| 1 | //===- AliasAnalysis.cpp - Alias Analysis for FIR ------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "flang/Optimizer/Analysis/AliasAnalysis.h" |
| 10 | #include "flang/Optimizer/Dialect/FIROps.h" |
| 11 | #include "flang/Optimizer/Dialect/FIROpsSupport.h" |
| 12 | #include "flang/Optimizer/Dialect/FIRType.h" |
| 13 | #include "flang/Optimizer/Dialect/FortranVariableInterface.h" |
| 14 | #include "flang/Optimizer/HLFIR/HLFIROps.h" |
| 15 | #include "flang/Optimizer/Support/InternalNames.h" |
| 16 | #include "mlir/Analysis/AliasAnalysis.h" |
| 17 | #include "mlir/Dialect/OpenMP/OpenMPDialect.h" |
| 18 | #include "mlir/Dialect/OpenMP/OpenMPInterfaces.h" |
| 19 | #include "mlir/IR/BuiltinOps.h" |
| 20 | #include "mlir/IR/Value.h" |
| 21 | #include "mlir/Interfaces/SideEffectInterfaces.h" |
| 22 | #include "llvm/ADT/TypeSwitch.h" |
| 23 | #include "llvm/Support/Casting.h" |
| 24 | #include "llvm/Support/Debug.h" |
| 25 | |
| 26 | using namespace mlir; |
| 27 | |
| 28 | #define DEBUG_TYPE "fir-alias-analysis" |
| 29 | |
| 30 | //===----------------------------------------------------------------------===// |
| 31 | // AliasAnalysis: alias |
| 32 | //===----------------------------------------------------------------------===// |
| 33 | |
| 34 | static fir::AliasAnalysis::Source::Attributes |
| 35 | getAttrsFromVariable(fir::FortranVariableOpInterface var) { |
| 36 | fir::AliasAnalysis::Source::Attributes attrs; |
| 37 | if (var.isTarget()) |
| 38 | attrs.set(fir::AliasAnalysis::Attribute::Target); |
| 39 | if (var.isPointer()) |
| 40 | attrs.set(fir::AliasAnalysis::Attribute::Pointer); |
| 41 | if (var.isIntentIn()) |
| 42 | attrs.set(fir::AliasAnalysis::Attribute::IntentIn); |
| 43 | |
| 44 | return attrs; |
| 45 | } |
| 46 | |
| 47 | static bool hasGlobalOpTargetAttr(mlir::Value v, fir::AddrOfOp op) { |
| 48 | auto globalOpName = |
| 49 | mlir::OperationName(fir::GlobalOp::getOperationName(), op->getContext()); |
| 50 | return fir::valueHasFirAttribute( |
| 51 | v, fir::GlobalOp::getTargetAttrName(globalOpName)); |
| 52 | } |
| 53 | |
| 54 | static bool isEvaluateInMemoryBlockArg(mlir::Value v) { |
| 55 | if (auto evalInMem = llvm::dyn_cast_or_null<hlfir::EvaluateInMemoryOp>( |
| 56 | v.getParentRegion()->getParentOp())) |
| 57 | return evalInMem.getMemory() == v; |
| 58 | return false; |
| 59 | } |
| 60 | |
| 61 | template <typename OMPTypeOp, typename DeclTypeOp> |
| 62 | static bool isPrivateArg(omp::BlockArgOpenMPOpInterface &argIface, |
| 63 | OMPTypeOp &op, DeclTypeOp &declOp) { |
| 64 | if (!op.getPrivateSyms().has_value()) |
| 65 | return false; |
| 66 | for (auto [opSym, blockArg] : |
| 67 | llvm::zip_equal(*op.getPrivateSyms(), argIface.getPrivateBlockArgs())) { |
| 68 | if (blockArg == declOp.getMemref()) { |
| 69 | return true; |
| 70 | } |
| 71 | } |
| 72 | return false; |
| 73 | } |
| 74 | |
| 75 | namespace fir { |
| 76 | |
| 77 | void AliasAnalysis::Source::print(llvm::raw_ostream &os) const { |
| 78 | if (auto v = llvm::dyn_cast<mlir::Value>(origin.u)) |
| 79 | os << v; |
| 80 | else if (auto gbl = llvm::dyn_cast<mlir::SymbolRefAttr>(origin.u)) |
| 81 | os << gbl; |
| 82 | os << " SourceKind: " << EnumToString(kind); |
| 83 | os << " Type: " << valueType << " " ; |
| 84 | if (origin.isData) { |
| 85 | os << " following data " ; |
| 86 | } else { |
| 87 | os << " following box reference " ; |
| 88 | } |
| 89 | attributes.Dump(os, EnumToString); |
| 90 | } |
| 91 | |
| 92 | bool AliasAnalysis::isRecordWithPointerComponent(mlir::Type ty) { |
| 93 | auto eleTy = fir::dyn_cast_ptrEleTy(ty); |
| 94 | if (!eleTy) |
| 95 | return false; |
| 96 | // TO DO: Look for pointer components |
| 97 | return mlir::isa<fir::RecordType>(eleTy); |
| 98 | } |
| 99 | |
| 100 | bool AliasAnalysis::isPointerReference(mlir::Type ty) { |
| 101 | auto eleTy = fir::dyn_cast_ptrEleTy(ty); |
| 102 | if (!eleTy) |
| 103 | return false; |
| 104 | |
| 105 | return fir::isPointerType(eleTy) || mlir::isa<fir::PointerType>(eleTy); |
| 106 | } |
| 107 | |
| 108 | bool AliasAnalysis::Source::isTargetOrPointer() const { |
| 109 | return attributes.test(Attribute::Pointer) || |
| 110 | attributes.test(Attribute::Target); |
| 111 | } |
| 112 | |
| 113 | bool AliasAnalysis::Source::isTarget() const { |
| 114 | return attributes.test(Attribute::Target); |
| 115 | } |
| 116 | |
| 117 | bool AliasAnalysis::Source::isPointer() const { |
| 118 | return attributes.test(Attribute::Pointer); |
| 119 | } |
| 120 | |
| 121 | bool AliasAnalysis::Source::isDummyArgument() const { |
| 122 | if (auto v = origin.u.dyn_cast<mlir::Value>()) { |
| 123 | return fir::isDummyArgument(v); |
| 124 | } |
| 125 | return false; |
| 126 | } |
| 127 | |
| 128 | bool AliasAnalysis::Source::isData() const { return origin.isData; } |
| 129 | bool AliasAnalysis::Source::isBoxData() const { |
| 130 | return mlir::isa<fir::BaseBoxType>(fir::unwrapRefType(valueType)) && |
| 131 | origin.isData; |
| 132 | } |
| 133 | |
| 134 | bool AliasAnalysis::Source::isFortranUserVariable() const { |
| 135 | if (!origin.instantiationPoint) |
| 136 | return false; |
| 137 | return llvm::TypeSwitch<mlir::Operation *, bool>(origin.instantiationPoint) |
| 138 | .template Case<fir::DeclareOp, hlfir::DeclareOp>([&](auto declOp) { |
| 139 | return fir::NameUniquer::deconstruct(declOp.getUniqName()).first == |
| 140 | fir::NameUniquer::NameKind::VARIABLE; |
| 141 | }) |
| 142 | .Default([&](auto op) { return false; }); |
| 143 | } |
| 144 | |
| 145 | bool AliasAnalysis::Source::mayBeDummyArgOrHostAssoc() const { |
| 146 | return kind != SourceKind::Allocate && kind != SourceKind::Global; |
| 147 | } |
| 148 | |
| 149 | bool AliasAnalysis::Source::mayBePtrDummyArgOrHostAssoc() const { |
| 150 | // Must alias like dummy arg (or HostAssoc). |
| 151 | if (!mayBeDummyArgOrHostAssoc()) |
| 152 | return false; |
| 153 | // Must be address of the dummy arg not of a dummy arg component. |
| 154 | if (isRecordWithPointerComponent(valueType)) |
| 155 | return false; |
| 156 | // Must be address *of* (not *in*) a pointer. |
| 157 | return attributes.test(Attribute::Pointer) && !isData(); |
| 158 | } |
| 159 | |
| 160 | bool AliasAnalysis::Source::mayBeActualArg() const { |
| 161 | return kind != SourceKind::Allocate; |
| 162 | } |
| 163 | |
| 164 | bool AliasAnalysis::Source::mayBeActualArgWithPtr( |
| 165 | const mlir::Value *val) const { |
| 166 | // Must not be local. |
| 167 | if (!mayBeActualArg()) |
| 168 | return false; |
| 169 | // Can be address *of* (not *in*) a pointer. |
| 170 | if (attributes.test(Attribute::Pointer) && !isData()) |
| 171 | return true; |
| 172 | // Can be address of a composite with a pointer component. |
| 173 | if (isRecordWithPointerComponent(val->getType())) |
| 174 | return true; |
| 175 | return false; |
| 176 | } |
| 177 | |
| 178 | AliasResult AliasAnalysis::alias(mlir::Value lhs, mlir::Value rhs) { |
| 179 | // A wrapper around alias(Source lhsSrc, Source rhsSrc, mlir::Value lhs, |
| 180 | // mlir::Value rhs) This allows a user to provide Source that may be obtained |
| 181 | // through other dialects |
| 182 | auto lhsSrc = getSource(lhs); |
| 183 | auto rhsSrc = getSource(rhs); |
| 184 | return alias(lhsSrc, rhsSrc, lhs, rhs); |
| 185 | } |
| 186 | |
| 187 | AliasResult AliasAnalysis::alias(Source lhsSrc, Source rhsSrc, mlir::Value lhs, |
| 188 | mlir::Value rhs) { |
| 189 | // TODO: alias() has to be aware of the function scopes. |
| 190 | // After MLIR inlining, the current implementation may |
| 191 | // not recognize non-aliasing entities. |
| 192 | bool approximateSource = lhsSrc.approximateSource || rhsSrc.approximateSource; |
| 193 | LLVM_DEBUG(llvm::dbgs() << "\nAliasAnalysis::alias\n" ; |
| 194 | llvm::dbgs() << " lhs: " << lhs << "\n" ; |
| 195 | llvm::dbgs() << " lhsSrc: " << lhsSrc << "\n" ; |
| 196 | llvm::dbgs() << " rhs: " << rhs << "\n" ; |
| 197 | llvm::dbgs() << " rhsSrc: " << rhsSrc << "\n" ;); |
| 198 | |
| 199 | // Indirect case currently not handled. Conservatively assume |
| 200 | // it aliases with everything |
| 201 | if (lhsSrc.kind >= SourceKind::Indirect || |
| 202 | rhsSrc.kind >= SourceKind::Indirect) { |
| 203 | LLVM_DEBUG(llvm::dbgs() << " aliasing because of indirect access\n" ); |
| 204 | return AliasResult::MayAlias; |
| 205 | } |
| 206 | |
| 207 | if (lhsSrc.kind == rhsSrc.kind) { |
| 208 | // If the kinds and origins are the same, then lhs and rhs must alias unless |
| 209 | // either source is approximate. Approximate sources are for parts of the |
| 210 | // origin, but we don't have info here on which parts and whether they |
| 211 | // overlap, so we normally return MayAlias in that case. |
| 212 | if (lhsSrc.origin == rhsSrc.origin) { |
| 213 | LLVM_DEBUG(llvm::dbgs() |
| 214 | << " aliasing because same source kind and origin\n" ); |
| 215 | if (approximateSource) |
| 216 | return AliasResult::MayAlias; |
| 217 | return AliasResult::MustAlias; |
| 218 | } |
| 219 | // If one value is the address of a composite, and if the other value is the |
| 220 | // address of a pointer/allocatable component of that composite, their |
| 221 | // origins compare unequal because the latter has !isData(). As for the |
| 222 | // address of any component vs. the address of the composite, a store to one |
| 223 | // can affect a load from the other, so the result should be MayAlias. To |
| 224 | // catch this case, we conservatively return MayAlias when one value is the |
| 225 | // address of a composite, the other value is non-data, and they have the |
| 226 | // same origin value. |
| 227 | // |
| 228 | // TODO: That logic does not check that the latter is actually a component |
| 229 | // of the former, so it can return MayAlias when unnecessary. For example, |
| 230 | // they might both be addresses of components of a larger composite. |
| 231 | // |
| 232 | // FIXME: Actually, we should generalize from isRecordWithPointerComponent |
| 233 | // to any composite because a component with !isData() is not always a |
| 234 | // pointer. However, Source::isRecordWithPointerComponent currently doesn't |
| 235 | // actually check for pointer components, so it's fine for now. |
| 236 | if (lhsSrc.origin.u == rhsSrc.origin.u && |
| 237 | ((isRecordWithPointerComponent(lhs.getType()) && !rhsSrc.isData()) || |
| 238 | (isRecordWithPointerComponent(rhs.getType()) && !lhsSrc.isData()))) { |
| 239 | LLVM_DEBUG(llvm::dbgs() |
| 240 | << " aliasing between composite and non-data component with " |
| 241 | << "same source kind and origin value\n" ); |
| 242 | return AliasResult::MayAlias; |
| 243 | } |
| 244 | |
| 245 | // Two host associated accesses may overlap due to an equivalence. |
| 246 | if (lhsSrc.kind == SourceKind::HostAssoc) { |
| 247 | LLVM_DEBUG(llvm::dbgs() << " aliasing because of host association\n" ); |
| 248 | return AliasResult::MayAlias; |
| 249 | } |
| 250 | } |
| 251 | |
| 252 | Source *src1, *src2; |
| 253 | mlir::Value *val1, *val2; |
| 254 | if (lhsSrc.kind < rhsSrc.kind) { |
| 255 | src1 = &lhsSrc; |
| 256 | src2 = &rhsSrc; |
| 257 | val1 = &lhs; |
| 258 | val2 = &rhs; |
| 259 | } else { |
| 260 | src1 = &rhsSrc; |
| 261 | src2 = &lhsSrc; |
| 262 | val1 = &rhs; |
| 263 | val2 = &lhs; |
| 264 | } |
| 265 | |
| 266 | if (src1->kind == SourceKind::Argument && |
| 267 | src2->kind == SourceKind::HostAssoc) { |
| 268 | // Treat the host entity as TARGET for the purpose of disambiguating |
| 269 | // it with a dummy access. It is required for this particular case: |
| 270 | // subroutine test |
| 271 | // integer :: x(10) |
| 272 | // call inner(x) |
| 273 | // contains |
| 274 | // subroutine inner(y) |
| 275 | // integer, target :: y(:) |
| 276 | // x(1) = y(1) |
| 277 | // end subroutine inner |
| 278 | // end subroutine test |
| 279 | // |
| 280 | // F18 15.5.2.13 (4) (b) allows 'x' and 'y' to address the same object. |
| 281 | // 'y' has an explicit TARGET attribute, but 'x' has neither TARGET |
| 282 | // nor POINTER. |
| 283 | src2->attributes.set(Attribute::Target); |
| 284 | } |
| 285 | |
| 286 | // Two TARGET/POINTERs may alias. The logic here focuses on data. Handling |
| 287 | // of non-data is included below. |
| 288 | if (src1->isTargetOrPointer() && src2->isTargetOrPointer() && |
| 289 | src1->isData() && src2->isData()) { |
| 290 | LLVM_DEBUG(llvm::dbgs() << " aliasing because of target or pointer\n" ); |
| 291 | return AliasResult::MayAlias; |
| 292 | } |
| 293 | |
| 294 | // Aliasing for dummy arg with target attribute. |
| 295 | // |
| 296 | // The address of a dummy arg (or HostAssoc) may alias the address of a |
| 297 | // non-local (global or another dummy arg) when both have target attributes. |
| 298 | // If either is a composite, addresses of components may alias as well. |
| 299 | // |
| 300 | // The previous "if" calling isTargetOrPointer casts a very wide net and so |
| 301 | // reports MayAlias for many such cases that would otherwise be reported here. |
| 302 | // It specifically skips such cases where one or both values have !isData() |
| 303 | // (e.g., address *of* pointer/allocatable component vs. address of |
| 304 | // composite), so this "if" catches those cases. |
| 305 | if (src1->attributes.test(Attribute::Target) && |
| 306 | src2->attributes.test(Attribute::Target) && |
| 307 | ((src1->mayBeDummyArgOrHostAssoc() && src2->mayBeActualArg()) || |
| 308 | (src2->mayBeDummyArgOrHostAssoc() && src1->mayBeActualArg()))) { |
| 309 | LLVM_DEBUG(llvm::dbgs() |
| 310 | << " aliasing between targets where one is a dummy arg\n" ); |
| 311 | return AliasResult::MayAlias; |
| 312 | } |
| 313 | |
| 314 | // Aliasing for dummy arg that is a pointer. |
| 315 | // |
| 316 | // The address of a pointer dummy arg (but not a pointer component of a dummy |
| 317 | // arg) may alias the address of either (1) a non-local pointer or (2) thus a |
| 318 | // non-local composite with a pointer component. A non-local might be a |
| 319 | // global or another dummy arg. The following is an example of the global |
| 320 | // composite case: |
| 321 | // |
| 322 | // module m |
| 323 | // type t |
| 324 | // real, pointer :: p |
| 325 | // end type |
| 326 | // type(t) :: a |
| 327 | // type(t) :: b |
| 328 | // contains |
| 329 | // subroutine test(p) |
| 330 | // real, pointer :: p |
| 331 | // p = 42 |
| 332 | // a = b |
| 333 | // print *, p |
| 334 | // end subroutine |
| 335 | // end module |
| 336 | // program main |
| 337 | // use m |
| 338 | // real, target :: x1 = 1 |
| 339 | // real, target :: x2 = 2 |
| 340 | // a%p => x1 |
| 341 | // b%p => x2 |
| 342 | // call test(a%p) |
| 343 | // end |
| 344 | // |
| 345 | // The dummy argument p is an alias for a%p, even for the purposes of pointer |
| 346 | // association during the assignment a = b. Thus, the program should print 2. |
| 347 | // |
| 348 | // The same is true when p is HostAssoc. For example, we might replace the |
| 349 | // test subroutine above with: |
| 350 | // |
| 351 | // subroutine test(p) |
| 352 | // real, pointer :: p |
| 353 | // call internal() |
| 354 | // contains |
| 355 | // subroutine internal() |
| 356 | // p = 42 |
| 357 | // a = b |
| 358 | // print *, p |
| 359 | // end subroutine |
| 360 | // end subroutine |
| 361 | if ((src1->mayBePtrDummyArgOrHostAssoc() && |
| 362 | src2->mayBeActualArgWithPtr(val2)) || |
| 363 | (src2->mayBePtrDummyArgOrHostAssoc() && |
| 364 | src1->mayBeActualArgWithPtr(val1))) { |
| 365 | LLVM_DEBUG(llvm::dbgs() |
| 366 | << " aliasing between pointer dummy arg and either pointer or " |
| 367 | << "composite with pointer component\n" ); |
| 368 | return AliasResult::MayAlias; |
| 369 | } |
| 370 | |
| 371 | return AliasResult::NoAlias; |
| 372 | } |
| 373 | |
| 374 | //===----------------------------------------------------------------------===// |
| 375 | // AliasAnalysis: getModRef |
| 376 | //===----------------------------------------------------------------------===// |
| 377 | |
| 378 | static bool isSavedLocal(const fir::AliasAnalysis::Source &src) { |
| 379 | if (auto symRef = llvm::dyn_cast<mlir::SymbolRefAttr>(src.origin.u)) { |
| 380 | auto [nameKind, deconstruct] = |
| 381 | fir::NameUniquer::deconstruct(symRef.getLeafReference().getValue()); |
| 382 | return nameKind == fir::NameUniquer::NameKind::VARIABLE && |
| 383 | !deconstruct.procs.empty(); |
| 384 | } |
| 385 | return false; |
| 386 | } |
| 387 | |
| 388 | static bool isCallToFortranUserProcedure(fir::CallOp call) { |
| 389 | // TODO: indirect calls are excluded by these checks. Maybe some attribute is |
| 390 | // needed to flag user calls in this case. |
| 391 | if (fir::hasBindcAttr(call)) |
| 392 | return true; |
| 393 | if (std::optional<mlir::SymbolRefAttr> callee = call.getCallee()) |
| 394 | return fir::NameUniquer::deconstruct(callee->getLeafReference().getValue()) |
| 395 | .first == fir::NameUniquer::NameKind::PROCEDURE; |
| 396 | return false; |
| 397 | } |
| 398 | |
| 399 | static ModRefResult getCallModRef(fir::CallOp call, mlir::Value var) { |
| 400 | // TODO: limit to Fortran functions?? |
| 401 | // 1. Detect variables that can be accessed indirectly. |
| 402 | fir::AliasAnalysis aliasAnalysis; |
| 403 | fir::AliasAnalysis::Source varSrc = aliasAnalysis.getSource(var); |
| 404 | // If the variable is not a user variable, we cannot safely assume that |
| 405 | // Fortran semantics apply (e.g., a bare alloca/allocmem result may very well |
| 406 | // be placed in an allocatable/pointer descriptor and escape). |
| 407 | |
| 408 | // All the logic below is based on Fortran semantics and only holds if this |
| 409 | // is a call to a procedure from the Fortran source and this is a variable |
| 410 | // from the Fortran source. Compiler generated temporaries or functions may |
| 411 | // not adhere to this semantic. |
| 412 | // TODO: add some opt-in or op-out mechanism for compiler generated temps. |
| 413 | // An example of something currently problematic is the allocmem generated for |
| 414 | // ALLOCATE of allocatable target. It currently does not have the target |
| 415 | // attribute, which would lead this analysis to believe it cannot escape. |
| 416 | if (!varSrc.isFortranUserVariable() || !isCallToFortranUserProcedure(call)) |
| 417 | return ModRefResult::getModAndRef(); |
| 418 | // Pointer and target may have been captured. |
| 419 | if (varSrc.isTargetOrPointer()) |
| 420 | return ModRefResult::getModAndRef(); |
| 421 | // Host associated variables may be addressed indirectly via an internal |
| 422 | // function call, whether the call is in the parent or an internal procedure. |
| 423 | // Note that the host associated/internal procedure may be referenced |
| 424 | // indirectly inside calls to non internal procedure. This is because internal |
| 425 | // procedures may be captured or passed. As this is tricky to analyze, always |
| 426 | // consider such variables may be accessed in any calls. |
| 427 | if (varSrc.kind == fir::AliasAnalysis::SourceKind::HostAssoc || |
| 428 | varSrc.isCapturedInInternalProcedure) |
| 429 | return ModRefResult::getModAndRef(); |
| 430 | // At that stage, it has been ruled out that local (including the saved ones) |
| 431 | // and dummy cannot be indirectly accessed in the call. |
| 432 | if (varSrc.kind != fir::AliasAnalysis::SourceKind::Allocate && |
| 433 | !varSrc.isDummyArgument()) { |
| 434 | if (varSrc.kind != fir::AliasAnalysis::SourceKind::Global || |
| 435 | !isSavedLocal(varSrc)) |
| 436 | return ModRefResult::getModAndRef(); |
| 437 | } |
| 438 | // 2. Check if the variable is passed via the arguments. |
| 439 | for (auto arg : call.getArgs()) { |
| 440 | if (fir::conformsWithPassByRef(arg.getType()) && |
| 441 | !aliasAnalysis.alias(arg, var).isNo()) { |
| 442 | // TODO: intent(in) would allow returning Ref here. This can be obtained |
| 443 | // in the func.func attributes for direct calls, but the module lookup is |
| 444 | // linear with the number of MLIR symbols, which would introduce a pseudo |
| 445 | // quadratic behavior num_calls * num_func. |
| 446 | return ModRefResult::getModAndRef(); |
| 447 | } |
| 448 | } |
| 449 | // The call cannot access the variable. |
| 450 | return ModRefResult::getNoModRef(); |
| 451 | } |
| 452 | |
| 453 | /// This is mostly inspired by MLIR::LocalAliasAnalysis with 2 notable |
| 454 | /// differences 1) Regions are not handled here but will be handled by a data |
| 455 | /// flow analysis to come 2) Allocate and Free effects are considered |
| 456 | /// modifying |
| 457 | ModRefResult AliasAnalysis::getModRef(Operation *op, Value location) { |
| 458 | MemoryEffectOpInterface interface = dyn_cast<MemoryEffectOpInterface>(op); |
| 459 | if (!interface) { |
| 460 | if (auto call = llvm::dyn_cast<fir::CallOp>(op)) |
| 461 | return getCallModRef(call, location); |
| 462 | return ModRefResult::getModAndRef(); |
| 463 | } |
| 464 | |
| 465 | // Build a ModRefResult by merging the behavior of the effects of this |
| 466 | // operation. |
| 467 | SmallVector<MemoryEffects::EffectInstance> effects; |
| 468 | interface.getEffects(effects); |
| 469 | |
| 470 | ModRefResult result = ModRefResult::getNoModRef(); |
| 471 | for (const MemoryEffects::EffectInstance &effect : effects) { |
| 472 | |
| 473 | // Check for an alias between the effect and our memory location. |
| 474 | AliasResult aliasResult = AliasResult::MayAlias; |
| 475 | if (Value effectValue = effect.getValue()) |
| 476 | aliasResult = alias(effectValue, location); |
| 477 | |
| 478 | // If we don't alias, ignore this effect. |
| 479 | if (aliasResult.isNo()) |
| 480 | continue; |
| 481 | |
| 482 | // Merge in the corresponding mod or ref for this effect. |
| 483 | if (isa<MemoryEffects::Read>(effect.getEffect())) |
| 484 | result = result.merge(ModRefResult::getRef()); |
| 485 | else |
| 486 | result = result.merge(ModRefResult::getMod()); |
| 487 | |
| 488 | if (result.isModAndRef()) |
| 489 | break; |
| 490 | } |
| 491 | return result; |
| 492 | } |
| 493 | |
| 494 | ModRefResult AliasAnalysis::getModRef(mlir::Region ®ion, |
| 495 | mlir::Value location) { |
| 496 | ModRefResult result = ModRefResult::getNoModRef(); |
| 497 | for (mlir::Operation &op : region.getOps()) { |
| 498 | if (op.hasTrait<mlir::OpTrait::HasRecursiveMemoryEffects>()) { |
| 499 | for (mlir::Region &subRegion : op.getRegions()) { |
| 500 | result = result.merge(getModRef(subRegion, location)); |
| 501 | // Fast return is already mod and ref. |
| 502 | if (result.isModAndRef()) |
| 503 | return result; |
| 504 | } |
| 505 | // In MLIR, RecursiveMemoryEffects can be combined with |
| 506 | // MemoryEffectOpInterface to describe extra effects on top of the |
| 507 | // effects of the nested operations. However, the presence of |
| 508 | // RecursiveMemoryEffects and the absence of MemoryEffectOpInterface |
| 509 | // implies the operation has no other memory effects than the one of its |
| 510 | // nested operations. |
| 511 | if (!mlir::isa<mlir::MemoryEffectOpInterface>(op)) |
| 512 | continue; |
| 513 | } |
| 514 | result = result.merge(getModRef(&op, location)); |
| 515 | if (result.isModAndRef()) |
| 516 | return result; |
| 517 | } |
| 518 | return result; |
| 519 | } |
| 520 | |
| 521 | AliasAnalysis::Source AliasAnalysis::getSource(mlir::Value v, |
| 522 | bool getLastInstantiationPoint) { |
| 523 | auto *defOp = v.getDefiningOp(); |
| 524 | SourceKind type{SourceKind::Unknown}; |
| 525 | mlir::Type ty; |
| 526 | bool breakFromLoop{false}; |
| 527 | bool approximateSource{false}; |
| 528 | bool isCapturedInInternalProcedure{false}; |
| 529 | bool followBoxData{mlir::isa<fir::BaseBoxType>(v.getType())}; |
| 530 | bool isBoxRef{fir::isa_ref_type(v.getType()) && |
| 531 | mlir::isa<fir::BaseBoxType>(fir::unwrapRefType(v.getType()))}; |
| 532 | bool followingData = !isBoxRef; |
| 533 | mlir::SymbolRefAttr global; |
| 534 | Source::Attributes attributes; |
| 535 | mlir::Operation *instantiationPoint{nullptr}; |
| 536 | while (defOp && !breakFromLoop) { |
| 537 | ty = defOp->getResultTypes()[0]; |
| 538 | llvm::TypeSwitch<Operation *>(defOp) |
| 539 | .Case<hlfir::AsExprOp>([&](auto op) { |
| 540 | v = op.getVar(); |
| 541 | defOp = v.getDefiningOp(); |
| 542 | }) |
| 543 | .Case<hlfir::AssociateOp>([&](auto op) { |
| 544 | mlir::Value source = op.getSource(); |
| 545 | if (fir::isa_trivial(source.getType())) { |
| 546 | // Trivial values will always use distinct temp memory, |
| 547 | // so we can classify this as Allocate and stop. |
| 548 | type = SourceKind::Allocate; |
| 549 | breakFromLoop = true; |
| 550 | } else { |
| 551 | // AssociateOp may reuse the expression storage, |
| 552 | // so we have to trace further. |
| 553 | v = source; |
| 554 | defOp = v.getDefiningOp(); |
| 555 | } |
| 556 | }) |
| 557 | .Case<fir::AllocaOp, fir::AllocMemOp>([&](auto op) { |
| 558 | // Unique memory allocation. |
| 559 | type = SourceKind::Allocate; |
| 560 | breakFromLoop = true; |
| 561 | }) |
| 562 | .Case<fir::ConvertOp>([&](auto op) { |
| 563 | // Skip ConvertOp's and track further through the operand. |
| 564 | v = op->getOperand(0); |
| 565 | defOp = v.getDefiningOp(); |
| 566 | }) |
| 567 | .Case<fir::PackArrayOp>([&](auto op) { |
| 568 | // The packed array is not distinguishable from the original |
| 569 | // array, so skip PackArrayOp and track further through |
| 570 | // the array operand. |
| 571 | v = op.getArray(); |
| 572 | defOp = v.getDefiningOp(); |
| 573 | approximateSource = true; |
| 574 | }) |
| 575 | .Case<fir::BoxAddrOp>([&](auto op) { |
| 576 | v = op->getOperand(0); |
| 577 | defOp = v.getDefiningOp(); |
| 578 | if (mlir::isa<fir::BaseBoxType>(v.getType())) |
| 579 | followBoxData = true; |
| 580 | }) |
| 581 | .Case<fir::ArrayCoorOp, fir::CoordinateOp>([&](auto op) { |
| 582 | if (isPointerReference(ty)) |
| 583 | attributes.set(Attribute::Pointer); |
| 584 | v = op->getOperand(0); |
| 585 | defOp = v.getDefiningOp(); |
| 586 | if (mlir::isa<fir::BaseBoxType>(v.getType())) |
| 587 | followBoxData = true; |
| 588 | approximateSource = true; |
| 589 | }) |
| 590 | .Case<fir::EmboxOp, fir::ReboxOp>([&](auto op) { |
| 591 | if (followBoxData) { |
| 592 | v = op->getOperand(0); |
| 593 | defOp = v.getDefiningOp(); |
| 594 | } else |
| 595 | breakFromLoop = true; |
| 596 | }) |
| 597 | .Case<fir::LoadOp>([&](auto op) { |
| 598 | // If load is inside target and it points to mapped item, |
| 599 | // continue tracking. |
| 600 | Operation *loadMemrefOp = op.getMemref().getDefiningOp(); |
| 601 | bool isDeclareOp = |
| 602 | llvm::isa_and_present<fir::DeclareOp>(loadMemrefOp) || |
| 603 | llvm::isa_and_present<hlfir::DeclareOp>(loadMemrefOp); |
| 604 | if (isDeclareOp && |
| 605 | llvm::isa<omp::TargetOp>(loadMemrefOp->getParentOp())) { |
| 606 | v = op.getMemref(); |
| 607 | defOp = v.getDefiningOp(); |
| 608 | return; |
| 609 | } |
| 610 | |
| 611 | // If we are loading a box reference, but following the data, |
| 612 | // we gather the attributes of the box to populate the source |
| 613 | // and stop tracking. |
| 614 | if (auto boxTy = mlir::dyn_cast<fir::BaseBoxType>(ty); |
| 615 | boxTy && followingData) { |
| 616 | |
| 617 | if (mlir::isa<fir::PointerType>(boxTy.getEleTy())) |
| 618 | attributes.set(Attribute::Pointer); |
| 619 | |
| 620 | auto boxSrc = getSource(op.getMemref()); |
| 621 | attributes |= boxSrc.attributes; |
| 622 | approximateSource |= boxSrc.approximateSource; |
| 623 | isCapturedInInternalProcedure |= |
| 624 | boxSrc.isCapturedInInternalProcedure; |
| 625 | |
| 626 | global = llvm::dyn_cast<mlir::SymbolRefAttr>(boxSrc.origin.u); |
| 627 | if (global) { |
| 628 | type = SourceKind::Global; |
| 629 | } else { |
| 630 | auto def = llvm::cast<mlir::Value>(boxSrc.origin.u); |
| 631 | // TODO: Add support to fir.allocmem |
| 632 | if (auto allocOp = def.template getDefiningOp<fir::AllocaOp>()) { |
| 633 | v = def; |
| 634 | defOp = v.getDefiningOp(); |
| 635 | type = SourceKind::Allocate; |
| 636 | } else if (isDummyArgument(def)) { |
| 637 | defOp = nullptr; |
| 638 | v = def; |
| 639 | } else { |
| 640 | type = SourceKind::Indirect; |
| 641 | } |
| 642 | } |
| 643 | breakFromLoop = true; |
| 644 | return; |
| 645 | } |
| 646 | // No further tracking for addresses loaded from memory for now. |
| 647 | type = SourceKind::Indirect; |
| 648 | breakFromLoop = true; |
| 649 | }) |
| 650 | .Case<fir::AddrOfOp>([&](auto op) { |
| 651 | // Address of a global scope object. |
| 652 | ty = v.getType(); |
| 653 | type = SourceKind::Global; |
| 654 | |
| 655 | if (hasGlobalOpTargetAttr(v, op)) |
| 656 | attributes.set(Attribute::Target); |
| 657 | |
| 658 | // TODO: Take followBoxData into account when setting the pointer |
| 659 | // attribute |
| 660 | if (isPointerReference(ty)) |
| 661 | attributes.set(Attribute::Pointer); |
| 662 | global = llvm::cast<fir::AddrOfOp>(op).getSymbol(); |
| 663 | breakFromLoop = true; |
| 664 | }) |
| 665 | .Case<hlfir::DeclareOp, fir::DeclareOp>([&](auto op) { |
| 666 | bool isPrivateItem = false; |
| 667 | if (omp::BlockArgOpenMPOpInterface argIface = |
| 668 | dyn_cast<omp::BlockArgOpenMPOpInterface>(op->getParentOp())) { |
| 669 | Value ompValArg; |
| 670 | llvm::TypeSwitch<Operation *>(op->getParentOp()) |
| 671 | .template Case<omp::TargetOp>([&](auto targetOp) { |
| 672 | // If declare operation is inside omp target region, |
| 673 | // continue alias analysis outside the target region |
| 674 | for (auto [opArg, blockArg] : llvm::zip_equal( |
| 675 | targetOp.getMapVars(), argIface.getMapBlockArgs())) { |
| 676 | if (blockArg == op.getMemref()) { |
| 677 | omp::MapInfoOp mapInfo = |
| 678 | llvm::cast<omp::MapInfoOp>(opArg.getDefiningOp()); |
| 679 | ompValArg = mapInfo.getVarPtr(); |
| 680 | return; |
| 681 | } |
| 682 | } |
| 683 | // If given operation does not reflect mapping item, |
| 684 | // check private clause |
| 685 | isPrivateItem = isPrivateArg(argIface, targetOp, op); |
| 686 | }) |
| 687 | .template Case<omp::DistributeOp, omp::ParallelOp, |
| 688 | omp::SectionsOp, omp::SimdOp, omp::SingleOp, |
| 689 | omp::TaskloopOp, omp::TaskOp, omp::WsloopOp>( |
| 690 | [&](auto privateOp) { |
| 691 | isPrivateItem = isPrivateArg(argIface, privateOp, op); |
| 692 | }); |
| 693 | if (ompValArg) { |
| 694 | v = ompValArg; |
| 695 | defOp = ompValArg.getDefiningOp(); |
| 696 | return; |
| 697 | } |
| 698 | } |
| 699 | auto varIf = llvm::cast<fir::FortranVariableOpInterface>(defOp); |
| 700 | // While going through a declare operation collect |
| 701 | // the variable attributes from it. Right now, some |
| 702 | // of the attributes are duplicated, e.g. a TARGET dummy |
| 703 | // argument has the target attribute both on its declare |
| 704 | // operation and on the entry block argument. |
| 705 | // In case of host associated use, the declare operation |
| 706 | // is the only carrier of the variable attributes, |
| 707 | // so we have to collect them here. |
| 708 | attributes |= getAttrsFromVariable(varIf); |
| 709 | isCapturedInInternalProcedure |= |
| 710 | varIf.isCapturedInInternalProcedure(); |
| 711 | if (varIf.isHostAssoc()) { |
| 712 | // Do not track past such DeclareOp, because it does not |
| 713 | // currently provide any useful information. The host associated |
| 714 | // access will end up dereferencing the host association tuple, |
| 715 | // so we may as well stop right now. |
| 716 | v = defOp->getResult(0); |
| 717 | // TODO: if the host associated variable is a dummy argument |
| 718 | // of the host, I think, we can treat it as SourceKind::Argument |
| 719 | // for the purpose of alias analysis inside the internal procedure. |
| 720 | type = SourceKind::HostAssoc; |
| 721 | breakFromLoop = true; |
| 722 | return; |
| 723 | } |
| 724 | if (getLastInstantiationPoint) { |
| 725 | // Fetch only the innermost instantiation point. |
| 726 | if (!instantiationPoint) |
| 727 | instantiationPoint = op; |
| 728 | |
| 729 | if (op.getDummyScope()) { |
| 730 | // Do not track past DeclareOp that has the dummy_scope |
| 731 | // operand. This DeclareOp is known to represent |
| 732 | // a dummy argument for some runtime instantiation |
| 733 | // of a procedure. |
| 734 | type = SourceKind::Argument; |
| 735 | breakFromLoop = true; |
| 736 | return; |
| 737 | } |
| 738 | } else { |
| 739 | instantiationPoint = op; |
| 740 | } |
| 741 | if (isPrivateItem) { |
| 742 | type = SourceKind::Allocate; |
| 743 | breakFromLoop = true; |
| 744 | return; |
| 745 | } |
| 746 | // TODO: Look for the fortran attributes present on the operation |
| 747 | // Track further through the operand |
| 748 | v = op.getMemref(); |
| 749 | defOp = v.getDefiningOp(); |
| 750 | }) |
| 751 | .Case<hlfir::DesignateOp>([&](auto op) { |
| 752 | auto varIf = llvm::cast<fir::FortranVariableOpInterface>(defOp); |
| 753 | attributes |= getAttrsFromVariable(varIf); |
| 754 | // Track further through the memory indexed into |
| 755 | // => if the source arrays/structures don't alias then nor do the |
| 756 | // results of hlfir.designate |
| 757 | v = op.getMemref(); |
| 758 | defOp = v.getDefiningOp(); |
| 759 | // TODO: there will be some cases which provably don't alias if one |
| 760 | // takes into account the component or indices, which are currently |
| 761 | // ignored here - leading to false positives |
| 762 | // because of this limitation, we need to make sure we never return |
| 763 | // MustAlias after going through a designate operation |
| 764 | approximateSource = true; |
| 765 | if (mlir::isa<fir::BaseBoxType>(v.getType())) |
| 766 | followBoxData = true; |
| 767 | }) |
| 768 | .Default([&](auto op) { |
| 769 | defOp = nullptr; |
| 770 | breakFromLoop = true; |
| 771 | }); |
| 772 | } |
| 773 | if (!defOp && type == SourceKind::Unknown) { |
| 774 | // Check if the memory source is coming through a dummy argument. |
| 775 | if (isDummyArgument(v)) { |
| 776 | type = SourceKind::Argument; |
| 777 | ty = v.getType(); |
| 778 | if (fir::valueHasFirAttribute(v, fir::getTargetAttrName())) |
| 779 | attributes.set(Attribute::Target); |
| 780 | |
| 781 | if (isPointerReference(ty)) |
| 782 | attributes.set(Attribute::Pointer); |
| 783 | } else if (isEvaluateInMemoryBlockArg(v)) { |
| 784 | // hlfir.eval_in_mem block operands is allocated by the operation. |
| 785 | type = SourceKind::Allocate; |
| 786 | ty = v.getType(); |
| 787 | } |
| 788 | } |
| 789 | |
| 790 | if (type == SourceKind::Global) { |
| 791 | return {{global, instantiationPoint, followingData}, |
| 792 | type, |
| 793 | ty, |
| 794 | attributes, |
| 795 | approximateSource, |
| 796 | isCapturedInInternalProcedure}; |
| 797 | } |
| 798 | return {{v, instantiationPoint, followingData}, |
| 799 | type, |
| 800 | ty, |
| 801 | attributes, |
| 802 | approximateSource, |
| 803 | isCapturedInInternalProcedure}; |
| 804 | } |
| 805 | |
| 806 | } // namespace fir |
| 807 | |