1 | //===-- TargetRewrite.cpp -------------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // Target rewrite: rewriting of ops to make target-specific lowerings manifest. |
10 | // LLVM expects different lowering idioms to be used for distinct target |
11 | // triples. These distinctions are handled by this pass. |
12 | // |
13 | // Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/ |
14 | // |
15 | //===----------------------------------------------------------------------===// |
16 | |
17 | #include "flang/Optimizer/CodeGen/CodeGen.h" |
18 | |
19 | #include "flang/Optimizer/Builder/Character.h" |
20 | #include "flang/Optimizer/Builder/FIRBuilder.h" |
21 | #include "flang/Optimizer/Builder/Todo.h" |
22 | #include "flang/Optimizer/CodeGen/Target.h" |
23 | #include "flang/Optimizer/Dialect/FIRDialect.h" |
24 | #include "flang/Optimizer/Dialect/FIROps.h" |
25 | #include "flang/Optimizer/Dialect/FIROpsSupport.h" |
26 | #include "flang/Optimizer/Dialect/FIRType.h" |
27 | #include "flang/Optimizer/Dialect/Support/FIRContext.h" |
28 | #include "flang/Optimizer/Support/DataLayout.h" |
29 | #include "mlir/Dialect/DLTI/DLTI.h" |
30 | #include "mlir/Transforms/DialectConversion.h" |
31 | #include "llvm/ADT/STLExtras.h" |
32 | #include "llvm/ADT/TypeSwitch.h" |
33 | #include "llvm/Support/Debug.h" |
34 | #include <optional> |
35 | |
36 | namespace fir { |
37 | #define GEN_PASS_DEF_TARGETREWRITEPASS |
38 | #include "flang/Optimizer/CodeGen/CGPasses.h.inc" |
39 | } // namespace fir |
40 | |
41 | #define DEBUG_TYPE "flang-target-rewrite" |
42 | |
43 | namespace { |
44 | |
45 | /// Fixups for updating a FuncOp's arguments and return values. |
46 | struct FixupTy { |
47 | enum class Codes { |
48 | ArgumentAsLoad, |
49 | ArgumentType, |
50 | CharPair, |
51 | ReturnAsStore, |
52 | ReturnType, |
53 | Split, |
54 | Trailing, |
55 | TrailingCharProc |
56 | }; |
57 | |
58 | FixupTy(Codes code, std::size_t index, std::size_t second = 0) |
59 | : code{code}, index{index}, second{second} {} |
60 | FixupTy(Codes code, std::size_t index, |
61 | std::function<void(mlir::func::FuncOp)> &&finalizer) |
62 | : code{code}, index{index}, finalizer{finalizer} {} |
63 | FixupTy(Codes code, std::size_t index, std::size_t second, |
64 | std::function<void(mlir::func::FuncOp)> &&finalizer) |
65 | : code{code}, index{index}, second{second}, finalizer{finalizer} {} |
66 | |
67 | Codes code; |
68 | std::size_t index; |
69 | std::size_t second{}; |
70 | std::optional<std::function<void(mlir::func::FuncOp)>> finalizer{}; |
71 | }; // namespace |
72 | |
73 | /// Target-specific rewriting of the FIR. This is a prerequisite pass to code |
74 | /// generation that traverses the FIR and modifies types and operations to a |
75 | /// form that is appropriate for the specific target. LLVM IR has specific |
76 | /// idioms that are used for distinct target processor and ABI combinations. |
77 | class TargetRewrite : public fir::impl::TargetRewritePassBase<TargetRewrite> { |
78 | public: |
79 | TargetRewrite(const fir::TargetRewriteOptions &options) { |
80 | noCharacterConversion = options.noCharacterConversion; |
81 | noComplexConversion = options.noComplexConversion; |
82 | noStructConversion = options.noStructConversion; |
83 | } |
84 | |
85 | void runOnOperation() override final { |
86 | auto &context = getContext(); |
87 | mlir::OpBuilder rewriter(&context); |
88 | |
89 | auto mod = getModule(); |
90 | if (!forcedTargetTriple.empty()) |
91 | fir::setTargetTriple(mod, forcedTargetTriple); |
92 | |
93 | if (!forcedTargetCPU.empty()) |
94 | fir::setTargetCPU(mod, forcedTargetCPU); |
95 | |
96 | if (!forcedTargetFeatures.empty()) |
97 | fir::setTargetFeatures(mod, forcedTargetFeatures); |
98 | |
99 | // TargetRewrite will require querying the type storage sizes, if it was |
100 | // not set already, create a DataLayoutSpec for the ModuleOp now. |
101 | std::optional<mlir::DataLayout> dl = |
102 | fir::support::getOrSetDataLayout(mod, /*allowDefaultLayout=*/true); |
103 | if (!dl) { |
104 | mlir::emitError(mod.getLoc(), |
105 | "module operation must carry a data layout attribute " |
106 | "to perform target ABI rewrites on FIR" ); |
107 | signalPassFailure(); |
108 | return; |
109 | } |
110 | |
111 | auto specifics = fir::CodeGenSpecifics::get( |
112 | mod.getContext(), fir::getTargetTriple(mod), fir::getKindMapping(mod), |
113 | fir::getTargetCPU(mod), fir::getTargetFeatures(mod), *dl); |
114 | |
115 | setMembers(specifics.get(), &rewriter, &*dl); |
116 | |
117 | // We may need to call stacksave/stackrestore later, so |
118 | // create the FuncOps beforehand. |
119 | fir::FirOpBuilder builder(rewriter, mod); |
120 | builder.setInsertionPointToStart(mod.getBody()); |
121 | stackSaveFn = fir::factory::getLlvmStackSave(builder); |
122 | stackRestoreFn = fir::factory::getLlvmStackRestore(builder); |
123 | |
124 | // Perform type conversion on signatures and call sites. |
125 | if (mlir::failed(convertTypes(mod))) { |
126 | mlir::emitError(mlir::UnknownLoc::get(&context), |
127 | "error in converting types to target abi" ); |
128 | signalPassFailure(); |
129 | } |
130 | |
131 | // Convert ops in target-specific patterns. |
132 | mod.walk([&](mlir::Operation *op) { |
133 | if (auto call = mlir::dyn_cast<fir::CallOp>(op)) { |
134 | if (!hasPortableSignature(call.getFunctionType(), op)) |
135 | convertCallOp(call); |
136 | } else if (auto dispatch = mlir::dyn_cast<fir::DispatchOp>(op)) { |
137 | if (!hasPortableSignature(dispatch.getFunctionType(), op)) |
138 | convertCallOp(dispatch); |
139 | } else if (auto addr = mlir::dyn_cast<fir::AddrOfOp>(op)) { |
140 | if (addr.getType().isa<mlir::FunctionType>() && |
141 | !hasPortableSignature(addr.getType(), op)) |
142 | convertAddrOp(addr); |
143 | } |
144 | }); |
145 | |
146 | clearMembers(); |
147 | } |
148 | |
149 | mlir::ModuleOp getModule() { return getOperation(); } |
150 | |
151 | template <typename A, typename B, typename C> |
152 | std::optional<std::function<mlir::Value(mlir::Operation *)>> |
153 | rewriteCallComplexResultType( |
154 | mlir::Location loc, A ty, B &newResTys, |
155 | fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs, C &newOpers, |
156 | mlir::Value &savedStackPtr) { |
157 | if (noComplexConversion) { |
158 | newResTys.push_back(ty); |
159 | return std::nullopt; |
160 | } |
161 | auto m = specifics->complexReturnType(loc, ty.getElementType()); |
162 | // Currently targets mandate COMPLEX is a single aggregate or packed |
163 | // scalar, including the sret case. |
164 | assert(m.size() == 1 && "target of complex return not supported" ); |
165 | auto resTy = std::get<mlir::Type>(m[0]); |
166 | auto attr = std::get<fir::CodeGenSpecifics::Attributes>(m[0]); |
167 | if (attr.isSRet()) { |
168 | assert(fir::isa_ref_type(resTy) && "must be a memory reference type" ); |
169 | // Save the stack pointer, if it has not been saved for this call yet. |
170 | // We will need to restore it after the call, because the alloca |
171 | // needs to be deallocated. |
172 | if (!savedStackPtr) |
173 | savedStackPtr = genStackSave(loc); |
174 | mlir::Value stack = |
175 | rewriter->create<fir::AllocaOp>(loc, fir::dyn_cast_ptrEleTy(resTy)); |
176 | newInTyAndAttrs.push_back(m[0]); |
177 | newOpers.push_back(stack); |
178 | return [=](mlir::Operation *) -> mlir::Value { |
179 | auto memTy = fir::ReferenceType::get(ty); |
180 | auto cast = rewriter->create<fir::ConvertOp>(loc, memTy, stack); |
181 | return rewriter->create<fir::LoadOp>(loc, cast); |
182 | }; |
183 | } |
184 | newResTys.push_back(resTy); |
185 | return [=, &savedStackPtr](mlir::Operation *call) -> mlir::Value { |
186 | // We are going to generate an alloca, so save the stack pointer. |
187 | if (!savedStackPtr) |
188 | savedStackPtr = genStackSave(loc); |
189 | return this->convertValueInMemory(loc, call->getResult(0), ty, |
190 | /*inputMayBeBigger=*/true); |
191 | }; |
192 | } |
193 | |
194 | void passArgumentOnStackOrWithNewType( |
195 | mlir::Location loc, fir::CodeGenSpecifics::TypeAndAttr newTypeAndAttr, |
196 | mlir::Type oldType, mlir::Value oper, |
197 | llvm::SmallVectorImpl<mlir::Value> &newOpers, |
198 | mlir::Value &savedStackPtr) { |
199 | auto resTy = std::get<mlir::Type>(newTypeAndAttr); |
200 | auto attr = std::get<fir::CodeGenSpecifics::Attributes>(newTypeAndAttr); |
201 | // We are going to generate an alloca, so save the stack pointer. |
202 | if (!savedStackPtr) |
203 | savedStackPtr = genStackSave(loc); |
204 | if (attr.isByVal()) { |
205 | mlir::Value mem = rewriter->create<fir::AllocaOp>(loc, oldType); |
206 | rewriter->create<fir::StoreOp>(loc, oper, mem); |
207 | if (mem.getType() != resTy) |
208 | mem = rewriter->create<fir::ConvertOp>(loc, resTy, mem); |
209 | newOpers.push_back(mem); |
210 | } else { |
211 | mlir::Value bitcast = |
212 | convertValueInMemory(loc, oper, resTy, /*inputMayBeBigger=*/false); |
213 | newOpers.push_back(bitcast); |
214 | } |
215 | } |
216 | |
217 | // Do a bitcast (convert a value via its memory representation). |
218 | // The input and output types may have different storage sizes, |
219 | // "inputMayBeBigger" should be set to indicate which of the input or |
220 | // output type may be bigger in order for the load/store to be safe. |
221 | // The mismatch comes from the fact that the LLVM register used for passing |
222 | // may be bigger than the value being passed (e.g., passing |
223 | // a `!fir.type<t{fir.array<3xi8>}>` into an i32 LLVM register). |
224 | mlir::Value convertValueInMemory(mlir::Location loc, mlir::Value value, |
225 | mlir::Type newType, bool inputMayBeBigger) { |
226 | if (inputMayBeBigger) { |
227 | auto newRefTy = fir::ReferenceType::get(newType); |
228 | auto mem = rewriter->create<fir::AllocaOp>(loc, value.getType()); |
229 | rewriter->create<fir::StoreOp>(loc, value, mem); |
230 | auto cast = rewriter->create<fir::ConvertOp>(loc, newRefTy, mem); |
231 | return rewriter->create<fir::LoadOp>(loc, cast); |
232 | } else { |
233 | auto oldRefTy = fir::ReferenceType::get(value.getType()); |
234 | auto mem = rewriter->create<fir::AllocaOp>(loc, newType); |
235 | auto cast = rewriter->create<fir::ConvertOp>(loc, oldRefTy, mem); |
236 | rewriter->create<fir::StoreOp>(loc, value, cast); |
237 | return rewriter->create<fir::LoadOp>(loc, mem); |
238 | } |
239 | } |
240 | |
241 | void passSplitArgument(mlir::Location loc, |
242 | fir::CodeGenSpecifics::Marshalling splitArgs, |
243 | mlir::Type oldType, mlir::Value oper, |
244 | llvm::SmallVectorImpl<mlir::Value> &newOpers, |
245 | mlir::Value &savedStackPtr) { |
246 | // COMPLEX or struct argument split into separate arguments |
247 | if (!fir::isa_complex(oldType)) { |
248 | // Cast original operand to a tuple of the new arguments |
249 | // via memory. |
250 | llvm::SmallVector<mlir::Type> partTypes; |
251 | for (auto argPart : splitArgs) |
252 | partTypes.push_back(std::get<mlir::Type>(argPart)); |
253 | mlir::Type tupleType = |
254 | mlir::TupleType::get(oldType.getContext(), partTypes); |
255 | if (!savedStackPtr) |
256 | savedStackPtr = genStackSave(loc); |
257 | oper = convertValueInMemory(loc, oper, tupleType, |
258 | /*inputMayBeBigger=*/false); |
259 | } |
260 | auto iTy = rewriter->getIntegerType(32); |
261 | for (auto e : llvm::enumerate(splitArgs)) { |
262 | auto &tup = e.value(); |
263 | auto ty = std::get<mlir::Type>(tup); |
264 | auto index = e.index(); |
265 | auto idx = rewriter->getIntegerAttr(iTy, index); |
266 | auto val = rewriter->create<fir::ExtractValueOp>( |
267 | loc, ty, oper, rewriter->getArrayAttr(idx)); |
268 | newOpers.push_back(val); |
269 | } |
270 | } |
271 | |
272 | void rewriteCallOperands( |
273 | mlir::Location loc, fir::CodeGenSpecifics::Marshalling passArgAs, |
274 | mlir::Type originalArgTy, mlir::Value oper, |
275 | llvm::SmallVectorImpl<mlir::Value> &newOpers, mlir::Value &savedStackPtr, |
276 | fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs) { |
277 | if (passArgAs.size() == 1) { |
278 | // COMPLEX or derived type is passed as a single argument. |
279 | passArgumentOnStackOrWithNewType(loc, passArgAs[0], originalArgTy, oper, |
280 | newOpers, savedStackPtr); |
281 | } else { |
282 | // COMPLEX or derived type is split into separate arguments |
283 | passSplitArgument(loc, passArgAs, originalArgTy, oper, newOpers, |
284 | savedStackPtr); |
285 | } |
286 | newInTyAndAttrs.insert(newInTyAndAttrs.end(), passArgAs.begin(), |
287 | passArgAs.end()); |
288 | } |
289 | |
290 | template <typename CPLX> |
291 | void rewriteCallComplexInputType( |
292 | mlir::Location loc, CPLX ty, mlir::Value oper, |
293 | fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs, |
294 | llvm::SmallVectorImpl<mlir::Value> &newOpers, |
295 | mlir::Value &savedStackPtr) { |
296 | if (noComplexConversion) { |
297 | newInTyAndAttrs.push_back(fir::CodeGenSpecifics::getTypeAndAttr(ty)); |
298 | newOpers.push_back(oper); |
299 | return; |
300 | } |
301 | auto m = specifics->complexArgumentType(loc, ty.getElementType()); |
302 | rewriteCallOperands(loc, m, ty, oper, newOpers, savedStackPtr, |
303 | newInTyAndAttrs); |
304 | } |
305 | |
306 | void rewriteCallStructInputType( |
307 | mlir::Location loc, fir::RecordType recTy, mlir::Value oper, |
308 | fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs, |
309 | llvm::SmallVectorImpl<mlir::Value> &newOpers, |
310 | mlir::Value &savedStackPtr) { |
311 | if (noStructConversion) { |
312 | newInTyAndAttrs.push_back(fir::CodeGenSpecifics::getTypeAndAttr(recTy)); |
313 | newOpers.push_back(oper); |
314 | return; |
315 | } |
316 | auto structArgs = |
317 | specifics->structArgumentType(loc, recTy, newInTyAndAttrs); |
318 | rewriteCallOperands(loc, structArgs, recTy, oper, newOpers, savedStackPtr, |
319 | newInTyAndAttrs); |
320 | } |
321 | |
322 | static bool hasByValOrSRetArgs( |
323 | const fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs) { |
324 | return llvm::any_of(newInTyAndAttrs, [](auto arg) { |
325 | const auto &attr = std::get<fir::CodeGenSpecifics::Attributes>(arg); |
326 | return attr.isByVal() || attr.isSRet(); |
327 | }); |
328 | } |
329 | |
330 | // Convert fir.call and fir.dispatch Ops. |
331 | template <typename A> |
332 | void convertCallOp(A callOp) { |
333 | auto fnTy = callOp.getFunctionType(); |
334 | auto loc = callOp.getLoc(); |
335 | rewriter->setInsertionPoint(callOp); |
336 | llvm::SmallVector<mlir::Type> newResTys; |
337 | fir::CodeGenSpecifics::Marshalling newInTyAndAttrs; |
338 | llvm::SmallVector<mlir::Value> newOpers; |
339 | mlir::Value savedStackPtr = nullptr; |
340 | |
341 | // If the call is indirect, the first argument must still be the function |
342 | // to call. |
343 | int dropFront = 0; |
344 | if constexpr (std::is_same_v<std::decay_t<A>, fir::CallOp>) { |
345 | if (!callOp.getCallee()) { |
346 | newInTyAndAttrs.push_back( |
347 | fir::CodeGenSpecifics::getTypeAndAttr(fnTy.getInput(0))); |
348 | newOpers.push_back(callOp.getOperand(0)); |
349 | dropFront = 1; |
350 | } |
351 | } else { |
352 | dropFront = 1; // First operand is the polymorphic object. |
353 | } |
354 | |
355 | // Determine the rewrite function, `wrap`, for the result value. |
356 | std::optional<std::function<mlir::Value(mlir::Operation *)>> wrap; |
357 | if (fnTy.getResults().size() == 1) { |
358 | mlir::Type ty = fnTy.getResult(0); |
359 | llvm::TypeSwitch<mlir::Type>(ty) |
360 | .template Case<fir::ComplexType>([&](fir::ComplexType cmplx) { |
361 | wrap = rewriteCallComplexResultType(loc, cmplx, newResTys, |
362 | newInTyAndAttrs, newOpers, |
363 | savedStackPtr); |
364 | }) |
365 | .template Case<mlir::ComplexType>([&](mlir::ComplexType cmplx) { |
366 | wrap = rewriteCallComplexResultType(loc, cmplx, newResTys, |
367 | newInTyAndAttrs, newOpers, |
368 | savedStackPtr); |
369 | }) |
370 | .Default([&](mlir::Type ty) { newResTys.push_back(ty); }); |
371 | } else if (fnTy.getResults().size() > 1) { |
372 | TODO(loc, "multiple results not supported yet" ); |
373 | } |
374 | |
375 | llvm::SmallVector<mlir::Type> trailingInTys; |
376 | llvm::SmallVector<mlir::Value> trailingOpers; |
377 | unsigned passArgShift = 0; |
378 | for (auto e : llvm::enumerate( |
379 | llvm::zip(fnTy.getInputs().drop_front(dropFront), |
380 | callOp.getOperands().drop_front(dropFront)))) { |
381 | mlir::Type ty = std::get<0>(e.value()); |
382 | mlir::Value oper = std::get<1>(e.value()); |
383 | unsigned index = e.index(); |
384 | llvm::TypeSwitch<mlir::Type>(ty) |
385 | .template Case<fir::BoxCharType>([&](fir::BoxCharType boxTy) { |
386 | bool sret; |
387 | if constexpr (std::is_same_v<std::decay_t<A>, fir::CallOp>) { |
388 | if (noCharacterConversion) { |
389 | newInTyAndAttrs.push_back( |
390 | fir::CodeGenSpecifics::getTypeAndAttr(boxTy)); |
391 | newOpers.push_back(oper); |
392 | return; |
393 | } |
394 | sret = callOp.getCallee() && |
395 | functionArgIsSRet( |
396 | index, getModule().lookupSymbol<mlir::func::FuncOp>( |
397 | *callOp.getCallee())); |
398 | } else { |
399 | // TODO: dispatch case; how do we put arguments on a call? |
400 | // We cannot put both an sret and the dispatch object first. |
401 | sret = false; |
402 | TODO(loc, "dispatch + sret not supported yet" ); |
403 | } |
404 | auto m = specifics->boxcharArgumentType(boxTy.getEleTy(), sret); |
405 | auto unbox = rewriter->create<fir::UnboxCharOp>( |
406 | loc, std::get<mlir::Type>(m[0]), std::get<mlir::Type>(m[1]), |
407 | oper); |
408 | // unboxed CHARACTER arguments |
409 | for (auto e : llvm::enumerate(m)) { |
410 | unsigned idx = e.index(); |
411 | auto attr = |
412 | std::get<fir::CodeGenSpecifics::Attributes>(e.value()); |
413 | auto argTy = std::get<mlir::Type>(e.value()); |
414 | if (attr.isAppend()) { |
415 | trailingInTys.push_back(argTy); |
416 | trailingOpers.push_back(unbox.getResult(idx)); |
417 | } else { |
418 | newInTyAndAttrs.push_back(e.value()); |
419 | newOpers.push_back(unbox.getResult(idx)); |
420 | } |
421 | } |
422 | }) |
423 | .template Case<fir::ComplexType>([&](fir::ComplexType cmplx) { |
424 | rewriteCallComplexInputType(loc, cmplx, oper, newInTyAndAttrs, |
425 | newOpers, savedStackPtr); |
426 | }) |
427 | .template Case<mlir::ComplexType>([&](mlir::ComplexType cmplx) { |
428 | rewriteCallComplexInputType(loc, cmplx, oper, newInTyAndAttrs, |
429 | newOpers, savedStackPtr); |
430 | }) |
431 | .template Case<fir::RecordType>([&](fir::RecordType recTy) { |
432 | rewriteCallStructInputType(loc, recTy, oper, newInTyAndAttrs, |
433 | newOpers, savedStackPtr); |
434 | }) |
435 | .template Case<mlir::TupleType>([&](mlir::TupleType tuple) { |
436 | if (fir::isCharacterProcedureTuple(tuple)) { |
437 | mlir::ModuleOp module = getModule(); |
438 | if constexpr (std::is_same_v<std::decay_t<A>, fir::CallOp>) { |
439 | if (callOp.getCallee()) { |
440 | llvm::StringRef charProcAttr = |
441 | fir::getCharacterProcedureDummyAttrName(); |
442 | // The charProcAttr attribute is only used as a safety to |
443 | // confirm that this is a dummy procedure and should be split. |
444 | // It cannot be used to match because attributes are not |
445 | // available in case of indirect calls. |
446 | auto funcOp = module.lookupSymbol<mlir::func::FuncOp>( |
447 | *callOp.getCallee()); |
448 | if (funcOp && |
449 | !funcOp.template getArgAttrOfType<mlir::UnitAttr>( |
450 | index, charProcAttr)) |
451 | mlir::emitError(loc, "tuple argument will be split even " |
452 | "though it does not have the `" + |
453 | charProcAttr + "` attribute" ); |
454 | } |
455 | } |
456 | mlir::Type funcPointerType = tuple.getType(0); |
457 | mlir::Type lenType = tuple.getType(1); |
458 | fir::FirOpBuilder builder(*rewriter, module); |
459 | auto [funcPointer, len] = |
460 | fir::factory::extractCharacterProcedureTuple(builder, loc, |
461 | oper); |
462 | newInTyAndAttrs.push_back( |
463 | fir::CodeGenSpecifics::getTypeAndAttr(funcPointerType)); |
464 | newOpers.push_back(funcPointer); |
465 | trailingInTys.push_back(lenType); |
466 | trailingOpers.push_back(len); |
467 | } else { |
468 | newInTyAndAttrs.push_back( |
469 | fir::CodeGenSpecifics::getTypeAndAttr(tuple)); |
470 | newOpers.push_back(oper); |
471 | } |
472 | }) |
473 | .Default([&](mlir::Type ty) { |
474 | if constexpr (std::is_same_v<std::decay_t<A>, fir::DispatchOp>) { |
475 | if (callOp.getPassArgPos() && *callOp.getPassArgPos() == index) |
476 | passArgShift = newOpers.size() - *callOp.getPassArgPos(); |
477 | } |
478 | newInTyAndAttrs.push_back( |
479 | fir::CodeGenSpecifics::getTypeAndAttr(ty)); |
480 | newOpers.push_back(oper); |
481 | }); |
482 | } |
483 | |
484 | llvm::SmallVector<mlir::Type> newInTypes = toTypeList(newInTyAndAttrs); |
485 | newInTypes.insert(newInTypes.end(), trailingInTys.begin(), |
486 | trailingInTys.end()); |
487 | newOpers.insert(newOpers.end(), trailingOpers.begin(), trailingOpers.end()); |
488 | |
489 | llvm::SmallVector<mlir::Value, 1> newCallResults; |
490 | if constexpr (std::is_same_v<std::decay_t<A>, fir::CallOp>) { |
491 | fir::CallOp newCall; |
492 | if (callOp.getCallee()) { |
493 | newCall = |
494 | rewriter->create<A>(loc, *callOp.getCallee(), newResTys, newOpers); |
495 | } else { |
496 | // TODO: llvm dialect must be updated to propagate argument on |
497 | // attributes for indirect calls. See: |
498 | // https://discourse.llvm.org/t/should-llvm-callop-be-able-to-carry-argument-attributes-for-indirect-calls/75431 |
499 | if (hasByValOrSRetArgs(newInTyAndAttrs)) |
500 | TODO(loc, |
501 | "passing argument or result on the stack in indirect calls" ); |
502 | newOpers[0].setType(mlir::FunctionType::get( |
503 | callOp.getContext(), |
504 | mlir::TypeRange{newInTypes}.drop_front(dropFront), newResTys)); |
505 | newCall = rewriter->create<A>(loc, newResTys, newOpers); |
506 | } |
507 | LLVM_DEBUG(llvm::dbgs() << "replacing call with " << newCall << '\n'); |
508 | if (wrap) |
509 | newCallResults.push_back((*wrap)(newCall.getOperation())); |
510 | else |
511 | newCallResults.append(newCall.result_begin(), newCall.result_end()); |
512 | } else { |
513 | fir::DispatchOp dispatchOp = rewriter->create<A>( |
514 | loc, newResTys, rewriter->getStringAttr(callOp.getMethod()), |
515 | callOp.getOperands()[0], newOpers, |
516 | rewriter->getI32IntegerAttr(*callOp.getPassArgPos() + passArgShift)); |
517 | if (wrap) |
518 | newCallResults.push_back((*wrap)(dispatchOp.getOperation())); |
519 | else |
520 | newCallResults.append(dispatchOp.result_begin(), |
521 | dispatchOp.result_end()); |
522 | } |
523 | |
524 | if (newCallResults.size() <= 1) { |
525 | if (savedStackPtr) { |
526 | if (newCallResults.size() == 1) { |
527 | // We assume that all the allocas are inserted before |
528 | // the operation that defines the new call result. |
529 | rewriter->setInsertionPointAfterValue(newCallResults[0]); |
530 | } else { |
531 | // If the call does not have results, then insert |
532 | // stack restore after the original call operation. |
533 | rewriter->setInsertionPointAfter(callOp); |
534 | } |
535 | genStackRestore(loc, savedStackPtr); |
536 | } |
537 | replaceOp(callOp, newCallResults); |
538 | } else { |
539 | // The TODO is duplicated here to make sure this part |
540 | // handles the stackrestore insertion properly, if |
541 | // we add support for multiple call results. |
542 | TODO(loc, "multiple results not supported yet" ); |
543 | } |
544 | } |
545 | |
546 | // Result type fixup for fir::ComplexType and mlir::ComplexType |
547 | template <typename A, typename B> |
548 | void lowerComplexSignatureRes( |
549 | mlir::Location loc, A cmplx, B &newResTys, |
550 | fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs) { |
551 | if (noComplexConversion) { |
552 | newResTys.push_back(cmplx); |
553 | return; |
554 | } |
555 | for (auto &tup : |
556 | specifics->complexReturnType(loc, cmplx.getElementType())) { |
557 | auto argTy = std::get<mlir::Type>(tup); |
558 | if (std::get<fir::CodeGenSpecifics::Attributes>(tup).isSRet()) |
559 | newInTyAndAttrs.push_back(tup); |
560 | else |
561 | newResTys.push_back(argTy); |
562 | } |
563 | } |
564 | |
565 | // Argument type fixup for fir::ComplexType and mlir::ComplexType |
566 | template <typename A> |
567 | void lowerComplexSignatureArg( |
568 | mlir::Location loc, A cmplx, |
569 | fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs) { |
570 | if (noComplexConversion) { |
571 | newInTyAndAttrs.push_back(fir::CodeGenSpecifics::getTypeAndAttr(cmplx)); |
572 | } else { |
573 | auto cplxArgs = |
574 | specifics->complexArgumentType(loc, cmplx.getElementType()); |
575 | newInTyAndAttrs.insert(newInTyAndAttrs.end(), cplxArgs.begin(), |
576 | cplxArgs.end()); |
577 | } |
578 | } |
579 | |
580 | void |
581 | lowerStructSignatureArg(mlir::Location loc, fir::RecordType recTy, |
582 | fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs) { |
583 | if (noStructConversion) { |
584 | newInTyAndAttrs.push_back(fir::CodeGenSpecifics::getTypeAndAttr(recTy)); |
585 | return; |
586 | } |
587 | auto structArgs = |
588 | specifics->structArgumentType(loc, recTy, newInTyAndAttrs); |
589 | newInTyAndAttrs.insert(newInTyAndAttrs.end(), structArgs.begin(), |
590 | structArgs.end()); |
591 | } |
592 | |
593 | llvm::SmallVector<mlir::Type> |
594 | toTypeList(const fir::CodeGenSpecifics::Marshalling &marshalled) { |
595 | llvm::SmallVector<mlir::Type> typeList; |
596 | for (auto &typeAndAttr : marshalled) |
597 | typeList.emplace_back(std::get<mlir::Type>(typeAndAttr)); |
598 | return typeList; |
599 | } |
600 | |
601 | /// Taking the address of a function. Modify the signature as needed. |
602 | void convertAddrOp(fir::AddrOfOp addrOp) { |
603 | rewriter->setInsertionPoint(addrOp); |
604 | auto addrTy = addrOp.getType().cast<mlir::FunctionType>(); |
605 | fir::CodeGenSpecifics::Marshalling newInTyAndAttrs; |
606 | llvm::SmallVector<mlir::Type> newResTys; |
607 | auto loc = addrOp.getLoc(); |
608 | for (mlir::Type ty : addrTy.getResults()) { |
609 | llvm::TypeSwitch<mlir::Type>(ty) |
610 | .Case<fir::ComplexType>([&](fir::ComplexType ty) { |
611 | lowerComplexSignatureRes(loc, ty, newResTys, newInTyAndAttrs); |
612 | }) |
613 | .Case<mlir::ComplexType>([&](mlir::ComplexType ty) { |
614 | lowerComplexSignatureRes(loc, ty, newResTys, newInTyAndAttrs); |
615 | }) |
616 | .Default([&](mlir::Type ty) { newResTys.push_back(ty); }); |
617 | } |
618 | llvm::SmallVector<mlir::Type> trailingInTys; |
619 | for (mlir::Type ty : addrTy.getInputs()) { |
620 | llvm::TypeSwitch<mlir::Type>(ty) |
621 | .Case<fir::BoxCharType>([&](auto box) { |
622 | if (noCharacterConversion) { |
623 | newInTyAndAttrs.push_back( |
624 | fir::CodeGenSpecifics::getTypeAndAttr(box)); |
625 | } else { |
626 | for (auto &tup : specifics->boxcharArgumentType(box.getEleTy())) { |
627 | auto attr = std::get<fir::CodeGenSpecifics::Attributes>(tup); |
628 | auto argTy = std::get<mlir::Type>(tup); |
629 | if (attr.isAppend()) |
630 | trailingInTys.push_back(argTy); |
631 | else |
632 | newInTyAndAttrs.push_back(tup); |
633 | } |
634 | } |
635 | }) |
636 | .Case<fir::ComplexType>([&](fir::ComplexType ty) { |
637 | lowerComplexSignatureArg(loc, ty, newInTyAndAttrs); |
638 | }) |
639 | .Case<mlir::ComplexType>([&](mlir::ComplexType ty) { |
640 | lowerComplexSignatureArg(loc, ty, newInTyAndAttrs); |
641 | }) |
642 | .Case<mlir::TupleType>([&](mlir::TupleType tuple) { |
643 | if (fir::isCharacterProcedureTuple(tuple)) { |
644 | newInTyAndAttrs.push_back( |
645 | fir::CodeGenSpecifics::getTypeAndAttr(tuple.getType(0))); |
646 | trailingInTys.push_back(tuple.getType(1)); |
647 | } else { |
648 | newInTyAndAttrs.push_back( |
649 | fir::CodeGenSpecifics::getTypeAndAttr(ty)); |
650 | } |
651 | }) |
652 | .template Case<fir::RecordType>([&](fir::RecordType recTy) { |
653 | lowerStructSignatureArg(loc, recTy, newInTyAndAttrs); |
654 | }) |
655 | .Default([&](mlir::Type ty) { |
656 | newInTyAndAttrs.push_back( |
657 | fir::CodeGenSpecifics::getTypeAndAttr(ty)); |
658 | }); |
659 | } |
660 | llvm::SmallVector<mlir::Type> newInTypes = toTypeList(newInTyAndAttrs); |
661 | // append trailing input types |
662 | newInTypes.insert(newInTypes.end(), trailingInTys.begin(), |
663 | trailingInTys.end()); |
664 | // replace this op with a new one with the updated signature |
665 | auto newTy = rewriter->getFunctionType(newInTypes, newResTys); |
666 | auto newOp = rewriter->create<fir::AddrOfOp>(addrOp.getLoc(), newTy, |
667 | addrOp.getSymbol()); |
668 | replaceOp(addrOp, newOp.getResult()); |
669 | } |
670 | |
671 | /// Convert the type signatures on all the functions present in the module. |
672 | /// As the type signature is being changed, this must also update the |
673 | /// function itself to use any new arguments, etc. |
674 | mlir::LogicalResult convertTypes(mlir::ModuleOp mod) { |
675 | mlir::MLIRContext *ctx = mod->getContext(); |
676 | auto targetCPU = specifics->getTargetCPU(); |
677 | mlir::StringAttr targetCPUAttr = |
678 | targetCPU.empty() ? nullptr : mlir::StringAttr::get(ctx, targetCPU); |
679 | auto targetFeaturesAttr = specifics->getTargetFeatures(); |
680 | |
681 | for (auto fn : mod.getOps<mlir::func::FuncOp>()) { |
682 | if (targetCPUAttr) |
683 | fn->setAttr("target_cpu" , targetCPUAttr); |
684 | |
685 | if (targetFeaturesAttr) |
686 | fn->setAttr("target_features" , targetFeaturesAttr); |
687 | |
688 | convertSignature(fn); |
689 | } |
690 | return mlir::success(); |
691 | } |
692 | |
693 | // Returns true if the function should be interoperable with C. |
694 | static bool isFuncWithCCallingConvention(mlir::Operation *op) { |
695 | auto funcOp = mlir::dyn_cast<mlir::func::FuncOp>(op); |
696 | if (!funcOp) |
697 | return false; |
698 | return op->hasAttrOfType<mlir::UnitAttr>( |
699 | fir::FIROpsDialect::getFirRuntimeAttrName()) || |
700 | op->hasAttrOfType<mlir::StringAttr>(fir::getSymbolAttrName()); |
701 | } |
702 | |
703 | /// If the signature does not need any special target-specific conversions, |
704 | /// then it is considered portable for any target, and this function will |
705 | /// return `true`. Otherwise, the signature is not portable and `false` is |
706 | /// returned. |
707 | bool hasPortableSignature(mlir::Type signature, mlir::Operation *op) { |
708 | assert(signature.isa<mlir::FunctionType>()); |
709 | auto func = signature.dyn_cast<mlir::FunctionType>(); |
710 | bool hasCCallingConv = isFuncWithCCallingConvention(op); |
711 | for (auto ty : func.getResults()) |
712 | if ((ty.isa<fir::BoxCharType>() && !noCharacterConversion) || |
713 | (fir::isa_complex(ty) && !noComplexConversion) || |
714 | (ty.isa<mlir::IntegerType>() && hasCCallingConv)) { |
715 | LLVM_DEBUG(llvm::dbgs() << "rewrite " << signature << " for target\n" ); |
716 | return false; |
717 | } |
718 | for (auto ty : func.getInputs()) |
719 | if (((ty.isa<fir::BoxCharType>() || fir::isCharacterProcedureTuple(ty)) && |
720 | !noCharacterConversion) || |
721 | (fir::isa_complex(ty) && !noComplexConversion) || |
722 | (ty.isa<mlir::IntegerType>() && hasCCallingConv) || |
723 | (ty.isa<fir::RecordType>() && !noStructConversion)) { |
724 | LLVM_DEBUG(llvm::dbgs() << "rewrite " << signature << " for target\n" ); |
725 | return false; |
726 | } |
727 | return true; |
728 | } |
729 | |
730 | /// Determine if the signature has host associations. The host association |
731 | /// argument may need special target specific rewriting. |
732 | static bool hasHostAssociations(mlir::func::FuncOp func) { |
733 | std::size_t end = func.getFunctionType().getInputs().size(); |
734 | for (std::size_t i = 0; i < end; ++i) |
735 | if (func.getArgAttrOfType<mlir::UnitAttr>(i, fir::getHostAssocAttrName())) |
736 | return true; |
737 | return false; |
738 | } |
739 | |
740 | /// Rewrite the signatures and body of the `FuncOp`s in the module for |
741 | /// the immediately subsequent target code gen. |
742 | void convertSignature(mlir::func::FuncOp func) { |
743 | auto funcTy = func.getFunctionType().cast<mlir::FunctionType>(); |
744 | if (hasPortableSignature(funcTy, func) && !hasHostAssociations(func)) |
745 | return; |
746 | llvm::SmallVector<mlir::Type> newResTys; |
747 | fir::CodeGenSpecifics::Marshalling newInTyAndAttrs; |
748 | llvm::SmallVector<std::pair<unsigned, mlir::NamedAttribute>> savedAttrs; |
749 | llvm::SmallVector<std::pair<unsigned, mlir::NamedAttribute>> extraAttrs; |
750 | llvm::SmallVector<FixupTy> fixups; |
751 | llvm::SmallVector<std::pair<unsigned, mlir::NamedAttrList>, 1> resultAttrs; |
752 | |
753 | // Save argument attributes in case there is a shift so we can replace them |
754 | // correctly. |
755 | for (auto e : llvm::enumerate(funcTy.getInputs())) { |
756 | unsigned index = e.index(); |
757 | llvm::ArrayRef<mlir::NamedAttribute> attrs = |
758 | mlir::function_interface_impl::getArgAttrs(func, index); |
759 | for (mlir::NamedAttribute attr : attrs) { |
760 | savedAttrs.push_back({index, attr}); |
761 | } |
762 | } |
763 | |
764 | // Convert return value(s) |
765 | for (auto ty : funcTy.getResults()) |
766 | llvm::TypeSwitch<mlir::Type>(ty) |
767 | .Case<fir::ComplexType>([&](fir::ComplexType cmplx) { |
768 | if (noComplexConversion) |
769 | newResTys.push_back(cmplx); |
770 | else |
771 | doComplexReturn(func, cmplx, newResTys, newInTyAndAttrs, fixups); |
772 | }) |
773 | .Case<mlir::ComplexType>([&](mlir::ComplexType cmplx) { |
774 | if (noComplexConversion) |
775 | newResTys.push_back(cmplx); |
776 | else |
777 | doComplexReturn(func, cmplx, newResTys, newInTyAndAttrs, fixups); |
778 | }) |
779 | .Case<mlir::IntegerType>([&](mlir::IntegerType intTy) { |
780 | auto m = specifics->integerArgumentType(func.getLoc(), intTy); |
781 | assert(m.size() == 1); |
782 | auto attr = std::get<fir::CodeGenSpecifics::Attributes>(m[0]); |
783 | auto retTy = std::get<mlir::Type>(m[0]); |
784 | std::size_t resId = newResTys.size(); |
785 | llvm::StringRef extensionAttrName = attr.getIntExtensionAttrName(); |
786 | if (!extensionAttrName.empty() && |
787 | isFuncWithCCallingConvention(func)) |
788 | resultAttrs.emplace_back( |
789 | resId, rewriter->getNamedAttr(extensionAttrName, |
790 | rewriter->getUnitAttr())); |
791 | newResTys.push_back(retTy); |
792 | }) |
793 | .Default([&](mlir::Type ty) { newResTys.push_back(ty); }); |
794 | |
795 | // Saved potential shift in argument. Handling of result can add arguments |
796 | // at the beginning of the function signature. |
797 | unsigned argumentShift = newInTyAndAttrs.size(); |
798 | |
799 | // Convert arguments |
800 | llvm::SmallVector<mlir::Type> trailingTys; |
801 | for (auto e : llvm::enumerate(funcTy.getInputs())) { |
802 | auto ty = e.value(); |
803 | unsigned index = e.index(); |
804 | llvm::TypeSwitch<mlir::Type>(ty) |
805 | .Case<fir::BoxCharType>([&](fir::BoxCharType boxTy) { |
806 | if (noCharacterConversion) { |
807 | newInTyAndAttrs.push_back( |
808 | fir::CodeGenSpecifics::getTypeAndAttr(boxTy)); |
809 | } else { |
810 | // Convert a CHARACTER argument type. This can involve separating |
811 | // the pointer and the LEN into two arguments and moving the LEN |
812 | // argument to the end of the arg list. |
813 | bool sret = functionArgIsSRet(index, func); |
814 | for (auto e : llvm::enumerate(specifics->boxcharArgumentType( |
815 | boxTy.getEleTy(), sret))) { |
816 | auto &tup = e.value(); |
817 | auto index = e.index(); |
818 | auto attr = std::get<fir::CodeGenSpecifics::Attributes>(tup); |
819 | auto argTy = std::get<mlir::Type>(tup); |
820 | if (attr.isAppend()) { |
821 | trailingTys.push_back(argTy); |
822 | } else { |
823 | if (sret) { |
824 | fixups.emplace_back(FixupTy::Codes::CharPair, |
825 | newInTyAndAttrs.size(), index); |
826 | } else { |
827 | fixups.emplace_back(FixupTy::Codes::Trailing, |
828 | newInTyAndAttrs.size(), |
829 | trailingTys.size()); |
830 | } |
831 | newInTyAndAttrs.push_back(tup); |
832 | } |
833 | } |
834 | } |
835 | }) |
836 | .Case<fir::ComplexType>([&](fir::ComplexType cmplx) { |
837 | doComplexArg(func, cmplx, newInTyAndAttrs, fixups); |
838 | }) |
839 | .Case<mlir::ComplexType>([&](mlir::ComplexType cmplx) { |
840 | doComplexArg(func, cmplx, newInTyAndAttrs, fixups); |
841 | }) |
842 | .Case<mlir::TupleType>([&](mlir::TupleType tuple) { |
843 | if (fir::isCharacterProcedureTuple(tuple)) { |
844 | fixups.emplace_back(FixupTy::Codes::TrailingCharProc, |
845 | newInTyAndAttrs.size(), trailingTys.size()); |
846 | newInTyAndAttrs.push_back( |
847 | fir::CodeGenSpecifics::getTypeAndAttr(tuple.getType(0))); |
848 | trailingTys.push_back(tuple.getType(1)); |
849 | } else { |
850 | newInTyAndAttrs.push_back( |
851 | fir::CodeGenSpecifics::getTypeAndAttr(ty)); |
852 | } |
853 | }) |
854 | .Case<mlir::IntegerType>([&](mlir::IntegerType intTy) { |
855 | auto m = specifics->integerArgumentType(func.getLoc(), intTy); |
856 | assert(m.size() == 1); |
857 | auto attr = std::get<fir::CodeGenSpecifics::Attributes>(m[0]); |
858 | auto argNo = newInTyAndAttrs.size(); |
859 | llvm::StringRef extensionAttrName = attr.getIntExtensionAttrName(); |
860 | if (!extensionAttrName.empty() && |
861 | isFuncWithCCallingConvention(func)) |
862 | fixups.emplace_back(FixupTy::Codes::ArgumentType, argNo, |
863 | [=](mlir::func::FuncOp func) { |
864 | func.setArgAttr( |
865 | argNo, extensionAttrName, |
866 | mlir::UnitAttr::get(func.getContext())); |
867 | }); |
868 | |
869 | newInTyAndAttrs.push_back(m[0]); |
870 | }) |
871 | .template Case<fir::RecordType>([&](fir::RecordType recTy) { |
872 | doStructArg(func, recTy, newInTyAndAttrs, fixups); |
873 | }) |
874 | .Default([&](mlir::Type ty) { |
875 | newInTyAndAttrs.push_back( |
876 | fir::CodeGenSpecifics::getTypeAndAttr(ty)); |
877 | }); |
878 | |
879 | if (func.getArgAttrOfType<mlir::UnitAttr>(index, |
880 | fir::getHostAssocAttrName())) { |
881 | extraAttrs.push_back( |
882 | {newInTyAndAttrs.size() - 1, |
883 | rewriter->getNamedAttr("llvm.nest" , rewriter->getUnitAttr())}); |
884 | } |
885 | } |
886 | |
887 | if (!func.empty()) { |
888 | // If the function has a body, then apply the fixups to the arguments and |
889 | // return ops as required. These fixups are done in place. |
890 | auto loc = func.getLoc(); |
891 | const auto fixupSize = fixups.size(); |
892 | const auto oldArgTys = func.getFunctionType().getInputs(); |
893 | int offset = 0; |
894 | for (std::remove_const_t<decltype(fixupSize)> i = 0; i < fixupSize; ++i) { |
895 | const auto &fixup = fixups[i]; |
896 | mlir::Type fixupType = |
897 | fixup.index < newInTyAndAttrs.size() |
898 | ? std::get<mlir::Type>(newInTyAndAttrs[fixup.index]) |
899 | : mlir::Type{}; |
900 | switch (fixup.code) { |
901 | case FixupTy::Codes::ArgumentAsLoad: { |
902 | // Argument was pass-by-value, but is now pass-by-reference and |
903 | // possibly with a different element type. |
904 | auto newArg = |
905 | func.front().insertArgument(fixup.index, fixupType, loc); |
906 | rewriter->setInsertionPointToStart(&func.front()); |
907 | auto oldArgTy = |
908 | fir::ReferenceType::get(oldArgTys[fixup.index - offset]); |
909 | auto cast = rewriter->create<fir::ConvertOp>(loc, oldArgTy, newArg); |
910 | auto load = rewriter->create<fir::LoadOp>(loc, cast); |
911 | func.getArgument(fixup.index + 1).replaceAllUsesWith(load); |
912 | func.front().eraseArgument(fixup.index + 1); |
913 | } break; |
914 | case FixupTy::Codes::ArgumentType: { |
915 | // Argument is pass-by-value, but its type has likely been modified to |
916 | // suit the target ABI convention. |
917 | auto oldArgTy = oldArgTys[fixup.index - offset]; |
918 | // If type did not change, keep the original argument. |
919 | if (fixupType == oldArgTy) |
920 | break; |
921 | |
922 | auto newArg = |
923 | func.front().insertArgument(fixup.index, fixupType, loc); |
924 | rewriter->setInsertionPointToStart(&func.front()); |
925 | mlir::Value bitcast = convertValueInMemory(loc, newArg, oldArgTy, |
926 | /*inputMayBeBigger=*/true); |
927 | func.getArgument(fixup.index + 1).replaceAllUsesWith(bitcast); |
928 | func.front().eraseArgument(fixup.index + 1); |
929 | LLVM_DEBUG(llvm::dbgs() |
930 | << "old argument: " << oldArgTy << ", repl: " << bitcast |
931 | << ", new argument: " |
932 | << func.getArgument(fixup.index).getType() << '\n'); |
933 | } break; |
934 | case FixupTy::Codes::CharPair: { |
935 | // The FIR boxchar argument has been split into a pair of distinct |
936 | // arguments that are in juxtaposition to each other. |
937 | auto newArg = |
938 | func.front().insertArgument(fixup.index, fixupType, loc); |
939 | if (fixup.second == 1) { |
940 | rewriter->setInsertionPointToStart(&func.front()); |
941 | auto boxTy = oldArgTys[fixup.index - offset - fixup.second]; |
942 | auto box = rewriter->create<fir::EmboxCharOp>( |
943 | loc, boxTy, func.front().getArgument(fixup.index - 1), newArg); |
944 | func.getArgument(fixup.index + 1).replaceAllUsesWith(box); |
945 | func.front().eraseArgument(fixup.index + 1); |
946 | offset++; |
947 | } |
948 | } break; |
949 | case FixupTy::Codes::ReturnAsStore: { |
950 | // The value being returned is now being returned in memory (callee |
951 | // stack space) through a hidden reference argument. |
952 | auto newArg = |
953 | func.front().insertArgument(fixup.index, fixupType, loc); |
954 | offset++; |
955 | func.walk([&](mlir::func::ReturnOp ret) { |
956 | rewriter->setInsertionPoint(ret); |
957 | auto oldOper = ret.getOperand(0); |
958 | auto oldOperTy = fir::ReferenceType::get(oldOper.getType()); |
959 | auto cast = |
960 | rewriter->create<fir::ConvertOp>(loc, oldOperTy, newArg); |
961 | rewriter->create<fir::StoreOp>(loc, oldOper, cast); |
962 | rewriter->create<mlir::func::ReturnOp>(loc); |
963 | ret.erase(); |
964 | }); |
965 | } break; |
966 | case FixupTy::Codes::ReturnType: { |
967 | // The function is still returning a value, but its type has likely |
968 | // changed to suit the target ABI convention. |
969 | func.walk([&](mlir::func::ReturnOp ret) { |
970 | rewriter->setInsertionPoint(ret); |
971 | auto oldOper = ret.getOperand(0); |
972 | mlir::Value bitcast = |
973 | convertValueInMemory(loc, oldOper, newResTys[fixup.index], |
974 | /*inputMayBeBigger=*/false); |
975 | rewriter->create<mlir::func::ReturnOp>(loc, bitcast); |
976 | ret.erase(); |
977 | }); |
978 | } break; |
979 | case FixupTy::Codes::Split: { |
980 | // The FIR argument has been split into a pair of distinct arguments |
981 | // that are in juxtaposition to each other. (For COMPLEX value or |
982 | // derived type passed with VALUE in BIND(C) context). |
983 | auto newArg = |
984 | func.front().insertArgument(fixup.index, fixupType, loc); |
985 | if (fixup.second == 1) { |
986 | rewriter->setInsertionPointToStart(&func.front()); |
987 | mlir::Value firstArg = func.front().getArgument(fixup.index - 1); |
988 | mlir::Type originalTy = |
989 | oldArgTys[fixup.index - offset - fixup.second]; |
990 | mlir::Type pairTy = originalTy; |
991 | if (!fir::isa_complex(originalTy)) { |
992 | pairTy = mlir::TupleType::get( |
993 | originalTy.getContext(), |
994 | mlir::TypeRange{firstArg.getType(), newArg.getType()}); |
995 | } |
996 | auto undef = rewriter->create<fir::UndefOp>(loc, pairTy); |
997 | auto iTy = rewriter->getIntegerType(32); |
998 | auto zero = rewriter->getIntegerAttr(iTy, 0); |
999 | auto one = rewriter->getIntegerAttr(iTy, 1); |
1000 | mlir::Value pair1 = rewriter->create<fir::InsertValueOp>( |
1001 | loc, pairTy, undef, firstArg, rewriter->getArrayAttr(zero)); |
1002 | mlir::Value pair = rewriter->create<fir::InsertValueOp>( |
1003 | loc, pairTy, pair1, newArg, rewriter->getArrayAttr(one)); |
1004 | // Cast local argument tuple to original type via memory if needed. |
1005 | if (pairTy != originalTy) |
1006 | pair = convertValueInMemory(loc, pair, originalTy, |
1007 | /*inputMayBeBigger=*/true); |
1008 | func.getArgument(fixup.index + 1).replaceAllUsesWith(pair); |
1009 | func.front().eraseArgument(fixup.index + 1); |
1010 | offset++; |
1011 | } |
1012 | } break; |
1013 | case FixupTy::Codes::Trailing: { |
1014 | // The FIR argument has been split into a pair of distinct arguments. |
1015 | // The first part of the pair appears in the original argument |
1016 | // position. The second part of the pair is appended after all the |
1017 | // original arguments. (Boxchar arguments.) |
1018 | auto newBufArg = |
1019 | func.front().insertArgument(fixup.index, fixupType, loc); |
1020 | auto newLenArg = |
1021 | func.front().addArgument(trailingTys[fixup.second], loc); |
1022 | auto boxTy = oldArgTys[fixup.index - offset]; |
1023 | rewriter->setInsertionPointToStart(&func.front()); |
1024 | auto box = rewriter->create<fir::EmboxCharOp>(loc, boxTy, newBufArg, |
1025 | newLenArg); |
1026 | func.getArgument(fixup.index + 1).replaceAllUsesWith(box); |
1027 | func.front().eraseArgument(fixup.index + 1); |
1028 | } break; |
1029 | case FixupTy::Codes::TrailingCharProc: { |
1030 | // The FIR character procedure argument tuple must be split into a |
1031 | // pair of distinct arguments. The first part of the pair appears in |
1032 | // the original argument position. The second part of the pair is |
1033 | // appended after all the original arguments. |
1034 | auto newProcPointerArg = |
1035 | func.front().insertArgument(fixup.index, fixupType, loc); |
1036 | auto newLenArg = |
1037 | func.front().addArgument(trailingTys[fixup.second], loc); |
1038 | auto tupleType = oldArgTys[fixup.index - offset]; |
1039 | rewriter->setInsertionPointToStart(&func.front()); |
1040 | fir::FirOpBuilder builder(*rewriter, getModule()); |
1041 | auto tuple = fir::factory::createCharacterProcedureTuple( |
1042 | builder, loc, tupleType, newProcPointerArg, newLenArg); |
1043 | func.getArgument(fixup.index + 1).replaceAllUsesWith(tuple); |
1044 | func.front().eraseArgument(fixup.index + 1); |
1045 | } break; |
1046 | } |
1047 | } |
1048 | } |
1049 | |
1050 | llvm::SmallVector<mlir::Type> newInTypes = toTypeList(newInTyAndAttrs); |
1051 | // Set the new type and finalize the arguments, etc. |
1052 | newInTypes.insert(newInTypes.end(), trailingTys.begin(), trailingTys.end()); |
1053 | auto newFuncTy = |
1054 | mlir::FunctionType::get(func.getContext(), newInTypes, newResTys); |
1055 | LLVM_DEBUG(llvm::dbgs() << "new func: " << newFuncTy << '\n'); |
1056 | func.setType(newFuncTy); |
1057 | |
1058 | for (std::pair<unsigned, mlir::NamedAttribute> extraAttr : extraAttrs) |
1059 | func.setArgAttr(extraAttr.first, extraAttr.second.getName(), |
1060 | extraAttr.second.getValue()); |
1061 | |
1062 | for (auto [resId, resAttrList] : resultAttrs) |
1063 | for (mlir::NamedAttribute resAttr : resAttrList) |
1064 | func.setResultAttr(resId, resAttr.getName(), resAttr.getValue()); |
1065 | |
1066 | // Replace attributes to the correct argument if there was an argument shift |
1067 | // to the right. |
1068 | if (argumentShift > 0) { |
1069 | for (std::pair<unsigned, mlir::NamedAttribute> savedAttr : savedAttrs) { |
1070 | func.removeArgAttr(savedAttr.first, savedAttr.second.getName()); |
1071 | func.setArgAttr(savedAttr.first + argumentShift, |
1072 | savedAttr.second.getName(), |
1073 | savedAttr.second.getValue()); |
1074 | } |
1075 | } |
1076 | |
1077 | for (auto &fixup : fixups) |
1078 | if (fixup.finalizer) |
1079 | (*fixup.finalizer)(func); |
1080 | } |
1081 | |
1082 | inline bool functionArgIsSRet(unsigned index, mlir::func::FuncOp func) { |
1083 | if (auto attr = func.getArgAttrOfType<mlir::TypeAttr>(index, "llvm.sret" )) |
1084 | return true; |
1085 | return false; |
1086 | } |
1087 | |
1088 | /// Convert a complex return value. This can involve converting the return |
1089 | /// value to a "hidden" first argument or packing the complex into a wide |
1090 | /// GPR. |
1091 | template <typename A, typename B, typename C> |
1092 | void doComplexReturn(mlir::func::FuncOp func, A cmplx, B &newResTys, |
1093 | fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs, |
1094 | C &fixups) { |
1095 | if (noComplexConversion) { |
1096 | newResTys.push_back(cmplx); |
1097 | return; |
1098 | } |
1099 | auto m = |
1100 | specifics->complexReturnType(func.getLoc(), cmplx.getElementType()); |
1101 | assert(m.size() == 1); |
1102 | auto &tup = m[0]; |
1103 | auto attr = std::get<fir::CodeGenSpecifics::Attributes>(tup); |
1104 | auto argTy = std::get<mlir::Type>(tup); |
1105 | if (attr.isSRet()) { |
1106 | unsigned argNo = newInTyAndAttrs.size(); |
1107 | if (auto align = attr.getAlignment()) |
1108 | fixups.emplace_back( |
1109 | FixupTy::Codes::ReturnAsStore, argNo, [=](mlir::func::FuncOp func) { |
1110 | auto elemType = fir::dyn_cast_ptrOrBoxEleTy( |
1111 | func.getFunctionType().getInput(argNo)); |
1112 | func.setArgAttr(argNo, "llvm.sret" , |
1113 | mlir::TypeAttr::get(elemType)); |
1114 | func.setArgAttr(argNo, "llvm.align" , |
1115 | rewriter->getIntegerAttr( |
1116 | rewriter->getIntegerType(32), align)); |
1117 | }); |
1118 | else |
1119 | fixups.emplace_back(FixupTy::Codes::ReturnAsStore, argNo, |
1120 | [=](mlir::func::FuncOp func) { |
1121 | auto elemType = fir::dyn_cast_ptrOrBoxEleTy( |
1122 | func.getFunctionType().getInput(argNo)); |
1123 | func.setArgAttr(argNo, "llvm.sret" , |
1124 | mlir::TypeAttr::get(elemType)); |
1125 | }); |
1126 | newInTyAndAttrs.push_back(tup); |
1127 | return; |
1128 | } |
1129 | if (auto align = attr.getAlignment()) |
1130 | fixups.emplace_back( |
1131 | FixupTy::Codes::ReturnType, newResTys.size(), |
1132 | [=](mlir::func::FuncOp func) { |
1133 | func.setArgAttr( |
1134 | newResTys.size(), "llvm.align" , |
1135 | rewriter->getIntegerAttr(rewriter->getIntegerType(32), align)); |
1136 | }); |
1137 | else |
1138 | fixups.emplace_back(FixupTy::Codes::ReturnType, newResTys.size()); |
1139 | newResTys.push_back(argTy); |
1140 | } |
1141 | |
1142 | template <typename FIXUPS> |
1143 | void |
1144 | createFuncOpArgFixups(mlir::func::FuncOp func, |
1145 | fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs, |
1146 | fir::CodeGenSpecifics::Marshalling &argsInTys, |
1147 | FIXUPS &fixups) { |
1148 | const auto fixupCode = argsInTys.size() > 1 ? FixupTy::Codes::Split |
1149 | : FixupTy::Codes::ArgumentType; |
1150 | for (auto e : llvm::enumerate(argsInTys)) { |
1151 | auto &tup = e.value(); |
1152 | auto index = e.index(); |
1153 | auto attr = std::get<fir::CodeGenSpecifics::Attributes>(tup); |
1154 | auto argNo = newInTyAndAttrs.size(); |
1155 | if (attr.isByVal()) { |
1156 | if (auto align = attr.getAlignment()) |
1157 | fixups.emplace_back(FixupTy::Codes::ArgumentAsLoad, argNo, |
1158 | [=](mlir::func::FuncOp func) { |
1159 | auto elemType = fir::dyn_cast_ptrOrBoxEleTy( |
1160 | func.getFunctionType().getInput(argNo)); |
1161 | func.setArgAttr(argNo, "llvm.byval" , |
1162 | mlir::TypeAttr::get(elemType)); |
1163 | func.setArgAttr( |
1164 | argNo, "llvm.align" , |
1165 | rewriter->getIntegerAttr( |
1166 | rewriter->getIntegerType(32), align)); |
1167 | }); |
1168 | else |
1169 | fixups.emplace_back(FixupTy::Codes::ArgumentAsLoad, |
1170 | newInTyAndAttrs.size(), |
1171 | [=](mlir::func::FuncOp func) { |
1172 | auto elemType = fir::dyn_cast_ptrOrBoxEleTy( |
1173 | func.getFunctionType().getInput(argNo)); |
1174 | func.setArgAttr(argNo, "llvm.byval" , |
1175 | mlir::TypeAttr::get(elemType)); |
1176 | }); |
1177 | } else { |
1178 | if (auto align = attr.getAlignment()) |
1179 | fixups.emplace_back( |
1180 | fixupCode, argNo, index, [=](mlir::func::FuncOp func) { |
1181 | func.setArgAttr(argNo, "llvm.align" , |
1182 | rewriter->getIntegerAttr( |
1183 | rewriter->getIntegerType(32), align)); |
1184 | }); |
1185 | else |
1186 | fixups.emplace_back(fixupCode, argNo, index); |
1187 | } |
1188 | newInTyAndAttrs.push_back(tup); |
1189 | } |
1190 | } |
1191 | |
1192 | /// Convert a complex argument value. This can involve storing the value to |
1193 | /// a temporary memory location or factoring the value into two distinct |
1194 | /// arguments. |
1195 | template <typename A, typename B> |
1196 | void doComplexArg(mlir::func::FuncOp func, A cmplx, |
1197 | fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs, |
1198 | B &fixups) { |
1199 | if (noComplexConversion) { |
1200 | newInTyAndAttrs.push_back(fir::CodeGenSpecifics::getTypeAndAttr(cmplx)); |
1201 | return; |
1202 | } |
1203 | auto cplxArgs = |
1204 | specifics->complexArgumentType(func.getLoc(), cmplx.getElementType()); |
1205 | createFuncOpArgFixups(func, newInTyAndAttrs, cplxArgs, fixups); |
1206 | } |
1207 | |
1208 | template <typename FIXUPS> |
1209 | void doStructArg(mlir::func::FuncOp func, fir::RecordType recTy, |
1210 | fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs, |
1211 | FIXUPS &fixups) { |
1212 | if (noStructConversion) { |
1213 | newInTyAndAttrs.push_back(fir::CodeGenSpecifics::getTypeAndAttr(recTy)); |
1214 | return; |
1215 | } |
1216 | auto structArgs = |
1217 | specifics->structArgumentType(func.getLoc(), recTy, newInTyAndAttrs); |
1218 | createFuncOpArgFixups(func, newInTyAndAttrs, structArgs, fixups); |
1219 | } |
1220 | |
1221 | private: |
1222 | // Replace `op` and remove it. |
1223 | void replaceOp(mlir::Operation *op, mlir::ValueRange newValues) { |
1224 | op->replaceAllUsesWith(newValues); |
1225 | op->dropAllReferences(); |
1226 | op->erase(); |
1227 | } |
1228 | |
1229 | inline void setMembers(fir::CodeGenSpecifics *s, mlir::OpBuilder *r, |
1230 | mlir::DataLayout *dl) { |
1231 | specifics = s; |
1232 | rewriter = r; |
1233 | dataLayout = dl; |
1234 | } |
1235 | |
1236 | inline void clearMembers() { setMembers(nullptr, nullptr, nullptr); } |
1237 | |
1238 | // Inserts a call to llvm.stacksave at the current insertion |
1239 | // point and the given location. Returns the call's result Value. |
1240 | inline mlir::Value genStackSave(mlir::Location loc) { |
1241 | return rewriter->create<fir::CallOp>(loc, stackSaveFn).getResult(0); |
1242 | } |
1243 | |
1244 | // Inserts a call to llvm.stackrestore at the current insertion |
1245 | // point and the given location and argument. |
1246 | inline void genStackRestore(mlir::Location loc, mlir::Value sp) { |
1247 | rewriter->create<fir::CallOp>(loc, stackRestoreFn, mlir::ValueRange{sp}); |
1248 | } |
1249 | |
1250 | fir::CodeGenSpecifics *specifics = nullptr; |
1251 | mlir::OpBuilder *rewriter = nullptr; |
1252 | mlir::DataLayout *dataLayout = nullptr; |
1253 | mlir::func::FuncOp stackSaveFn = nullptr; |
1254 | mlir::func::FuncOp stackRestoreFn = nullptr; |
1255 | }; |
1256 | } // namespace |
1257 | |
1258 | std::unique_ptr<mlir::OperationPass<mlir::ModuleOp>> |
1259 | fir::createFirTargetRewritePass(const fir::TargetRewriteOptions &options) { |
1260 | return std::make_unique<TargetRewrite>(options); |
1261 | } |
1262 | |