| 1 | //===-- TargetRewrite.cpp -------------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // Target rewrite: rewriting of ops to make target-specific lowerings manifest. |
| 10 | // LLVM expects different lowering idioms to be used for distinct target |
| 11 | // triples. These distinctions are handled by this pass. |
| 12 | // |
| 13 | // Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/ |
| 14 | // |
| 15 | //===----------------------------------------------------------------------===// |
| 16 | |
| 17 | #include "flang/Optimizer/CodeGen/CodeGen.h" |
| 18 | |
| 19 | #include "flang/Optimizer/Builder/Character.h" |
| 20 | #include "flang/Optimizer/Builder/FIRBuilder.h" |
| 21 | #include "flang/Optimizer/Builder/Todo.h" |
| 22 | #include "flang/Optimizer/CodeGen/Target.h" |
| 23 | #include "flang/Optimizer/Dialect/FIRDialect.h" |
| 24 | #include "flang/Optimizer/Dialect/FIROps.h" |
| 25 | #include "flang/Optimizer/Dialect/FIROpsSupport.h" |
| 26 | #include "flang/Optimizer/Dialect/FIRType.h" |
| 27 | #include "flang/Optimizer/Dialect/Support/FIRContext.h" |
| 28 | #include "flang/Optimizer/Support/DataLayout.h" |
| 29 | #include "mlir/Dialect/DLTI/DLTI.h" |
| 30 | #include "mlir/Dialect/GPU/IR/GPUDialect.h" |
| 31 | #include "mlir/Dialect/LLVMIR/LLVMDialect.h" |
| 32 | #include "mlir/Transforms/DialectConversion.h" |
| 33 | #include "llvm/ADT/STLExtras.h" |
| 34 | #include "llvm/ADT/TypeSwitch.h" |
| 35 | #include "llvm/Support/Debug.h" |
| 36 | #include <optional> |
| 37 | |
| 38 | namespace fir { |
| 39 | #define GEN_PASS_DEF_TARGETREWRITEPASS |
| 40 | #include "flang/Optimizer/CodeGen/CGPasses.h.inc" |
| 41 | } // namespace fir |
| 42 | |
| 43 | #define DEBUG_TYPE "flang-target-rewrite" |
| 44 | |
| 45 | namespace { |
| 46 | |
| 47 | /// Fixups for updating a FuncOp's arguments and return values. |
| 48 | struct FixupTy { |
| 49 | enum class Codes { |
| 50 | ArgumentAsLoad, |
| 51 | ArgumentType, |
| 52 | CharPair, |
| 53 | ReturnAsStore, |
| 54 | ReturnType, |
| 55 | Split, |
| 56 | Trailing, |
| 57 | TrailingCharProc |
| 58 | }; |
| 59 | |
| 60 | FixupTy(Codes code, std::size_t index, std::size_t second = 0) |
| 61 | : code{code}, index{index}, second{second} {} |
| 62 | FixupTy(Codes code, std::size_t index, |
| 63 | std::function<void(mlir::func::FuncOp)> &&finalizer) |
| 64 | : code{code}, index{index}, finalizer{finalizer} {} |
| 65 | FixupTy(Codes code, std::size_t index, |
| 66 | std::function<void(mlir::gpu::GPUFuncOp)> &&finalizer) |
| 67 | : code{code}, index{index}, gpuFinalizer{finalizer} {} |
| 68 | FixupTy(Codes code, std::size_t index, std::size_t second, |
| 69 | std::function<void(mlir::func::FuncOp)> &&finalizer) |
| 70 | : code{code}, index{index}, second{second}, finalizer{finalizer} {} |
| 71 | FixupTy(Codes code, std::size_t index, std::size_t second, |
| 72 | std::function<void(mlir::gpu::GPUFuncOp)> &&finalizer) |
| 73 | : code{code}, index{index}, second{second}, gpuFinalizer{finalizer} {} |
| 74 | |
| 75 | Codes code; |
| 76 | std::size_t index; |
| 77 | std::size_t second{}; |
| 78 | std::optional<std::function<void(mlir::func::FuncOp)>> finalizer{}; |
| 79 | std::optional<std::function<void(mlir::gpu::GPUFuncOp)>> gpuFinalizer{}; |
| 80 | }; // namespace |
| 81 | |
| 82 | /// Target-specific rewriting of the FIR. This is a prerequisite pass to code |
| 83 | /// generation that traverses the FIR and modifies types and operations to a |
| 84 | /// form that is appropriate for the specific target. LLVM IR has specific |
| 85 | /// idioms that are used for distinct target processor and ABI combinations. |
| 86 | class TargetRewrite : public fir::impl::TargetRewritePassBase<TargetRewrite> { |
| 87 | public: |
| 88 | using TargetRewritePassBase<TargetRewrite>::TargetRewritePassBase; |
| 89 | |
| 90 | void runOnOperation() override final { |
| 91 | auto &context = getContext(); |
| 92 | mlir::OpBuilder rewriter(&context); |
| 93 | |
| 94 | auto mod = getModule(); |
| 95 | if (!forcedTargetTriple.empty()) |
| 96 | fir::setTargetTriple(mod, forcedTargetTriple); |
| 97 | |
| 98 | if (!forcedTargetCPU.empty()) |
| 99 | fir::setTargetCPU(mod, forcedTargetCPU); |
| 100 | |
| 101 | if (!forcedTuneCPU.empty()) |
| 102 | fir::setTuneCPU(mod, forcedTuneCPU); |
| 103 | |
| 104 | if (!forcedTargetFeatures.empty()) |
| 105 | fir::setTargetFeatures(mod, forcedTargetFeatures); |
| 106 | |
| 107 | // TargetRewrite will require querying the type storage sizes, if it was |
| 108 | // not set already, create a DataLayoutSpec for the ModuleOp now. |
| 109 | std::optional<mlir::DataLayout> dl = |
| 110 | fir::support::getOrSetMLIRDataLayout(mod, /*allowDefaultLayout=*/true); |
| 111 | if (!dl) { |
| 112 | mlir::emitError(mod.getLoc(), |
| 113 | "module operation must carry a data layout attribute " |
| 114 | "to perform target ABI rewrites on FIR" ); |
| 115 | signalPassFailure(); |
| 116 | return; |
| 117 | } |
| 118 | |
| 119 | auto specifics = fir::CodeGenSpecifics::get( |
| 120 | mod.getContext(), fir::getTargetTriple(mod), fir::getKindMapping(mod), |
| 121 | fir::getTargetCPU(mod), fir::getTargetFeatures(mod), *dl, |
| 122 | fir::getTuneCPU(mod)); |
| 123 | |
| 124 | setMembers(specifics.get(), &rewriter, &*dl); |
| 125 | |
| 126 | // Perform type conversion on signatures and call sites. |
| 127 | if (mlir::failed(convertTypes(mod))) { |
| 128 | mlir::emitError(mlir::UnknownLoc::get(&context), |
| 129 | "error in converting types to target abi" ); |
| 130 | signalPassFailure(); |
| 131 | } |
| 132 | |
| 133 | // Convert ops in target-specific patterns. |
| 134 | mod.walk([&](mlir::Operation *op) { |
| 135 | if (auto call = mlir::dyn_cast<fir::CallOp>(op)) { |
| 136 | if (!hasPortableSignature(call.getFunctionType(), op)) |
| 137 | convertCallOp(call, call.getFunctionType()); |
| 138 | } else if (auto dispatch = mlir::dyn_cast<fir::DispatchOp>(op)) { |
| 139 | if (!hasPortableSignature(dispatch.getFunctionType(), op)) |
| 140 | convertCallOp(dispatch, dispatch.getFunctionType()); |
| 141 | } else if (auto gpuLaunchFunc = |
| 142 | mlir::dyn_cast<mlir::gpu::LaunchFuncOp>(op)) { |
| 143 | llvm::SmallVector<mlir::Type> operandsTypes; |
| 144 | for (auto arg : gpuLaunchFunc.getKernelOperands()) |
| 145 | operandsTypes.push_back(arg.getType()); |
| 146 | auto fctTy = mlir::FunctionType::get(&context, operandsTypes, {}); |
| 147 | if (!hasPortableSignature(fctTy, op)) |
| 148 | convertCallOp(gpuLaunchFunc, fctTy); |
| 149 | } else if (auto addr = mlir::dyn_cast<fir::AddrOfOp>(op)) { |
| 150 | if (mlir::isa<mlir::FunctionType>(addr.getType()) && |
| 151 | !hasPortableSignature(addr.getType(), op)) |
| 152 | convertAddrOp(addr); |
| 153 | } |
| 154 | }); |
| 155 | |
| 156 | clearMembers(); |
| 157 | } |
| 158 | |
| 159 | mlir::ModuleOp getModule() { return getOperation(); } |
| 160 | |
| 161 | template <typename Ty, typename Callback> |
| 162 | std::optional<std::function<mlir::Value(mlir::Operation *)>> |
| 163 | rewriteCallResultType(mlir::Location loc, mlir::Type originalResTy, |
| 164 | Ty &newResTys, |
| 165 | fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs, |
| 166 | Callback &newOpers, mlir::Value &savedStackPtr, |
| 167 | fir::CodeGenSpecifics::Marshalling &m) { |
| 168 | // Currently, targets mandate COMPLEX or STRUCT is a single aggregate or |
| 169 | // packed scalar, including the sret case. |
| 170 | assert(m.size() == 1 && "return type not supported on this target" ); |
| 171 | auto resTy = std::get<mlir::Type>(m[0]); |
| 172 | auto attr = std::get<fir::CodeGenSpecifics::Attributes>(m[0]); |
| 173 | if (attr.isSRet()) { |
| 174 | assert(fir::isa_ref_type(resTy) && "must be a memory reference type" ); |
| 175 | // Save the stack pointer, if it has not been saved for this call yet. |
| 176 | // We will need to restore it after the call, because the alloca |
| 177 | // needs to be deallocated. |
| 178 | if (!savedStackPtr) |
| 179 | savedStackPtr = genStackSave(loc); |
| 180 | mlir::Value stack = |
| 181 | rewriter->create<fir::AllocaOp>(loc, fir::dyn_cast_ptrEleTy(resTy)); |
| 182 | newInTyAndAttrs.push_back(m[0]); |
| 183 | newOpers.push_back(stack); |
| 184 | return [=](mlir::Operation *) -> mlir::Value { |
| 185 | auto memTy = fir::ReferenceType::get(originalResTy); |
| 186 | auto cast = rewriter->create<fir::ConvertOp>(loc, memTy, stack); |
| 187 | return rewriter->create<fir::LoadOp>(loc, cast); |
| 188 | }; |
| 189 | } |
| 190 | newResTys.push_back(resTy); |
| 191 | return [=, &savedStackPtr](mlir::Operation *call) -> mlir::Value { |
| 192 | // We are going to generate an alloca, so save the stack pointer. |
| 193 | if (!savedStackPtr) |
| 194 | savedStackPtr = genStackSave(loc); |
| 195 | return this->convertValueInMemory(loc, call->getResult(0), originalResTy, |
| 196 | /*inputMayBeBigger=*/true); |
| 197 | }; |
| 198 | } |
| 199 | |
| 200 | template <typename Ty, typename Callback> |
| 201 | std::optional<std::function<mlir::Value(mlir::Operation *)>> |
| 202 | rewriteCallComplexResultType( |
| 203 | mlir::Location loc, mlir::ComplexType ty, Ty &newResTys, |
| 204 | fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs, Callback &newOpers, |
| 205 | mlir::Value &savedStackPtr) { |
| 206 | if (noComplexConversion) { |
| 207 | newResTys.push_back(ty); |
| 208 | return std::nullopt; |
| 209 | } |
| 210 | auto m = specifics->complexReturnType(loc, ty.getElementType()); |
| 211 | return rewriteCallResultType(loc, ty, newResTys, newInTyAndAttrs, newOpers, |
| 212 | savedStackPtr, m); |
| 213 | } |
| 214 | |
| 215 | template <typename Ty, typename Callback> |
| 216 | std::optional<std::function<mlir::Value(mlir::Operation *)>> |
| 217 | rewriteCallStructResultType( |
| 218 | mlir::Location loc, fir::RecordType recTy, Ty &newResTys, |
| 219 | fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs, Callback &newOpers, |
| 220 | mlir::Value &savedStackPtr) { |
| 221 | if (noStructConversion) { |
| 222 | newResTys.push_back(recTy); |
| 223 | return std::nullopt; |
| 224 | } |
| 225 | auto m = specifics->structReturnType(loc, recTy); |
| 226 | return rewriteCallResultType(loc, recTy, newResTys, newInTyAndAttrs, |
| 227 | newOpers, savedStackPtr, m); |
| 228 | } |
| 229 | |
| 230 | void passArgumentOnStackOrWithNewType( |
| 231 | mlir::Location loc, fir::CodeGenSpecifics::TypeAndAttr newTypeAndAttr, |
| 232 | mlir::Type oldType, mlir::Value oper, |
| 233 | llvm::SmallVectorImpl<mlir::Value> &newOpers, |
| 234 | mlir::Value &savedStackPtr) { |
| 235 | auto resTy = std::get<mlir::Type>(newTypeAndAttr); |
| 236 | auto attr = std::get<fir::CodeGenSpecifics::Attributes>(newTypeAndAttr); |
| 237 | // We are going to generate an alloca, so save the stack pointer. |
| 238 | if (!savedStackPtr) |
| 239 | savedStackPtr = genStackSave(loc); |
| 240 | if (attr.isByVal()) { |
| 241 | mlir::Value mem = rewriter->create<fir::AllocaOp>(loc, oldType); |
| 242 | rewriter->create<fir::StoreOp>(loc, oper, mem); |
| 243 | if (mem.getType() != resTy) |
| 244 | mem = rewriter->create<fir::ConvertOp>(loc, resTy, mem); |
| 245 | newOpers.push_back(mem); |
| 246 | } else { |
| 247 | mlir::Value bitcast = |
| 248 | convertValueInMemory(loc, oper, resTy, /*inputMayBeBigger=*/false); |
| 249 | newOpers.push_back(bitcast); |
| 250 | } |
| 251 | } |
| 252 | |
| 253 | // Do a bitcast (convert a value via its memory representation). |
| 254 | // The input and output types may have different storage sizes, |
| 255 | // "inputMayBeBigger" should be set to indicate which of the input or |
| 256 | // output type may be bigger in order for the load/store to be safe. |
| 257 | // The mismatch comes from the fact that the LLVM register used for passing |
| 258 | // may be bigger than the value being passed (e.g., passing |
| 259 | // a `!fir.type<t{fir.array<3xi8>}>` into an i32 LLVM register). |
| 260 | mlir::Value convertValueInMemory(mlir::Location loc, mlir::Value value, |
| 261 | mlir::Type newType, bool inputMayBeBigger) { |
| 262 | if (inputMayBeBigger) { |
| 263 | auto newRefTy = fir::ReferenceType::get(newType); |
| 264 | auto mem = rewriter->create<fir::AllocaOp>(loc, value.getType()); |
| 265 | rewriter->create<fir::StoreOp>(loc, value, mem); |
| 266 | auto cast = rewriter->create<fir::ConvertOp>(loc, newRefTy, mem); |
| 267 | return rewriter->create<fir::LoadOp>(loc, cast); |
| 268 | } else { |
| 269 | auto oldRefTy = fir::ReferenceType::get(value.getType()); |
| 270 | auto mem = rewriter->create<fir::AllocaOp>(loc, newType); |
| 271 | auto cast = rewriter->create<fir::ConvertOp>(loc, oldRefTy, mem); |
| 272 | rewriter->create<fir::StoreOp>(loc, value, cast); |
| 273 | return rewriter->create<fir::LoadOp>(loc, mem); |
| 274 | } |
| 275 | } |
| 276 | |
| 277 | void passSplitArgument(mlir::Location loc, |
| 278 | fir::CodeGenSpecifics::Marshalling splitArgs, |
| 279 | mlir::Type oldType, mlir::Value oper, |
| 280 | llvm::SmallVectorImpl<mlir::Value> &newOpers, |
| 281 | mlir::Value &savedStackPtr) { |
| 282 | // COMPLEX or struct argument split into separate arguments |
| 283 | if (!fir::isa_complex(oldType)) { |
| 284 | // Cast original operand to a tuple of the new arguments |
| 285 | // via memory. |
| 286 | llvm::SmallVector<mlir::Type> partTypes; |
| 287 | for (auto argPart : splitArgs) |
| 288 | partTypes.push_back(std::get<mlir::Type>(argPart)); |
| 289 | mlir::Type tupleType = |
| 290 | mlir::TupleType::get(oldType.getContext(), partTypes); |
| 291 | if (!savedStackPtr) |
| 292 | savedStackPtr = genStackSave(loc); |
| 293 | oper = convertValueInMemory(loc, oper, tupleType, |
| 294 | /*inputMayBeBigger=*/false); |
| 295 | } |
| 296 | auto iTy = rewriter->getIntegerType(32); |
| 297 | for (auto e : llvm::enumerate(splitArgs)) { |
| 298 | auto &tup = e.value(); |
| 299 | auto ty = std::get<mlir::Type>(tup); |
| 300 | auto index = e.index(); |
| 301 | auto idx = rewriter->getIntegerAttr(iTy, index); |
| 302 | auto val = rewriter->create<fir::ExtractValueOp>( |
| 303 | loc, ty, oper, rewriter->getArrayAttr(idx)); |
| 304 | newOpers.push_back(val); |
| 305 | } |
| 306 | } |
| 307 | |
| 308 | void rewriteCallOperands( |
| 309 | mlir::Location loc, fir::CodeGenSpecifics::Marshalling passArgAs, |
| 310 | mlir::Type originalArgTy, mlir::Value oper, |
| 311 | llvm::SmallVectorImpl<mlir::Value> &newOpers, mlir::Value &savedStackPtr, |
| 312 | fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs) { |
| 313 | if (passArgAs.size() == 1) { |
| 314 | // COMPLEX or derived type is passed as a single argument. |
| 315 | passArgumentOnStackOrWithNewType(loc, passArgAs[0], originalArgTy, oper, |
| 316 | newOpers, savedStackPtr); |
| 317 | } else { |
| 318 | // COMPLEX or derived type is split into separate arguments |
| 319 | passSplitArgument(loc, passArgAs, originalArgTy, oper, newOpers, |
| 320 | savedStackPtr); |
| 321 | } |
| 322 | newInTyAndAttrs.insert(newInTyAndAttrs.end(), passArgAs.begin(), |
| 323 | passArgAs.end()); |
| 324 | } |
| 325 | |
| 326 | template <typename CPLX> |
| 327 | void rewriteCallComplexInputType( |
| 328 | mlir::Location loc, CPLX ty, mlir::Value oper, |
| 329 | fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs, |
| 330 | llvm::SmallVectorImpl<mlir::Value> &newOpers, |
| 331 | mlir::Value &savedStackPtr) { |
| 332 | if (noComplexConversion) { |
| 333 | newInTyAndAttrs.push_back(fir::CodeGenSpecifics::getTypeAndAttr(ty)); |
| 334 | newOpers.push_back(oper); |
| 335 | return; |
| 336 | } |
| 337 | auto m = specifics->complexArgumentType(loc, ty.getElementType()); |
| 338 | rewriteCallOperands(loc, m, ty, oper, newOpers, savedStackPtr, |
| 339 | newInTyAndAttrs); |
| 340 | } |
| 341 | |
| 342 | void rewriteCallStructInputType( |
| 343 | mlir::Location loc, fir::RecordType recTy, mlir::Value oper, |
| 344 | fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs, |
| 345 | llvm::SmallVectorImpl<mlir::Value> &newOpers, |
| 346 | mlir::Value &savedStackPtr) { |
| 347 | if (noStructConversion) { |
| 348 | newInTyAndAttrs.push_back(fir::CodeGenSpecifics::getTypeAndAttr(recTy)); |
| 349 | newOpers.push_back(oper); |
| 350 | return; |
| 351 | } |
| 352 | auto structArgs = |
| 353 | specifics->structArgumentType(loc, recTy, newInTyAndAttrs); |
| 354 | rewriteCallOperands(loc, structArgs, recTy, oper, newOpers, savedStackPtr, |
| 355 | newInTyAndAttrs); |
| 356 | } |
| 357 | |
| 358 | static bool hasByValOrSRetArgs( |
| 359 | const fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs) { |
| 360 | return llvm::any_of(newInTyAndAttrs, [](auto arg) { |
| 361 | const auto &attr = std::get<fir::CodeGenSpecifics::Attributes>(arg); |
| 362 | return attr.isByVal() || attr.isSRet(); |
| 363 | }); |
| 364 | } |
| 365 | |
| 366 | // Convert fir.call and fir.dispatch Ops. |
| 367 | template <typename A> |
| 368 | void convertCallOp(A callOp, mlir::FunctionType fnTy) { |
| 369 | auto loc = callOp.getLoc(); |
| 370 | rewriter->setInsertionPoint(callOp); |
| 371 | llvm::SmallVector<mlir::Type> newResTys; |
| 372 | fir::CodeGenSpecifics::Marshalling newInTyAndAttrs; |
| 373 | llvm::SmallVector<mlir::Value> newOpers; |
| 374 | mlir::Value savedStackPtr = nullptr; |
| 375 | |
| 376 | // If the call is indirect, the first argument must still be the function |
| 377 | // to call. |
| 378 | int dropFront = 0; |
| 379 | if constexpr (std::is_same_v<std::decay_t<A>, fir::CallOp>) { |
| 380 | if (!callOp.getCallee()) { |
| 381 | newInTyAndAttrs.push_back( |
| 382 | fir::CodeGenSpecifics::getTypeAndAttr(fnTy.getInput(0))); |
| 383 | newOpers.push_back(callOp.getOperand(0)); |
| 384 | dropFront = 1; |
| 385 | } |
| 386 | } else if constexpr (std::is_same_v<std::decay_t<A>, fir::DispatchOp>) { |
| 387 | dropFront = 1; // First operand is the polymorphic object. |
| 388 | } |
| 389 | |
| 390 | // Determine the rewrite function, `wrap`, for the result value. |
| 391 | std::optional<std::function<mlir::Value(mlir::Operation *)>> wrap; |
| 392 | if (fnTy.getResults().size() == 1) { |
| 393 | mlir::Type ty = fnTy.getResult(0); |
| 394 | llvm::TypeSwitch<mlir::Type>(ty) |
| 395 | .template Case<mlir::ComplexType>([&](mlir::ComplexType cmplx) { |
| 396 | wrap = rewriteCallComplexResultType(loc, cmplx, newResTys, |
| 397 | newInTyAndAttrs, newOpers, |
| 398 | savedStackPtr); |
| 399 | }) |
| 400 | .template Case<fir::RecordType>([&](fir::RecordType recTy) { |
| 401 | wrap = rewriteCallStructResultType(loc, recTy, newResTys, |
| 402 | newInTyAndAttrs, newOpers, |
| 403 | savedStackPtr); |
| 404 | }) |
| 405 | .Default([&](mlir::Type ty) { newResTys.push_back(ty); }); |
| 406 | } else if (fnTy.getResults().size() > 1) { |
| 407 | TODO(loc, "multiple results not supported yet" ); |
| 408 | } |
| 409 | |
| 410 | llvm::SmallVector<mlir::Type> trailingInTys; |
| 411 | llvm::SmallVector<mlir::Value> trailingOpers; |
| 412 | llvm::SmallVector<mlir::Value> operands; |
| 413 | unsigned passArgShift = 0; |
| 414 | if constexpr (std::is_same_v<std::decay_t<A>, mlir::gpu::LaunchFuncOp>) |
| 415 | operands = callOp.getKernelOperands(); |
| 416 | else |
| 417 | operands = callOp.getOperands().drop_front(dropFront); |
| 418 | for (auto e : llvm::enumerate( |
| 419 | llvm::zip(fnTy.getInputs().drop_front(dropFront), operands))) { |
| 420 | mlir::Type ty = std::get<0>(e.value()); |
| 421 | mlir::Value oper = std::get<1>(e.value()); |
| 422 | unsigned index = e.index(); |
| 423 | llvm::TypeSwitch<mlir::Type>(ty) |
| 424 | .template Case<fir::BoxCharType>([&](fir::BoxCharType boxTy) { |
| 425 | if constexpr (std::is_same_v<std::decay_t<A>, fir::CallOp>) { |
| 426 | if (noCharacterConversion) { |
| 427 | newInTyAndAttrs.push_back( |
| 428 | fir::CodeGenSpecifics::getTypeAndAttr(boxTy)); |
| 429 | newOpers.push_back(oper); |
| 430 | return; |
| 431 | } |
| 432 | } else { |
| 433 | // TODO: dispatch case; it used to be a to-do because of sret, |
| 434 | // but is not tested and maybe should be removed. This pass is |
| 435 | // anyway ran after lowering fir.dispatch in flang, so maybe that |
| 436 | // should just be a requirement of the pass. |
| 437 | TODO(loc, "ABI of fir.dispatch with character arguments" ); |
| 438 | } |
| 439 | auto m = specifics->boxcharArgumentType(boxTy.getEleTy()); |
| 440 | auto unbox = rewriter->create<fir::UnboxCharOp>( |
| 441 | loc, std::get<mlir::Type>(m[0]), std::get<mlir::Type>(m[1]), |
| 442 | oper); |
| 443 | // unboxed CHARACTER arguments |
| 444 | for (auto e : llvm::enumerate(m)) { |
| 445 | unsigned idx = e.index(); |
| 446 | auto attr = |
| 447 | std::get<fir::CodeGenSpecifics::Attributes>(e.value()); |
| 448 | auto argTy = std::get<mlir::Type>(e.value()); |
| 449 | if (attr.isAppend()) { |
| 450 | trailingInTys.push_back(argTy); |
| 451 | trailingOpers.push_back(unbox.getResult(idx)); |
| 452 | } else { |
| 453 | newInTyAndAttrs.push_back(e.value()); |
| 454 | newOpers.push_back(unbox.getResult(idx)); |
| 455 | } |
| 456 | } |
| 457 | }) |
| 458 | .template Case<mlir::ComplexType>([&](mlir::ComplexType cmplx) { |
| 459 | rewriteCallComplexInputType(loc, cmplx, oper, newInTyAndAttrs, |
| 460 | newOpers, savedStackPtr); |
| 461 | }) |
| 462 | .template Case<fir::RecordType>([&](fir::RecordType recTy) { |
| 463 | rewriteCallStructInputType(loc, recTy, oper, newInTyAndAttrs, |
| 464 | newOpers, savedStackPtr); |
| 465 | }) |
| 466 | .template Case<mlir::TupleType>([&](mlir::TupleType tuple) { |
| 467 | if (fir::isCharacterProcedureTuple(tuple)) { |
| 468 | mlir::ModuleOp module = getModule(); |
| 469 | if constexpr (std::is_same_v<std::decay_t<A>, fir::CallOp>) { |
| 470 | if (callOp.getCallee()) { |
| 471 | llvm::StringRef charProcAttr = |
| 472 | fir::getCharacterProcedureDummyAttrName(); |
| 473 | // The charProcAttr attribute is only used as a safety to |
| 474 | // confirm that this is a dummy procedure and should be split. |
| 475 | // It cannot be used to match because attributes are not |
| 476 | // available in case of indirect calls. |
| 477 | auto funcOp = module.lookupSymbol<mlir::func::FuncOp>( |
| 478 | *callOp.getCallee()); |
| 479 | if (funcOp && |
| 480 | !funcOp.template getArgAttrOfType<mlir::UnitAttr>( |
| 481 | index, charProcAttr)) |
| 482 | mlir::emitError(loc, "tuple argument will be split even " |
| 483 | "though it does not have the `" + |
| 484 | charProcAttr + "` attribute" ); |
| 485 | } |
| 486 | } |
| 487 | mlir::Type funcPointerType = tuple.getType(0); |
| 488 | mlir::Type lenType = tuple.getType(1); |
| 489 | fir::FirOpBuilder builder(*rewriter, module); |
| 490 | auto [funcPointer, len] = |
| 491 | fir::factory::extractCharacterProcedureTuple(builder, loc, |
| 492 | oper); |
| 493 | newInTyAndAttrs.push_back( |
| 494 | fir::CodeGenSpecifics::getTypeAndAttr(funcPointerType)); |
| 495 | newOpers.push_back(funcPointer); |
| 496 | trailingInTys.push_back(lenType); |
| 497 | trailingOpers.push_back(len); |
| 498 | } else { |
| 499 | newInTyAndAttrs.push_back( |
| 500 | fir::CodeGenSpecifics::getTypeAndAttr(tuple)); |
| 501 | newOpers.push_back(oper); |
| 502 | } |
| 503 | }) |
| 504 | .Default([&](mlir::Type ty) { |
| 505 | if constexpr (std::is_same_v<std::decay_t<A>, fir::DispatchOp>) { |
| 506 | if (callOp.getPassArgPos() && *callOp.getPassArgPos() == index) |
| 507 | passArgShift = newOpers.size() - *callOp.getPassArgPos(); |
| 508 | } |
| 509 | newInTyAndAttrs.push_back( |
| 510 | fir::CodeGenSpecifics::getTypeAndAttr(ty)); |
| 511 | newOpers.push_back(oper); |
| 512 | }); |
| 513 | } |
| 514 | |
| 515 | llvm::SmallVector<mlir::Type> newInTypes = toTypeList(newInTyAndAttrs); |
| 516 | newInTypes.insert(newInTypes.end(), trailingInTys.begin(), |
| 517 | trailingInTys.end()); |
| 518 | newOpers.insert(newOpers.end(), trailingOpers.begin(), trailingOpers.end()); |
| 519 | |
| 520 | llvm::SmallVector<mlir::Value, 1> newCallResults; |
| 521 | // TODO propagate/update call argument and result attributes. |
| 522 | if constexpr (std::is_same_v<std::decay_t<A>, mlir::gpu::LaunchFuncOp>) { |
| 523 | auto newCall = rewriter->create<A>( |
| 524 | loc, callOp.getKernel(), callOp.getGridSizeOperandValues(), |
| 525 | callOp.getBlockSizeOperandValues(), |
| 526 | callOp.getDynamicSharedMemorySize(), newOpers); |
| 527 | if (callOp.getClusterSizeX()) |
| 528 | newCall.getClusterSizeXMutable().assign(callOp.getClusterSizeX()); |
| 529 | if (callOp.getClusterSizeY()) |
| 530 | newCall.getClusterSizeYMutable().assign(callOp.getClusterSizeY()); |
| 531 | if (callOp.getClusterSizeZ()) |
| 532 | newCall.getClusterSizeZMutable().assign(callOp.getClusterSizeZ()); |
| 533 | newCallResults.append(newCall.result_begin(), newCall.result_end()); |
| 534 | if (auto cudaProcAttr = |
| 535 | callOp->template getAttrOfType<cuf::ProcAttributeAttr>( |
| 536 | cuf::getProcAttrName())) { |
| 537 | newCall->setAttr(cuf::getProcAttrName(), cudaProcAttr); |
| 538 | } |
| 539 | } else if constexpr (std::is_same_v<std::decay_t<A>, fir::CallOp>) { |
| 540 | fir::CallOp newCall; |
| 541 | if (callOp.getCallee()) { |
| 542 | newCall = rewriter->create<fir::CallOp>(loc, *callOp.getCallee(), |
| 543 | newResTys, newOpers); |
| 544 | } else { |
| 545 | newOpers[0].setType(mlir::FunctionType::get( |
| 546 | callOp.getContext(), |
| 547 | mlir::TypeRange{newInTypes}.drop_front(dropFront), newResTys)); |
| 548 | newCall = rewriter->create<fir::CallOp>(loc, newResTys, newOpers); |
| 549 | } |
| 550 | newCall.setFastmathAttr(callOp.getFastmathAttr()); |
| 551 | // Always set ABI argument attributes on call operations, even when |
| 552 | // direct, as required by |
| 553 | // https://llvm.org/docs/LangRef.html#parameter-attributes. |
| 554 | if (hasByValOrSRetArgs(newInTyAndAttrs)) { |
| 555 | llvm::SmallVector<mlir::Attribute> argAttrsArray; |
| 556 | for (const auto &arg : |
| 557 | llvm::ArrayRef<fir::CodeGenSpecifics::TypeAndAttr>(newInTyAndAttrs) |
| 558 | .drop_front(dropFront)) { |
| 559 | mlir::NamedAttrList argAttrs; |
| 560 | const auto &attr = std::get<fir::CodeGenSpecifics::Attributes>(arg); |
| 561 | if (attr.isByVal()) { |
| 562 | mlir::Type elemType = |
| 563 | fir::dyn_cast_ptrOrBoxEleTy(std::get<mlir::Type>(arg)); |
| 564 | argAttrs.set(mlir::LLVM::LLVMDialect::getByValAttrName(), |
| 565 | mlir::TypeAttr::get(elemType)); |
| 566 | } else if (attr.isSRet()) { |
| 567 | mlir::Type elemType = |
| 568 | fir::dyn_cast_ptrOrBoxEleTy(std::get<mlir::Type>(arg)); |
| 569 | argAttrs.set(mlir::LLVM::LLVMDialect::getStructRetAttrName(), |
| 570 | mlir::TypeAttr::get(elemType)); |
| 571 | } |
| 572 | if (auto align = attr.getAlignment()) { |
| 573 | argAttrs.set( |
| 574 | mlir::LLVM::LLVMDialect::getAlignAttrName(), |
| 575 | rewriter->getIntegerAttr(rewriter->getIntegerType(32), align)); |
| 576 | } |
| 577 | argAttrsArray.emplace_back( |
| 578 | argAttrs.getDictionary(rewriter->getContext())); |
| 579 | } |
| 580 | newCall.setArgAttrsAttr(rewriter->getArrayAttr(argAttrsArray)); |
| 581 | } |
| 582 | LLVM_DEBUG(llvm::dbgs() << "replacing call with " << newCall << '\n'); |
| 583 | if (wrap) |
| 584 | newCallResults.push_back((*wrap)(newCall.getOperation())); |
| 585 | else |
| 586 | newCallResults.append(newCall.result_begin(), newCall.result_end()); |
| 587 | } else { |
| 588 | fir::DispatchOp dispatchOp = rewriter->create<A>( |
| 589 | loc, newResTys, rewriter->getStringAttr(callOp.getMethod()), |
| 590 | callOp.getOperands()[0], newOpers, |
| 591 | rewriter->getI32IntegerAttr(*callOp.getPassArgPos() + passArgShift), |
| 592 | /*arg_attrs=*/nullptr, /*res_attrs=*/nullptr, |
| 593 | callOp.getProcedureAttrsAttr()); |
| 594 | if (wrap) |
| 595 | newCallResults.push_back((*wrap)(dispatchOp.getOperation())); |
| 596 | else |
| 597 | newCallResults.append(dispatchOp.result_begin(), |
| 598 | dispatchOp.result_end()); |
| 599 | } |
| 600 | |
| 601 | if (newCallResults.size() <= 1) { |
| 602 | if (savedStackPtr) { |
| 603 | if (newCallResults.size() == 1) { |
| 604 | // We assume that all the allocas are inserted before |
| 605 | // the operation that defines the new call result. |
| 606 | rewriter->setInsertionPointAfterValue(newCallResults[0]); |
| 607 | } else { |
| 608 | // If the call does not have results, then insert |
| 609 | // stack restore after the original call operation. |
| 610 | rewriter->setInsertionPointAfter(callOp); |
| 611 | } |
| 612 | genStackRestore(loc, savedStackPtr); |
| 613 | } |
| 614 | replaceOp(callOp, newCallResults); |
| 615 | } else { |
| 616 | // The TODO is duplicated here to make sure this part |
| 617 | // handles the stackrestore insertion properly, if |
| 618 | // we add support for multiple call results. |
| 619 | TODO(loc, "multiple results not supported yet" ); |
| 620 | } |
| 621 | } |
| 622 | |
| 623 | // Result type fixup for ComplexType. |
| 624 | template <typename Ty> |
| 625 | void lowerComplexSignatureRes( |
| 626 | mlir::Location loc, mlir::ComplexType cmplx, Ty &newResTys, |
| 627 | fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs) { |
| 628 | if (noComplexConversion) { |
| 629 | newResTys.push_back(cmplx); |
| 630 | return; |
| 631 | } |
| 632 | for (auto &tup : |
| 633 | specifics->complexReturnType(loc, cmplx.getElementType())) { |
| 634 | auto argTy = std::get<mlir::Type>(tup); |
| 635 | if (std::get<fir::CodeGenSpecifics::Attributes>(tup).isSRet()) |
| 636 | newInTyAndAttrs.push_back(tup); |
| 637 | else |
| 638 | newResTys.push_back(argTy); |
| 639 | } |
| 640 | } |
| 641 | |
| 642 | // Argument type fixup for ComplexType. |
| 643 | void lowerComplexSignatureArg( |
| 644 | mlir::Location loc, mlir::ComplexType cmplx, |
| 645 | fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs) { |
| 646 | if (noComplexConversion) { |
| 647 | newInTyAndAttrs.push_back(fir::CodeGenSpecifics::getTypeAndAttr(cmplx)); |
| 648 | } else { |
| 649 | auto cplxArgs = |
| 650 | specifics->complexArgumentType(loc, cmplx.getElementType()); |
| 651 | newInTyAndAttrs.insert(newInTyAndAttrs.end(), cplxArgs.begin(), |
| 652 | cplxArgs.end()); |
| 653 | } |
| 654 | } |
| 655 | |
| 656 | template <typename Ty> |
| 657 | void |
| 658 | lowerStructSignatureRes(mlir::Location loc, fir::RecordType recTy, |
| 659 | Ty &newResTys, |
| 660 | fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs) { |
| 661 | if (noComplexConversion) { |
| 662 | newResTys.push_back(recTy); |
| 663 | return; |
| 664 | } else { |
| 665 | for (auto &tup : specifics->structReturnType(loc, recTy)) { |
| 666 | if (std::get<fir::CodeGenSpecifics::Attributes>(tup).isSRet()) |
| 667 | newInTyAndAttrs.push_back(tup); |
| 668 | else |
| 669 | newResTys.push_back(std::get<mlir::Type>(tup)); |
| 670 | } |
| 671 | } |
| 672 | } |
| 673 | |
| 674 | void |
| 675 | lowerStructSignatureArg(mlir::Location loc, fir::RecordType recTy, |
| 676 | fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs) { |
| 677 | if (noStructConversion) { |
| 678 | newInTyAndAttrs.push_back(fir::CodeGenSpecifics::getTypeAndAttr(recTy)); |
| 679 | return; |
| 680 | } |
| 681 | auto structArgs = |
| 682 | specifics->structArgumentType(loc, recTy, newInTyAndAttrs); |
| 683 | newInTyAndAttrs.insert(newInTyAndAttrs.end(), structArgs.begin(), |
| 684 | structArgs.end()); |
| 685 | } |
| 686 | |
| 687 | llvm::SmallVector<mlir::Type> |
| 688 | toTypeList(const fir::CodeGenSpecifics::Marshalling &marshalled) { |
| 689 | llvm::SmallVector<mlir::Type> typeList; |
| 690 | for (auto &typeAndAttr : marshalled) |
| 691 | typeList.emplace_back(std::get<mlir::Type>(typeAndAttr)); |
| 692 | return typeList; |
| 693 | } |
| 694 | |
| 695 | /// Taking the address of a function. Modify the signature as needed. |
| 696 | void convertAddrOp(fir::AddrOfOp addrOp) { |
| 697 | rewriter->setInsertionPoint(addrOp); |
| 698 | auto addrTy = mlir::cast<mlir::FunctionType>(addrOp.getType()); |
| 699 | fir::CodeGenSpecifics::Marshalling newInTyAndAttrs; |
| 700 | llvm::SmallVector<mlir::Type> newResTys; |
| 701 | auto loc = addrOp.getLoc(); |
| 702 | for (mlir::Type ty : addrTy.getResults()) { |
| 703 | llvm::TypeSwitch<mlir::Type>(ty) |
| 704 | .Case<mlir::ComplexType>([&](mlir::ComplexType ty) { |
| 705 | lowerComplexSignatureRes(loc, ty, newResTys, newInTyAndAttrs); |
| 706 | }) |
| 707 | .Case<fir::RecordType>([&](fir::RecordType ty) { |
| 708 | lowerStructSignatureRes(loc, ty, newResTys, newInTyAndAttrs); |
| 709 | }) |
| 710 | .Default([&](mlir::Type ty) { newResTys.push_back(ty); }); |
| 711 | } |
| 712 | llvm::SmallVector<mlir::Type> trailingInTys; |
| 713 | for (mlir::Type ty : addrTy.getInputs()) { |
| 714 | llvm::TypeSwitch<mlir::Type>(ty) |
| 715 | .Case<fir::BoxCharType>([&](auto box) { |
| 716 | if (noCharacterConversion) { |
| 717 | newInTyAndAttrs.push_back( |
| 718 | fir::CodeGenSpecifics::getTypeAndAttr(box)); |
| 719 | } else { |
| 720 | for (auto &tup : specifics->boxcharArgumentType(box.getEleTy())) { |
| 721 | auto attr = std::get<fir::CodeGenSpecifics::Attributes>(tup); |
| 722 | auto argTy = std::get<mlir::Type>(tup); |
| 723 | if (attr.isAppend()) |
| 724 | trailingInTys.push_back(argTy); |
| 725 | else |
| 726 | newInTyAndAttrs.push_back(tup); |
| 727 | } |
| 728 | } |
| 729 | }) |
| 730 | .Case<mlir::ComplexType>([&](mlir::ComplexType ty) { |
| 731 | lowerComplexSignatureArg(loc, ty, newInTyAndAttrs); |
| 732 | }) |
| 733 | .Case<mlir::TupleType>([&](mlir::TupleType tuple) { |
| 734 | if (fir::isCharacterProcedureTuple(tuple)) { |
| 735 | newInTyAndAttrs.push_back( |
| 736 | fir::CodeGenSpecifics::getTypeAndAttr(tuple.getType(0))); |
| 737 | trailingInTys.push_back(tuple.getType(1)); |
| 738 | } else { |
| 739 | newInTyAndAttrs.push_back( |
| 740 | fir::CodeGenSpecifics::getTypeAndAttr(ty)); |
| 741 | } |
| 742 | }) |
| 743 | .template Case<fir::RecordType>([&](fir::RecordType recTy) { |
| 744 | lowerStructSignatureArg(loc, recTy, newInTyAndAttrs); |
| 745 | }) |
| 746 | .Default([&](mlir::Type ty) { |
| 747 | newInTyAndAttrs.push_back( |
| 748 | fir::CodeGenSpecifics::getTypeAndAttr(ty)); |
| 749 | }); |
| 750 | } |
| 751 | llvm::SmallVector<mlir::Type> newInTypes = toTypeList(newInTyAndAttrs); |
| 752 | // append trailing input types |
| 753 | newInTypes.insert(newInTypes.end(), trailingInTys.begin(), |
| 754 | trailingInTys.end()); |
| 755 | // replace this op with a new one with the updated signature |
| 756 | auto newTy = rewriter->getFunctionType(newInTypes, newResTys); |
| 757 | auto newOp = rewriter->create<fir::AddrOfOp>(addrOp.getLoc(), newTy, |
| 758 | addrOp.getSymbol()); |
| 759 | replaceOp(addrOp, newOp.getResult()); |
| 760 | } |
| 761 | |
| 762 | /// Convert the type signatures on all the functions present in the module. |
| 763 | /// As the type signature is being changed, this must also update the |
| 764 | /// function itself to use any new arguments, etc. |
| 765 | llvm::LogicalResult convertTypes(mlir::ModuleOp mod) { |
| 766 | mlir::MLIRContext *ctx = mod->getContext(); |
| 767 | auto targetCPU = specifics->getTargetCPU(); |
| 768 | mlir::StringAttr targetCPUAttr = |
| 769 | targetCPU.empty() ? nullptr : mlir::StringAttr::get(ctx, targetCPU); |
| 770 | auto tuneCPU = specifics->getTuneCPU(); |
| 771 | mlir::StringAttr tuneCPUAttr = |
| 772 | tuneCPU.empty() ? nullptr : mlir::StringAttr::get(ctx, tuneCPU); |
| 773 | auto targetFeaturesAttr = specifics->getTargetFeatures(); |
| 774 | |
| 775 | for (auto fn : mod.getOps<mlir::func::FuncOp>()) { |
| 776 | if (targetCPUAttr) |
| 777 | fn->setAttr("target_cpu" , targetCPUAttr); |
| 778 | |
| 779 | if (tuneCPUAttr) |
| 780 | fn->setAttr("tune_cpu" , tuneCPUAttr); |
| 781 | |
| 782 | if (targetFeaturesAttr) |
| 783 | fn->setAttr("target_features" , targetFeaturesAttr); |
| 784 | |
| 785 | convertSignature<mlir::func::ReturnOp, mlir::func::FuncOp>(fn); |
| 786 | } |
| 787 | |
| 788 | for (auto gpuMod : mod.getOps<mlir::gpu::GPUModuleOp>()) { |
| 789 | for (auto fn : gpuMod.getOps<mlir::func::FuncOp>()) |
| 790 | convertSignature<mlir::func::ReturnOp, mlir::func::FuncOp>(fn); |
| 791 | for (auto fn : gpuMod.getOps<mlir::gpu::GPUFuncOp>()) |
| 792 | convertSignature<mlir::gpu::ReturnOp, mlir::gpu::GPUFuncOp>(fn); |
| 793 | } |
| 794 | |
| 795 | return mlir::success(); |
| 796 | } |
| 797 | |
| 798 | // Returns true if the function should be interoperable with C. |
| 799 | static bool isFuncWithCCallingConvention(mlir::Operation *op) { |
| 800 | auto funcOp = mlir::dyn_cast<mlir::func::FuncOp>(op); |
| 801 | if (!funcOp) |
| 802 | return false; |
| 803 | return op->hasAttrOfType<mlir::UnitAttr>( |
| 804 | fir::FIROpsDialect::getFirRuntimeAttrName()) || |
| 805 | op->hasAttrOfType<mlir::StringAttr>(fir::getSymbolAttrName()); |
| 806 | } |
| 807 | |
| 808 | /// If the signature does not need any special target-specific conversions, |
| 809 | /// then it is considered portable for any target, and this function will |
| 810 | /// return `true`. Otherwise, the signature is not portable and `false` is |
| 811 | /// returned. |
| 812 | bool hasPortableSignature(mlir::Type signature, mlir::Operation *op) { |
| 813 | assert(mlir::isa<mlir::FunctionType>(signature)); |
| 814 | auto func = mlir::dyn_cast<mlir::FunctionType>(signature); |
| 815 | bool hasCCallingConv = isFuncWithCCallingConvention(op); |
| 816 | for (auto ty : func.getResults()) |
| 817 | if ((mlir::isa<fir::BoxCharType>(ty) && !noCharacterConversion) || |
| 818 | (fir::isa_complex(ty) && !noComplexConversion) || |
| 819 | (mlir::isa<mlir::IntegerType>(ty) && hasCCallingConv) || |
| 820 | (mlir::isa<fir::RecordType>(ty) && !noStructConversion)) { |
| 821 | LLVM_DEBUG(llvm::dbgs() << "rewrite " << signature << " for target\n" ); |
| 822 | return false; |
| 823 | } |
| 824 | for (auto ty : func.getInputs()) |
| 825 | if (((mlir::isa<fir::BoxCharType>(ty) || |
| 826 | fir::isCharacterProcedureTuple(ty)) && |
| 827 | !noCharacterConversion) || |
| 828 | (fir::isa_complex(ty) && !noComplexConversion) || |
| 829 | (mlir::isa<mlir::IntegerType>(ty) && hasCCallingConv) || |
| 830 | (mlir::isa<fir::RecordType>(ty) && !noStructConversion)) { |
| 831 | LLVM_DEBUG(llvm::dbgs() << "rewrite " << signature << " for target\n" ); |
| 832 | return false; |
| 833 | } |
| 834 | return true; |
| 835 | } |
| 836 | |
| 837 | /// Determine if the signature has host associations. The host association |
| 838 | /// argument may need special target specific rewriting. |
| 839 | template <typename OpTy> |
| 840 | static bool hasHostAssociations(OpTy func) { |
| 841 | std::size_t end = func.getFunctionType().getInputs().size(); |
| 842 | for (std::size_t i = 0; i < end; ++i) |
| 843 | if (func.template getArgAttrOfType<mlir::UnitAttr>( |
| 844 | i, fir::getHostAssocAttrName())) |
| 845 | return true; |
| 846 | return false; |
| 847 | } |
| 848 | |
| 849 | /// Rewrite the signatures and body of the `FuncOp`s in the module for |
| 850 | /// the immediately subsequent target code gen. |
| 851 | template <typename ReturnOpTy, typename FuncOpTy> |
| 852 | void convertSignature(FuncOpTy func) { |
| 853 | auto funcTy = mlir::cast<mlir::FunctionType>(func.getFunctionType()); |
| 854 | if (hasPortableSignature(funcTy, func) && !hasHostAssociations(func)) |
| 855 | return; |
| 856 | llvm::SmallVector<mlir::Type> newResTys; |
| 857 | fir::CodeGenSpecifics::Marshalling newInTyAndAttrs; |
| 858 | llvm::SmallVector<std::pair<unsigned, mlir::NamedAttribute>> savedAttrs; |
| 859 | llvm::SmallVector<std::pair<unsigned, mlir::NamedAttribute>> extraAttrs; |
| 860 | llvm::SmallVector<FixupTy> fixups; |
| 861 | llvm::SmallVector<std::pair<unsigned, mlir::NamedAttrList>, 1> resultAttrs; |
| 862 | |
| 863 | // Save argument attributes in case there is a shift so we can replace them |
| 864 | // correctly. |
| 865 | for (auto e : llvm::enumerate(funcTy.getInputs())) { |
| 866 | unsigned index = e.index(); |
| 867 | llvm::ArrayRef<mlir::NamedAttribute> attrs = |
| 868 | mlir::function_interface_impl::getArgAttrs(func, index); |
| 869 | for (mlir::NamedAttribute attr : attrs) { |
| 870 | savedAttrs.push_back({index, attr}); |
| 871 | } |
| 872 | } |
| 873 | |
| 874 | // Convert return value(s) |
| 875 | for (auto ty : funcTy.getResults()) |
| 876 | llvm::TypeSwitch<mlir::Type>(ty) |
| 877 | .template Case<mlir::ComplexType>([&](mlir::ComplexType cmplx) { |
| 878 | if (noComplexConversion) |
| 879 | newResTys.push_back(cmplx); |
| 880 | else |
| 881 | doComplexReturn(func, cmplx, newResTys, newInTyAndAttrs, fixups); |
| 882 | }) |
| 883 | .template Case<mlir::IntegerType>([&](mlir::IntegerType intTy) { |
| 884 | auto m = specifics->integerArgumentType(func.getLoc(), intTy); |
| 885 | assert(m.size() == 1); |
| 886 | auto attr = std::get<fir::CodeGenSpecifics::Attributes>(m[0]); |
| 887 | auto retTy = std::get<mlir::Type>(m[0]); |
| 888 | std::size_t resId = newResTys.size(); |
| 889 | llvm::StringRef extensionAttrName = attr.getIntExtensionAttrName(); |
| 890 | if (!extensionAttrName.empty() && |
| 891 | isFuncWithCCallingConvention(func)) |
| 892 | resultAttrs.emplace_back( |
| 893 | resId, rewriter->getNamedAttr(extensionAttrName, |
| 894 | rewriter->getUnitAttr())); |
| 895 | newResTys.push_back(retTy); |
| 896 | }) |
| 897 | .template Case<fir::RecordType>([&](fir::RecordType recTy) { |
| 898 | doStructReturn(func, recTy, newResTys, newInTyAndAttrs, fixups); |
| 899 | }) |
| 900 | .Default([&](mlir::Type ty) { newResTys.push_back(ty); }); |
| 901 | |
| 902 | // Saved potential shift in argument. Handling of result can add arguments |
| 903 | // at the beginning of the function signature. |
| 904 | unsigned argumentShift = newInTyAndAttrs.size(); |
| 905 | |
| 906 | // Convert arguments |
| 907 | llvm::SmallVector<mlir::Type> trailingTys; |
| 908 | for (auto e : llvm::enumerate(funcTy.getInputs())) { |
| 909 | auto ty = e.value(); |
| 910 | unsigned index = e.index(); |
| 911 | llvm::TypeSwitch<mlir::Type>(ty) |
| 912 | .template Case<fir::BoxCharType>([&](fir::BoxCharType boxTy) { |
| 913 | if (noCharacterConversion) { |
| 914 | newInTyAndAttrs.push_back( |
| 915 | fir::CodeGenSpecifics::getTypeAndAttr(boxTy)); |
| 916 | } else { |
| 917 | // Convert a CHARACTER argument type. This can involve separating |
| 918 | // the pointer and the LEN into two arguments and moving the LEN |
| 919 | // argument to the end of the arg list. |
| 920 | for (auto &tup : |
| 921 | specifics->boxcharArgumentType(boxTy.getEleTy())) { |
| 922 | auto attr = std::get<fir::CodeGenSpecifics::Attributes>(tup); |
| 923 | auto argTy = std::get<mlir::Type>(tup); |
| 924 | if (attr.isAppend()) { |
| 925 | trailingTys.push_back(argTy); |
| 926 | } else { |
| 927 | fixups.emplace_back(FixupTy::Codes::Trailing, |
| 928 | newInTyAndAttrs.size(), |
| 929 | trailingTys.size()); |
| 930 | newInTyAndAttrs.push_back(tup); |
| 931 | } |
| 932 | } |
| 933 | } |
| 934 | }) |
| 935 | .template Case<mlir::ComplexType>([&](mlir::ComplexType cmplx) { |
| 936 | doComplexArg(func, cmplx, newInTyAndAttrs, fixups); |
| 937 | }) |
| 938 | .template Case<mlir::TupleType>([&](mlir::TupleType tuple) { |
| 939 | if (fir::isCharacterProcedureTuple(tuple)) { |
| 940 | fixups.emplace_back(FixupTy::Codes::TrailingCharProc, |
| 941 | newInTyAndAttrs.size(), trailingTys.size()); |
| 942 | newInTyAndAttrs.push_back( |
| 943 | fir::CodeGenSpecifics::getTypeAndAttr(tuple.getType(0))); |
| 944 | trailingTys.push_back(tuple.getType(1)); |
| 945 | } else { |
| 946 | newInTyAndAttrs.push_back( |
| 947 | fir::CodeGenSpecifics::getTypeAndAttr(ty)); |
| 948 | } |
| 949 | }) |
| 950 | .template Case<mlir::IntegerType>([&](mlir::IntegerType intTy) { |
| 951 | auto m = specifics->integerArgumentType(func.getLoc(), intTy); |
| 952 | assert(m.size() == 1); |
| 953 | auto attr = std::get<fir::CodeGenSpecifics::Attributes>(m[0]); |
| 954 | auto argNo = newInTyAndAttrs.size(); |
| 955 | llvm::StringRef extensionAttrName = attr.getIntExtensionAttrName(); |
| 956 | if (!extensionAttrName.empty() && |
| 957 | isFuncWithCCallingConvention(func)) |
| 958 | fixups.emplace_back(FixupTy::Codes::ArgumentType, argNo, |
| 959 | [=](FuncOpTy func) { |
| 960 | func.setArgAttr( |
| 961 | argNo, extensionAttrName, |
| 962 | mlir::UnitAttr::get(func.getContext())); |
| 963 | }); |
| 964 | |
| 965 | newInTyAndAttrs.push_back(m[0]); |
| 966 | }) |
| 967 | .template Case<fir::RecordType>([&](fir::RecordType recTy) { |
| 968 | doStructArg(func, recTy, newInTyAndAttrs, fixups); |
| 969 | }) |
| 970 | .Default([&](mlir::Type ty) { |
| 971 | newInTyAndAttrs.push_back( |
| 972 | fir::CodeGenSpecifics::getTypeAndAttr(ty)); |
| 973 | }); |
| 974 | |
| 975 | if (func.template getArgAttrOfType<mlir::UnitAttr>( |
| 976 | index, fir::getHostAssocAttrName())) { |
| 977 | extraAttrs.push_back( |
| 978 | {newInTyAndAttrs.size() - 1, |
| 979 | rewriter->getNamedAttr("llvm.nest" , rewriter->getUnitAttr())}); |
| 980 | } |
| 981 | } |
| 982 | |
| 983 | if (!func.empty()) { |
| 984 | // If the function has a body, then apply the fixups to the arguments and |
| 985 | // return ops as required. These fixups are done in place. |
| 986 | auto loc = func.getLoc(); |
| 987 | const auto fixupSize = fixups.size(); |
| 988 | const auto oldArgTys = func.getFunctionType().getInputs(); |
| 989 | int offset = 0; |
| 990 | for (std::remove_const_t<decltype(fixupSize)> i = 0; i < fixupSize; ++i) { |
| 991 | const auto &fixup = fixups[i]; |
| 992 | mlir::Type fixupType = |
| 993 | fixup.index < newInTyAndAttrs.size() |
| 994 | ? std::get<mlir::Type>(newInTyAndAttrs[fixup.index]) |
| 995 | : mlir::Type{}; |
| 996 | switch (fixup.code) { |
| 997 | case FixupTy::Codes::ArgumentAsLoad: { |
| 998 | // Argument was pass-by-value, but is now pass-by-reference and |
| 999 | // possibly with a different element type. |
| 1000 | auto newArg = |
| 1001 | func.front().insertArgument(fixup.index, fixupType, loc); |
| 1002 | rewriter->setInsertionPointToStart(&func.front()); |
| 1003 | auto oldArgTy = |
| 1004 | fir::ReferenceType::get(oldArgTys[fixup.index - offset]); |
| 1005 | auto cast = rewriter->create<fir::ConvertOp>(loc, oldArgTy, newArg); |
| 1006 | auto load = rewriter->create<fir::LoadOp>(loc, cast); |
| 1007 | func.getArgument(fixup.index + 1).replaceAllUsesWith(load); |
| 1008 | func.front().eraseArgument(fixup.index + 1); |
| 1009 | } break; |
| 1010 | case FixupTy::Codes::ArgumentType: { |
| 1011 | // Argument is pass-by-value, but its type has likely been modified to |
| 1012 | // suit the target ABI convention. |
| 1013 | auto oldArgTy = oldArgTys[fixup.index - offset]; |
| 1014 | // If type did not change, keep the original argument. |
| 1015 | if (fixupType == oldArgTy) |
| 1016 | break; |
| 1017 | |
| 1018 | auto newArg = |
| 1019 | func.front().insertArgument(fixup.index, fixupType, loc); |
| 1020 | rewriter->setInsertionPointToStart(&func.front()); |
| 1021 | mlir::Value bitcast = convertValueInMemory(loc, newArg, oldArgTy, |
| 1022 | /*inputMayBeBigger=*/true); |
| 1023 | func.getArgument(fixup.index + 1).replaceAllUsesWith(bitcast); |
| 1024 | func.front().eraseArgument(fixup.index + 1); |
| 1025 | LLVM_DEBUG(llvm::dbgs() |
| 1026 | << "old argument: " << oldArgTy << ", repl: " << bitcast |
| 1027 | << ", new argument: " |
| 1028 | << func.getArgument(fixup.index).getType() << '\n'); |
| 1029 | } break; |
| 1030 | case FixupTy::Codes::CharPair: { |
| 1031 | // The FIR boxchar argument has been split into a pair of distinct |
| 1032 | // arguments that are in juxtaposition to each other. |
| 1033 | auto newArg = |
| 1034 | func.front().insertArgument(fixup.index, fixupType, loc); |
| 1035 | if (fixup.second == 1) { |
| 1036 | rewriter->setInsertionPointToStart(&func.front()); |
| 1037 | auto boxTy = oldArgTys[fixup.index - offset - fixup.second]; |
| 1038 | auto box = rewriter->create<fir::EmboxCharOp>( |
| 1039 | loc, boxTy, func.front().getArgument(fixup.index - 1), newArg); |
| 1040 | func.getArgument(fixup.index + 1).replaceAllUsesWith(box); |
| 1041 | func.front().eraseArgument(fixup.index + 1); |
| 1042 | offset++; |
| 1043 | } |
| 1044 | } break; |
| 1045 | case FixupTy::Codes::ReturnAsStore: { |
| 1046 | // The value being returned is now being returned in memory (callee |
| 1047 | // stack space) through a hidden reference argument. |
| 1048 | auto newArg = |
| 1049 | func.front().insertArgument(fixup.index, fixupType, loc); |
| 1050 | offset++; |
| 1051 | func.walk([&](ReturnOpTy ret) { |
| 1052 | rewriter->setInsertionPoint(ret); |
| 1053 | auto oldOper = ret.getOperand(0); |
| 1054 | auto oldOperTy = fir::ReferenceType::get(oldOper.getType()); |
| 1055 | auto cast = |
| 1056 | rewriter->create<fir::ConvertOp>(loc, oldOperTy, newArg); |
| 1057 | rewriter->create<fir::StoreOp>(loc, oldOper, cast); |
| 1058 | rewriter->create<ReturnOpTy>(loc); |
| 1059 | ret.erase(); |
| 1060 | }); |
| 1061 | } break; |
| 1062 | case FixupTy::Codes::ReturnType: { |
| 1063 | // The function is still returning a value, but its type has likely |
| 1064 | // changed to suit the target ABI convention. |
| 1065 | func.walk([&](ReturnOpTy ret) { |
| 1066 | rewriter->setInsertionPoint(ret); |
| 1067 | auto oldOper = ret.getOperand(0); |
| 1068 | mlir::Value bitcast = |
| 1069 | convertValueInMemory(loc, oldOper, newResTys[fixup.index], |
| 1070 | /*inputMayBeBigger=*/false); |
| 1071 | rewriter->create<ReturnOpTy>(loc, bitcast); |
| 1072 | ret.erase(); |
| 1073 | }); |
| 1074 | } break; |
| 1075 | case FixupTy::Codes::Split: { |
| 1076 | // The FIR argument has been split into a pair of distinct arguments |
| 1077 | // that are in juxtaposition to each other. (For COMPLEX value or |
| 1078 | // derived type passed with VALUE in BIND(C) context). |
| 1079 | auto newArg = |
| 1080 | func.front().insertArgument(fixup.index, fixupType, loc); |
| 1081 | if (fixup.second == 1) { |
| 1082 | rewriter->setInsertionPointToStart(&func.front()); |
| 1083 | mlir::Value firstArg = func.front().getArgument(fixup.index - 1); |
| 1084 | mlir::Type originalTy = |
| 1085 | oldArgTys[fixup.index - offset - fixup.second]; |
| 1086 | mlir::Type pairTy = originalTy; |
| 1087 | if (!fir::isa_complex(originalTy)) { |
| 1088 | pairTy = mlir::TupleType::get( |
| 1089 | originalTy.getContext(), |
| 1090 | mlir::TypeRange{firstArg.getType(), newArg.getType()}); |
| 1091 | } |
| 1092 | auto undef = rewriter->create<fir::UndefOp>(loc, pairTy); |
| 1093 | auto iTy = rewriter->getIntegerType(32); |
| 1094 | auto zero = rewriter->getIntegerAttr(iTy, 0); |
| 1095 | auto one = rewriter->getIntegerAttr(iTy, 1); |
| 1096 | mlir::Value pair1 = rewriter->create<fir::InsertValueOp>( |
| 1097 | loc, pairTy, undef, firstArg, rewriter->getArrayAttr(zero)); |
| 1098 | mlir::Value pair = rewriter->create<fir::InsertValueOp>( |
| 1099 | loc, pairTy, pair1, newArg, rewriter->getArrayAttr(one)); |
| 1100 | // Cast local argument tuple to original type via memory if needed. |
| 1101 | if (pairTy != originalTy) |
| 1102 | pair = convertValueInMemory(loc, pair, originalTy, |
| 1103 | /*inputMayBeBigger=*/true); |
| 1104 | func.getArgument(fixup.index + 1).replaceAllUsesWith(pair); |
| 1105 | func.front().eraseArgument(fixup.index + 1); |
| 1106 | offset++; |
| 1107 | } |
| 1108 | } break; |
| 1109 | case FixupTy::Codes::Trailing: { |
| 1110 | // The FIR argument has been split into a pair of distinct arguments. |
| 1111 | // The first part of the pair appears in the original argument |
| 1112 | // position. The second part of the pair is appended after all the |
| 1113 | // original arguments. (Boxchar arguments.) |
| 1114 | auto newBufArg = |
| 1115 | func.front().insertArgument(fixup.index, fixupType, loc); |
| 1116 | auto newLenArg = |
| 1117 | func.front().addArgument(trailingTys[fixup.second], loc); |
| 1118 | auto boxTy = oldArgTys[fixup.index - offset]; |
| 1119 | rewriter->setInsertionPointToStart(&func.front()); |
| 1120 | auto box = rewriter->create<fir::EmboxCharOp>(loc, boxTy, newBufArg, |
| 1121 | newLenArg); |
| 1122 | func.getArgument(fixup.index + 1).replaceAllUsesWith(box); |
| 1123 | func.front().eraseArgument(fixup.index + 1); |
| 1124 | } break; |
| 1125 | case FixupTy::Codes::TrailingCharProc: { |
| 1126 | // The FIR character procedure argument tuple must be split into a |
| 1127 | // pair of distinct arguments. The first part of the pair appears in |
| 1128 | // the original argument position. The second part of the pair is |
| 1129 | // appended after all the original arguments. |
| 1130 | auto newProcPointerArg = |
| 1131 | func.front().insertArgument(fixup.index, fixupType, loc); |
| 1132 | auto newLenArg = |
| 1133 | func.front().addArgument(trailingTys[fixup.second], loc); |
| 1134 | auto tupleType = oldArgTys[fixup.index - offset]; |
| 1135 | rewriter->setInsertionPointToStart(&func.front()); |
| 1136 | fir::FirOpBuilder builder(*rewriter, getModule()); |
| 1137 | auto tuple = fir::factory::createCharacterProcedureTuple( |
| 1138 | builder, loc, tupleType, newProcPointerArg, newLenArg); |
| 1139 | func.getArgument(fixup.index + 1).replaceAllUsesWith(tuple); |
| 1140 | func.front().eraseArgument(fixup.index + 1); |
| 1141 | } break; |
| 1142 | } |
| 1143 | } |
| 1144 | } |
| 1145 | |
| 1146 | llvm::SmallVector<mlir::Type> newInTypes = toTypeList(newInTyAndAttrs); |
| 1147 | // Set the new type and finalize the arguments, etc. |
| 1148 | newInTypes.insert(newInTypes.end(), trailingTys.begin(), trailingTys.end()); |
| 1149 | auto newFuncTy = |
| 1150 | mlir::FunctionType::get(func.getContext(), newInTypes, newResTys); |
| 1151 | LLVM_DEBUG(llvm::dbgs() << "new func: " << newFuncTy << '\n'); |
| 1152 | func.setType(newFuncTy); |
| 1153 | |
| 1154 | for (std::pair<unsigned, mlir::NamedAttribute> extraAttr : extraAttrs) |
| 1155 | func.setArgAttr(extraAttr.first, extraAttr.second.getName(), |
| 1156 | extraAttr.second.getValue()); |
| 1157 | |
| 1158 | for (auto [resId, resAttrList] : resultAttrs) |
| 1159 | for (mlir::NamedAttribute resAttr : resAttrList) |
| 1160 | func.setResultAttr(resId, resAttr.getName(), resAttr.getValue()); |
| 1161 | |
| 1162 | // Replace attributes to the correct argument if there was an argument shift |
| 1163 | // to the right. |
| 1164 | if (argumentShift > 0) { |
| 1165 | for (std::pair<unsigned, mlir::NamedAttribute> savedAttr : savedAttrs) { |
| 1166 | func.removeArgAttr(savedAttr.first, savedAttr.second.getName()); |
| 1167 | func.setArgAttr(savedAttr.first + argumentShift, |
| 1168 | savedAttr.second.getName(), |
| 1169 | savedAttr.second.getValue()); |
| 1170 | } |
| 1171 | } |
| 1172 | |
| 1173 | for (auto &fixup : fixups) { |
| 1174 | if constexpr (std::is_same_v<FuncOpTy, mlir::func::FuncOp>) |
| 1175 | if (fixup.finalizer) |
| 1176 | (*fixup.finalizer)(func); |
| 1177 | if constexpr (std::is_same_v<FuncOpTy, mlir::gpu::GPUFuncOp>) |
| 1178 | if (fixup.gpuFinalizer) |
| 1179 | (*fixup.gpuFinalizer)(func); |
| 1180 | } |
| 1181 | } |
| 1182 | |
| 1183 | template <typename OpTy, typename Ty, typename FIXUPS> |
| 1184 | void doReturn(OpTy func, Ty &newResTys, |
| 1185 | fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs, |
| 1186 | FIXUPS &fixups, fir::CodeGenSpecifics::Marshalling &m) { |
| 1187 | assert(m.size() == 1 && |
| 1188 | "expect result to be turned into single argument or result so far" ); |
| 1189 | auto &tup = m[0]; |
| 1190 | auto attr = std::get<fir::CodeGenSpecifics::Attributes>(tup); |
| 1191 | auto argTy = std::get<mlir::Type>(tup); |
| 1192 | if (attr.isSRet()) { |
| 1193 | unsigned argNo = newInTyAndAttrs.size(); |
| 1194 | if (auto align = attr.getAlignment()) |
| 1195 | fixups.emplace_back( |
| 1196 | FixupTy::Codes::ReturnAsStore, argNo, [=](OpTy func) { |
| 1197 | auto elemType = fir::dyn_cast_ptrOrBoxEleTy( |
| 1198 | func.getFunctionType().getInput(argNo)); |
| 1199 | func.setArgAttr(argNo, "llvm.sret" , |
| 1200 | mlir::TypeAttr::get(elemType)); |
| 1201 | func.setArgAttr(argNo, "llvm.align" , |
| 1202 | rewriter->getIntegerAttr( |
| 1203 | rewriter->getIntegerType(32), align)); |
| 1204 | }); |
| 1205 | else |
| 1206 | fixups.emplace_back(FixupTy::Codes::ReturnAsStore, argNo, |
| 1207 | [=](OpTy func) { |
| 1208 | auto elemType = fir::dyn_cast_ptrOrBoxEleTy( |
| 1209 | func.getFunctionType().getInput(argNo)); |
| 1210 | func.setArgAttr(argNo, "llvm.sret" , |
| 1211 | mlir::TypeAttr::get(elemType)); |
| 1212 | }); |
| 1213 | newInTyAndAttrs.push_back(tup); |
| 1214 | return; |
| 1215 | } |
| 1216 | if (auto align = attr.getAlignment()) |
| 1217 | fixups.emplace_back( |
| 1218 | FixupTy::Codes::ReturnType, newResTys.size(), [=](OpTy func) { |
| 1219 | func.setArgAttr( |
| 1220 | newResTys.size(), "llvm.align" , |
| 1221 | rewriter->getIntegerAttr(rewriter->getIntegerType(32), align)); |
| 1222 | }); |
| 1223 | else |
| 1224 | fixups.emplace_back(FixupTy::Codes::ReturnType, newResTys.size()); |
| 1225 | newResTys.push_back(argTy); |
| 1226 | } |
| 1227 | |
| 1228 | /// Convert a complex return value. This can involve converting the return |
| 1229 | /// value to a "hidden" first argument or packing the complex into a wide |
| 1230 | /// GPR. |
| 1231 | template <typename OpTy, typename Ty, typename FIXUPS> |
| 1232 | void doComplexReturn(OpTy func, mlir::ComplexType cmplx, Ty &newResTys, |
| 1233 | fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs, |
| 1234 | FIXUPS &fixups) { |
| 1235 | if (noComplexConversion) { |
| 1236 | newResTys.push_back(cmplx); |
| 1237 | return; |
| 1238 | } |
| 1239 | auto m = |
| 1240 | specifics->complexReturnType(func.getLoc(), cmplx.getElementType()); |
| 1241 | doReturn(func, newResTys, newInTyAndAttrs, fixups, m); |
| 1242 | } |
| 1243 | |
| 1244 | template <typename OpTy, typename Ty, typename FIXUPS> |
| 1245 | void doStructReturn(OpTy func, fir::RecordType recTy, Ty &newResTys, |
| 1246 | fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs, |
| 1247 | FIXUPS &fixups) { |
| 1248 | if (noStructConversion) { |
| 1249 | newResTys.push_back(recTy); |
| 1250 | return; |
| 1251 | } |
| 1252 | auto m = specifics->structReturnType(func.getLoc(), recTy); |
| 1253 | doReturn(func, newResTys, newInTyAndAttrs, fixups, m); |
| 1254 | } |
| 1255 | |
| 1256 | template <typename OpTy, typename FIXUPS> |
| 1257 | void createFuncOpArgFixups( |
| 1258 | OpTy func, fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs, |
| 1259 | fir::CodeGenSpecifics::Marshalling &argsInTys, FIXUPS &fixups) { |
| 1260 | const auto fixupCode = argsInTys.size() > 1 ? FixupTy::Codes::Split |
| 1261 | : FixupTy::Codes::ArgumentType; |
| 1262 | for (auto e : llvm::enumerate(argsInTys)) { |
| 1263 | auto &tup = e.value(); |
| 1264 | auto index = e.index(); |
| 1265 | auto attr = std::get<fir::CodeGenSpecifics::Attributes>(tup); |
| 1266 | auto argNo = newInTyAndAttrs.size(); |
| 1267 | if (attr.isByVal()) { |
| 1268 | if (auto align = attr.getAlignment()) |
| 1269 | fixups.emplace_back(FixupTy::Codes::ArgumentAsLoad, argNo, |
| 1270 | [=](OpTy func) { |
| 1271 | auto elemType = fir::dyn_cast_ptrOrBoxEleTy( |
| 1272 | func.getFunctionType().getInput(argNo)); |
| 1273 | func.setArgAttr(argNo, "llvm.byval" , |
| 1274 | mlir::TypeAttr::get(elemType)); |
| 1275 | func.setArgAttr( |
| 1276 | argNo, "llvm.align" , |
| 1277 | rewriter->getIntegerAttr( |
| 1278 | rewriter->getIntegerType(32), align)); |
| 1279 | }); |
| 1280 | else |
| 1281 | fixups.emplace_back(FixupTy::Codes::ArgumentAsLoad, |
| 1282 | newInTyAndAttrs.size(), [=](OpTy func) { |
| 1283 | auto elemType = fir::dyn_cast_ptrOrBoxEleTy( |
| 1284 | func.getFunctionType().getInput(argNo)); |
| 1285 | func.setArgAttr(argNo, "llvm.byval" , |
| 1286 | mlir::TypeAttr::get(elemType)); |
| 1287 | }); |
| 1288 | } else { |
| 1289 | if (auto align = attr.getAlignment()) |
| 1290 | fixups.emplace_back( |
| 1291 | fixupCode, argNo, index, [=](OpTy func) { |
| 1292 | func.setArgAttr(argNo, "llvm.align" , |
| 1293 | rewriter->getIntegerAttr( |
| 1294 | rewriter->getIntegerType(32), align)); |
| 1295 | }); |
| 1296 | else |
| 1297 | fixups.emplace_back(fixupCode, argNo, index); |
| 1298 | } |
| 1299 | newInTyAndAttrs.push_back(tup); |
| 1300 | } |
| 1301 | } |
| 1302 | |
| 1303 | /// Convert a complex argument value. This can involve storing the value to |
| 1304 | /// a temporary memory location or factoring the value into two distinct |
| 1305 | /// arguments. |
| 1306 | template <typename OpTy, typename FIXUPS> |
| 1307 | void doComplexArg(OpTy func, mlir::ComplexType cmplx, |
| 1308 | fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs, |
| 1309 | FIXUPS &fixups) { |
| 1310 | if (noComplexConversion) { |
| 1311 | newInTyAndAttrs.push_back(fir::CodeGenSpecifics::getTypeAndAttr(cmplx)); |
| 1312 | return; |
| 1313 | } |
| 1314 | auto cplxArgs = |
| 1315 | specifics->complexArgumentType(func.getLoc(), cmplx.getElementType()); |
| 1316 | createFuncOpArgFixups(func, newInTyAndAttrs, cplxArgs, fixups); |
| 1317 | } |
| 1318 | |
| 1319 | template <typename OpTy, typename FIXUPS> |
| 1320 | void doStructArg(OpTy func, fir::RecordType recTy, |
| 1321 | fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs, |
| 1322 | FIXUPS &fixups) { |
| 1323 | if (noStructConversion) { |
| 1324 | newInTyAndAttrs.push_back(fir::CodeGenSpecifics::getTypeAndAttr(recTy)); |
| 1325 | return; |
| 1326 | } |
| 1327 | auto structArgs = |
| 1328 | specifics->structArgumentType(func.getLoc(), recTy, newInTyAndAttrs); |
| 1329 | createFuncOpArgFixups(func, newInTyAndAttrs, structArgs, fixups); |
| 1330 | } |
| 1331 | |
| 1332 | private: |
| 1333 | // Replace `op` and remove it. |
| 1334 | void replaceOp(mlir::Operation *op, mlir::ValueRange newValues) { |
| 1335 | op->replaceAllUsesWith(newValues); |
| 1336 | op->dropAllReferences(); |
| 1337 | op->erase(); |
| 1338 | } |
| 1339 | |
| 1340 | inline void setMembers(fir::CodeGenSpecifics *s, mlir::OpBuilder *r, |
| 1341 | mlir::DataLayout *dl) { |
| 1342 | specifics = s; |
| 1343 | rewriter = r; |
| 1344 | dataLayout = dl; |
| 1345 | } |
| 1346 | |
| 1347 | inline void clearMembers() { setMembers(nullptr, nullptr, nullptr); } |
| 1348 | |
| 1349 | // Inserts a call to llvm.stacksave at the current insertion |
| 1350 | // point and the given location. Returns the call's result Value. |
| 1351 | inline mlir::Value genStackSave(mlir::Location loc) { |
| 1352 | fir::FirOpBuilder builder(*rewriter, getModule()); |
| 1353 | return builder.genStackSave(loc); |
| 1354 | } |
| 1355 | |
| 1356 | // Inserts a call to llvm.stackrestore at the current insertion |
| 1357 | // point and the given location and argument. |
| 1358 | inline void genStackRestore(mlir::Location loc, mlir::Value sp) { |
| 1359 | fir::FirOpBuilder builder(*rewriter, getModule()); |
| 1360 | return builder.genStackRestore(loc, sp); |
| 1361 | } |
| 1362 | |
| 1363 | fir::CodeGenSpecifics *specifics = nullptr; |
| 1364 | mlir::OpBuilder *rewriter = nullptr; |
| 1365 | mlir::DataLayout *dataLayout = nullptr; |
| 1366 | }; |
| 1367 | } // namespace |
| 1368 | |