::LogVar::Kind::Pending; |
| 2384 | mlir::func::FuncOp specFunc = |
| 2385 | pendId ? fir::runtime::getIORuntimeFunc<mkIOKey(InquirePendingId)>( |
| 2386 | loc, builder) |
| 2387 | : fir::runtime::getIORuntimeFunc<mkIOKey(InquireLogical)>(loc, |
| 2388 | builder); |
| 2389 | mlir::FunctionType specFuncTy = specFunc.getFunctionType(); |
| 2390 | mlir::Value addr = fir::getBase(converter.genExprAddr( |
| 2391 | loc, |
| 2392 | Fortran::semantics::GetExpr( |
| 2393 | std::get<Fortran::parser::Scalar< |
| 2394 | Fortran::parser::Logical<Fortran::parser::Variable>>>(var.t)), |
| 2395 | stmtCtx)); |
| 2396 | llvm::SmallVector<mlir::Value> args = { |
| 2397 | builder.createConvert(loc, specFuncTy.getInput(0), cookie)}; |
| 2398 | if (pendId) |
| 2399 | args.push_back(builder.createConvert(loc, specFuncTy.getInput(1), idExpr)); |
| 2400 | else |
| 2401 | args.push_back(builder.createIntegerConstant( |
| 2402 | loc, specFuncTy.getInput(1), |
| 2403 | Fortran::runtime::io::HashInquiryKeyword(std::string{ |
| 2404 | Fortran::parser::InquireSpec::LogVar::EnumToString(logVarKind)} |
| 2405 | .c_str()))); |
| 2406 | args.push_back(builder.createConvert(loc, specFuncTy.getInput(2), addr)); |
| 2407 | auto call = builder.create<fir::CallOp>(loc, specFunc, args); |
| 2408 | boolRefToLogical(loc, builder, addr); |
| 2409 | return call.getResult(0); |
| 2410 | } |
| 2411 | |
| 2412 | /// If there is an IdExpr in the list of inquire-specs, then lower it and return |
| 2413 | /// the resulting Value. Otherwise, return null. |
| 2414 | static mlir::Value |
| 2415 | lowerIdExpr(Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
| 2416 | const std::list<Fortran::parser::InquireSpec> &ispecs, |
| 2417 | Fortran::lower::StatementContext &stmtCtx) { |
| 2418 | for (const Fortran::parser::InquireSpec &spec : ispecs) |
| 2419 | if (mlir::Value v = Fortran::common::visit( |
| 2420 | Fortran::common::visitors{ |
| 2421 | [&](const Fortran::parser::IdExpr &idExpr) { |
| 2422 | return fir::getBase(converter.genExprValue( |
| 2423 | loc, Fortran::semantics::GetExpr(idExpr), stmtCtx)); |
| 2424 | }, |
| 2425 | [](const auto &) { return mlir::Value{}; }}, |
| 2426 | spec.u)) |
| 2427 | return v; |
| 2428 | return {}; |
| 2429 | } |
| 2430 | |
| 2431 | /// For each inquire-spec, build the appropriate call, threading the cookie. |
| 2432 | static void threadInquire(Fortran::lower::AbstractConverter &converter, |
| 2433 | mlir::Location loc, mlir::Value cookie, |
| 2434 | const std::list<Fortran::parser::InquireSpec> &ispecs, |
| 2435 | bool checkResult, mlir::Value &ok, |
| 2436 | Fortran::lower::StatementContext &stmtCtx) { |
| 2437 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 2438 | mlir::Value idExpr = lowerIdExpr(converter, loc, ispecs, stmtCtx); |
| 2439 | for (const Fortran::parser::InquireSpec &spec : ispecs) { |
| 2440 | makeNextConditionalOn(builder, loc, checkResult, ok); |
| 2441 | ok = Fortran::common::visit(Fortran::common::visitors{[&](const auto &x) { |
| 2442 | return genInquireSpec(converter, loc, cookie, |
| 2443 | idExpr, x, stmtCtx); |
| 2444 | }}, |
| 2445 | spec.u); |
| 2446 | } |
| 2447 | } |
| 2448 | |
| 2449 | mlir::Value Fortran::lower::genInquireStatement( |
| 2450 | Fortran::lower::AbstractConverter &converter, |
| 2451 | const Fortran::parser::InquireStmt &stmt) { |
| 2452 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 2453 | Fortran::lower::StatementContext stmtCtx; |
| 2454 | mlir::Location loc = converter.getCurrentLocation(); |
| 2455 | mlir::func::FuncOp beginFunc; |
| 2456 | llvm::SmallVector<mlir::Value> beginArgs; |
| 2457 | const auto *list = |
| 2458 | std::get_if<std::list<Fortran::parser::InquireSpec>>(&stmt.u); |
| 2459 | auto exprPair = getInquireFileExpr(list); |
| 2460 | auto inquireFileUnit = [&]() -> bool { |
| 2461 | return exprPair.first && !exprPair.second; |
| 2462 | }; |
| 2463 | auto inquireFileName = [&]() -> bool { |
| 2464 | return exprPair.first && exprPair.second; |
| 2465 | }; |
| 2466 | |
| 2467 | ConditionSpecInfo csi = |
| 2468 | list ? lowerErrorSpec(converter, loc, *list) : ConditionSpecInfo{}; |
| 2469 | |
| 2470 | // Make one of three BeginInquire calls. |
| 2471 | if (inquireFileUnit()) { |
| 2472 | // Inquire by unit -- [UNIT=]file-unit-number. |
| 2473 | beginFunc = |
| 2474 | fir::runtime::getIORuntimeFunc<mkIOKey(BeginInquireUnit)>(loc, builder); |
| 2475 | mlir::FunctionType beginFuncTy = beginFunc.getFunctionType(); |
| 2476 | mlir::Value unit = genIOUnitNumber(converter, loc, exprPair.first, |
| 2477 | beginFuncTy.getInput(0), csi, stmtCtx); |
| 2478 | beginArgs = {unit, locToFilename(converter, loc, beginFuncTy.getInput(1)), |
| 2479 | locToLineNo(converter, loc, beginFuncTy.getInput(2))}; |
| 2480 | } else if (inquireFileName()) { |
| 2481 | // Inquire by file -- FILE=file-name-expr. |
| 2482 | beginFunc = |
| 2483 | fir::runtime::getIORuntimeFunc<mkIOKey(BeginInquireFile)>(loc, builder); |
| 2484 | mlir::FunctionType beginFuncTy = beginFunc.getFunctionType(); |
| 2485 | fir::ExtendedValue file = |
| 2486 | converter.genExprAddr(loc, exprPair.first, stmtCtx); |
| 2487 | beginArgs = { |
| 2488 | builder.createConvert(loc, beginFuncTy.getInput(0), fir::getBase(file)), |
| 2489 | builder.createConvert(loc, beginFuncTy.getInput(1), fir::getLen(file)), |
| 2490 | locToFilename(converter, loc, beginFuncTy.getInput(2)), |
| 2491 | locToLineNo(converter, loc, beginFuncTy.getInput(3))}; |
| 2492 | } else { |
| 2493 | // Inquire by output list -- IOLENGTH=scalar-int-variable. |
| 2494 | const auto *ioLength = |
| 2495 | std::get_if<Fortran::parser::InquireStmt::Iolength>(&stmt.u); |
| 2496 | assert(ioLength && "must have an IOLENGTH specifier" ); |
| 2497 | beginFunc = fir::runtime::getIORuntimeFunc<mkIOKey(BeginInquireIoLength)>( |
| 2498 | loc, builder); |
| 2499 | mlir::FunctionType beginFuncTy = beginFunc.getFunctionType(); |
| 2500 | beginArgs = {locToFilename(converter, loc, beginFuncTy.getInput(0)), |
| 2501 | locToLineNo(converter, loc, beginFuncTy.getInput(1))}; |
| 2502 | auto cookie = |
| 2503 | builder.create<fir::CallOp>(loc, beginFunc, beginArgs).getResult(0); |
| 2504 | mlir::Value ok; |
| 2505 | genOutputItemList( |
| 2506 | converter, cookie, |
| 2507 | std::get<std::list<Fortran::parser::OutputItem>>(ioLength->t), |
| 2508 | /*isFormatted=*/false, /*checkResult=*/false, ok, /*inLoop=*/false); |
| 2509 | auto *ioLengthVar = Fortran::semantics::GetExpr( |
| 2510 | std::get<Fortran::parser::ScalarIntVariable>(ioLength->t)); |
| 2511 | mlir::Value ioLengthVarAddr = |
| 2512 | fir::getBase(converter.genExprAddr(loc, ioLengthVar, stmtCtx)); |
| 2513 | llvm::SmallVector<mlir::Value> args = {cookie}; |
| 2514 | mlir::Value length = |
| 2515 | builder |
| 2516 | .create<fir::CallOp>( |
| 2517 | loc, |
| 2518 | fir::runtime::getIORuntimeFunc<mkIOKey(GetIoLength)>(loc, |
| 2519 | builder), |
| 2520 | args) |
| 2521 | .getResult(0); |
| 2522 | mlir::Value length1 = |
| 2523 | builder.createConvert(loc, converter.genType(*ioLengthVar), length); |
| 2524 | builder.create<fir::StoreOp>(loc, length1, ioLengthVarAddr); |
| 2525 | return genEndIO(converter, loc, cookie, csi, stmtCtx); |
| 2526 | } |
| 2527 | |
| 2528 | // Common handling for inquire by unit or file. |
| 2529 | assert(list && "inquire-spec list must be present" ); |
| 2530 | auto cookie = |
| 2531 | builder.create<fir::CallOp>(loc, beginFunc, beginArgs).getResult(0); |
| 2532 | genConditionHandlerCall(converter, loc, cookie, *list, csi); |
| 2533 | // Handle remaining arguments in specifier list. |
| 2534 | mlir::Value ok; |
| 2535 | auto insertPt = builder.saveInsertionPoint(); |
| 2536 | threadInquire(converter, loc, cookie, *list, csi.hasErrorConditionSpec(), ok, |
| 2537 | stmtCtx); |
| 2538 | builder.restoreInsertionPoint(insertPt); |
| 2539 | // Generate end statement call. |
| 2540 | return genEndIO(converter, loc, cookie, csi, stmtCtx); |
| 2541 | } |
| 2542 | |