| 1 | //===-- Target.cpp --------------------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/ |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "flang/Optimizer/CodeGen/Target.h" |
| 14 | #include "flang/Optimizer/Builder/Todo.h" |
| 15 | #include "flang/Optimizer/Dialect/FIRType.h" |
| 16 | #include "flang/Optimizer/Dialect/Support/KindMapping.h" |
| 17 | #include "flang/Optimizer/Support/FatalError.h" |
| 18 | #include "flang/Optimizer/Support/Utils.h" |
| 19 | #include "mlir/IR/BuiltinTypes.h" |
| 20 | #include "mlir/IR/TypeRange.h" |
| 21 | #include "llvm/ADT/TypeSwitch.h" |
| 22 | |
| 23 | #define DEBUG_TYPE "flang-codegen-target" |
| 24 | |
| 25 | using namespace fir; |
| 26 | |
| 27 | namespace fir::details { |
| 28 | llvm::StringRef Attributes::getIntExtensionAttrName() const { |
| 29 | // The attribute names are available via LLVM dialect interfaces |
| 30 | // like getZExtAttrName(), getByValAttrName(), etc., so we'd better |
| 31 | // use them than literals. |
| 32 | if (isZeroExt()) |
| 33 | return "llvm.zeroext" ; |
| 34 | else if (isSignExt()) |
| 35 | return "llvm.signext" ; |
| 36 | return {}; |
| 37 | } |
| 38 | } // namespace fir::details |
| 39 | |
| 40 | // Reduce a REAL/float type to the floating point semantics. |
| 41 | static const llvm::fltSemantics &floatToSemantics(const KindMapping &kindMap, |
| 42 | mlir::Type type) { |
| 43 | assert(isa_real(type)); |
| 44 | return mlir::cast<mlir::FloatType>(type).getFloatSemantics(); |
| 45 | } |
| 46 | |
| 47 | static void typeTodo(const llvm::fltSemantics *sem, mlir::Location loc, |
| 48 | const std::string &context) { |
| 49 | if (sem == &llvm::APFloat::IEEEhalf()) { |
| 50 | TODO(loc, "COMPLEX(KIND=2): for " + context + " type" ); |
| 51 | } else if (sem == &llvm::APFloat::BFloat()) { |
| 52 | TODO(loc, "COMPLEX(KIND=3): " + context + " type" ); |
| 53 | } else if (sem == &llvm::APFloat::x87DoubleExtended()) { |
| 54 | TODO(loc, "COMPLEX(KIND=10): " + context + " type" ); |
| 55 | } else { |
| 56 | TODO(loc, "complex for this precision for " + context + " type" ); |
| 57 | } |
| 58 | } |
| 59 | |
| 60 | namespace { |
| 61 | template <typename S> |
| 62 | struct GenericTarget : public CodeGenSpecifics { |
| 63 | using CodeGenSpecifics::CodeGenSpecifics; |
| 64 | using AT = CodeGenSpecifics::Attributes; |
| 65 | |
| 66 | mlir::Type complexMemoryType(mlir::Type eleTy) const override { |
| 67 | assert(fir::isa_real(eleTy)); |
| 68 | // Use a type that will be translated into LLVM as: |
| 69 | // { t, t } struct of 2 eleTy |
| 70 | return mlir::TupleType::get(eleTy.getContext(), |
| 71 | mlir::TypeRange{eleTy, eleTy}); |
| 72 | } |
| 73 | |
| 74 | mlir::Type boxcharMemoryType(mlir::Type eleTy) const override { |
| 75 | auto idxTy = mlir::IntegerType::get(eleTy.getContext(), S::defaultWidth); |
| 76 | auto ptrTy = fir::ReferenceType::get(eleTy); |
| 77 | // Use a type that will be translated into LLVM as: |
| 78 | // { t*, index } |
| 79 | return mlir::TupleType::get(eleTy.getContext(), |
| 80 | mlir::TypeRange{ptrTy, idxTy}); |
| 81 | } |
| 82 | |
| 83 | Marshalling boxcharArgumentType(mlir::Type eleTy) const override { |
| 84 | CodeGenSpecifics::Marshalling marshal; |
| 85 | auto idxTy = mlir::IntegerType::get(eleTy.getContext(), S::defaultWidth); |
| 86 | auto ptrTy = fir::ReferenceType::get(eleTy); |
| 87 | marshal.emplace_back(ptrTy, AT{}); |
| 88 | // Characters are passed in a split format with all pointers first (in the |
| 89 | // declared position) and all LEN arguments appended after all of the dummy |
| 90 | // arguments. |
| 91 | // NB: Other conventions/ABIs can/should be supported via options. |
| 92 | marshal.emplace_back(idxTy, AT{/*alignment=*/0, /*byval=*/false, |
| 93 | /*sret=*/false, /*append=*/true}); |
| 94 | return marshal; |
| 95 | } |
| 96 | |
| 97 | CodeGenSpecifics::Marshalling |
| 98 | structArgumentType(mlir::Location loc, fir::RecordType, |
| 99 | const Marshalling &) const override { |
| 100 | TODO(loc, "passing VALUE BIND(C) derived type for this target" ); |
| 101 | } |
| 102 | |
| 103 | CodeGenSpecifics::Marshalling |
| 104 | structReturnType(mlir::Location loc, fir::RecordType ty) const override { |
| 105 | TODO(loc, "returning BIND(C) derived type for this target" ); |
| 106 | } |
| 107 | |
| 108 | CodeGenSpecifics::Marshalling |
| 109 | integerArgumentType(mlir::Location loc, |
| 110 | mlir::IntegerType argTy) const override { |
| 111 | CodeGenSpecifics::Marshalling marshal; |
| 112 | AT::IntegerExtension intExt = AT::IntegerExtension::None; |
| 113 | if (argTy.getWidth() < getCIntTypeWidth()) { |
| 114 | // isSigned() and isUnsigned() branches below are dead code currently. |
| 115 | // If needed, we can generate calls with signed/unsigned argument types |
| 116 | // to more precisely match C side (e.g. for Fortran runtime functions |
| 117 | // with 'unsigned short' arguments). |
| 118 | if (argTy.isSigned()) |
| 119 | intExt = AT::IntegerExtension::Sign; |
| 120 | else if (argTy.isUnsigned()) |
| 121 | intExt = AT::IntegerExtension::Zero; |
| 122 | else if (argTy.isSignless()) { |
| 123 | // Zero extend for 'i1' and sign extend for other types. |
| 124 | if (argTy.getWidth() == 1) |
| 125 | intExt = AT::IntegerExtension::Zero; |
| 126 | else |
| 127 | intExt = AT::IntegerExtension::Sign; |
| 128 | } |
| 129 | } |
| 130 | |
| 131 | marshal.emplace_back(argTy, AT{/*alignment=*/0, /*byval=*/false, |
| 132 | /*sret=*/false, /*append=*/false, |
| 133 | /*intExt=*/intExt}); |
| 134 | return marshal; |
| 135 | } |
| 136 | |
| 137 | CodeGenSpecifics::Marshalling |
| 138 | integerReturnType(mlir::Location loc, |
| 139 | mlir::IntegerType argTy) const override { |
| 140 | return integerArgumentType(loc, argTy); |
| 141 | } |
| 142 | |
| 143 | // Width of 'int' type is 32-bits for almost all targets, except |
| 144 | // for AVR and MSP430 (see TargetInfo initializations |
| 145 | // in clang/lib/Basic/Targets). |
| 146 | unsigned char getCIntTypeWidth() const override { return 32; } |
| 147 | }; |
| 148 | } // namespace |
| 149 | |
| 150 | //===----------------------------------------------------------------------===// |
| 151 | // i386 (x86 32 bit) linux target specifics. |
| 152 | //===----------------------------------------------------------------------===// |
| 153 | |
| 154 | namespace { |
| 155 | struct TargetI386 : public GenericTarget<TargetI386> { |
| 156 | using GenericTarget::GenericTarget; |
| 157 | |
| 158 | static constexpr int defaultWidth = 32; |
| 159 | |
| 160 | CodeGenSpecifics::Marshalling |
| 161 | complexArgumentType(mlir::Location, mlir::Type eleTy) const override { |
| 162 | assert(fir::isa_real(eleTy)); |
| 163 | CodeGenSpecifics::Marshalling marshal; |
| 164 | // Use a type that will be translated into LLVM as: |
| 165 | // { t, t } struct of 2 eleTy, byval, align 4 |
| 166 | auto structTy = |
| 167 | mlir::TupleType::get(eleTy.getContext(), mlir::TypeRange{eleTy, eleTy}); |
| 168 | marshal.emplace_back(fir::ReferenceType::get(structTy), |
| 169 | AT{/*alignment=*/4, /*byval=*/true}); |
| 170 | return marshal; |
| 171 | } |
| 172 | |
| 173 | CodeGenSpecifics::Marshalling |
| 174 | complexReturnType(mlir::Location loc, mlir::Type eleTy) const override { |
| 175 | assert(fir::isa_real(eleTy)); |
| 176 | CodeGenSpecifics::Marshalling marshal; |
| 177 | const auto *sem = &floatToSemantics(kindMap, eleTy); |
| 178 | if (sem == &llvm::APFloat::IEEEsingle()) { |
| 179 | // i64 pack both floats in a 64-bit GPR |
| 180 | marshal.emplace_back(mlir::IntegerType::get(eleTy.getContext(), 64), |
| 181 | AT{}); |
| 182 | } else if (sem == &llvm::APFloat::IEEEdouble()) { |
| 183 | // Use a type that will be translated into LLVM as: |
| 184 | // { t, t } struct of 2 eleTy, sret, align 4 |
| 185 | auto structTy = mlir::TupleType::get(eleTy.getContext(), |
| 186 | mlir::TypeRange{eleTy, eleTy}); |
| 187 | marshal.emplace_back(fir::ReferenceType::get(structTy), |
| 188 | AT{/*alignment=*/4, /*byval=*/false, /*sret=*/true}); |
| 189 | } else { |
| 190 | typeTodo(sem, loc, "return" ); |
| 191 | } |
| 192 | return marshal; |
| 193 | } |
| 194 | }; |
| 195 | } // namespace |
| 196 | |
| 197 | //===----------------------------------------------------------------------===// |
| 198 | // i386 (x86 32 bit) Windows target specifics. |
| 199 | //===----------------------------------------------------------------------===// |
| 200 | |
| 201 | namespace { |
| 202 | struct TargetI386Win : public GenericTarget<TargetI386Win> { |
| 203 | using GenericTarget::GenericTarget; |
| 204 | |
| 205 | static constexpr int defaultWidth = 32; |
| 206 | |
| 207 | CodeGenSpecifics::Marshalling |
| 208 | complexArgumentType(mlir::Location loc, mlir::Type eleTy) const override { |
| 209 | CodeGenSpecifics::Marshalling marshal; |
| 210 | // Use a type that will be translated into LLVM as: |
| 211 | // { t, t } struct of 2 eleTy, byval, align 4 |
| 212 | auto structTy = |
| 213 | mlir::TupleType::get(eleTy.getContext(), mlir::TypeRange{eleTy, eleTy}); |
| 214 | marshal.emplace_back(fir::ReferenceType::get(structTy), |
| 215 | AT{/*align=*/4, /*byval=*/true}); |
| 216 | return marshal; |
| 217 | } |
| 218 | |
| 219 | CodeGenSpecifics::Marshalling |
| 220 | complexReturnType(mlir::Location loc, mlir::Type eleTy) const override { |
| 221 | CodeGenSpecifics::Marshalling marshal; |
| 222 | const auto *sem = &floatToSemantics(kindMap, eleTy); |
| 223 | if (sem == &llvm::APFloat::IEEEsingle()) { |
| 224 | // i64 pack both floats in a 64-bit GPR |
| 225 | marshal.emplace_back(mlir::IntegerType::get(eleTy.getContext(), 64), |
| 226 | AT{}); |
| 227 | } else if (sem == &llvm::APFloat::IEEEdouble()) { |
| 228 | // Use a type that will be translated into LLVM as: |
| 229 | // { double, double } struct of 2 double, sret, align 8 |
| 230 | marshal.emplace_back( |
| 231 | fir::ReferenceType::get(mlir::TupleType::get( |
| 232 | eleTy.getContext(), mlir::TypeRange{eleTy, eleTy})), |
| 233 | AT{/*align=*/8, /*byval=*/false, /*sret=*/true}); |
| 234 | } else if (sem == &llvm::APFloat::IEEEquad()) { |
| 235 | // Use a type that will be translated into LLVM as: |
| 236 | // { fp128, fp128 } struct of 2 fp128, sret, align 16 |
| 237 | marshal.emplace_back( |
| 238 | fir::ReferenceType::get(mlir::TupleType::get( |
| 239 | eleTy.getContext(), mlir::TypeRange{eleTy, eleTy})), |
| 240 | AT{/*align=*/16, /*byval=*/false, /*sret=*/true}); |
| 241 | } else if (sem == &llvm::APFloat::x87DoubleExtended()) { |
| 242 | // Use a type that will be translated into LLVM as: |
| 243 | // { x86_fp80, x86_fp80 } struct of 2 x86_fp80, sret, align 4 |
| 244 | marshal.emplace_back( |
| 245 | fir::ReferenceType::get(mlir::TupleType::get( |
| 246 | eleTy.getContext(), mlir::TypeRange{eleTy, eleTy})), |
| 247 | AT{/*align=*/4, /*byval=*/false, /*sret=*/true}); |
| 248 | } else { |
| 249 | typeTodo(sem, loc, "return" ); |
| 250 | } |
| 251 | return marshal; |
| 252 | } |
| 253 | }; |
| 254 | } // namespace |
| 255 | |
| 256 | //===----------------------------------------------------------------------===// |
| 257 | // x86_64 (x86 64 bit) linux target specifics. |
| 258 | //===----------------------------------------------------------------------===// |
| 259 | |
| 260 | namespace { |
| 261 | struct TargetX86_64 : public GenericTarget<TargetX86_64> { |
| 262 | using GenericTarget::GenericTarget; |
| 263 | |
| 264 | static constexpr int defaultWidth = 64; |
| 265 | |
| 266 | CodeGenSpecifics::Marshalling |
| 267 | complexArgumentType(mlir::Location loc, mlir::Type eleTy) const override { |
| 268 | CodeGenSpecifics::Marshalling marshal; |
| 269 | const auto *sem = &floatToSemantics(kindMap, eleTy); |
| 270 | if (sem == &llvm::APFloat::IEEEsingle()) { |
| 271 | // <2 x t> vector of 2 eleTy |
| 272 | marshal.emplace_back(fir::VectorType::get(2, eleTy), AT{}); |
| 273 | } else if (sem == &llvm::APFloat::IEEEdouble()) { |
| 274 | // FIXME: In case of SSE register exhaustion, the ABI here may be |
| 275 | // incorrect since LLVM may pass the real via register and the imaginary |
| 276 | // part via the stack while the ABI it should be all in register or all |
| 277 | // in memory. Register occupancy must be analyzed here. |
| 278 | // two distinct double arguments |
| 279 | marshal.emplace_back(eleTy, AT{}); |
| 280 | marshal.emplace_back(eleTy, AT{}); |
| 281 | } else if (sem == &llvm::APFloat::x87DoubleExtended()) { |
| 282 | // Use a type that will be translated into LLVM as: |
| 283 | // { x86_fp80, x86_fp80 } struct of 2 fp128, byval, align 16 |
| 284 | marshal.emplace_back( |
| 285 | fir::ReferenceType::get(mlir::TupleType::get( |
| 286 | eleTy.getContext(), mlir::TypeRange{eleTy, eleTy})), |
| 287 | AT{/*align=*/16, /*byval=*/true}); |
| 288 | } else if (sem == &llvm::APFloat::IEEEquad()) { |
| 289 | // Use a type that will be translated into LLVM as: |
| 290 | // { fp128, fp128 } struct of 2 fp128, byval, align 16 |
| 291 | marshal.emplace_back( |
| 292 | fir::ReferenceType::get(mlir::TupleType::get( |
| 293 | eleTy.getContext(), mlir::TypeRange{eleTy, eleTy})), |
| 294 | AT{/*align=*/16, /*byval=*/true}); |
| 295 | } else { |
| 296 | typeTodo(sem, loc, "argument" ); |
| 297 | } |
| 298 | return marshal; |
| 299 | } |
| 300 | |
| 301 | CodeGenSpecifics::Marshalling |
| 302 | complexReturnType(mlir::Location loc, mlir::Type eleTy) const override { |
| 303 | CodeGenSpecifics::Marshalling marshal; |
| 304 | const auto *sem = &floatToSemantics(kindMap, eleTy); |
| 305 | if (sem == &llvm::APFloat::IEEEsingle()) { |
| 306 | // <2 x t> vector of 2 eleTy |
| 307 | marshal.emplace_back(fir::VectorType::get(2, eleTy), AT{}); |
| 308 | } else if (sem == &llvm::APFloat::IEEEdouble()) { |
| 309 | // Use a type that will be translated into LLVM as: |
| 310 | // { double, double } struct of 2 double |
| 311 | marshal.emplace_back(mlir::TupleType::get(eleTy.getContext(), |
| 312 | mlir::TypeRange{eleTy, eleTy}), |
| 313 | AT{}); |
| 314 | } else if (sem == &llvm::APFloat::x87DoubleExtended()) { |
| 315 | // { x86_fp80, x86_fp80 } |
| 316 | marshal.emplace_back(mlir::TupleType::get(eleTy.getContext(), |
| 317 | mlir::TypeRange{eleTy, eleTy}), |
| 318 | AT{}); |
| 319 | } else if (sem == &llvm::APFloat::IEEEquad()) { |
| 320 | // Use a type that will be translated into LLVM as: |
| 321 | // { fp128, fp128 } struct of 2 fp128, sret, align 16 |
| 322 | marshal.emplace_back( |
| 323 | fir::ReferenceType::get(mlir::TupleType::get( |
| 324 | eleTy.getContext(), mlir::TypeRange{eleTy, eleTy})), |
| 325 | AT{/*align=*/16, /*byval=*/false, /*sret=*/true}); |
| 326 | } else { |
| 327 | typeTodo(sem, loc, "return" ); |
| 328 | } |
| 329 | return marshal; |
| 330 | } |
| 331 | |
| 332 | /// X86-64 argument classes from System V ABI version 1.0 section 3.2.3. |
| 333 | enum ArgClass { |
| 334 | Integer = 0, |
| 335 | SSE, |
| 336 | SSEUp, |
| 337 | X87, |
| 338 | X87Up, |
| 339 | ComplexX87, |
| 340 | NoClass, |
| 341 | Memory |
| 342 | }; |
| 343 | |
| 344 | /// Classify an argument type or a field of an aggregate type argument. |
| 345 | /// See System V ABI version 1.0 section 3.2.3. |
| 346 | /// The Lo and Hi class are set to the class of the lower eight eightbytes |
| 347 | /// and upper eight eightbytes on return. |
| 348 | /// If this is called for an aggregate field, the caller is responsible to |
| 349 | /// do the post-merge. |
| 350 | void classify(mlir::Location loc, mlir::Type type, std::uint64_t byteOffset, |
| 351 | ArgClass &Lo, ArgClass &Hi) const { |
| 352 | Hi = Lo = ArgClass::NoClass; |
| 353 | ArgClass ¤t = byteOffset < 8 ? Lo : Hi; |
| 354 | // System V AMD64 ABI 3.2.3. version 1.0 |
| 355 | llvm::TypeSwitch<mlir::Type>(type) |
| 356 | .template Case<mlir::IntegerType>([&](mlir::IntegerType intTy) { |
| 357 | if (intTy.getWidth() == 128) |
| 358 | Hi = Lo = ArgClass::Integer; |
| 359 | else |
| 360 | current = ArgClass::Integer; |
| 361 | }) |
| 362 | .template Case<mlir::FloatType>([&](mlir::Type floatTy) { |
| 363 | const auto *sem = &floatToSemantics(kindMap, floatTy); |
| 364 | if (sem == &llvm::APFloat::x87DoubleExtended()) { |
| 365 | Lo = ArgClass::X87; |
| 366 | Hi = ArgClass::X87Up; |
| 367 | } else if (sem == &llvm::APFloat::IEEEquad()) { |
| 368 | Lo = ArgClass::SSE; |
| 369 | Hi = ArgClass::SSEUp; |
| 370 | } else { |
| 371 | current = ArgClass::SSE; |
| 372 | } |
| 373 | }) |
| 374 | .template Case<mlir::ComplexType>([&](mlir::ComplexType cmplx) { |
| 375 | const auto *sem = &floatToSemantics(kindMap, cmplx.getElementType()); |
| 376 | if (sem == &llvm::APFloat::x87DoubleExtended()) { |
| 377 | current = ArgClass::ComplexX87; |
| 378 | } else { |
| 379 | fir::SequenceType::Shape shape{2}; |
| 380 | classifyArray(loc, |
| 381 | fir::SequenceType::get(shape, cmplx.getElementType()), |
| 382 | byteOffset, Lo, Hi); |
| 383 | } |
| 384 | }) |
| 385 | .template Case<fir::LogicalType>([&](fir::LogicalType logical) { |
| 386 | if (kindMap.getLogicalBitsize(logical.getFKind()) == 128) |
| 387 | Hi = Lo = ArgClass::Integer; |
| 388 | else |
| 389 | current = ArgClass::Integer; |
| 390 | }) |
| 391 | .template Case<fir::CharacterType>( |
| 392 | [&](fir::CharacterType character) { current = ArgClass::Integer; }) |
| 393 | .template Case<fir::SequenceType>([&](fir::SequenceType seqTy) { |
| 394 | // Array component. |
| 395 | classifyArray(loc, seqTy, byteOffset, Lo, Hi); |
| 396 | }) |
| 397 | .template Case<fir::RecordType>([&](fir::RecordType recTy) { |
| 398 | // Component that is a derived type. |
| 399 | classifyStruct(loc, recTy, byteOffset, Lo, Hi); |
| 400 | }) |
| 401 | .template Case<fir::VectorType>([&](fir::VectorType vecTy) { |
| 402 | // Previously marshalled SSE eight byte for a previous struct |
| 403 | // argument. |
| 404 | auto *sem = fir::isa_real(vecTy.getEleTy()) |
| 405 | ? &floatToSemantics(kindMap, vecTy.getEleTy()) |
| 406 | : nullptr; |
| 407 | // Not expecting to hit this todo in standard code (it would |
| 408 | // require some vector type extension). |
| 409 | if (!(sem == &llvm::APFloat::IEEEsingle() && vecTy.getLen() <= 2) && |
| 410 | !(sem == &llvm::APFloat::IEEEhalf() && vecTy.getLen() <= 4)) |
| 411 | TODO(loc, "passing vector argument to C by value" ); |
| 412 | current = SSE; |
| 413 | }) |
| 414 | .Default([&](mlir::Type ty) { |
| 415 | if (fir::conformsWithPassByRef(ty)) |
| 416 | current = ArgClass::Integer; // Pointers. |
| 417 | else |
| 418 | TODO(loc, "unsupported component type for BIND(C), VALUE derived " |
| 419 | "type argument" ); |
| 420 | }); |
| 421 | } |
| 422 | |
| 423 | // Classify fields of a derived type starting at \p offset. Returns the new |
| 424 | // offset. Post-merge is left to the caller. |
| 425 | std::uint64_t classifyStruct(mlir::Location loc, fir::RecordType recTy, |
| 426 | std::uint64_t byteOffset, ArgClass &Lo, |
| 427 | ArgClass &Hi) const { |
| 428 | for (auto component : recTy.getTypeList()) { |
| 429 | if (byteOffset > 16) { |
| 430 | // See 3.2.3 p. 1 and note 15. Note that when the offset is bigger |
| 431 | // than 16 bytes here, it is not a single _m256 and or _m512 entity |
| 432 | // that could fit in AVX registers. |
| 433 | Lo = Hi = ArgClass::Memory; |
| 434 | return byteOffset; |
| 435 | } |
| 436 | mlir::Type compType = component.second; |
| 437 | auto [compSize, compAlign] = fir::getTypeSizeAndAlignmentOrCrash( |
| 438 | loc, compType, getDataLayout(), kindMap); |
| 439 | byteOffset = llvm::alignTo(byteOffset, compAlign); |
| 440 | ArgClass LoComp, HiComp; |
| 441 | classify(loc, compType, byteOffset, LoComp, HiComp); |
| 442 | Lo = mergeClass(Lo, LoComp); |
| 443 | Hi = mergeClass(Hi, HiComp); |
| 444 | byteOffset = byteOffset + llvm::alignTo(compSize, compAlign); |
| 445 | if (Lo == ArgClass::Memory || Hi == ArgClass::Memory) |
| 446 | return byteOffset; |
| 447 | } |
| 448 | return byteOffset; |
| 449 | } |
| 450 | |
| 451 | // Classify fields of a constant size array type starting at \p offset. |
| 452 | // Returns the new offset. Post-merge is left to the caller. |
| 453 | void classifyArray(mlir::Location loc, fir::SequenceType seqTy, |
| 454 | std::uint64_t byteOffset, ArgClass &Lo, |
| 455 | ArgClass &Hi) const { |
| 456 | mlir::Type eleTy = seqTy.getEleTy(); |
| 457 | const std::uint64_t arraySize = seqTy.getConstantArraySize(); |
| 458 | auto [eleSize, eleAlign] = fir::getTypeSizeAndAlignmentOrCrash( |
| 459 | loc, eleTy, getDataLayout(), kindMap); |
| 460 | std::uint64_t eleStorageSize = llvm::alignTo(eleSize, eleAlign); |
| 461 | for (std::uint64_t i = 0; i < arraySize; ++i) { |
| 462 | byteOffset = llvm::alignTo(byteOffset, eleAlign); |
| 463 | if (byteOffset > 16) { |
| 464 | // See 3.2.3 p. 1 and note 15. Same as in classifyStruct. |
| 465 | Lo = Hi = ArgClass::Memory; |
| 466 | return; |
| 467 | } |
| 468 | ArgClass LoComp, HiComp; |
| 469 | classify(loc, eleTy, byteOffset, LoComp, HiComp); |
| 470 | Lo = mergeClass(accum: Lo, field: LoComp); |
| 471 | Hi = mergeClass(accum: Hi, field: HiComp); |
| 472 | byteOffset = byteOffset + eleStorageSize; |
| 473 | if (Lo == ArgClass::Memory || Hi == ArgClass::Memory) |
| 474 | return; |
| 475 | } |
| 476 | } |
| 477 | |
| 478 | // Goes through the previously marshalled arguments and count the |
| 479 | // register occupancy to check if there are enough registers left. |
| 480 | bool hasEnoughRegisters(mlir::Location loc, int neededIntRegisters, |
| 481 | int neededSSERegisters, |
| 482 | const Marshalling &previousArguments) const { |
| 483 | int availIntRegisters = 6; |
| 484 | int availSSERegisters = 8; |
| 485 | for (auto typeAndAttr : previousArguments) { |
| 486 | const auto &attr = std::get<Attributes>(typeAndAttr); |
| 487 | if (attr.isByVal()) |
| 488 | continue; // Previous argument passed on the stack. |
| 489 | ArgClass Lo, Hi; |
| 490 | Lo = Hi = ArgClass::NoClass; |
| 491 | classify(loc, std::get<mlir::Type>(typeAndAttr), 0, Lo, Hi); |
| 492 | // post merge is not needed here since previous aggregate arguments |
| 493 | // were marshalled into simpler arguments. |
| 494 | if (Lo == ArgClass::Integer) |
| 495 | --availIntRegisters; |
| 496 | else if (Lo == SSE) |
| 497 | --availSSERegisters; |
| 498 | if (Hi == ArgClass::Integer) |
| 499 | --availIntRegisters; |
| 500 | else if (Hi == ArgClass::SSE) |
| 501 | --availSSERegisters; |
| 502 | } |
| 503 | return availSSERegisters >= neededSSERegisters && |
| 504 | availIntRegisters >= neededIntRegisters; |
| 505 | } |
| 506 | |
| 507 | /// Argument class merging as described in System V ABI 3.2.3 point 4. |
| 508 | ArgClass mergeClass(ArgClass accum, ArgClass field) const { |
| 509 | assert((accum != ArgClass::Memory && accum != ArgClass::ComplexX87) && |
| 510 | "Invalid accumulated classification during merge." ); |
| 511 | if (accum == field || field == NoClass) |
| 512 | return accum; |
| 513 | if (field == ArgClass::Memory) |
| 514 | return ArgClass::Memory; |
| 515 | if (accum == NoClass) |
| 516 | return field; |
| 517 | if (accum == Integer || field == Integer) |
| 518 | return ArgClass::Integer; |
| 519 | if (field == ArgClass::X87 || field == ArgClass::X87Up || |
| 520 | field == ArgClass::ComplexX87 || accum == ArgClass::X87 || |
| 521 | accum == ArgClass::X87Up) |
| 522 | return Memory; |
| 523 | return SSE; |
| 524 | } |
| 525 | |
| 526 | /// Argument class post merging as described in System V ABI 3.2.3 point 5. |
| 527 | void postMerge(std::uint64_t byteSize, ArgClass &Lo, ArgClass &Hi) const { |
| 528 | if (Hi == ArgClass::Memory) |
| 529 | Lo = ArgClass::Memory; |
| 530 | if (Hi == ArgClass::X87Up && Lo != ArgClass::X87) |
| 531 | Lo = ArgClass::Memory; |
| 532 | if (byteSize > 16 && (Lo != ArgClass::SSE || Hi != ArgClass::SSEUp)) |
| 533 | Lo = ArgClass::Memory; |
| 534 | if (Hi == ArgClass::SSEUp && Lo != ArgClass::SSE) |
| 535 | Hi = SSE; |
| 536 | } |
| 537 | |
| 538 | /// When \p recTy is a one field record type that can be passed |
| 539 | /// like the field on its own, returns the field type. Returns |
| 540 | /// a null type otherwise. |
| 541 | mlir::Type passAsFieldIfOneFieldStruct(fir::RecordType recTy, |
| 542 | bool allowComplex = false) const { |
| 543 | auto typeList = recTy.getTypeList(); |
| 544 | if (typeList.size() != 1) |
| 545 | return {}; |
| 546 | mlir::Type fieldType = typeList[0].second; |
| 547 | if (mlir::isa<mlir::FloatType, mlir::IntegerType, fir::LogicalType>( |
| 548 | fieldType)) |
| 549 | return fieldType; |
| 550 | if (allowComplex && mlir::isa<mlir::ComplexType>(fieldType)) |
| 551 | return fieldType; |
| 552 | if (mlir::isa<fir::CharacterType>(fieldType)) { |
| 553 | // Only CHARACTER(1) are expected in BIND(C) contexts, which is the only |
| 554 | // contexts where derived type may be passed in registers. |
| 555 | assert(mlir::cast<fir::CharacterType>(fieldType).getLen() == 1 && |
| 556 | "fir.type value arg character components must have length 1" ); |
| 557 | return fieldType; |
| 558 | } |
| 559 | // Complex field that needs to be split, or array. |
| 560 | return {}; |
| 561 | } |
| 562 | |
| 563 | mlir::Type pickLLVMArgType(mlir::Location loc, mlir::MLIRContext *context, |
| 564 | ArgClass argClass, |
| 565 | std::uint64_t partByteSize) const { |
| 566 | if (argClass == ArgClass::SSE) { |
| 567 | if (partByteSize > 16) |
| 568 | TODO(loc, "passing struct as a real > 128 bits in register" ); |
| 569 | // Clang uses vector type when several fp fields are marshalled |
| 570 | // into a single SSE register (like <n x smallest fp field> ). |
| 571 | // It should make no difference from an ABI point of view to just |
| 572 | // select an fp type of the right size, and it makes things simpler |
| 573 | // here. |
| 574 | if (partByteSize > 8) |
| 575 | return mlir::Float128Type::get(context); |
| 576 | if (partByteSize > 4) |
| 577 | return mlir::Float64Type::get(context); |
| 578 | if (partByteSize > 2) |
| 579 | return mlir::Float32Type::get(context); |
| 580 | return mlir::Float16Type::get(context); |
| 581 | } |
| 582 | assert(partByteSize <= 8 && |
| 583 | "expect integer part of aggregate argument to fit into eight bytes" ); |
| 584 | if (partByteSize > 4) |
| 585 | return mlir::IntegerType::get(context, 64); |
| 586 | if (partByteSize > 2) |
| 587 | return mlir::IntegerType::get(context, 32); |
| 588 | if (partByteSize > 1) |
| 589 | return mlir::IntegerType::get(context, 16); |
| 590 | return mlir::IntegerType::get(context, 8); |
| 591 | } |
| 592 | |
| 593 | /// Marshal a derived type passed by value like a C struct. |
| 594 | CodeGenSpecifics::Marshalling |
| 595 | structArgumentType(mlir::Location loc, fir::RecordType recTy, |
| 596 | const Marshalling &previousArguments) const override { |
| 597 | std::uint64_t byteOffset = 0; |
| 598 | ArgClass Lo, Hi; |
| 599 | Lo = Hi = ArgClass::NoClass; |
| 600 | byteOffset = classifyStruct(loc, recTy, byteOffset, Lo, Hi); |
| 601 | postMerge(byteSize: byteOffset, Lo, Hi); |
| 602 | if (Lo == ArgClass::Memory || Lo == ArgClass::X87 || |
| 603 | Lo == ArgClass::ComplexX87) |
| 604 | return passOnTheStack(loc, recTy, /*isResult=*/false); |
| 605 | int neededIntRegisters = 0; |
| 606 | int neededSSERegisters = 0; |
| 607 | if (Lo == ArgClass::SSE) |
| 608 | ++neededSSERegisters; |
| 609 | else if (Lo == ArgClass::Integer) |
| 610 | ++neededIntRegisters; |
| 611 | if (Hi == ArgClass::SSE) |
| 612 | ++neededSSERegisters; |
| 613 | else if (Hi == ArgClass::Integer) |
| 614 | ++neededIntRegisters; |
| 615 | // C struct should not be split into LLVM registers if LLVM codegen is not |
| 616 | // able to later assign actual registers to all of them (struct passing is |
| 617 | // all in registers or all on the stack). |
| 618 | if (!hasEnoughRegisters(loc, neededIntRegisters, neededSSERegisters, |
| 619 | previousArguments)) |
| 620 | return passOnTheStack(loc, recTy, /*isResult=*/false); |
| 621 | |
| 622 | if (auto fieldType = passAsFieldIfOneFieldStruct(recTy)) { |
| 623 | CodeGenSpecifics::Marshalling marshal; |
| 624 | marshal.emplace_back(fieldType, AT{}); |
| 625 | return marshal; |
| 626 | } |
| 627 | if (Hi == ArgClass::NoClass || Hi == ArgClass::SSEUp) { |
| 628 | // Pass a single integer or floating point argument. |
| 629 | mlir::Type lowType = |
| 630 | pickLLVMArgType(loc, recTy.getContext(), Lo, byteOffset); |
| 631 | CodeGenSpecifics::Marshalling marshal; |
| 632 | marshal.emplace_back(lowType, AT{}); |
| 633 | return marshal; |
| 634 | } |
| 635 | // Split into two integer or floating point arguments. |
| 636 | // Note that for the first argument, this will always pick i64 or f64 which |
| 637 | // may be bigger than needed if some struct padding ends the first eight |
| 638 | // byte (e.g. for `{i32, f64}`). It is valid from an X86-64 ABI and |
| 639 | // semantic point of view, but it may not match the LLVM IR interface clang |
| 640 | // would produce for the equivalent C code (the assembly will still be |
| 641 | // compatible). This allows keeping the logic simpler here since it |
| 642 | // avoids computing the "data" size of the Lo part. |
| 643 | mlir::Type lowType = pickLLVMArgType(loc, recTy.getContext(), Lo, 8u); |
| 644 | mlir::Type hiType = |
| 645 | pickLLVMArgType(loc, recTy.getContext(), Hi, byteOffset - 8u); |
| 646 | CodeGenSpecifics::Marshalling marshal; |
| 647 | marshal.emplace_back(lowType, AT{}); |
| 648 | marshal.emplace_back(hiType, AT{}); |
| 649 | return marshal; |
| 650 | } |
| 651 | |
| 652 | CodeGenSpecifics::Marshalling |
| 653 | structReturnType(mlir::Location loc, fir::RecordType recTy) const override { |
| 654 | std::uint64_t byteOffset = 0; |
| 655 | ArgClass Lo, Hi; |
| 656 | Lo = Hi = ArgClass::NoClass; |
| 657 | byteOffset = classifyStruct(loc, recTy, byteOffset, Lo, Hi); |
| 658 | mlir::MLIRContext *context = recTy.getContext(); |
| 659 | postMerge(byteSize: byteOffset, Lo, Hi); |
| 660 | if (Lo == ArgClass::Memory) |
| 661 | return passOnTheStack(loc, recTy, /*isResult=*/true); |
| 662 | |
| 663 | // Note that X87/ComplexX87 are passed in memory, but returned via %st0 |
| 664 | // %st1 registers. Here, they are returned as fp80 or {fp80, fp80} by |
| 665 | // passAsFieldIfOneFieldStruct, and LLVM will use the expected registers. |
| 666 | |
| 667 | // Note that {_Complex long double} is not 100% clear from an ABI |
| 668 | // perspective because the aggregate post merger rules say it should be |
| 669 | // passed in memory because it is bigger than 2 eight bytes. This has the |
| 670 | // funny effect of |
| 671 | // {_Complex long double} return to be dealt with differently than |
| 672 | // _Complex long double. |
| 673 | |
| 674 | if (auto fieldType = |
| 675 | passAsFieldIfOneFieldStruct(recTy, /*allowComplex=*/true)) { |
| 676 | if (auto complexType = mlir::dyn_cast<mlir::ComplexType>(fieldType)) |
| 677 | return complexReturnType(loc, complexType.getElementType()); |
| 678 | CodeGenSpecifics::Marshalling marshal; |
| 679 | marshal.emplace_back(fieldType, AT{}); |
| 680 | return marshal; |
| 681 | } |
| 682 | |
| 683 | if (Hi == ArgClass::NoClass || Hi == ArgClass::SSEUp) { |
| 684 | // Return a single integer or floating point argument. |
| 685 | mlir::Type lowType = pickLLVMArgType(loc, context, Lo, byteOffset); |
| 686 | CodeGenSpecifics::Marshalling marshal; |
| 687 | marshal.emplace_back(lowType, AT{}); |
| 688 | return marshal; |
| 689 | } |
| 690 | // Will be returned in two different registers. Generate {lowTy, HiTy} for |
| 691 | // the LLVM IR result type. |
| 692 | CodeGenSpecifics::Marshalling marshal; |
| 693 | mlir::Type lowType = pickLLVMArgType(loc, context, Lo, 8u); |
| 694 | mlir::Type hiType = pickLLVMArgType(loc, context, Hi, byteOffset - 8u); |
| 695 | marshal.emplace_back(mlir::TupleType::get(context, {lowType, hiType}), |
| 696 | AT{}); |
| 697 | return marshal; |
| 698 | } |
| 699 | |
| 700 | /// Marshal an argument that must be passed on the stack. |
| 701 | CodeGenSpecifics::Marshalling |
| 702 | passOnTheStack(mlir::Location loc, mlir::Type ty, bool isResult) const { |
| 703 | CodeGenSpecifics::Marshalling marshal; |
| 704 | auto sizeAndAlign = |
| 705 | fir::getTypeSizeAndAlignmentOrCrash(loc, ty, getDataLayout(), kindMap); |
| 706 | // The stack is always 8 byte aligned (note 14 in 3.2.3). |
| 707 | unsigned short align = |
| 708 | std::max(sizeAndAlign.second, static_cast<unsigned short>(8)); |
| 709 | marshal.emplace_back(fir::ReferenceType::get(ty), |
| 710 | AT{align, /*byval=*/!isResult, /*sret=*/isResult}); |
| 711 | return marshal; |
| 712 | } |
| 713 | }; |
| 714 | } // namespace |
| 715 | |
| 716 | //===----------------------------------------------------------------------===// |
| 717 | // x86_64 (x86 64 bit) Windows target specifics. |
| 718 | //===----------------------------------------------------------------------===// |
| 719 | |
| 720 | namespace { |
| 721 | struct TargetX86_64Win : public GenericTarget<TargetX86_64Win> { |
| 722 | using GenericTarget::GenericTarget; |
| 723 | |
| 724 | static constexpr int defaultWidth = 64; |
| 725 | |
| 726 | CodeGenSpecifics::Marshalling |
| 727 | complexArgumentType(mlir::Location loc, mlir::Type eleTy) const override { |
| 728 | CodeGenSpecifics::Marshalling marshal; |
| 729 | const auto *sem = &floatToSemantics(kindMap, eleTy); |
| 730 | if (sem == &llvm::APFloat::IEEEsingle()) { |
| 731 | // i64 pack both floats in a 64-bit GPR |
| 732 | marshal.emplace_back(mlir::IntegerType::get(eleTy.getContext(), 64), |
| 733 | AT{}); |
| 734 | } else if (sem == &llvm::APFloat::IEEEdouble()) { |
| 735 | // Use a type that will be translated into LLVM as: |
| 736 | // { double, double } struct of 2 double, byval, align 8 |
| 737 | marshal.emplace_back( |
| 738 | fir::ReferenceType::get(mlir::TupleType::get( |
| 739 | eleTy.getContext(), mlir::TypeRange{eleTy, eleTy})), |
| 740 | AT{/*align=*/8, /*byval=*/true}); |
| 741 | } else if (sem == &llvm::APFloat::IEEEquad() || |
| 742 | sem == &llvm::APFloat::x87DoubleExtended()) { |
| 743 | // Use a type that will be translated into LLVM as: |
| 744 | // { t, t } struct of 2 eleTy, byval, align 16 |
| 745 | marshal.emplace_back( |
| 746 | fir::ReferenceType::get(mlir::TupleType::get( |
| 747 | eleTy.getContext(), mlir::TypeRange{eleTy, eleTy})), |
| 748 | AT{/*align=*/16, /*byval=*/true}); |
| 749 | } else { |
| 750 | typeTodo(sem, loc, "argument" ); |
| 751 | } |
| 752 | return marshal; |
| 753 | } |
| 754 | |
| 755 | CodeGenSpecifics::Marshalling |
| 756 | complexReturnType(mlir::Location loc, mlir::Type eleTy) const override { |
| 757 | CodeGenSpecifics::Marshalling marshal; |
| 758 | const auto *sem = &floatToSemantics(kindMap, eleTy); |
| 759 | if (sem == &llvm::APFloat::IEEEsingle()) { |
| 760 | // i64 pack both floats in a 64-bit GPR |
| 761 | marshal.emplace_back(mlir::IntegerType::get(eleTy.getContext(), 64), |
| 762 | AT{}); |
| 763 | } else if (sem == &llvm::APFloat::IEEEdouble()) { |
| 764 | // Use a type that will be translated into LLVM as: |
| 765 | // { double, double } struct of 2 double, sret, align 8 |
| 766 | marshal.emplace_back( |
| 767 | fir::ReferenceType::get(mlir::TupleType::get( |
| 768 | eleTy.getContext(), mlir::TypeRange{eleTy, eleTy})), |
| 769 | AT{/*align=*/8, /*byval=*/false, /*sret=*/true}); |
| 770 | } else if (sem == &llvm::APFloat::IEEEquad() || |
| 771 | sem == &llvm::APFloat::x87DoubleExtended()) { |
| 772 | // Use a type that will be translated into LLVM as: |
| 773 | // { t, t } struct of 2 eleTy, sret, align 16 |
| 774 | marshal.emplace_back( |
| 775 | fir::ReferenceType::get(mlir::TupleType::get( |
| 776 | eleTy.getContext(), mlir::TypeRange{eleTy, eleTy})), |
| 777 | AT{/*align=*/16, /*byval=*/false, /*sret=*/true}); |
| 778 | } else { |
| 779 | typeTodo(sem, loc, "return" ); |
| 780 | } |
| 781 | return marshal; |
| 782 | } |
| 783 | }; |
| 784 | } // namespace |
| 785 | |
| 786 | //===----------------------------------------------------------------------===// |
| 787 | // AArch64 target specifics. |
| 788 | //===----------------------------------------------------------------------===// |
| 789 | |
| 790 | namespace { |
| 791 | // AArch64 procedure call standard: |
| 792 | // https://github.com/ARM-software/abi-aa/blob/main/aapcs64/aapcs64.rst#parameter-passing |
| 793 | struct TargetAArch64 : public GenericTarget<TargetAArch64> { |
| 794 | using GenericTarget::GenericTarget; |
| 795 | |
| 796 | static constexpr int defaultWidth = 64; |
| 797 | |
| 798 | CodeGenSpecifics::Marshalling |
| 799 | complexArgumentType(mlir::Location loc, mlir::Type eleTy) const override { |
| 800 | CodeGenSpecifics::Marshalling marshal; |
| 801 | const auto *sem = &floatToSemantics(kindMap, eleTy); |
| 802 | if (sem == &llvm::APFloat::IEEEsingle() || |
| 803 | sem == &llvm::APFloat::IEEEdouble() || |
| 804 | sem == &llvm::APFloat::IEEEquad()) { |
| 805 | // [2 x t] array of 2 eleTy |
| 806 | marshal.emplace_back(fir::SequenceType::get({2}, eleTy), AT{}); |
| 807 | } else { |
| 808 | typeTodo(sem, loc, "argument" ); |
| 809 | } |
| 810 | return marshal; |
| 811 | } |
| 812 | |
| 813 | CodeGenSpecifics::Marshalling |
| 814 | integerArgumentType(mlir::Location loc, |
| 815 | mlir::IntegerType argTy) const override { |
| 816 | if (argTy.getWidth() < getCIntTypeWidth() && argTy.isSignless()) { |
| 817 | AT::IntegerExtension intExt; |
| 818 | if (argTy.getWidth() == 1) { |
| 819 | // Zero extend for 'i1'. |
| 820 | intExt = AT::IntegerExtension::Zero; |
| 821 | } else { |
| 822 | if (triple.isOSDarwin()) { |
| 823 | // On Darwin, sign extend. The apple developer guide specifies this as |
| 824 | // a divergence from the AArch64PCS: |
| 825 | // https://developer.apple.com/documentation/xcode/writing-arm64-code-for-apple-platforms#Pass-arguments-to-functions-correctly |
| 826 | intExt = AT::IntegerExtension::Sign; |
| 827 | } else { |
| 828 | // On linux, pass directly and do not extend. |
| 829 | intExt = AT::IntegerExtension::None; |
| 830 | } |
| 831 | } |
| 832 | CodeGenSpecifics::Marshalling marshal; |
| 833 | marshal.emplace_back(argTy, AT{/*alignment=*/0, /*byval=*/false, |
| 834 | /*sret=*/false, /*append=*/false, |
| 835 | /*intExt=*/intExt}); |
| 836 | return marshal; |
| 837 | } |
| 838 | return GenericTarget::integerArgumentType(loc, argTy); |
| 839 | } |
| 840 | |
| 841 | CodeGenSpecifics::Marshalling |
| 842 | complexReturnType(mlir::Location loc, mlir::Type eleTy) const override { |
| 843 | CodeGenSpecifics::Marshalling marshal; |
| 844 | const auto *sem = &floatToSemantics(kindMap, eleTy); |
| 845 | if (sem == &llvm::APFloat::IEEEsingle() || |
| 846 | sem == &llvm::APFloat::IEEEdouble() || |
| 847 | sem == &llvm::APFloat::IEEEquad()) { |
| 848 | // Use a type that will be translated into LLVM as: |
| 849 | // { t, t } struct of 2 eleTy |
| 850 | marshal.emplace_back(mlir::TupleType::get(eleTy.getContext(), |
| 851 | mlir::TypeRange{eleTy, eleTy}), |
| 852 | AT{}); |
| 853 | } else { |
| 854 | typeTodo(sem, loc, "return" ); |
| 855 | } |
| 856 | return marshal; |
| 857 | } |
| 858 | |
| 859 | // Flatten a RecordType::TypeList containing more record types or array type |
| 860 | static std::optional<std::vector<mlir::Type>> |
| 861 | flattenTypeList(const RecordType::TypeList &types) { |
| 862 | std::vector<mlir::Type> flatTypes; |
| 863 | // The flat list will be at least the same size as the non-flat list. |
| 864 | flatTypes.reserve(types.size()); |
| 865 | for (auto [c, type] : types) { |
| 866 | // Flatten record type |
| 867 | if (auto recTy = mlir::dyn_cast<RecordType>(type)) { |
| 868 | auto subTypeList = flattenTypeList(recTy.getTypeList()); |
| 869 | if (!subTypeList) |
| 870 | return std::nullopt; |
| 871 | llvm::copy(*subTypeList, std::back_inserter(flatTypes)); |
| 872 | continue; |
| 873 | } |
| 874 | |
| 875 | // Flatten array type |
| 876 | if (auto seqTy = mlir::dyn_cast<SequenceType>(type)) { |
| 877 | if (seqTy.hasDynamicExtents()) |
| 878 | return std::nullopt; |
| 879 | std::size_t n = seqTy.getConstantArraySize(); |
| 880 | auto eleTy = seqTy.getElementType(); |
| 881 | // Flatten array of record types |
| 882 | if (auto recTy = mlir::dyn_cast<RecordType>(eleTy)) { |
| 883 | auto subTypeList = flattenTypeList(recTy.getTypeList()); |
| 884 | if (!subTypeList) |
| 885 | return std::nullopt; |
| 886 | for (std::size_t i = 0; i < n; ++i) |
| 887 | llvm::copy(*subTypeList, std::back_inserter(flatTypes)); |
| 888 | } else { |
| 889 | std::fill_n(std::back_inserter(flatTypes), |
| 890 | seqTy.getConstantArraySize(), eleTy); |
| 891 | } |
| 892 | continue; |
| 893 | } |
| 894 | |
| 895 | // Other types are already flat |
| 896 | flatTypes.push_back(type); |
| 897 | } |
| 898 | return flatTypes; |
| 899 | } |
| 900 | |
| 901 | // Determine if the type is a Homogenous Floating-point Aggregate (HFA). An |
| 902 | // HFA is a record type with up to 4 floating-point members of the same type. |
| 903 | static std::optional<int> usedRegsForHFA(fir::RecordType ty) { |
| 904 | RecordType::TypeList types = ty.getTypeList(); |
| 905 | if (types.empty() || types.size() > 4) |
| 906 | return std::nullopt; |
| 907 | |
| 908 | std::optional<std::vector<mlir::Type>> flatTypes = flattenTypeList(types); |
| 909 | if (!flatTypes || flatTypes->size() > 4) { |
| 910 | return std::nullopt; |
| 911 | } |
| 912 | |
| 913 | if (!isa_real(flatTypes->front())) { |
| 914 | return std::nullopt; |
| 915 | } |
| 916 | |
| 917 | return llvm::all_equal(*flatTypes) ? std::optional<int>{flatTypes->size()} |
| 918 | : std::nullopt; |
| 919 | } |
| 920 | |
| 921 | struct NRegs { |
| 922 | int n{0}; |
| 923 | bool isSimd{false}; |
| 924 | }; |
| 925 | |
| 926 | NRegs usedRegsForRecordType(mlir::Location loc, fir::RecordType type) const { |
| 927 | if (std::optional<int> size = usedRegsForHFA(type)) |
| 928 | return {.n: *size, .isSimd: true}; |
| 929 | |
| 930 | auto [size, align] = fir::getTypeSizeAndAlignmentOrCrash( |
| 931 | loc, type, getDataLayout(), kindMap); |
| 932 | |
| 933 | if (size <= 16) |
| 934 | return {static_cast<int>((size + 7) / 8), false}; |
| 935 | |
| 936 | // Pass on the stack, i.e. no registers used |
| 937 | return {}; |
| 938 | } |
| 939 | |
| 940 | NRegs usedRegsForType(mlir::Location loc, mlir::Type type) const { |
| 941 | return llvm::TypeSwitch<mlir::Type, NRegs>(type) |
| 942 | .Case<mlir::IntegerType>([&](auto intTy) { |
| 943 | return intTy.getWidth() == 128 ? NRegs{2, false} : NRegs{1, false}; |
| 944 | }) |
| 945 | .Case<mlir::FloatType>([&](auto) { return NRegs{1, true}; }) |
| 946 | .Case<mlir::ComplexType>([&](auto) { return NRegs{2, true}; }) |
| 947 | .Case<fir::LogicalType>([&](auto) { return NRegs{1, false}; }) |
| 948 | .Case<fir::CharacterType>([&](auto) { return NRegs{1, false}; }) |
| 949 | .Case<fir::SequenceType>([&](auto ty) { |
| 950 | assert(ty.getShape().size() == 1 && |
| 951 | "invalid array dimensions in BIND(C)" ); |
| 952 | NRegs nregs = usedRegsForType(loc, ty.getEleTy()); |
| 953 | nregs.n *= ty.getShape()[0]; |
| 954 | return nregs; |
| 955 | }) |
| 956 | .Case<fir::RecordType>( |
| 957 | [&](auto ty) { return usedRegsForRecordType(loc, ty); }) |
| 958 | .Case<fir::VectorType>([&](auto) { |
| 959 | TODO(loc, "passing vector argument to C by value is not supported" ); |
| 960 | return NRegs{}; |
| 961 | }) |
| 962 | .Default([&](auto ty) { |
| 963 | if (fir::conformsWithPassByRef(ty)) |
| 964 | return NRegs{1, false}; // Pointers take 1 integer register |
| 965 | TODO(loc, "unsupported component type for BIND(C), VALUE derived " |
| 966 | "type argument" ); |
| 967 | return NRegs{}; |
| 968 | }); |
| 969 | } |
| 970 | |
| 971 | bool hasEnoughRegisters(mlir::Location loc, fir::RecordType type, |
| 972 | const Marshalling &previousArguments) const { |
| 973 | int availIntRegisters = 8; |
| 974 | int availSIMDRegisters = 8; |
| 975 | |
| 976 | // Check previous arguments to see how many registers are used already |
| 977 | for (auto [type, attr] : previousArguments) { |
| 978 | if (availIntRegisters <= 0 || availSIMDRegisters <= 0) |
| 979 | break; |
| 980 | |
| 981 | if (attr.isByVal()) |
| 982 | continue; // Previous argument passed on the stack |
| 983 | |
| 984 | NRegs nregs = usedRegsForType(loc, type); |
| 985 | if (nregs.isSimd) |
| 986 | availSIMDRegisters -= nregs.n; |
| 987 | else |
| 988 | availIntRegisters -= nregs.n; |
| 989 | } |
| 990 | |
| 991 | NRegs nregs = usedRegsForRecordType(loc, type); |
| 992 | |
| 993 | if (nregs.isSimd) |
| 994 | return nregs.n <= availSIMDRegisters; |
| 995 | |
| 996 | return nregs.n <= availIntRegisters; |
| 997 | } |
| 998 | |
| 999 | CodeGenSpecifics::Marshalling |
| 1000 | passOnTheStack(mlir::Location loc, mlir::Type ty, bool isResult) const { |
| 1001 | CodeGenSpecifics::Marshalling marshal; |
| 1002 | auto sizeAndAlign = |
| 1003 | fir::getTypeSizeAndAlignmentOrCrash(loc, ty, getDataLayout(), kindMap); |
| 1004 | // The stack is always 8 byte aligned |
| 1005 | unsigned short align = |
| 1006 | std::max(sizeAndAlign.second, static_cast<unsigned short>(8)); |
| 1007 | marshal.emplace_back(fir::ReferenceType::get(ty), |
| 1008 | AT{align, /*byval=*/!isResult, /*sret=*/isResult}); |
| 1009 | return marshal; |
| 1010 | } |
| 1011 | |
| 1012 | CodeGenSpecifics::Marshalling |
| 1013 | structType(mlir::Location loc, fir::RecordType type, bool isResult) const { |
| 1014 | NRegs nregs = usedRegsForRecordType(loc, type); |
| 1015 | |
| 1016 | // If the type needs no registers it must need to be passed on the stack |
| 1017 | if (nregs.n == 0) |
| 1018 | return passOnTheStack(loc, type, isResult); |
| 1019 | |
| 1020 | CodeGenSpecifics::Marshalling marshal; |
| 1021 | |
| 1022 | mlir::Type pcsType; |
| 1023 | if (nregs.isSimd) { |
| 1024 | pcsType = type; |
| 1025 | } else { |
| 1026 | pcsType = fir::SequenceType::get( |
| 1027 | nregs.n, mlir::IntegerType::get(type.getContext(), 64)); |
| 1028 | } |
| 1029 | |
| 1030 | marshal.emplace_back(pcsType, AT{}); |
| 1031 | return marshal; |
| 1032 | } |
| 1033 | |
| 1034 | CodeGenSpecifics::Marshalling |
| 1035 | structArgumentType(mlir::Location loc, fir::RecordType ty, |
| 1036 | const Marshalling &previousArguments) const override { |
| 1037 | if (!hasEnoughRegisters(loc, ty, previousArguments)) { |
| 1038 | return passOnTheStack(loc, ty, /*isResult=*/false); |
| 1039 | } |
| 1040 | |
| 1041 | return structType(loc, ty, /*isResult=*/false); |
| 1042 | } |
| 1043 | |
| 1044 | CodeGenSpecifics::Marshalling |
| 1045 | structReturnType(mlir::Location loc, fir::RecordType ty) const override { |
| 1046 | return structType(loc, ty, /*isResult=*/true); |
| 1047 | } |
| 1048 | }; |
| 1049 | } // namespace |
| 1050 | |
| 1051 | //===----------------------------------------------------------------------===// |
| 1052 | // PPC (AIX 32 bit) target specifics. |
| 1053 | //===----------------------------------------------------------------------===// |
| 1054 | namespace { |
| 1055 | struct TargetPPC : public GenericTarget<TargetPPC> { |
| 1056 | using GenericTarget::GenericTarget; |
| 1057 | |
| 1058 | static constexpr int defaultWidth = 32; |
| 1059 | |
| 1060 | CodeGenSpecifics::Marshalling |
| 1061 | complexArgumentType(mlir::Location, mlir::Type eleTy) const override { |
| 1062 | CodeGenSpecifics::Marshalling marshal; |
| 1063 | // two distinct element type arguments (re, im) |
| 1064 | marshal.emplace_back(eleTy, AT{}); |
| 1065 | marshal.emplace_back(eleTy, AT{}); |
| 1066 | return marshal; |
| 1067 | } |
| 1068 | |
| 1069 | CodeGenSpecifics::Marshalling |
| 1070 | complexReturnType(mlir::Location, mlir::Type eleTy) const override { |
| 1071 | CodeGenSpecifics::Marshalling marshal; |
| 1072 | // Use a type that will be translated into LLVM as: |
| 1073 | // { t, t } struct of 2 element type |
| 1074 | marshal.emplace_back( |
| 1075 | mlir::TupleType::get(eleTy.getContext(), mlir::TypeRange{eleTy, eleTy}), |
| 1076 | AT{}); |
| 1077 | return marshal; |
| 1078 | } |
| 1079 | }; |
| 1080 | } // namespace |
| 1081 | |
| 1082 | //===----------------------------------------------------------------------===// |
| 1083 | // PPC64 (AIX 64 bit) target specifics. |
| 1084 | //===----------------------------------------------------------------------===// |
| 1085 | |
| 1086 | namespace { |
| 1087 | struct TargetPPC64 : public GenericTarget<TargetPPC64> { |
| 1088 | using GenericTarget::GenericTarget; |
| 1089 | |
| 1090 | static constexpr int defaultWidth = 64; |
| 1091 | |
| 1092 | CodeGenSpecifics::Marshalling |
| 1093 | complexArgumentType(mlir::Location, mlir::Type eleTy) const override { |
| 1094 | CodeGenSpecifics::Marshalling marshal; |
| 1095 | // two distinct element type arguments (re, im) |
| 1096 | marshal.emplace_back(eleTy, AT{}); |
| 1097 | marshal.emplace_back(eleTy, AT{}); |
| 1098 | return marshal; |
| 1099 | } |
| 1100 | |
| 1101 | CodeGenSpecifics::Marshalling |
| 1102 | complexReturnType(mlir::Location, mlir::Type eleTy) const override { |
| 1103 | CodeGenSpecifics::Marshalling marshal; |
| 1104 | // Use a type that will be translated into LLVM as: |
| 1105 | // { t, t } struct of 2 element type |
| 1106 | marshal.emplace_back( |
| 1107 | mlir::TupleType::get(eleTy.getContext(), mlir::TypeRange{eleTy, eleTy}), |
| 1108 | AT{}); |
| 1109 | return marshal; |
| 1110 | } |
| 1111 | |
| 1112 | CodeGenSpecifics::Marshalling |
| 1113 | structType(mlir::Location loc, fir::RecordType ty, bool isResult) const { |
| 1114 | CodeGenSpecifics::Marshalling marshal; |
| 1115 | auto sizeAndAlign{ |
| 1116 | fir::getTypeSizeAndAlignmentOrCrash(loc, ty, getDataLayout(), kindMap)}; |
| 1117 | unsigned short align{ |
| 1118 | std::max(sizeAndAlign.second, static_cast<unsigned short>(8))}; |
| 1119 | marshal.emplace_back(fir::ReferenceType::get(ty), |
| 1120 | AT{align, /*byval*/ !isResult, /*sret*/ isResult}); |
| 1121 | return marshal; |
| 1122 | } |
| 1123 | |
| 1124 | CodeGenSpecifics::Marshalling |
| 1125 | structArgumentType(mlir::Location loc, fir::RecordType ty, |
| 1126 | const Marshalling &previousArguments) const override { |
| 1127 | return structType(loc, ty, false); |
| 1128 | } |
| 1129 | |
| 1130 | CodeGenSpecifics::Marshalling |
| 1131 | structReturnType(mlir::Location loc, fir::RecordType ty) const override { |
| 1132 | return structType(loc, ty, true); |
| 1133 | } |
| 1134 | }; |
| 1135 | } // namespace |
| 1136 | |
| 1137 | //===----------------------------------------------------------------------===// |
| 1138 | // PPC64le linux target specifics. |
| 1139 | //===----------------------------------------------------------------------===// |
| 1140 | |
| 1141 | namespace { |
| 1142 | struct TargetPPC64le : public GenericTarget<TargetPPC64le> { |
| 1143 | using GenericTarget::GenericTarget; |
| 1144 | |
| 1145 | static constexpr int defaultWidth{64}; |
| 1146 | |
| 1147 | CodeGenSpecifics::Marshalling |
| 1148 | complexArgumentType(mlir::Location, mlir::Type eleTy) const override { |
| 1149 | CodeGenSpecifics::Marshalling marshal; |
| 1150 | // two distinct element type arguments (re, im) |
| 1151 | marshal.emplace_back(eleTy, AT{}); |
| 1152 | marshal.emplace_back(eleTy, AT{}); |
| 1153 | return marshal; |
| 1154 | } |
| 1155 | |
| 1156 | CodeGenSpecifics::Marshalling |
| 1157 | complexReturnType(mlir::Location, mlir::Type eleTy) const override { |
| 1158 | CodeGenSpecifics::Marshalling marshal; |
| 1159 | // Use a type that will be translated into LLVM as: |
| 1160 | // { t, t } struct of 2 element type |
| 1161 | marshal.emplace_back( |
| 1162 | mlir::TupleType::get(eleTy.getContext(), mlir::TypeRange{eleTy, eleTy}), |
| 1163 | AT{}); |
| 1164 | return marshal; |
| 1165 | } |
| 1166 | |
| 1167 | unsigned getElemWidth(mlir::Type ty) const { |
| 1168 | unsigned width{}; |
| 1169 | llvm::TypeSwitch<mlir::Type>(ty) |
| 1170 | .template Case<mlir::ComplexType>([&](mlir::ComplexType cmplx) { |
| 1171 | auto elemType{ |
| 1172 | mlir::dyn_cast<mlir::FloatType>(cmplx.getElementType())}; |
| 1173 | width = elemType.getWidth(); |
| 1174 | }) |
| 1175 | .template Case<mlir::FloatType>( |
| 1176 | [&](mlir::FloatType real) { width = real.getWidth(); }); |
| 1177 | return width; |
| 1178 | } |
| 1179 | |
| 1180 | // Determine if all derived types components are of the same float type with |
| 1181 | // the same width. Complex(4) is considered 2 floats and complex(8) 2 doubles. |
| 1182 | bool hasSameFloatAndWidth( |
| 1183 | fir::RecordType recTy, |
| 1184 | std::pair<mlir::Type, unsigned> &firstTypeAndWidth) const { |
| 1185 | for (auto comp : recTy.getTypeList()) { |
| 1186 | mlir::Type compType{comp.second}; |
| 1187 | if (mlir::isa<fir::RecordType>(compType)) { |
| 1188 | auto rc{hasSameFloatAndWidth(mlir::cast<fir::RecordType>(compType), |
| 1189 | firstTypeAndWidth)}; |
| 1190 | if (!rc) |
| 1191 | return false; |
| 1192 | } else { |
| 1193 | mlir::Type ty; |
| 1194 | bool isFloatType{false}; |
| 1195 | if (mlir::isa<mlir::FloatType, mlir::ComplexType>(compType)) { |
| 1196 | ty = compType; |
| 1197 | isFloatType = true; |
| 1198 | } else if (auto seqTy = mlir::dyn_cast<fir::SequenceType>(compType)) { |
| 1199 | ty = seqTy.getEleTy(); |
| 1200 | isFloatType = mlir::isa<mlir::FloatType, mlir::ComplexType>(ty); |
| 1201 | } |
| 1202 | |
| 1203 | if (!isFloatType) { |
| 1204 | return false; |
| 1205 | } |
| 1206 | auto width{getElemWidth(ty)}; |
| 1207 | if (firstTypeAndWidth.first == nullptr) { |
| 1208 | firstTypeAndWidth.first = ty; |
| 1209 | firstTypeAndWidth.second = width; |
| 1210 | } else if (width != firstTypeAndWidth.second) { |
| 1211 | return false; |
| 1212 | } |
| 1213 | } |
| 1214 | } |
| 1215 | return true; |
| 1216 | } |
| 1217 | |
| 1218 | CodeGenSpecifics::Marshalling |
| 1219 | passOnTheStack(mlir::Location loc, mlir::Type ty, bool isResult) const { |
| 1220 | CodeGenSpecifics::Marshalling marshal; |
| 1221 | auto sizeAndAlign{ |
| 1222 | fir::getTypeSizeAndAlignmentOrCrash(loc, ty, getDataLayout(), kindMap)}; |
| 1223 | unsigned short align{ |
| 1224 | std::max(sizeAndAlign.second, static_cast<unsigned short>(8))}; |
| 1225 | marshal.emplace_back(fir::ReferenceType::get(ty), |
| 1226 | AT{align, /*byval=*/!isResult, /*sret=*/isResult}); |
| 1227 | return marshal; |
| 1228 | } |
| 1229 | |
| 1230 | CodeGenSpecifics::Marshalling |
| 1231 | structType(mlir::Location loc, fir::RecordType recTy, bool isResult) const { |
| 1232 | CodeGenSpecifics::Marshalling marshal; |
| 1233 | auto sizeAndAlign{fir::getTypeSizeAndAlignmentOrCrash( |
| 1234 | loc, recTy, getDataLayout(), kindMap)}; |
| 1235 | auto recordTypeSize{sizeAndAlign.first}; |
| 1236 | mlir::Type seqTy; |
| 1237 | std::pair<mlir::Type, unsigned> firstTyAndWidth{nullptr, 0}; |
| 1238 | |
| 1239 | // If there are less than or equal to 8 floats, the structure is flatten as |
| 1240 | // an array of floats. |
| 1241 | constexpr uint64_t maxNoOfFloats{8}; |
| 1242 | |
| 1243 | // i64 type |
| 1244 | mlir::Type elemTy{mlir::IntegerType::get(recTy.getContext(), defaultWidth)}; |
| 1245 | uint64_t nElem{static_cast<uint64_t>( |
| 1246 | std::ceil(static_cast<float>(recordTypeSize * 8) / defaultWidth))}; |
| 1247 | |
| 1248 | // If the derived type components contains are all floats with the same |
| 1249 | // width, the argument is passed as an array of floats. |
| 1250 | if (hasSameFloatAndWidth(recTy, firstTyAndWidth)) { |
| 1251 | uint64_t n{}; |
| 1252 | auto firstType{firstTyAndWidth.first}; |
| 1253 | |
| 1254 | // Type is either float or complex |
| 1255 | if (auto cmplx = mlir::dyn_cast<mlir::ComplexType>(firstType)) { |
| 1256 | auto fltType{mlir::dyn_cast<mlir::FloatType>(cmplx.getElementType())}; |
| 1257 | n = static_cast<uint64_t>(8 * recordTypeSize / fltType.getWidth()); |
| 1258 | if (n <= maxNoOfFloats) { |
| 1259 | nElem = n; |
| 1260 | elemTy = fltType; |
| 1261 | } |
| 1262 | } else if (mlir::isa<mlir::FloatType>(firstType)) { |
| 1263 | auto elemSizeAndAlign{fir::getTypeSizeAndAlignmentOrCrash( |
| 1264 | loc, firstType, getDataLayout(), kindMap)}; |
| 1265 | n = static_cast<uint64_t>(recordTypeSize / elemSizeAndAlign.first); |
| 1266 | if (n <= maxNoOfFloats) { |
| 1267 | nElem = n; |
| 1268 | elemTy = firstType; |
| 1269 | } |
| 1270 | } |
| 1271 | // Neither float nor complex |
| 1272 | assert(n > 0 && "unexpected type" ); |
| 1273 | } |
| 1274 | |
| 1275 | // For function returns, only flattened if there are less than 8 |
| 1276 | // floats in total. |
| 1277 | if (isResult && |
| 1278 | ((mlir::isa<mlir::FloatType>(elemTy) && nElem > maxNoOfFloats) || |
| 1279 | !mlir::isa<mlir::FloatType>(elemTy))) { |
| 1280 | return passOnTheStack(loc, recTy, isResult); |
| 1281 | } |
| 1282 | |
| 1283 | seqTy = fir::SequenceType::get(nElem, elemTy); |
| 1284 | marshal.emplace_back(seqTy, AT{}); |
| 1285 | return marshal; |
| 1286 | } |
| 1287 | |
| 1288 | CodeGenSpecifics::Marshalling |
| 1289 | structArgumentType(mlir::Location loc, fir::RecordType recType, |
| 1290 | const Marshalling &previousArguments) const override { |
| 1291 | auto sizeAndAlign{fir::getTypeSizeAndAlignmentOrCrash( |
| 1292 | loc, recType, getDataLayout(), kindMap)}; |
| 1293 | if (sizeAndAlign.first > 64) { |
| 1294 | return passOnTheStack(loc, recType, false); |
| 1295 | } |
| 1296 | return structType(loc, recType, false); |
| 1297 | } |
| 1298 | |
| 1299 | CodeGenSpecifics::Marshalling |
| 1300 | structReturnType(mlir::Location loc, fir::RecordType recType) const override { |
| 1301 | return structType(loc, recType, true); |
| 1302 | } |
| 1303 | }; |
| 1304 | } // namespace |
| 1305 | |
| 1306 | //===----------------------------------------------------------------------===// |
| 1307 | // sparc (sparc 32 bit) target specifics. |
| 1308 | //===----------------------------------------------------------------------===// |
| 1309 | |
| 1310 | namespace { |
| 1311 | struct TargetSparc : public GenericTarget<TargetSparc> { |
| 1312 | using GenericTarget::GenericTarget; |
| 1313 | |
| 1314 | static constexpr int defaultWidth = 32; |
| 1315 | |
| 1316 | CodeGenSpecifics::Marshalling |
| 1317 | complexArgumentType(mlir::Location, mlir::Type eleTy) const override { |
| 1318 | assert(fir::isa_real(eleTy)); |
| 1319 | CodeGenSpecifics::Marshalling marshal; |
| 1320 | // Use a type that will be translated into LLVM as: |
| 1321 | // { t, t } struct of 2 eleTy |
| 1322 | auto structTy = |
| 1323 | mlir::TupleType::get(eleTy.getContext(), mlir::TypeRange{eleTy, eleTy}); |
| 1324 | marshal.emplace_back(fir::ReferenceType::get(structTy), AT{}); |
| 1325 | return marshal; |
| 1326 | } |
| 1327 | |
| 1328 | CodeGenSpecifics::Marshalling |
| 1329 | complexReturnType(mlir::Location loc, mlir::Type eleTy) const override { |
| 1330 | assert(fir::isa_real(eleTy)); |
| 1331 | CodeGenSpecifics::Marshalling marshal; |
| 1332 | // Use a type that will be translated into LLVM as: |
| 1333 | // { t, t } struct of 2 eleTy, byval |
| 1334 | auto structTy = |
| 1335 | mlir::TupleType::get(eleTy.getContext(), mlir::TypeRange{eleTy, eleTy}); |
| 1336 | marshal.emplace_back(fir::ReferenceType::get(structTy), |
| 1337 | AT{/*alignment=*/0, /*byval=*/true}); |
| 1338 | return marshal; |
| 1339 | } |
| 1340 | }; |
| 1341 | } // namespace |
| 1342 | |
| 1343 | //===----------------------------------------------------------------------===// |
| 1344 | // sparcv9 (sparc 64 bit) target specifics. |
| 1345 | //===----------------------------------------------------------------------===// |
| 1346 | |
| 1347 | namespace { |
| 1348 | struct TargetSparcV9 : public GenericTarget<TargetSparcV9> { |
| 1349 | using GenericTarget::GenericTarget; |
| 1350 | |
| 1351 | static constexpr int defaultWidth = 64; |
| 1352 | |
| 1353 | CodeGenSpecifics::Marshalling |
| 1354 | complexArgumentType(mlir::Location loc, mlir::Type eleTy) const override { |
| 1355 | CodeGenSpecifics::Marshalling marshal; |
| 1356 | const auto *sem = &floatToSemantics(kindMap, eleTy); |
| 1357 | if (sem == &llvm::APFloat::IEEEsingle() || |
| 1358 | sem == &llvm::APFloat::IEEEdouble()) { |
| 1359 | // two distinct float, double arguments |
| 1360 | marshal.emplace_back(eleTy, AT{}); |
| 1361 | marshal.emplace_back(eleTy, AT{}); |
| 1362 | } else if (sem == &llvm::APFloat::IEEEquad()) { |
| 1363 | // Use a type that will be translated into LLVM as: |
| 1364 | // { fp128, fp128 } struct of 2 fp128, byval, align 16 |
| 1365 | marshal.emplace_back( |
| 1366 | fir::ReferenceType::get(mlir::TupleType::get( |
| 1367 | eleTy.getContext(), mlir::TypeRange{eleTy, eleTy})), |
| 1368 | AT{/*align=*/16, /*byval=*/true}); |
| 1369 | } else { |
| 1370 | typeTodo(sem, loc, "argument" ); |
| 1371 | } |
| 1372 | return marshal; |
| 1373 | } |
| 1374 | |
| 1375 | CodeGenSpecifics::Marshalling |
| 1376 | complexReturnType(mlir::Location loc, mlir::Type eleTy) const override { |
| 1377 | CodeGenSpecifics::Marshalling marshal; |
| 1378 | // Use a type that will be translated into LLVM as: |
| 1379 | // { eleTy, eleTy } struct of 2 eleTy |
| 1380 | marshal.emplace_back( |
| 1381 | mlir::TupleType::get(eleTy.getContext(), mlir::TypeRange{eleTy, eleTy}), |
| 1382 | AT{}); |
| 1383 | return marshal; |
| 1384 | } |
| 1385 | }; |
| 1386 | } // namespace |
| 1387 | |
| 1388 | //===----------------------------------------------------------------------===// |
| 1389 | // RISCV64 linux target specifics. |
| 1390 | //===----------------------------------------------------------------------===// |
| 1391 | |
| 1392 | namespace { |
| 1393 | struct TargetRISCV64 : public GenericTarget<TargetRISCV64> { |
| 1394 | using GenericTarget::GenericTarget; |
| 1395 | |
| 1396 | static constexpr int defaultWidth = 64; |
| 1397 | |
| 1398 | CodeGenSpecifics::Marshalling |
| 1399 | complexArgumentType(mlir::Location loc, mlir::Type eleTy) const override { |
| 1400 | CodeGenSpecifics::Marshalling marshal; |
| 1401 | const auto *sem = &floatToSemantics(kindMap, eleTy); |
| 1402 | if (sem == &llvm::APFloat::IEEEsingle() || |
| 1403 | sem == &llvm::APFloat::IEEEdouble()) { |
| 1404 | // Two distinct element type arguments (re, im) |
| 1405 | marshal.emplace_back(eleTy, AT{}); |
| 1406 | marshal.emplace_back(eleTy, AT{}); |
| 1407 | } else { |
| 1408 | typeTodo(sem, loc, "argument" ); |
| 1409 | } |
| 1410 | return marshal; |
| 1411 | } |
| 1412 | |
| 1413 | CodeGenSpecifics::Marshalling |
| 1414 | complexReturnType(mlir::Location loc, mlir::Type eleTy) const override { |
| 1415 | CodeGenSpecifics::Marshalling marshal; |
| 1416 | const auto *sem = &floatToSemantics(kindMap, eleTy); |
| 1417 | if (sem == &llvm::APFloat::IEEEsingle() || |
| 1418 | sem == &llvm::APFloat::IEEEdouble()) { |
| 1419 | // Use a type that will be translated into LLVM as: |
| 1420 | // { t, t } struct of 2 eleTy, byVal |
| 1421 | marshal.emplace_back(mlir::TupleType::get(eleTy.getContext(), |
| 1422 | mlir::TypeRange{eleTy, eleTy}), |
| 1423 | AT{/*alignment=*/0, /*byval=*/true}); |
| 1424 | } else { |
| 1425 | typeTodo(sem, loc, "return" ); |
| 1426 | } |
| 1427 | return marshal; |
| 1428 | } |
| 1429 | }; |
| 1430 | } // namespace |
| 1431 | |
| 1432 | //===----------------------------------------------------------------------===// |
| 1433 | // AMDGPU linux target specifics. |
| 1434 | //===----------------------------------------------------------------------===// |
| 1435 | |
| 1436 | namespace { |
| 1437 | struct TargetAMDGPU : public GenericTarget<TargetAMDGPU> { |
| 1438 | using GenericTarget::GenericTarget; |
| 1439 | |
| 1440 | // Default size (in bits) of the index type for strings. |
| 1441 | static constexpr int defaultWidth = 64; |
| 1442 | |
| 1443 | CodeGenSpecifics::Marshalling |
| 1444 | complexArgumentType(mlir::Location loc, mlir::Type eleTy) const override { |
| 1445 | CodeGenSpecifics::Marshalling marshal; |
| 1446 | TODO(loc, "handle complex argument types" ); |
| 1447 | return marshal; |
| 1448 | } |
| 1449 | |
| 1450 | CodeGenSpecifics::Marshalling |
| 1451 | complexReturnType(mlir::Location loc, mlir::Type eleTy) const override { |
| 1452 | CodeGenSpecifics::Marshalling marshal; |
| 1453 | TODO(loc, "handle complex return types" ); |
| 1454 | return marshal; |
| 1455 | } |
| 1456 | }; |
| 1457 | } // namespace |
| 1458 | |
| 1459 | //===----------------------------------------------------------------------===// |
| 1460 | // NVPTX linux target specifics. |
| 1461 | //===----------------------------------------------------------------------===// |
| 1462 | |
| 1463 | namespace { |
| 1464 | struct TargetNVPTX : public GenericTarget<TargetNVPTX> { |
| 1465 | using GenericTarget::GenericTarget; |
| 1466 | |
| 1467 | // Default size (in bits) of the index type for strings. |
| 1468 | static constexpr int defaultWidth = 64; |
| 1469 | |
| 1470 | CodeGenSpecifics::Marshalling |
| 1471 | complexArgumentType(mlir::Location loc, mlir::Type eleTy) const override { |
| 1472 | CodeGenSpecifics::Marshalling marshal; |
| 1473 | TODO(loc, "handle complex argument types" ); |
| 1474 | return marshal; |
| 1475 | } |
| 1476 | |
| 1477 | CodeGenSpecifics::Marshalling |
| 1478 | complexReturnType(mlir::Location loc, mlir::Type eleTy) const override { |
| 1479 | CodeGenSpecifics::Marshalling marshal; |
| 1480 | TODO(loc, "handle complex return types" ); |
| 1481 | return marshal; |
| 1482 | } |
| 1483 | }; |
| 1484 | } // namespace |
| 1485 | |
| 1486 | //===----------------------------------------------------------------------===// |
| 1487 | // LoongArch64 linux target specifics. |
| 1488 | //===----------------------------------------------------------------------===// |
| 1489 | |
| 1490 | namespace { |
| 1491 | struct TargetLoongArch64 : public GenericTarget<TargetLoongArch64> { |
| 1492 | using GenericTarget::GenericTarget; |
| 1493 | |
| 1494 | static constexpr int defaultWidth = 64; |
| 1495 | static constexpr int GRLen = defaultWidth; /* eight bytes */ |
| 1496 | static constexpr int GRLenInChar = GRLen / 8; |
| 1497 | static constexpr int FRLen = defaultWidth; /* eight bytes */ |
| 1498 | |
| 1499 | CodeGenSpecifics::Marshalling |
| 1500 | complexArgumentType(mlir::Location loc, mlir::Type eleTy) const override { |
| 1501 | CodeGenSpecifics::Marshalling marshal; |
| 1502 | const auto *sem = &floatToSemantics(kindMap, eleTy); |
| 1503 | if (sem == &llvm::APFloat::IEEEsingle() || |
| 1504 | sem == &llvm::APFloat::IEEEdouble()) { |
| 1505 | // Two distinct element type arguments (re, im) |
| 1506 | marshal.emplace_back(eleTy, AT{}); |
| 1507 | marshal.emplace_back(eleTy, AT{}); |
| 1508 | } else if (sem == &llvm::APFloat::IEEEquad()) { |
| 1509 | // Use a type that will be translated into LLVM as: |
| 1510 | // { fp128, fp128 } struct of 2 fp128, byval |
| 1511 | marshal.emplace_back( |
| 1512 | fir::ReferenceType::get(mlir::TupleType::get( |
| 1513 | eleTy.getContext(), mlir::TypeRange{eleTy, eleTy})), |
| 1514 | AT{/*align=*/16, /*byval=*/true}); |
| 1515 | } else { |
| 1516 | typeTodo(sem, loc, "argument" ); |
| 1517 | } |
| 1518 | return marshal; |
| 1519 | } |
| 1520 | |
| 1521 | CodeGenSpecifics::Marshalling |
| 1522 | complexReturnType(mlir::Location loc, mlir::Type eleTy) const override { |
| 1523 | CodeGenSpecifics::Marshalling marshal; |
| 1524 | const auto *sem = &floatToSemantics(kindMap, eleTy); |
| 1525 | if (sem == &llvm::APFloat::IEEEsingle() || |
| 1526 | sem == &llvm::APFloat::IEEEdouble()) { |
| 1527 | // Use a type that will be translated into LLVM as: |
| 1528 | // { t, t } struct of 2 eleTy, byVal |
| 1529 | marshal.emplace_back(mlir::TupleType::get(eleTy.getContext(), |
| 1530 | mlir::TypeRange{eleTy, eleTy}), |
| 1531 | AT{/*alignment=*/0, /*byval=*/true}); |
| 1532 | } else if (sem == &llvm::APFloat::IEEEquad()) { |
| 1533 | // Use a type that will be translated into LLVM as: |
| 1534 | // { fp128, fp128 } struct of 2 fp128, sret, align 16 |
| 1535 | marshal.emplace_back( |
| 1536 | fir::ReferenceType::get(mlir::TupleType::get( |
| 1537 | eleTy.getContext(), mlir::TypeRange{eleTy, eleTy})), |
| 1538 | AT{/*align=*/16, /*byval=*/false, /*sret=*/true}); |
| 1539 | } else { |
| 1540 | typeTodo(sem, loc, "return" ); |
| 1541 | } |
| 1542 | return marshal; |
| 1543 | } |
| 1544 | |
| 1545 | CodeGenSpecifics::Marshalling |
| 1546 | integerArgumentType(mlir::Location loc, |
| 1547 | mlir::IntegerType argTy) const override { |
| 1548 | if (argTy.getWidth() == 32) { |
| 1549 | // LA64 LP64D ABI requires unsigned 32 bit integers to be sign extended. |
| 1550 | // Therefore, Flang also follows it if a function needs to be |
| 1551 | // interoperable with C. |
| 1552 | // |
| 1553 | // Currently, it only adds `signext` attribute to the dummy arguments and |
| 1554 | // return values in the function signatures, but it does not add the |
| 1555 | // corresponding attribute to the actual arguments and return values in |
| 1556 | // `fir.call` instruction. Thanks to LLVM's integration of all these |
| 1557 | // attributes, the modification is still effective. |
| 1558 | CodeGenSpecifics::Marshalling marshal; |
| 1559 | AT::IntegerExtension intExt = AT::IntegerExtension::Sign; |
| 1560 | marshal.emplace_back(argTy, AT{/*alignment=*/0, /*byval=*/false, |
| 1561 | /*sret=*/false, /*append=*/false, |
| 1562 | /*intExt=*/intExt}); |
| 1563 | return marshal; |
| 1564 | } |
| 1565 | |
| 1566 | return GenericTarget::integerArgumentType(loc, argTy); |
| 1567 | } |
| 1568 | |
| 1569 | /// Flatten non-basic types, resulting in an array of types containing only |
| 1570 | /// `IntegerType` and `FloatType`. |
| 1571 | llvm::SmallVector<mlir::Type> flattenTypeList(mlir::Location loc, |
| 1572 | const mlir::Type type) const { |
| 1573 | llvm::SmallVector<mlir::Type> flatTypes; |
| 1574 | |
| 1575 | llvm::TypeSwitch<mlir::Type>(type) |
| 1576 | .template Case<mlir::IntegerType>([&](mlir::IntegerType intTy) { |
| 1577 | if (intTy.getWidth() != 0) |
| 1578 | flatTypes.push_back(intTy); |
| 1579 | }) |
| 1580 | .template Case<mlir::FloatType>([&](mlir::FloatType floatTy) { |
| 1581 | if (floatTy.getWidth() != 0) |
| 1582 | flatTypes.push_back(floatTy); |
| 1583 | }) |
| 1584 | .template Case<mlir::ComplexType>([&](mlir::ComplexType cmplx) { |
| 1585 | const auto *sem = &floatToSemantics(kindMap, cmplx.getElementType()); |
| 1586 | if (sem == &llvm::APFloat::IEEEsingle() || |
| 1587 | sem == &llvm::APFloat::IEEEdouble() || |
| 1588 | sem == &llvm::APFloat::IEEEquad()) |
| 1589 | std::fill_n(std::back_inserter(flatTypes), 2, |
| 1590 | cmplx.getElementType()); |
| 1591 | else |
| 1592 | TODO(loc, "unsupported complex type(not IEEEsingle, IEEEdouble, " |
| 1593 | "IEEEquad) as a structure component for BIND(C), " |
| 1594 | "VALUE derived type argument and type return" ); |
| 1595 | }) |
| 1596 | .template Case<fir::LogicalType>([&](fir::LogicalType logicalTy) { |
| 1597 | const unsigned width = |
| 1598 | kindMap.getLogicalBitsize(logicalTy.getFKind()); |
| 1599 | if (width != 0) |
| 1600 | flatTypes.push_back( |
| 1601 | mlir::IntegerType::get(type.getContext(), width)); |
| 1602 | }) |
| 1603 | .template Case<fir::CharacterType>([&](fir::CharacterType charTy) { |
| 1604 | assert(kindMap.getCharacterBitsize(charTy.getFKind()) <= 8 && |
| 1605 | "the bit size of characterType as an interoperable type must " |
| 1606 | "not exceed 8" ); |
| 1607 | for (unsigned i = 0; i < charTy.getLen(); ++i) |
| 1608 | flatTypes.push_back(mlir::IntegerType::get(type.getContext(), 8)); |
| 1609 | }) |
| 1610 | .template Case<fir::SequenceType>([&](fir::SequenceType seqTy) { |
| 1611 | if (!seqTy.hasDynamicExtents()) { |
| 1612 | const std::uint64_t numOfEle = seqTy.getConstantArraySize(); |
| 1613 | mlir::Type eleTy = seqTy.getEleTy(); |
| 1614 | if (!mlir::isa<mlir::IntegerType, mlir::FloatType>(eleTy)) { |
| 1615 | llvm::SmallVector<mlir::Type> subTypeList = |
| 1616 | flattenTypeList(loc, eleTy); |
| 1617 | if (subTypeList.size() != 0) |
| 1618 | for (std::uint64_t i = 0; i < numOfEle; ++i) |
| 1619 | llvm::copy(subTypeList, std::back_inserter(flatTypes)); |
| 1620 | } else { |
| 1621 | std::fill_n(std::back_inserter(flatTypes), numOfEle, eleTy); |
| 1622 | } |
| 1623 | } else |
| 1624 | TODO(loc, "unsupported dynamic extent sequence type as a structure " |
| 1625 | "component for BIND(C), " |
| 1626 | "VALUE derived type argument and type return" ); |
| 1627 | }) |
| 1628 | .template Case<fir::RecordType>([&](fir::RecordType recTy) { |
| 1629 | for (auto &component : recTy.getTypeList()) { |
| 1630 | mlir::Type eleTy = component.second; |
| 1631 | llvm::SmallVector<mlir::Type> subTypeList = |
| 1632 | flattenTypeList(loc, eleTy); |
| 1633 | if (subTypeList.size() != 0) |
| 1634 | llvm::copy(subTypeList, std::back_inserter(flatTypes)); |
| 1635 | } |
| 1636 | }) |
| 1637 | .template Case<fir::VectorType>([&](fir::VectorType vecTy) { |
| 1638 | auto sizeAndAlign = fir::getTypeSizeAndAlignmentOrCrash( |
| 1639 | loc, vecTy, getDataLayout(), kindMap); |
| 1640 | if (sizeAndAlign.first == 2 * GRLenInChar) |
| 1641 | flatTypes.push_back( |
| 1642 | mlir::IntegerType::get(type.getContext(), 2 * GRLen)); |
| 1643 | else |
| 1644 | TODO(loc, "unsupported vector width(must be 128 bits)" ); |
| 1645 | }) |
| 1646 | .Default([&](mlir::Type ty) { |
| 1647 | if (fir::conformsWithPassByRef(ty)) |
| 1648 | flatTypes.push_back( |
| 1649 | mlir::IntegerType::get(type.getContext(), GRLen)); |
| 1650 | else |
| 1651 | TODO(loc, "unsupported component type for BIND(C), VALUE derived " |
| 1652 | "type argument and type return" ); |
| 1653 | }); |
| 1654 | |
| 1655 | return flatTypes; |
| 1656 | } |
| 1657 | |
| 1658 | /// Determine if a struct is eligible to be passed in FARs (and GARs) (i.e., |
| 1659 | /// when flattened it contains a single fp value, fp+fp, or int+fp of |
| 1660 | /// appropriate size). |
| 1661 | bool detectFARsEligibleStruct(mlir::Location loc, fir::RecordType recTy, |
| 1662 | mlir::Type &field1Ty, |
| 1663 | mlir::Type &field2Ty) const { |
| 1664 | field1Ty = field2Ty = nullptr; |
| 1665 | llvm::SmallVector<mlir::Type> flatTypes = flattenTypeList(loc, recTy); |
| 1666 | size_t flatSize = flatTypes.size(); |
| 1667 | |
| 1668 | // Cannot be eligible if the number of flattened types is equal to 0 or |
| 1669 | // greater than 2. |
| 1670 | if (flatSize == 0 || flatSize > 2) |
| 1671 | return false; |
| 1672 | |
| 1673 | bool isFirstAvaliableFloat = false; |
| 1674 | |
| 1675 | assert((mlir::isa<mlir::IntegerType, mlir::FloatType>(flatTypes[0])) && |
| 1676 | "Type must be integerType or floatType after flattening" ); |
| 1677 | if (auto floatTy = mlir::dyn_cast<mlir::FloatType>(flatTypes[0])) { |
| 1678 | const unsigned Size = floatTy.getWidth(); |
| 1679 | // Can't be eligible if larger than the FP registers. Half precision isn't |
| 1680 | // currently supported on LoongArch and the ABI hasn't been confirmed, so |
| 1681 | // default to the integer ABI in that case. |
| 1682 | if (Size > FRLen || Size < 32) |
| 1683 | return false; |
| 1684 | isFirstAvaliableFloat = true; |
| 1685 | field1Ty = floatTy; |
| 1686 | } else if (auto intTy = mlir::dyn_cast<mlir::IntegerType>(flatTypes[0])) { |
| 1687 | if (intTy.getWidth() > GRLen) |
| 1688 | return false; |
| 1689 | field1Ty = intTy; |
| 1690 | } |
| 1691 | |
| 1692 | // flatTypes has two elements |
| 1693 | if (flatSize == 2) { |
| 1694 | assert((mlir::isa<mlir::IntegerType, mlir::FloatType>(flatTypes[1])) && |
| 1695 | "Type must be integerType or floatType after flattening" ); |
| 1696 | if (auto floatTy = mlir::dyn_cast<mlir::FloatType>(flatTypes[1])) { |
| 1697 | const unsigned Size = floatTy.getWidth(); |
| 1698 | if (Size > FRLen || Size < 32) |
| 1699 | return false; |
| 1700 | field2Ty = floatTy; |
| 1701 | return true; |
| 1702 | } else if (auto intTy = mlir::dyn_cast<mlir::IntegerType>(flatTypes[1])) { |
| 1703 | // Can't be eligible if an integer type was already found (int+int pairs |
| 1704 | // are not eligible). |
| 1705 | if (!isFirstAvaliableFloat) |
| 1706 | return false; |
| 1707 | if (intTy.getWidth() > GRLen) |
| 1708 | return false; |
| 1709 | field2Ty = intTy; |
| 1710 | return true; |
| 1711 | } |
| 1712 | } |
| 1713 | |
| 1714 | // return isFirstAvaliableFloat if flatTypes only has one element |
| 1715 | return isFirstAvaliableFloat; |
| 1716 | } |
| 1717 | |
| 1718 | bool checkTypeHasEnoughRegs(mlir::Location loc, int &GARsLeft, int &FARsLeft, |
| 1719 | const mlir::Type type) const { |
| 1720 | if (!type) |
| 1721 | return true; |
| 1722 | |
| 1723 | llvm::TypeSwitch<mlir::Type>(type) |
| 1724 | .template Case<mlir::IntegerType>([&](mlir::IntegerType intTy) { |
| 1725 | const unsigned width = intTy.getWidth(); |
| 1726 | if (width > 128) |
| 1727 | TODO(loc, |
| 1728 | "integerType with width exceeding 128 bits is unsupported" ); |
| 1729 | if (width == 0) |
| 1730 | return; |
| 1731 | if (width <= GRLen) |
| 1732 | --GARsLeft; |
| 1733 | else if (width <= 2 * GRLen) |
| 1734 | GARsLeft = GARsLeft - 2; |
| 1735 | }) |
| 1736 | .template Case<mlir::FloatType>([&](mlir::FloatType floatTy) { |
| 1737 | const unsigned width = floatTy.getWidth(); |
| 1738 | if (width > 128) |
| 1739 | TODO(loc, "floatType with width exceeding 128 bits is unsupported" ); |
| 1740 | if (width == 0) |
| 1741 | return; |
| 1742 | if (width == 32 || width == 64) |
| 1743 | --FARsLeft; |
| 1744 | else if (width <= GRLen) |
| 1745 | --GARsLeft; |
| 1746 | else if (width <= 2 * GRLen) |
| 1747 | GARsLeft = GARsLeft - 2; |
| 1748 | }) |
| 1749 | .Default([&](mlir::Type ty) { |
| 1750 | if (fir::conformsWithPassByRef(ty)) |
| 1751 | --GARsLeft; // Pointers. |
| 1752 | else |
| 1753 | TODO(loc, "unsupported component type for BIND(C), VALUE derived " |
| 1754 | "type argument and type return" ); |
| 1755 | }); |
| 1756 | |
| 1757 | return GARsLeft >= 0 && FARsLeft >= 0; |
| 1758 | } |
| 1759 | |
| 1760 | bool hasEnoughRegisters(mlir::Location loc, int GARsLeft, int FARsLeft, |
| 1761 | const Marshalling &previousArguments, |
| 1762 | const mlir::Type &field1Ty, |
| 1763 | const mlir::Type &field2Ty) const { |
| 1764 | for (auto &typeAndAttr : previousArguments) { |
| 1765 | const auto &attr = std::get<Attributes>(typeAndAttr); |
| 1766 | if (attr.isByVal()) { |
| 1767 | // Previous argument passed on the stack, and its address is passed in |
| 1768 | // GAR. |
| 1769 | --GARsLeft; |
| 1770 | continue; |
| 1771 | } |
| 1772 | |
| 1773 | // Previous aggregate arguments were marshalled into simpler arguments. |
| 1774 | const auto &type = std::get<mlir::Type>(typeAndAttr); |
| 1775 | llvm::SmallVector<mlir::Type> flatTypes = flattenTypeList(loc, type); |
| 1776 | |
| 1777 | for (auto &flatTy : flatTypes) { |
| 1778 | if (!checkTypeHasEnoughRegs(loc, GARsLeft, FARsLeft, flatTy)) |
| 1779 | return false; |
| 1780 | } |
| 1781 | } |
| 1782 | |
| 1783 | if (!checkTypeHasEnoughRegs(loc, GARsLeft, FARsLeft, field1Ty)) |
| 1784 | return false; |
| 1785 | if (!checkTypeHasEnoughRegs(loc, GARsLeft, FARsLeft, field2Ty)) |
| 1786 | return false; |
| 1787 | return true; |
| 1788 | } |
| 1789 | |
| 1790 | /// LoongArch64 subroutine calling sequence ABI in: |
| 1791 | /// https://github.com/loongson/la-abi-specs/blob/release/lapcs.adoc#subroutine-calling-sequence |
| 1792 | CodeGenSpecifics::Marshalling |
| 1793 | classifyStruct(mlir::Location loc, fir::RecordType recTy, int GARsLeft, |
| 1794 | int FARsLeft, bool isResult, |
| 1795 | const Marshalling &previousArguments) const { |
| 1796 | CodeGenSpecifics::Marshalling marshal; |
| 1797 | |
| 1798 | auto [recSize, recAlign] = fir::getTypeSizeAndAlignmentOrCrash( |
| 1799 | loc, recTy, getDataLayout(), kindMap); |
| 1800 | mlir::MLIRContext *context = recTy.getContext(); |
| 1801 | |
| 1802 | if (recSize == 0) { |
| 1803 | TODO(loc, "unsupported empty struct type for BIND(C), " |
| 1804 | "VALUE derived type argument and type return" ); |
| 1805 | } |
| 1806 | |
| 1807 | if (recSize > 2 * GRLenInChar) { |
| 1808 | marshal.emplace_back( |
| 1809 | fir::ReferenceType::get(recTy), |
| 1810 | AT{recAlign, /*byval=*/!isResult, /*sret=*/isResult}); |
| 1811 | return marshal; |
| 1812 | } |
| 1813 | |
| 1814 | // Pass by FARs(and GARs) |
| 1815 | mlir::Type field1Ty = nullptr, field2Ty = nullptr; |
| 1816 | if (detectFARsEligibleStruct(loc, recTy, field1Ty, field2Ty) && |
| 1817 | hasEnoughRegisters(loc, GARsLeft, FARsLeft, previousArguments, field1Ty, |
| 1818 | field2Ty)) { |
| 1819 | if (!isResult) { |
| 1820 | if (field1Ty) |
| 1821 | marshal.emplace_back(field1Ty, AT{}); |
| 1822 | if (field2Ty) |
| 1823 | marshal.emplace_back(field2Ty, AT{}); |
| 1824 | } else { |
| 1825 | // field1Ty is always preferred over field2Ty for assignment, so there |
| 1826 | // will never be a case where field1Ty == nullptr and field2Ty != |
| 1827 | // nullptr. |
| 1828 | if (field1Ty && !field2Ty) |
| 1829 | marshal.emplace_back(field1Ty, AT{}); |
| 1830 | else if (field1Ty && field2Ty) |
| 1831 | marshal.emplace_back( |
| 1832 | mlir::TupleType::get(context, |
| 1833 | mlir::TypeRange{field1Ty, field2Ty}), |
| 1834 | AT{/*alignment=*/0, /*byval=*/true}); |
| 1835 | } |
| 1836 | return marshal; |
| 1837 | } |
| 1838 | |
| 1839 | if (recSize <= GRLenInChar) { |
| 1840 | marshal.emplace_back(mlir::IntegerType::get(context, GRLen), AT{}); |
| 1841 | return marshal; |
| 1842 | } |
| 1843 | |
| 1844 | if (recAlign == 2 * GRLenInChar) { |
| 1845 | marshal.emplace_back(mlir::IntegerType::get(context, 2 * GRLen), AT{}); |
| 1846 | return marshal; |
| 1847 | } |
| 1848 | |
| 1849 | // recSize > GRLenInChar && recSize <= 2 * GRLenInChar |
| 1850 | marshal.emplace_back( |
| 1851 | fir::SequenceType::get({2}, mlir::IntegerType::get(context, GRLen)), |
| 1852 | AT{}); |
| 1853 | return marshal; |
| 1854 | } |
| 1855 | |
| 1856 | /// Marshal a derived type passed by value like a C struct. |
| 1857 | CodeGenSpecifics::Marshalling |
| 1858 | structArgumentType(mlir::Location loc, fir::RecordType recTy, |
| 1859 | const Marshalling &previousArguments) const override { |
| 1860 | int GARsLeft = 8; |
| 1861 | int FARsLeft = FRLen ? 8 : 0; |
| 1862 | |
| 1863 | return classifyStruct(loc, recTy, GARsLeft, FARsLeft, /*isResult=*/false, |
| 1864 | previousArguments); |
| 1865 | } |
| 1866 | |
| 1867 | CodeGenSpecifics::Marshalling |
| 1868 | structReturnType(mlir::Location loc, fir::RecordType recTy) const override { |
| 1869 | // The rules for return and argument types are the same. |
| 1870 | int GARsLeft = 2; |
| 1871 | int FARsLeft = FRLen ? 2 : 0; |
| 1872 | return classifyStruct(loc, recTy, GARsLeft, FARsLeft, /*isResult=*/true, |
| 1873 | {}); |
| 1874 | } |
| 1875 | }; |
| 1876 | } // namespace |
| 1877 | |
| 1878 | // Instantiate the overloaded target instance based on the triple value. |
| 1879 | // TODO: Add other targets to this file as needed. |
| 1880 | std::unique_ptr<fir::CodeGenSpecifics> |
| 1881 | fir::CodeGenSpecifics::get(mlir::MLIRContext *ctx, llvm::Triple &&trp, |
| 1882 | KindMapping &&kindMap, llvm::StringRef targetCPU, |
| 1883 | mlir::LLVM::TargetFeaturesAttr targetFeatures, |
| 1884 | const mlir::DataLayout &dl) { |
| 1885 | switch (trp.getArch()) { |
| 1886 | default: |
| 1887 | break; |
| 1888 | case llvm::Triple::ArchType::x86: |
| 1889 | if (trp.isOSWindows()) |
| 1890 | return std::make_unique<TargetI386Win>(ctx, std::move(trp), |
| 1891 | std::move(kindMap), targetCPU, |
| 1892 | targetFeatures, dl); |
| 1893 | else |
| 1894 | return std::make_unique<TargetI386>(ctx, std::move(trp), |
| 1895 | std::move(kindMap), targetCPU, |
| 1896 | targetFeatures, dl); |
| 1897 | case llvm::Triple::ArchType::x86_64: |
| 1898 | if (trp.isOSWindows()) |
| 1899 | return std::make_unique<TargetX86_64Win>(ctx, std::move(trp), |
| 1900 | std::move(kindMap), targetCPU, |
| 1901 | targetFeatures, dl); |
| 1902 | else |
| 1903 | return std::make_unique<TargetX86_64>(ctx, std::move(trp), |
| 1904 | std::move(kindMap), targetCPU, |
| 1905 | targetFeatures, dl); |
| 1906 | case llvm::Triple::ArchType::aarch64: |
| 1907 | return std::make_unique<TargetAArch64>( |
| 1908 | ctx, std::move(trp), std::move(kindMap), targetCPU, targetFeatures, dl); |
| 1909 | case llvm::Triple::ArchType::ppc: |
| 1910 | return std::make_unique<TargetPPC>(ctx, std::move(trp), std::move(kindMap), |
| 1911 | targetCPU, targetFeatures, dl); |
| 1912 | case llvm::Triple::ArchType::ppc64: |
| 1913 | return std::make_unique<TargetPPC64>( |
| 1914 | ctx, std::move(trp), std::move(kindMap), targetCPU, targetFeatures, dl); |
| 1915 | case llvm::Triple::ArchType::ppc64le: |
| 1916 | return std::make_unique<TargetPPC64le>( |
| 1917 | ctx, std::move(trp), std::move(kindMap), targetCPU, targetFeatures, dl); |
| 1918 | case llvm::Triple::ArchType::sparc: |
| 1919 | return std::make_unique<TargetSparc>( |
| 1920 | ctx, std::move(trp), std::move(kindMap), targetCPU, targetFeatures, dl); |
| 1921 | case llvm::Triple::ArchType::sparcv9: |
| 1922 | return std::make_unique<TargetSparcV9>( |
| 1923 | ctx, std::move(trp), std::move(kindMap), targetCPU, targetFeatures, dl); |
| 1924 | case llvm::Triple::ArchType::riscv64: |
| 1925 | return std::make_unique<TargetRISCV64>( |
| 1926 | ctx, std::move(trp), std::move(kindMap), targetCPU, targetFeatures, dl); |
| 1927 | case llvm::Triple::ArchType::amdgcn: |
| 1928 | return std::make_unique<TargetAMDGPU>( |
| 1929 | ctx, std::move(trp), std::move(kindMap), targetCPU, targetFeatures, dl); |
| 1930 | case llvm::Triple::ArchType::nvptx64: |
| 1931 | return std::make_unique<TargetNVPTX>( |
| 1932 | ctx, std::move(trp), std::move(kindMap), targetCPU, targetFeatures, dl); |
| 1933 | case llvm::Triple::ArchType::loongarch64: |
| 1934 | return std::make_unique<TargetLoongArch64>( |
| 1935 | ctx, std::move(trp), std::move(kindMap), targetCPU, targetFeatures, dl); |
| 1936 | } |
| 1937 | TODO(mlir::UnknownLoc::get(ctx), "target not implemented" ); |
| 1938 | } |
| 1939 | |
| 1940 | std::unique_ptr<fir::CodeGenSpecifics> fir::CodeGenSpecifics::get( |
| 1941 | mlir::MLIRContext *ctx, llvm::Triple &&trp, KindMapping &&kindMap, |
| 1942 | llvm::StringRef targetCPU, mlir::LLVM::TargetFeaturesAttr targetFeatures, |
| 1943 | const mlir::DataLayout &dl, llvm::StringRef tuneCPU) { |
| 1944 | std::unique_ptr<fir::CodeGenSpecifics> CGS = fir::CodeGenSpecifics::get( |
| 1945 | ctx, std::move(trp), std::move(kindMap), targetCPU, targetFeatures, dl); |
| 1946 | |
| 1947 | CGS->tuneCPU = tuneCPU; |
| 1948 | return CGS; |
| 1949 | } |
| 1950 | |