| 1 | //===- SimplifyHLFIRIntrinsics.cpp - Simplify HLFIR Intrinsics ------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // Normally transformational intrinsics are lowered to calls to runtime |
| 9 | // functions. However, some cases of the intrinsics are faster when inlined |
| 10 | // into the calling function. |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "flang/Optimizer/Builder/Complex.h" |
| 14 | #include "flang/Optimizer/Builder/FIRBuilder.h" |
| 15 | #include "flang/Optimizer/Builder/HLFIRTools.h" |
| 16 | #include "flang/Optimizer/Builder/IntrinsicCall.h" |
| 17 | #include "flang/Optimizer/Dialect/FIRDialect.h" |
| 18 | #include "flang/Optimizer/HLFIR/HLFIRDialect.h" |
| 19 | #include "flang/Optimizer/HLFIR/HLFIROps.h" |
| 20 | #include "flang/Optimizer/HLFIR/Passes.h" |
| 21 | #include "mlir/Dialect/Arith/IR/Arith.h" |
| 22 | #include "mlir/IR/Location.h" |
| 23 | #include "mlir/Pass/Pass.h" |
| 24 | #include "mlir/Transforms/GreedyPatternRewriteDriver.h" |
| 25 | |
| 26 | namespace hlfir { |
| 27 | #define GEN_PASS_DEF_SIMPLIFYHLFIRINTRINSICS |
| 28 | #include "flang/Optimizer/HLFIR/Passes.h.inc" |
| 29 | } // namespace hlfir |
| 30 | |
| 31 | #define DEBUG_TYPE "simplify-hlfir-intrinsics" |
| 32 | |
| 33 | static llvm::cl::opt<bool> forceMatmulAsElemental( |
| 34 | "flang-inline-matmul-as-elemental" , |
| 35 | llvm::cl::desc("Expand hlfir.matmul as elemental operation" ), |
| 36 | llvm::cl::init(false)); |
| 37 | |
| 38 | namespace { |
| 39 | |
| 40 | // Helper class to generate operations related to computing |
| 41 | // product of values. |
| 42 | class ProductFactory { |
| 43 | public: |
| 44 | ProductFactory(mlir::Location loc, fir::FirOpBuilder &builder) |
| 45 | : loc(loc), builder(builder) {} |
| 46 | |
| 47 | // Generate an update of the inner product value: |
| 48 | // acc += v1 * v2, OR |
| 49 | // acc += CONJ(v1) * v2, OR |
| 50 | // acc ||= v1 && v2 |
| 51 | // |
| 52 | // CONJ parameter specifies whether the first complex product argument |
| 53 | // needs to be conjugated. |
| 54 | template <bool CONJ = false> |
| 55 | mlir::Value genAccumulateProduct(mlir::Value acc, mlir::Value v1, |
| 56 | mlir::Value v2) { |
| 57 | mlir::Type resultType = acc.getType(); |
| 58 | acc = castToProductType(acc, resultType); |
| 59 | v1 = castToProductType(v1, resultType); |
| 60 | v2 = castToProductType(v2, resultType); |
| 61 | mlir::Value result; |
| 62 | if (mlir::isa<mlir::FloatType>(resultType)) { |
| 63 | result = builder.create<mlir::arith::AddFOp>( |
| 64 | loc, acc, builder.create<mlir::arith::MulFOp>(loc, v1, v2)); |
| 65 | } else if (mlir::isa<mlir::ComplexType>(resultType)) { |
| 66 | if constexpr (CONJ) |
| 67 | result = fir::IntrinsicLibrary{builder, loc}.genConjg(resultType, v1); |
| 68 | else |
| 69 | result = v1; |
| 70 | |
| 71 | result = builder.create<fir::AddcOp>( |
| 72 | loc, acc, builder.create<fir::MulcOp>(loc, result, v2)); |
| 73 | } else if (mlir::isa<mlir::IntegerType>(resultType)) { |
| 74 | result = builder.create<mlir::arith::AddIOp>( |
| 75 | loc, acc, builder.create<mlir::arith::MulIOp>(loc, v1, v2)); |
| 76 | } else if (mlir::isa<fir::LogicalType>(resultType)) { |
| 77 | result = builder.create<mlir::arith::OrIOp>( |
| 78 | loc, acc, builder.create<mlir::arith::AndIOp>(loc, v1, v2)); |
| 79 | } else { |
| 80 | llvm_unreachable("unsupported type" ); |
| 81 | } |
| 82 | |
| 83 | return builder.createConvert(loc, resultType, result); |
| 84 | } |
| 85 | |
| 86 | private: |
| 87 | mlir::Location loc; |
| 88 | fir::FirOpBuilder &builder; |
| 89 | |
| 90 | mlir::Value castToProductType(mlir::Value value, mlir::Type type) { |
| 91 | if (mlir::isa<fir::LogicalType>(type)) |
| 92 | return builder.createConvert(loc, builder.getIntegerType(1), value); |
| 93 | |
| 94 | // TODO: the multiplications/additions by/of zero resulting from |
| 95 | // complex * real are optimized by LLVM under -fno-signed-zeros |
| 96 | // -fno-honor-nans. |
| 97 | // We can make them disappear by default if we: |
| 98 | // * either expand the complex multiplication into real |
| 99 | // operations, OR |
| 100 | // * set nnan nsz fast-math flags to the complex operations. |
| 101 | if (fir::isa_complex(type) && !fir::isa_complex(value.getType())) { |
| 102 | mlir::Value zeroCmplx = fir::factory::createZeroValue(builder, loc, type); |
| 103 | fir::factory::Complex helper(builder, loc); |
| 104 | mlir::Type partType = helper.getComplexPartType(type); |
| 105 | return helper.insertComplexPart(zeroCmplx, |
| 106 | castToProductType(value, partType), |
| 107 | /*isImagPart=*/false); |
| 108 | } |
| 109 | return builder.createConvert(loc, type, value); |
| 110 | } |
| 111 | }; |
| 112 | |
| 113 | class TransposeAsElementalConversion |
| 114 | : public mlir::OpRewritePattern<hlfir::TransposeOp> { |
| 115 | public: |
| 116 | using mlir::OpRewritePattern<hlfir::TransposeOp>::OpRewritePattern; |
| 117 | |
| 118 | llvm::LogicalResult |
| 119 | matchAndRewrite(hlfir::TransposeOp transpose, |
| 120 | mlir::PatternRewriter &rewriter) const override { |
| 121 | hlfir::ExprType expr = transpose.getType(); |
| 122 | // TODO: hlfir.elemental supports polymorphic data types now, |
| 123 | // so this can be supported. |
| 124 | if (expr.isPolymorphic()) |
| 125 | return rewriter.notifyMatchFailure(transpose, |
| 126 | "TRANSPOSE of polymorphic type" ); |
| 127 | |
| 128 | mlir::Location loc = transpose.getLoc(); |
| 129 | fir::FirOpBuilder builder{rewriter, transpose.getOperation()}; |
| 130 | mlir::Type elementType = expr.getElementType(); |
| 131 | hlfir::Entity array = hlfir::Entity{transpose.getArray()}; |
| 132 | mlir::Value resultShape = genResultShape(loc, builder, array); |
| 133 | llvm::SmallVector<mlir::Value, 1> typeParams; |
| 134 | hlfir::genLengthParameters(loc, builder, array, typeParams); |
| 135 | |
| 136 | auto genKernel = [&array](mlir::Location loc, fir::FirOpBuilder &builder, |
| 137 | mlir::ValueRange inputIndices) -> hlfir::Entity { |
| 138 | assert(inputIndices.size() == 2 && "checked in TransposeOp::validate" ); |
| 139 | const std::initializer_list<mlir::Value> initList = {inputIndices[1], |
| 140 | inputIndices[0]}; |
| 141 | mlir::ValueRange transposedIndices(initList); |
| 142 | hlfir::Entity element = |
| 143 | hlfir::getElementAt(loc, builder, array, transposedIndices); |
| 144 | hlfir::Entity val = hlfir::loadTrivialScalar(loc, builder, element); |
| 145 | return val; |
| 146 | }; |
| 147 | hlfir::ElementalOp elementalOp = hlfir::genElementalOp( |
| 148 | loc, builder, elementType, resultShape, typeParams, genKernel, |
| 149 | /*isUnordered=*/true, /*polymorphicMold=*/nullptr, |
| 150 | transpose.getResult().getType()); |
| 151 | |
| 152 | // it wouldn't be safe to replace block arguments with a different |
| 153 | // hlfir.expr type. Types can differ due to differing amounts of shape |
| 154 | // information |
| 155 | assert(elementalOp.getResult().getType() == |
| 156 | transpose.getResult().getType()); |
| 157 | |
| 158 | rewriter.replaceOp(transpose, elementalOp); |
| 159 | return mlir::success(); |
| 160 | } |
| 161 | |
| 162 | private: |
| 163 | static mlir::Value genResultShape(mlir::Location loc, |
| 164 | fir::FirOpBuilder &builder, |
| 165 | hlfir::Entity array) { |
| 166 | llvm::SmallVector<mlir::Value, 2> inExtents = |
| 167 | hlfir::genExtentsVector(loc, builder, array); |
| 168 | |
| 169 | // transpose indices |
| 170 | assert(inExtents.size() == 2 && "checked in TransposeOp::validate" ); |
| 171 | return builder.create<fir::ShapeOp>( |
| 172 | loc, mlir::ValueRange{inExtents[1], inExtents[0]}); |
| 173 | } |
| 174 | }; |
| 175 | |
| 176 | /// Base class for converting reduction-like operations into |
| 177 | /// a reduction loop[-nest] optionally wrapped into hlfir.elemental. |
| 178 | /// It is used to handle operations produced for ALL, ANY, COUNT, |
| 179 | /// MAXLOC, MAXVAL, MINLOC, MINVAL, SUM intrinsics. |
| 180 | /// |
| 181 | /// All of these operations take an input array, and optional |
| 182 | /// dim, mask arguments. ALL, ANY, COUNT do not have mask argument. |
| 183 | class ReductionAsElementalConverter { |
| 184 | public: |
| 185 | ReductionAsElementalConverter(mlir::Operation *op, |
| 186 | mlir::PatternRewriter &rewriter) |
| 187 | : op{op}, rewriter{rewriter}, loc{op->getLoc()}, builder{rewriter, op} { |
| 188 | assert(op->getNumResults() == 1); |
| 189 | } |
| 190 | virtual ~ReductionAsElementalConverter() {} |
| 191 | |
| 192 | /// Do the actual conversion or return mlir::failure(), |
| 193 | /// if conversion is not possible. |
| 194 | mlir::LogicalResult convert(); |
| 195 | |
| 196 | private: |
| 197 | // Return fir.shape specifying the shape of the result |
| 198 | // of a reduction with DIM=dimVal. The second return value |
| 199 | // is the extent of the DIM dimension. |
| 200 | std::tuple<mlir::Value, mlir::Value> |
| 201 | genResultShapeForPartialReduction(hlfir::Entity array, int64_t dimVal); |
| 202 | |
| 203 | /// \p mask is a scalar or array logical mask. |
| 204 | /// If \p isPresentPred is not nullptr, it is a dynamic predicate value |
| 205 | /// identifying whether the mask's variable is present. |
| 206 | /// \p indices is a range of one-based indices to access \p mask |
| 207 | /// when it is an array. |
| 208 | /// |
| 209 | /// The method returns the scalar mask value to guard the access |
| 210 | /// to a single element of the input array. |
| 211 | mlir::Value genMaskValue(mlir::Value mask, mlir::Value isPresentPred, |
| 212 | mlir::ValueRange indices); |
| 213 | |
| 214 | protected: |
| 215 | /// Return the input array. |
| 216 | virtual mlir::Value getSource() const = 0; |
| 217 | |
| 218 | /// Return DIM or nullptr, if it is not present. |
| 219 | virtual mlir::Value getDim() const = 0; |
| 220 | |
| 221 | /// Return MASK or nullptr, if it is not present. |
| 222 | virtual mlir::Value getMask() const { return nullptr; } |
| 223 | |
| 224 | /// Return FastMathFlags attached to the operation |
| 225 | /// or arith::FastMathFlags::none, if the operation |
| 226 | /// does not support FastMathFlags (e.g. ALL, ANY, COUNT). |
| 227 | virtual mlir::arith::FastMathFlags getFastMath() const { |
| 228 | return mlir::arith::FastMathFlags::none; |
| 229 | } |
| 230 | |
| 231 | /// Generates initial values for the reduction values used |
| 232 | /// by the reduction loop. In general, there is a single |
| 233 | /// loop-carried reduction value (e.g. for SUM), but, for example, |
| 234 | /// MAXLOC/MINLOC implementation uses multiple reductions. |
| 235 | /// \p oneBasedIndices contains any array indices predefined |
| 236 | /// before the reduction loop, i.e. it is empty for total |
| 237 | /// reductions, and contains the one-based indices of the wrapping |
| 238 | /// hlfir.elemental. |
| 239 | /// \p extents are the pre-computed extents of the input array. |
| 240 | /// For total reductions, \p extents holds extents of all dimensions. |
| 241 | /// For partial reductions, \p extents holds a single extent |
| 242 | /// of the DIM dimension. |
| 243 | virtual llvm::SmallVector<mlir::Value> |
| 244 | genReductionInitValues(mlir::ValueRange oneBasedIndices, |
| 245 | const llvm::SmallVectorImpl<mlir::Value> &extents) = 0; |
| 246 | |
| 247 | /// Perform reduction(s) update given a single input array's element |
| 248 | /// identified by \p array and \p oneBasedIndices coordinates. |
| 249 | /// \p currentValue specifies the current value(s) of the reduction(s) |
| 250 | /// inside the reduction loop body. |
| 251 | virtual llvm::SmallVector<mlir::Value> |
| 252 | reduceOneElement(const llvm::SmallVectorImpl<mlir::Value> ¤tValue, |
| 253 | hlfir::Entity array, mlir::ValueRange oneBasedIndices) = 0; |
| 254 | |
| 255 | /// Given reduction value(s) in \p reductionResults produced |
| 256 | /// by the reduction loop, apply any required updates and return |
| 257 | /// new reduction value(s) to be used after the reduction loop |
| 258 | /// (e.g. as the result yield of the wrapping hlfir.elemental). |
| 259 | /// NOTE: if the reduction loop is wrapped in hlfir.elemental, |
| 260 | /// the insertion point of any generated code is inside hlfir.elemental. |
| 261 | virtual hlfir::Entity |
| 262 | genFinalResult(const llvm::SmallVectorImpl<mlir::Value> &reductionResults) { |
| 263 | assert(reductionResults.size() == 1 && |
| 264 | "default implementation of genFinalResult expect a single reduction " |
| 265 | "value" ); |
| 266 | return hlfir::Entity{reductionResults[0]}; |
| 267 | } |
| 268 | |
| 269 | /// Return mlir::success(), if the operation can be converted. |
| 270 | /// The default implementation always returns mlir::success(). |
| 271 | /// The derived type may override the default implementation |
| 272 | /// with its own definition. |
| 273 | virtual mlir::LogicalResult isConvertible() const { return mlir::success(); } |
| 274 | |
| 275 | // Default implementation of isTotalReduction() just checks |
| 276 | // if the result of the operation is a scalar. |
| 277 | // True result indicates that the reduction has to be done |
| 278 | // across all elements, false result indicates that |
| 279 | // the result is an array expression produced by an hlfir.elemental |
| 280 | // operation with a single reduction loop across the DIM dimension. |
| 281 | // |
| 282 | // MAXLOC/MINLOC must override this. |
| 283 | virtual bool isTotalReduction() const { return getResultRank() == 0; } |
| 284 | |
| 285 | // Return true, if the reduction loop[-nest] may be unordered. |
| 286 | // In general, FP reductions may only be unordered when |
| 287 | // FastMathFlags::reassoc transformations are allowed. |
| 288 | // |
| 289 | // Some dervied types may need to override this. |
| 290 | virtual bool isUnordered() const { |
| 291 | mlir::Type elemType = getSourceElementType(); |
| 292 | if (mlir::isa<mlir::IntegerType, fir::LogicalType, fir::CharacterType>( |
| 293 | elemType)) |
| 294 | return true; |
| 295 | return static_cast<bool>(getFastMath() & |
| 296 | mlir::arith::FastMathFlags::reassoc); |
| 297 | } |
| 298 | |
| 299 | /// Return 0, if DIM is not present or its values does not matter |
| 300 | /// (for example, a reduction of 1D array does not care about |
| 301 | /// the DIM value, assuming that it is a valid program). |
| 302 | /// Return mlir::failure(), if DIM is a constant known |
| 303 | /// to be invalid for the given array. |
| 304 | /// Otherwise, return DIM constant value. |
| 305 | mlir::FailureOr<int64_t> getConstDim() const { |
| 306 | int64_t dimVal = 0; |
| 307 | if (!isTotalReduction()) { |
| 308 | // In case of partial reduction we should ignore the operations |
| 309 | // with invalid DIM values. They may appear in dead code |
| 310 | // after constant propagation. |
| 311 | auto constDim = fir::getIntIfConstant(getDim()); |
| 312 | if (!constDim) |
| 313 | return rewriter.notifyMatchFailure(op, "Nonconstant DIM" ); |
| 314 | dimVal = *constDim; |
| 315 | |
| 316 | if ((dimVal <= 0 || dimVal > getSourceRank())) |
| 317 | return rewriter.notifyMatchFailure(op, |
| 318 | "Invalid DIM for partial reduction" ); |
| 319 | } |
| 320 | return dimVal; |
| 321 | } |
| 322 | |
| 323 | /// Return hlfir::Entity of the result. |
| 324 | hlfir::Entity getResultEntity() const { |
| 325 | return hlfir::Entity{op->getResult(0)}; |
| 326 | } |
| 327 | |
| 328 | /// Return type of the result (e.g. !hlfir.expr<?xi32>). |
| 329 | mlir::Type getResultType() const { return getResultEntity().getType(); } |
| 330 | |
| 331 | /// Return the element type of the result (e.g. i32). |
| 332 | mlir::Type getResultElementType() const { |
| 333 | return hlfir::getFortranElementType(getResultType()); |
| 334 | } |
| 335 | |
| 336 | /// Return rank of the result. |
| 337 | unsigned getResultRank() const { return getResultEntity().getRank(); } |
| 338 | |
| 339 | /// Return the element type of the source. |
| 340 | mlir::Type getSourceElementType() const { |
| 341 | return hlfir::getFortranElementType(getSource().getType()); |
| 342 | } |
| 343 | |
| 344 | /// Return rank of the input array. |
| 345 | unsigned getSourceRank() const { |
| 346 | return hlfir::Entity{getSource()}.getRank(); |
| 347 | } |
| 348 | |
| 349 | /// The reduction operation. |
| 350 | mlir::Operation *op; |
| 351 | |
| 352 | mlir::PatternRewriter &rewriter; |
| 353 | mlir::Location loc; |
| 354 | fir::FirOpBuilder builder; |
| 355 | }; |
| 356 | |
| 357 | /// Generate initialization value for MIN or MAX reduction |
| 358 | /// of the given \p type. |
| 359 | template <bool IS_MAX> |
| 360 | static mlir::Value genMinMaxInitValue(mlir::Location loc, |
| 361 | fir::FirOpBuilder &builder, |
| 362 | mlir::Type type) { |
| 363 | if (auto ty = mlir::dyn_cast<mlir::FloatType>(type)) { |
| 364 | const llvm::fltSemantics &sem = ty.getFloatSemantics(); |
| 365 | // We must not use +/-INF here. If the reduction input is empty, |
| 366 | // the result of reduction must be +/-LARGEST. |
| 367 | llvm::APFloat limit = llvm::APFloat::getLargest(sem, /*Negative=*/IS_MAX); |
| 368 | return builder.createRealConstant(loc, type, limit); |
| 369 | } |
| 370 | unsigned bits = type.getIntOrFloatBitWidth(); |
| 371 | int64_t limitInt = IS_MAX |
| 372 | ? llvm::APInt::getSignedMinValue(bits).getSExtValue() |
| 373 | : llvm::APInt::getSignedMaxValue(bits).getSExtValue(); |
| 374 | return builder.createIntegerConstant(loc, type, limitInt); |
| 375 | } |
| 376 | |
| 377 | /// Generate a comparison of an array element value \p elem |
| 378 | /// and the current reduction value \p reduction for MIN/MAX reduction. |
| 379 | template <bool IS_MAX> |
| 380 | static mlir::Value |
| 381 | genMinMaxComparison(mlir::Location loc, fir::FirOpBuilder &builder, |
| 382 | mlir::Value elem, mlir::Value reduction) { |
| 383 | if (mlir::isa<mlir::FloatType>(reduction.getType())) { |
| 384 | // For FP reductions we want the first smallest value to be used, that |
| 385 | // is not NaN. A OGL/OLT condition will usually work for this unless all |
| 386 | // the values are Nan or Inf. This follows the same logic as |
| 387 | // NumericCompare for Minloc/Maxloc in extrema.cpp. |
| 388 | mlir::Value cmp = builder.create<mlir::arith::CmpFOp>( |
| 389 | loc, |
| 390 | IS_MAX ? mlir::arith::CmpFPredicate::OGT |
| 391 | : mlir::arith::CmpFPredicate::OLT, |
| 392 | elem, reduction); |
| 393 | mlir::Value cmpNan = builder.create<mlir::arith::CmpFOp>( |
| 394 | loc, mlir::arith::CmpFPredicate::UNE, reduction, reduction); |
| 395 | mlir::Value cmpNan2 = builder.create<mlir::arith::CmpFOp>( |
| 396 | loc, mlir::arith::CmpFPredicate::OEQ, elem, elem); |
| 397 | cmpNan = builder.create<mlir::arith::AndIOp>(loc, cmpNan, cmpNan2); |
| 398 | return builder.create<mlir::arith::OrIOp>(loc, cmp, cmpNan); |
| 399 | } else if (mlir::isa<mlir::IntegerType>(reduction.getType())) { |
| 400 | return builder.create<mlir::arith::CmpIOp>( |
| 401 | loc, |
| 402 | IS_MAX ? mlir::arith::CmpIPredicate::sgt |
| 403 | : mlir::arith::CmpIPredicate::slt, |
| 404 | elem, reduction); |
| 405 | } |
| 406 | llvm_unreachable("unsupported type" ); |
| 407 | } |
| 408 | |
| 409 | // Generate a predicate value indicating that an array with the given |
| 410 | // extents is not empty. |
| 411 | static mlir::Value |
| 412 | genIsNotEmptyArrayExtents(mlir::Location loc, fir::FirOpBuilder &builder, |
| 413 | const llvm::SmallVectorImpl<mlir::Value> &extents) { |
| 414 | mlir::Value isNotEmpty = builder.createBool(loc, true); |
| 415 | for (auto extent : extents) { |
| 416 | mlir::Value zero = |
| 417 | fir::factory::createZeroValue(builder, loc, extent.getType()); |
| 418 | mlir::Value cmp = builder.create<mlir::arith::CmpIOp>( |
| 419 | loc, mlir::arith::CmpIPredicate::ne, extent, zero); |
| 420 | isNotEmpty = builder.create<mlir::arith::AndIOp>(loc, isNotEmpty, cmp); |
| 421 | } |
| 422 | return isNotEmpty; |
| 423 | } |
| 424 | |
| 425 | // Helper method for MIN/MAX LOC/VAL reductions. |
| 426 | // It returns a vector of indices such that they address |
| 427 | // the first element of an array (in case of total reduction) |
| 428 | // or its section (in case of partial reduction). |
| 429 | // |
| 430 | // If case of total reduction oneBasedIndices must be empty, |
| 431 | // otherwise, they contain the one based indices of the wrapping |
| 432 | // hlfir.elemental. |
| 433 | // Basically, the method adds the necessary number of constant-one |
| 434 | // indices into oneBasedIndices. |
| 435 | static llvm::SmallVector<mlir::Value> genFirstElementIndicesForReduction( |
| 436 | mlir::Location loc, fir::FirOpBuilder &builder, bool isTotalReduction, |
| 437 | mlir::FailureOr<int64_t> dim, unsigned rank, |
| 438 | mlir::ValueRange oneBasedIndices) { |
| 439 | llvm::SmallVector<mlir::Value> indices{oneBasedIndices}; |
| 440 | mlir::Value one = |
| 441 | builder.createIntegerConstant(loc, builder.getIndexType(), 1); |
| 442 | if (isTotalReduction) { |
| 443 | assert(oneBasedIndices.size() == 0 && |
| 444 | "wrong number of indices for total reduction" ); |
| 445 | // Set indices to all-ones. |
| 446 | indices.append(rank, one); |
| 447 | } else { |
| 448 | assert(oneBasedIndices.size() == rank - 1 && |
| 449 | "there must be RANK-1 indices for partial reduction" ); |
| 450 | assert(mlir::succeeded(dim) && "partial reduction with invalid DIM" ); |
| 451 | // Insert constant-one index at DIM dimension. |
| 452 | indices.insert(indices.begin() + *dim - 1, one); |
| 453 | } |
| 454 | return indices; |
| 455 | } |
| 456 | |
| 457 | /// Implementation of ReductionAsElementalConverter interface |
| 458 | /// for MAXLOC/MINLOC. |
| 459 | template <typename T> |
| 460 | class MinMaxlocAsElementalConverter : public ReductionAsElementalConverter { |
| 461 | static_assert(std::is_same_v<T, hlfir::MaxlocOp> || |
| 462 | std::is_same_v<T, hlfir::MinlocOp>); |
| 463 | static constexpr unsigned maxRank = Fortran::common::maxRank; |
| 464 | // We have the following reduction values in the reduction loop: |
| 465 | // * N integer coordinates, where N is: |
| 466 | // - RANK(ARRAY) for total reductions. |
| 467 | // - 1 for partial reductions. |
| 468 | // * 1 reduction value holding the current MIN/MAX. |
| 469 | // * 1 boolean indicating whether it is the first time |
| 470 | // the mask is true. |
| 471 | // |
| 472 | // If useIsFirst() returns false, then the boolean loop-carried |
| 473 | // value is not used. |
| 474 | static constexpr unsigned maxNumReductions = Fortran::common::maxRank + 2; |
| 475 | static constexpr bool isMax = std::is_same_v<T, hlfir::MaxlocOp>; |
| 476 | using Base = ReductionAsElementalConverter; |
| 477 | |
| 478 | public: |
| 479 | MinMaxlocAsElementalConverter(T op, mlir::PatternRewriter &rewriter) |
| 480 | : Base{op.getOperation(), rewriter} {} |
| 481 | |
| 482 | private: |
| 483 | virtual mlir::Value getSource() const final { return getOp().getArray(); } |
| 484 | virtual mlir::Value getDim() const final { return getOp().getDim(); } |
| 485 | virtual mlir::Value getMask() const final { return getOp().getMask(); } |
| 486 | virtual mlir::arith::FastMathFlags getFastMath() const final { |
| 487 | return getOp().getFastmath(); |
| 488 | } |
| 489 | |
| 490 | virtual mlir::LogicalResult isConvertible() const final { |
| 491 | if (getOp().getBack()) |
| 492 | return rewriter.notifyMatchFailure( |
| 493 | getOp(), "BACK is not supported for MINLOC/MAXLOC inlining" ); |
| 494 | if (mlir::isa<fir::CharacterType>(getSourceElementType())) |
| 495 | return rewriter.notifyMatchFailure( |
| 496 | getOp(), |
| 497 | "CHARACTER type is not supported for MINLOC/MAXLOC inlining" ); |
| 498 | return mlir::success(); |
| 499 | } |
| 500 | |
| 501 | // If the result is scalar, then DIM does not matter, |
| 502 | // and this is a total reduction. |
| 503 | // If DIM is not present, this is a total reduction. |
| 504 | virtual bool isTotalReduction() const final { |
| 505 | return getResultRank() == 0 || !getDim(); |
| 506 | } |
| 507 | |
| 508 | virtual llvm::SmallVector<mlir::Value> genReductionInitValues( |
| 509 | mlir::ValueRange oneBasedIndices, |
| 510 | const llvm::SmallVectorImpl<mlir::Value> &extents) final; |
| 511 | virtual llvm::SmallVector<mlir::Value> |
| 512 | reduceOneElement(const llvm::SmallVectorImpl<mlir::Value> ¤tValue, |
| 513 | hlfir::Entity array, mlir::ValueRange oneBasedIndices) final; |
| 514 | virtual hlfir::Entity genFinalResult( |
| 515 | const llvm::SmallVectorImpl<mlir::Value> &reductionResults) final; |
| 516 | |
| 517 | private: |
| 518 | T getOp() const { return mlir::cast<T>(op); } |
| 519 | |
| 520 | unsigned getNumCoors() const { |
| 521 | return isTotalReduction() ? getSourceRank() : 1; |
| 522 | } |
| 523 | |
| 524 | void |
| 525 | checkReductions(const llvm::SmallVectorImpl<mlir::Value> &reductions) const { |
| 526 | if (!useIsFirst()) |
| 527 | assert(reductions.size() == getNumCoors() + 1 && |
| 528 | "invalid number of reductions for MINLOC/MAXLOC" ); |
| 529 | else |
| 530 | assert(reductions.size() == getNumCoors() + 2 && |
| 531 | "invalid number of reductions for MINLOC/MAXLOC" ); |
| 532 | } |
| 533 | |
| 534 | mlir::Value |
| 535 | getCurrentMinMax(const llvm::SmallVectorImpl<mlir::Value> &reductions) const { |
| 536 | checkReductions(reductions); |
| 537 | return reductions[getNumCoors()]; |
| 538 | } |
| 539 | |
| 540 | mlir::Value |
| 541 | getIsFirst(const llvm::SmallVectorImpl<mlir::Value> &reductions) const { |
| 542 | checkReductions(reductions); |
| 543 | assert(useIsFirst() && "IsFirst predicate must not be used" ); |
| 544 | return reductions[getNumCoors() + 1]; |
| 545 | } |
| 546 | |
| 547 | // Return true iff the input can contain NaNs, and they should be |
| 548 | // honored, such that all-NaNs input must produce the location |
| 549 | // of the first unmasked NaN. |
| 550 | bool honorNans() const { |
| 551 | return !static_cast<bool>(getFastMath() & mlir::arith::FastMathFlags::nnan); |
| 552 | } |
| 553 | |
| 554 | // Return true iff we have to use the loop-carried IsFirst predicate. |
| 555 | // If there is no mask, we can initialize the reductions using |
| 556 | // the first elements of the input. |
| 557 | // If NaNs are not honored, we can initialize the starting MIN/MAX |
| 558 | // value to +/-LARGEST; the coordinates are guaranteed to be updated |
| 559 | // properly for non-empty input without NaNs. |
| 560 | bool useIsFirst() const { return getMask() && honorNans(); } |
| 561 | }; |
| 562 | |
| 563 | template <typename T> |
| 564 | llvm::SmallVector<mlir::Value> |
| 565 | MinMaxlocAsElementalConverter<T>::genReductionInitValues( |
| 566 | mlir::ValueRange oneBasedIndices, |
| 567 | const llvm::SmallVectorImpl<mlir::Value> &extents) { |
| 568 | fir::IfOp ifOp; |
| 569 | if (!useIsFirst() && honorNans()) { |
| 570 | // Check if we can load the value of the first element in the array |
| 571 | // or its section (for partial reduction). |
| 572 | assert(!getMask() && "cannot fetch first element when mask is present" ); |
| 573 | assert(extents.size() == getNumCoors() && |
| 574 | "wrong number of extents for MINLOC/MAXLOC reduction" ); |
| 575 | mlir::Value isNotEmpty = genIsNotEmptyArrayExtents(loc, builder, extents); |
| 576 | |
| 577 | llvm::SmallVector<mlir::Value> indices = genFirstElementIndicesForReduction( |
| 578 | loc, builder, isTotalReduction(), getConstDim(), getSourceRank(), |
| 579 | oneBasedIndices); |
| 580 | |
| 581 | llvm::SmallVector<mlir::Type> ifTypes(getNumCoors(), |
| 582 | getResultElementType()); |
| 583 | ifTypes.push_back(getSourceElementType()); |
| 584 | ifOp = builder.create<fir::IfOp>(loc, ifTypes, isNotEmpty, |
| 585 | /*withElseRegion=*/true); |
| 586 | builder.setInsertionPointToStart(&ifOp.getThenRegion().front()); |
| 587 | mlir::Value one = |
| 588 | builder.createIntegerConstant(loc, getResultElementType(), 1); |
| 589 | llvm::SmallVector<mlir::Value> results(getNumCoors(), one); |
| 590 | mlir::Value minMaxFirst = |
| 591 | hlfir::loadElementAt(loc, builder, hlfir::Entity{getSource()}, indices); |
| 592 | results.push_back(minMaxFirst); |
| 593 | builder.create<fir::ResultOp>(loc, results); |
| 594 | |
| 595 | // In the 'else' block use default init values. |
| 596 | builder.setInsertionPointToStart(&ifOp.getElseRegion().front()); |
| 597 | } |
| 598 | |
| 599 | // Initial value for the coordinate(s) is zero. |
| 600 | mlir::Value zeroCoor = |
| 601 | fir::factory::createZeroValue(builder, loc, getResultElementType()); |
| 602 | llvm::SmallVector<mlir::Value> result(getNumCoors(), zeroCoor); |
| 603 | |
| 604 | // Initial value for the MIN/MAX value. |
| 605 | mlir::Value minMaxInit = |
| 606 | genMinMaxInitValue<isMax>(loc, builder, getSourceElementType()); |
| 607 | result.push_back(minMaxInit); |
| 608 | |
| 609 | if (ifOp) { |
| 610 | builder.create<fir::ResultOp>(loc, result); |
| 611 | builder.setInsertionPointAfter(ifOp); |
| 612 | result = ifOp.getResults(); |
| 613 | } else if (useIsFirst()) { |
| 614 | // Initial value for isFirst predicate. It is switched to false, |
| 615 | // when the reduction update dynamically happens inside the reduction |
| 616 | // loop. |
| 617 | mlir::Value trueVal = builder.createBool(loc, true); |
| 618 | result.push_back(trueVal); |
| 619 | } |
| 620 | |
| 621 | return result; |
| 622 | } |
| 623 | |
| 624 | template <typename T> |
| 625 | llvm::SmallVector<mlir::Value> |
| 626 | MinMaxlocAsElementalConverter<T>::reduceOneElement( |
| 627 | const llvm::SmallVectorImpl<mlir::Value> ¤tValue, hlfir::Entity array, |
| 628 | mlir::ValueRange oneBasedIndices) { |
| 629 | checkReductions(currentValue); |
| 630 | hlfir::Entity elementValue = |
| 631 | hlfir::loadElementAt(loc, builder, array, oneBasedIndices); |
| 632 | mlir::Value cmp = genMinMaxComparison<isMax>(loc, builder, elementValue, |
| 633 | getCurrentMinMax(currentValue)); |
| 634 | if (useIsFirst()) { |
| 635 | // If isFirst is true, then do the reduction update regardless |
| 636 | // of the FP comparison. |
| 637 | cmp = |
| 638 | builder.create<mlir::arith::OrIOp>(loc, cmp, getIsFirst(currentValue)); |
| 639 | } |
| 640 | |
| 641 | llvm::SmallVector<mlir::Value> newIndices; |
| 642 | int64_t dim = 1; |
| 643 | if (!isTotalReduction()) { |
| 644 | auto dimVal = getConstDim(); |
| 645 | assert(mlir::succeeded(dimVal) && |
| 646 | "partial MINLOC/MAXLOC reduction with invalid DIM" ); |
| 647 | dim = *dimVal; |
| 648 | assert(getNumCoors() == 1 && |
| 649 | "partial MAXLOC/MINLOC reduction must compute one coordinate" ); |
| 650 | } |
| 651 | |
| 652 | for (unsigned coorIdx = 0; coorIdx < getNumCoors(); ++coorIdx) { |
| 653 | mlir::Value currentCoor = currentValue[coorIdx]; |
| 654 | mlir::Value newCoor = builder.createConvert( |
| 655 | loc, currentCoor.getType(), oneBasedIndices[coorIdx + dim - 1]); |
| 656 | mlir::Value update = |
| 657 | builder.create<mlir::arith::SelectOp>(loc, cmp, newCoor, currentCoor); |
| 658 | newIndices.push_back(update); |
| 659 | } |
| 660 | |
| 661 | mlir::Value newMinMax = builder.create<mlir::arith::SelectOp>( |
| 662 | loc, cmp, elementValue, getCurrentMinMax(currentValue)); |
| 663 | newIndices.push_back(newMinMax); |
| 664 | |
| 665 | if (useIsFirst()) { |
| 666 | mlir::Value newIsFirst = builder.createBool(loc, false); |
| 667 | newIndices.push_back(newIsFirst); |
| 668 | } |
| 669 | |
| 670 | assert(currentValue.size() == newIndices.size() && |
| 671 | "invalid number of updated reductions" ); |
| 672 | |
| 673 | return newIndices; |
| 674 | } |
| 675 | |
| 676 | template <typename T> |
| 677 | hlfir::Entity MinMaxlocAsElementalConverter<T>::genFinalResult( |
| 678 | const llvm::SmallVectorImpl<mlir::Value> &reductionResults) { |
| 679 | // Identification of the final result of MINLOC/MAXLOC: |
| 680 | // * If DIM is absent, the result is rank-one array. |
| 681 | // * If DIM is present: |
| 682 | // - The result is scalar for rank-one input. |
| 683 | // - The result is an array of rank RANK(ARRAY)-1. |
| 684 | checkReductions(reductionResults); |
| 685 | |
| 686 | // 16.9.137 & 16.9.143: |
| 687 | // The subscripts returned by MINLOC/MAXLOC are in the range |
| 688 | // 1 to the extent of the corresponding dimension. |
| 689 | mlir::Type indexType = builder.getIndexType(); |
| 690 | |
| 691 | // For partial reductions, the final result of the reduction |
| 692 | // loop is just a scalar - the coordinate within DIM dimension. |
| 693 | if (getResultRank() == 0 || !isTotalReduction()) { |
| 694 | // The result is a scalar, so just return the scalar. |
| 695 | assert(getNumCoors() == 1 && |
| 696 | "unpexpected number of coordinates for scalar result" ); |
| 697 | return hlfir::Entity{reductionResults[0]}; |
| 698 | } |
| 699 | // This is a total reduction, and there is no wrapping hlfir.elemental. |
| 700 | // We have to pack the reduced coordinates into a rank-one array. |
| 701 | unsigned rank = getSourceRank(); |
| 702 | // TODO: in order to avoid introducing new memory effects |
| 703 | // we should not use a temporary in memory. |
| 704 | // We can use hlfir.elemental with a switch to pack all the coordinates |
| 705 | // into an array expression, or we can have a dedicated HLFIR operation |
| 706 | // for this. |
| 707 | mlir::Value tempArray = builder.createTemporary( |
| 708 | loc, fir::SequenceType::get(rank, getResultElementType())); |
| 709 | for (unsigned i = 0; i < rank; ++i) { |
| 710 | mlir::Value coor = reductionResults[i]; |
| 711 | mlir::Value idx = builder.createIntegerConstant(loc, indexType, i + 1); |
| 712 | mlir::Value resultElement = |
| 713 | hlfir::getElementAt(loc, builder, hlfir::Entity{tempArray}, {idx}); |
| 714 | builder.create<hlfir::AssignOp>(loc, coor, resultElement); |
| 715 | } |
| 716 | mlir::Value tempExpr = builder.create<hlfir::AsExprOp>( |
| 717 | loc, tempArray, builder.createBool(loc, false)); |
| 718 | return hlfir::Entity{tempExpr}; |
| 719 | } |
| 720 | |
| 721 | /// Base class for numeric reductions like MAXVAl, MINVAL, SUM. |
| 722 | template <typename OpT> |
| 723 | class NumericReductionAsElementalConverterBase |
| 724 | : public ReductionAsElementalConverter { |
| 725 | using Base = ReductionAsElementalConverter; |
| 726 | |
| 727 | protected: |
| 728 | NumericReductionAsElementalConverterBase(OpT op, |
| 729 | mlir::PatternRewriter &rewriter) |
| 730 | : Base{op.getOperation(), rewriter} {} |
| 731 | |
| 732 | virtual mlir::Value getSource() const final { return getOp().getArray(); } |
| 733 | virtual mlir::Value getDim() const final { return getOp().getDim(); } |
| 734 | virtual mlir::Value getMask() const final { return getOp().getMask(); } |
| 735 | virtual mlir::arith::FastMathFlags getFastMath() const final { |
| 736 | return getOp().getFastmath(); |
| 737 | } |
| 738 | |
| 739 | OpT getOp() const { return mlir::cast<OpT>(op); } |
| 740 | |
| 741 | void checkReductions(const llvm::SmallVectorImpl<mlir::Value> &reductions) { |
| 742 | assert(reductions.size() == 1 && "reduction must produce single value" ); |
| 743 | } |
| 744 | }; |
| 745 | |
| 746 | /// Reduction converter for MAXMAL/MINVAL. |
| 747 | template <typename T> |
| 748 | class MinMaxvalAsElementalConverter |
| 749 | : public NumericReductionAsElementalConverterBase<T> { |
| 750 | static_assert(std::is_same_v<T, hlfir::MaxvalOp> || |
| 751 | std::is_same_v<T, hlfir::MinvalOp>); |
| 752 | // We have two reduction values: |
| 753 | // * The current MIN/MAX value. |
| 754 | // * 1 boolean indicating whether it is the first time |
| 755 | // the mask is true. |
| 756 | // |
| 757 | // The boolean flag is used to replace the initial value |
| 758 | // with the first input element even if it is NaN. |
| 759 | // If useIsFirst() returns false, then the boolean loop-carried |
| 760 | // value is not used. |
| 761 | static constexpr bool isMax = std::is_same_v<T, hlfir::MaxvalOp>; |
| 762 | using Base = NumericReductionAsElementalConverterBase<T>; |
| 763 | |
| 764 | public: |
| 765 | MinMaxvalAsElementalConverter(T op, mlir::PatternRewriter &rewriter) |
| 766 | : Base{op, rewriter} {} |
| 767 | |
| 768 | private: |
| 769 | virtual mlir::LogicalResult isConvertible() const final { |
| 770 | if (mlir::isa<fir::CharacterType>(this->getSourceElementType())) |
| 771 | return this->rewriter.notifyMatchFailure( |
| 772 | this->getOp(), |
| 773 | "CHARACTER type is not supported for MINVAL/MAXVAL inlining" ); |
| 774 | return mlir::success(); |
| 775 | } |
| 776 | |
| 777 | virtual llvm::SmallVector<mlir::Value> genReductionInitValues( |
| 778 | mlir::ValueRange oneBasedIndices, |
| 779 | const llvm::SmallVectorImpl<mlir::Value> &extents) final; |
| 780 | |
| 781 | virtual llvm::SmallVector<mlir::Value> |
| 782 | reduceOneElement(const llvm::SmallVectorImpl<mlir::Value> ¤tValue, |
| 783 | hlfir::Entity array, |
| 784 | mlir::ValueRange oneBasedIndices) final { |
| 785 | this->checkReductions(currentValue); |
| 786 | llvm::SmallVector<mlir::Value> result; |
| 787 | fir::FirOpBuilder &builder = this->builder; |
| 788 | mlir::Location loc = this->loc; |
| 789 | hlfir::Entity elementValue = |
| 790 | hlfir::loadElementAt(loc, builder, array, oneBasedIndices); |
| 791 | mlir::Value currentMinMax = getCurrentMinMax(currentValue); |
| 792 | mlir::Value cmp = |
| 793 | genMinMaxComparison<isMax>(loc, builder, elementValue, currentMinMax); |
| 794 | if (useIsFirst()) |
| 795 | cmp = builder.create<mlir::arith::OrIOp>(loc, cmp, |
| 796 | getIsFirst(currentValue)); |
| 797 | mlir::Value newMinMax = builder.create<mlir::arith::SelectOp>( |
| 798 | loc, cmp, elementValue, currentMinMax); |
| 799 | result.push_back(newMinMax); |
| 800 | if (useIsFirst()) |
| 801 | result.push_back(builder.createBool(loc, false)); |
| 802 | return result; |
| 803 | } |
| 804 | |
| 805 | virtual hlfir::Entity genFinalResult( |
| 806 | const llvm::SmallVectorImpl<mlir::Value> &reductionResults) final { |
| 807 | this->checkReductions(reductionResults); |
| 808 | return hlfir::Entity{getCurrentMinMax(reductionResults)}; |
| 809 | } |
| 810 | |
| 811 | void |
| 812 | checkReductions(const llvm::SmallVectorImpl<mlir::Value> &reductions) const { |
| 813 | assert(reductions.size() == getNumReductions() && |
| 814 | "invalid number of reductions for MINVAL/MAXVAL" ); |
| 815 | } |
| 816 | |
| 817 | mlir::Value |
| 818 | getCurrentMinMax(const llvm::SmallVectorImpl<mlir::Value> &reductions) const { |
| 819 | this->checkReductions(reductions); |
| 820 | return reductions[0]; |
| 821 | } |
| 822 | |
| 823 | mlir::Value |
| 824 | getIsFirst(const llvm::SmallVectorImpl<mlir::Value> &reductions) const { |
| 825 | this->checkReductions(reductions); |
| 826 | assert(useIsFirst() && "IsFirst predicate must not be used" ); |
| 827 | return reductions[1]; |
| 828 | } |
| 829 | |
| 830 | // Return true iff the input can contain NaNs, and they should be |
| 831 | // honored, such that all-NaNs input must produce NaN result. |
| 832 | bool honorNans() const { |
| 833 | return !static_cast<bool>(this->getFastMath() & |
| 834 | mlir::arith::FastMathFlags::nnan); |
| 835 | } |
| 836 | |
| 837 | // Return true iff we have to use the loop-carried IsFirst predicate. |
| 838 | // If there is no mask, we can initialize the reductions using |
| 839 | // the first elements of the input. |
| 840 | // If NaNs are not honored, we can initialize the starting MIN/MAX |
| 841 | // value to +/-LARGEST. |
| 842 | bool useIsFirst() const { return this->getMask() && honorNans(); } |
| 843 | |
| 844 | std::size_t getNumReductions() const { return useIsFirst() ? 2 : 1; } |
| 845 | }; |
| 846 | |
| 847 | template <typename T> |
| 848 | llvm::SmallVector<mlir::Value> |
| 849 | MinMaxvalAsElementalConverter<T>::genReductionInitValues( |
| 850 | mlir::ValueRange oneBasedIndices, |
| 851 | const llvm::SmallVectorImpl<mlir::Value> &extents) { |
| 852 | llvm::SmallVector<mlir::Value> result; |
| 853 | fir::FirOpBuilder &builder = this->builder; |
| 854 | mlir::Location loc = this->loc; |
| 855 | |
| 856 | fir::IfOp ifOp; |
| 857 | if (!useIsFirst() && honorNans()) { |
| 858 | // Check if we can load the value of the first element in the array |
| 859 | // or its section (for partial reduction). |
| 860 | assert(!this->getMask() && |
| 861 | "cannot fetch first element when mask is present" ); |
| 862 | assert(extents.size() == |
| 863 | (this->isTotalReduction() ? this->getSourceRank() : 1u) && |
| 864 | "wrong number of extents for MINVAL/MAXVAL reduction" ); |
| 865 | mlir::Value isNotEmpty = genIsNotEmptyArrayExtents(loc, builder, extents); |
| 866 | llvm::SmallVector<mlir::Value> indices = genFirstElementIndicesForReduction( |
| 867 | loc, builder, this->isTotalReduction(), this->getConstDim(), |
| 868 | this->getSourceRank(), oneBasedIndices); |
| 869 | |
| 870 | ifOp = |
| 871 | builder.create<fir::IfOp>(loc, this->getResultElementType(), isNotEmpty, |
| 872 | /*withElseRegion=*/true); |
| 873 | builder.setInsertionPointToStart(&ifOp.getThenRegion().front()); |
| 874 | mlir::Value minMaxFirst = hlfir::loadElementAt( |
| 875 | loc, builder, hlfir::Entity{this->getSource()}, indices); |
| 876 | builder.create<fir::ResultOp>(loc, minMaxFirst); |
| 877 | |
| 878 | // In the 'else' block use default init values. |
| 879 | builder.setInsertionPointToStart(&ifOp.getElseRegion().front()); |
| 880 | } |
| 881 | |
| 882 | mlir::Value init = |
| 883 | genMinMaxInitValue<isMax>(loc, builder, this->getResultElementType()); |
| 884 | result.push_back(init); |
| 885 | |
| 886 | if (ifOp) { |
| 887 | builder.create<fir::ResultOp>(loc, result); |
| 888 | builder.setInsertionPointAfter(ifOp); |
| 889 | result = ifOp.getResults(); |
| 890 | } else if (useIsFirst()) { |
| 891 | // Initial value for isFirst predicate. It is switched to false, |
| 892 | // when the reduction update dynamically happens inside the reduction |
| 893 | // loop. |
| 894 | result.push_back(builder.createBool(loc, true)); |
| 895 | } |
| 896 | |
| 897 | return result; |
| 898 | } |
| 899 | |
| 900 | /// Reduction converter for SUM. |
| 901 | class SumAsElementalConverter |
| 902 | : public NumericReductionAsElementalConverterBase<hlfir::SumOp> { |
| 903 | using Base = NumericReductionAsElementalConverterBase; |
| 904 | |
| 905 | public: |
| 906 | SumAsElementalConverter(hlfir::SumOp op, mlir::PatternRewriter &rewriter) |
| 907 | : Base{op, rewriter} {} |
| 908 | |
| 909 | private: |
| 910 | virtual llvm::SmallVector<mlir::Value> genReductionInitValues( |
| 911 | [[maybe_unused]] mlir::ValueRange oneBasedIndices, |
| 912 | [[maybe_unused]] const llvm::SmallVectorImpl<mlir::Value> &extents) |
| 913 | final { |
| 914 | return { |
| 915 | fir::factory::createZeroValue(builder, loc, getResultElementType())}; |
| 916 | } |
| 917 | virtual llvm::SmallVector<mlir::Value> |
| 918 | reduceOneElement(const llvm::SmallVectorImpl<mlir::Value> ¤tValue, |
| 919 | hlfir::Entity array, |
| 920 | mlir::ValueRange oneBasedIndices) final { |
| 921 | checkReductions(currentValue); |
| 922 | hlfir::Entity elementValue = |
| 923 | hlfir::loadElementAt(loc, builder, array, oneBasedIndices); |
| 924 | // NOTE: we can use "Kahan summation" same way as the runtime |
| 925 | // (e.g. when fast-math is not allowed), but let's start with |
| 926 | // the simple version. |
| 927 | return {genScalarAdd(currentValue[0], elementValue)}; |
| 928 | } |
| 929 | |
| 930 | // Generate scalar addition of the two values (of the same data type). |
| 931 | mlir::Value genScalarAdd(mlir::Value value1, mlir::Value value2); |
| 932 | }; |
| 933 | |
| 934 | /// Base class for logical reductions like ALL, ANY, COUNT. |
| 935 | /// They do not have MASK and FastMathFlags. |
| 936 | template <typename OpT> |
| 937 | class LogicalReductionAsElementalConverterBase |
| 938 | : public ReductionAsElementalConverter { |
| 939 | using Base = ReductionAsElementalConverter; |
| 940 | |
| 941 | public: |
| 942 | LogicalReductionAsElementalConverterBase(OpT op, |
| 943 | mlir::PatternRewriter &rewriter) |
| 944 | : Base{op.getOperation(), rewriter} {} |
| 945 | |
| 946 | protected: |
| 947 | OpT getOp() const { return mlir::cast<OpT>(op); } |
| 948 | |
| 949 | void checkReductions(const llvm::SmallVectorImpl<mlir::Value> &reductions) { |
| 950 | assert(reductions.size() == 1 && "reduction must produce single value" ); |
| 951 | } |
| 952 | |
| 953 | virtual mlir::Value getSource() const final { return getOp().getMask(); } |
| 954 | virtual mlir::Value getDim() const final { return getOp().getDim(); } |
| 955 | |
| 956 | virtual hlfir::Entity genFinalResult( |
| 957 | const llvm::SmallVectorImpl<mlir::Value> &reductionResults) override { |
| 958 | checkReductions(reductionResults); |
| 959 | return hlfir::Entity{reductionResults[0]}; |
| 960 | } |
| 961 | }; |
| 962 | |
| 963 | /// Reduction converter for ALL/ANY. |
| 964 | template <typename T> |
| 965 | class AllAnyAsElementalConverter |
| 966 | : public LogicalReductionAsElementalConverterBase<T> { |
| 967 | static_assert(std::is_same_v<T, hlfir::AllOp> || |
| 968 | std::is_same_v<T, hlfir::AnyOp>); |
| 969 | static constexpr bool isAll = std::is_same_v<T, hlfir::AllOp>; |
| 970 | using Base = LogicalReductionAsElementalConverterBase<T>; |
| 971 | |
| 972 | public: |
| 973 | AllAnyAsElementalConverter(T op, mlir::PatternRewriter &rewriter) |
| 974 | : Base{op, rewriter} {} |
| 975 | |
| 976 | private: |
| 977 | virtual llvm::SmallVector<mlir::Value> genReductionInitValues( |
| 978 | [[maybe_unused]] mlir::ValueRange oneBasedIndices, |
| 979 | [[maybe_unused]] const llvm::SmallVectorImpl<mlir::Value> &extents) |
| 980 | final { |
| 981 | return {this->builder.createBool(this->loc, isAll ? true : false)}; |
| 982 | } |
| 983 | virtual llvm::SmallVector<mlir::Value> |
| 984 | reduceOneElement(const llvm::SmallVectorImpl<mlir::Value> ¤tValue, |
| 985 | hlfir::Entity array, |
| 986 | mlir::ValueRange oneBasedIndices) final { |
| 987 | this->checkReductions(currentValue); |
| 988 | fir::FirOpBuilder &builder = this->builder; |
| 989 | mlir::Location loc = this->loc; |
| 990 | hlfir::Entity elementValue = |
| 991 | hlfir::loadElementAt(loc, builder, array, oneBasedIndices); |
| 992 | mlir::Value mask = |
| 993 | builder.createConvert(loc, builder.getI1Type(), elementValue); |
| 994 | if constexpr (isAll) |
| 995 | return {builder.create<mlir::arith::AndIOp>(loc, mask, currentValue[0])}; |
| 996 | else |
| 997 | return {builder.create<mlir::arith::OrIOp>(loc, mask, currentValue[0])}; |
| 998 | } |
| 999 | |
| 1000 | virtual hlfir::Entity genFinalResult( |
| 1001 | const llvm::SmallVectorImpl<mlir::Value> &reductionValues) final { |
| 1002 | this->checkReductions(reductionValues); |
| 1003 | return hlfir::Entity{this->builder.createConvert( |
| 1004 | this->loc, this->getResultElementType(), reductionValues[0])}; |
| 1005 | } |
| 1006 | }; |
| 1007 | |
| 1008 | /// Reduction converter for COUNT. |
| 1009 | class CountAsElementalConverter |
| 1010 | : public LogicalReductionAsElementalConverterBase<hlfir::CountOp> { |
| 1011 | using Base = LogicalReductionAsElementalConverterBase<hlfir::CountOp>; |
| 1012 | |
| 1013 | public: |
| 1014 | CountAsElementalConverter(hlfir::CountOp op, mlir::PatternRewriter &rewriter) |
| 1015 | : Base{op, rewriter} {} |
| 1016 | |
| 1017 | private: |
| 1018 | virtual llvm::SmallVector<mlir::Value> genReductionInitValues( |
| 1019 | [[maybe_unused]] mlir::ValueRange oneBasedIndices, |
| 1020 | [[maybe_unused]] const llvm::SmallVectorImpl<mlir::Value> &extents) |
| 1021 | final { |
| 1022 | return { |
| 1023 | fir::factory::createZeroValue(builder, loc, getResultElementType())}; |
| 1024 | } |
| 1025 | virtual llvm::SmallVector<mlir::Value> |
| 1026 | reduceOneElement(const llvm::SmallVectorImpl<mlir::Value> ¤tValue, |
| 1027 | hlfir::Entity array, |
| 1028 | mlir::ValueRange oneBasedIndices) final { |
| 1029 | checkReductions(currentValue); |
| 1030 | hlfir::Entity elementValue = |
| 1031 | hlfir::loadElementAt(loc, builder, array, oneBasedIndices); |
| 1032 | mlir::Value cond = |
| 1033 | builder.createConvert(loc, builder.getI1Type(), elementValue); |
| 1034 | mlir::Value one = |
| 1035 | builder.createIntegerConstant(loc, getResultElementType(), 1); |
| 1036 | mlir::Value add1 = |
| 1037 | builder.create<mlir::arith::AddIOp>(loc, currentValue[0], one); |
| 1038 | return {builder.create<mlir::arith::SelectOp>(loc, cond, add1, |
| 1039 | currentValue[0])}; |
| 1040 | } |
| 1041 | }; |
| 1042 | |
| 1043 | mlir::LogicalResult ReductionAsElementalConverter::convert() { |
| 1044 | mlir::LogicalResult canConvert(isConvertible()); |
| 1045 | |
| 1046 | if (mlir::failed(canConvert)) |
| 1047 | return canConvert; |
| 1048 | |
| 1049 | hlfir::Entity array = hlfir::Entity{getSource()}; |
| 1050 | bool isTotalReduce = isTotalReduction(); |
| 1051 | auto dimVal = getConstDim(); |
| 1052 | if (mlir::failed(dimVal)) |
| 1053 | return dimVal; |
| 1054 | mlir::Value mask = getMask(); |
| 1055 | mlir::Value resultShape, dimExtent; |
| 1056 | llvm::SmallVector<mlir::Value> arrayExtents; |
| 1057 | if (isTotalReduce) |
| 1058 | arrayExtents = hlfir::genExtentsVector(loc, builder, array); |
| 1059 | else |
| 1060 | std::tie(resultShape, dimExtent) = |
| 1061 | genResultShapeForPartialReduction(array, *dimVal); |
| 1062 | |
| 1063 | // If the mask is present and is a scalar, then we'd better load its value |
| 1064 | // outside of the reduction loop making the loop unswitching easier. |
| 1065 | mlir::Value isPresentPred, maskValue; |
| 1066 | if (mask) { |
| 1067 | if (mlir::isa<fir::BaseBoxType>(mask.getType())) { |
| 1068 | // MASK represented by a box might be dynamically optional, |
| 1069 | // so we have to check for its presence before accessing it. |
| 1070 | isPresentPred = |
| 1071 | builder.create<fir::IsPresentOp>(loc, builder.getI1Type(), mask); |
| 1072 | } |
| 1073 | |
| 1074 | if (hlfir::Entity{mask}.isScalar()) |
| 1075 | maskValue = genMaskValue(mask, isPresentPred, {}); |
| 1076 | } |
| 1077 | |
| 1078 | auto genKernel = [&](mlir::Location loc, fir::FirOpBuilder &builder, |
| 1079 | mlir::ValueRange inputIndices) -> hlfir::Entity { |
| 1080 | // Loop over all indices in the DIM dimension, and reduce all values. |
| 1081 | // If DIM is not present, do total reduction. |
| 1082 | |
| 1083 | llvm::SmallVector<mlir::Value> extents; |
| 1084 | if (isTotalReduce) |
| 1085 | extents = arrayExtents; |
| 1086 | else |
| 1087 | extents.push_back( |
| 1088 | builder.createConvert(loc, builder.getIndexType(), dimExtent)); |
| 1089 | |
| 1090 | // Initial value for the reduction. |
| 1091 | llvm::SmallVector<mlir::Value, 1> reductionInitValues = |
| 1092 | genReductionInitValues(inputIndices, extents); |
| 1093 | |
| 1094 | auto genBody = [&](mlir::Location loc, fir::FirOpBuilder &builder, |
| 1095 | mlir::ValueRange oneBasedIndices, |
| 1096 | mlir::ValueRange reductionArgs) |
| 1097 | -> llvm::SmallVector<mlir::Value, 1> { |
| 1098 | // Generate the reduction loop-nest body. |
| 1099 | // The initial reduction value in the innermost loop |
| 1100 | // is passed via reductionArgs[0]. |
| 1101 | llvm::SmallVector<mlir::Value> indices; |
| 1102 | if (isTotalReduce) { |
| 1103 | indices = oneBasedIndices; |
| 1104 | } else { |
| 1105 | indices = inputIndices; |
| 1106 | indices.insert(indices.begin() + *dimVal - 1, oneBasedIndices[0]); |
| 1107 | } |
| 1108 | |
| 1109 | llvm::SmallVector<mlir::Value, 1> reductionValues = reductionArgs; |
| 1110 | llvm::SmallVector<mlir::Type, 1> reductionTypes; |
| 1111 | llvm::transform(reductionValues, std::back_inserter(reductionTypes), |
| 1112 | [](mlir::Value v) { return v.getType(); }); |
| 1113 | fir::IfOp ifOp; |
| 1114 | if (mask) { |
| 1115 | // Make the reduction value update conditional on the value |
| 1116 | // of the mask. |
| 1117 | if (!maskValue) { |
| 1118 | // If the mask is an array, use the elemental and the loop indices |
| 1119 | // to address the proper mask element. |
| 1120 | maskValue = genMaskValue(mask, isPresentPred, indices); |
| 1121 | } |
| 1122 | mlir::Value isUnmasked = |
| 1123 | builder.create<fir::ConvertOp>(loc, builder.getI1Type(), maskValue); |
| 1124 | ifOp = builder.create<fir::IfOp>(loc, reductionTypes, isUnmasked, |
| 1125 | /*withElseRegion=*/true); |
| 1126 | // In the 'else' block return the current reduction value. |
| 1127 | builder.setInsertionPointToStart(&ifOp.getElseRegion().front()); |
| 1128 | builder.create<fir::ResultOp>(loc, reductionValues); |
| 1129 | |
| 1130 | // In the 'then' block do the actual addition. |
| 1131 | builder.setInsertionPointToStart(&ifOp.getThenRegion().front()); |
| 1132 | } |
| 1133 | reductionValues = reduceOneElement(reductionValues, array, indices); |
| 1134 | if (ifOp) { |
| 1135 | builder.create<fir::ResultOp>(loc, reductionValues); |
| 1136 | builder.setInsertionPointAfter(ifOp); |
| 1137 | reductionValues = ifOp.getResults(); |
| 1138 | } |
| 1139 | |
| 1140 | return reductionValues; |
| 1141 | }; |
| 1142 | |
| 1143 | llvm::SmallVector<mlir::Value, 1> reductionFinalValues = |
| 1144 | hlfir::genLoopNestWithReductions( |
| 1145 | loc, builder, extents, reductionInitValues, genBody, isUnordered()); |
| 1146 | return genFinalResult(reductionFinalValues); |
| 1147 | }; |
| 1148 | |
| 1149 | if (isTotalReduce) { |
| 1150 | hlfir::Entity result = genKernel(loc, builder, mlir::ValueRange{}); |
| 1151 | rewriter.replaceOp(op, result); |
| 1152 | return mlir::success(); |
| 1153 | } |
| 1154 | |
| 1155 | hlfir::ElementalOp elementalOp = hlfir::genElementalOp( |
| 1156 | loc, builder, getResultElementType(), resultShape, /*typeParams=*/{}, |
| 1157 | genKernel, |
| 1158 | /*isUnordered=*/true, /*polymorphicMold=*/nullptr, getResultType()); |
| 1159 | |
| 1160 | // it wouldn't be safe to replace block arguments with a different |
| 1161 | // hlfir.expr type. Types can differ due to differing amounts of shape |
| 1162 | // information |
| 1163 | assert(elementalOp.getResult().getType() == op->getResult(0).getType()); |
| 1164 | |
| 1165 | rewriter.replaceOp(op, elementalOp); |
| 1166 | return mlir::success(); |
| 1167 | } |
| 1168 | |
| 1169 | std::tuple<mlir::Value, mlir::Value> |
| 1170 | ReductionAsElementalConverter::genResultShapeForPartialReduction( |
| 1171 | hlfir::Entity array, int64_t dimVal) { |
| 1172 | llvm::SmallVector<mlir::Value> inExtents = |
| 1173 | hlfir::genExtentsVector(loc, builder, array); |
| 1174 | assert(dimVal > 0 && dimVal <= static_cast<int64_t>(inExtents.size()) && |
| 1175 | "DIM must be present and a positive constant not exceeding " |
| 1176 | "the array's rank" ); |
| 1177 | |
| 1178 | mlir::Value dimExtent = inExtents[dimVal - 1]; |
| 1179 | inExtents.erase(inExtents.begin() + dimVal - 1); |
| 1180 | return {builder.create<fir::ShapeOp>(loc, inExtents), dimExtent}; |
| 1181 | } |
| 1182 | |
| 1183 | mlir::Value SumAsElementalConverter::genScalarAdd(mlir::Value value1, |
| 1184 | mlir::Value value2) { |
| 1185 | mlir::Type ty = value1.getType(); |
| 1186 | assert(ty == value2.getType() && "reduction values' types do not match" ); |
| 1187 | if (mlir::isa<mlir::FloatType>(ty)) |
| 1188 | return builder.create<mlir::arith::AddFOp>(loc, value1, value2); |
| 1189 | else if (mlir::isa<mlir::ComplexType>(ty)) |
| 1190 | return builder.create<fir::AddcOp>(loc, value1, value2); |
| 1191 | else if (mlir::isa<mlir::IntegerType>(ty)) |
| 1192 | return builder.create<mlir::arith::AddIOp>(loc, value1, value2); |
| 1193 | |
| 1194 | llvm_unreachable("unsupported SUM reduction type" ); |
| 1195 | } |
| 1196 | |
| 1197 | mlir::Value ReductionAsElementalConverter::genMaskValue( |
| 1198 | mlir::Value mask, mlir::Value isPresentPred, mlir::ValueRange indices) { |
| 1199 | mlir::OpBuilder::InsertionGuard guard(builder); |
| 1200 | fir::IfOp ifOp; |
| 1201 | mlir::Type maskType = |
| 1202 | hlfir::getFortranElementType(fir::unwrapPassByRefType(mask.getType())); |
| 1203 | if (isPresentPred) { |
| 1204 | ifOp = builder.create<fir::IfOp>(loc, maskType, isPresentPred, |
| 1205 | /*withElseRegion=*/true); |
| 1206 | |
| 1207 | // Use 'true', if the mask is not present. |
| 1208 | builder.setInsertionPointToStart(&ifOp.getElseRegion().front()); |
| 1209 | mlir::Value trueValue = builder.createBool(loc, true); |
| 1210 | trueValue = builder.createConvert(loc, maskType, trueValue); |
| 1211 | builder.create<fir::ResultOp>(loc, trueValue); |
| 1212 | |
| 1213 | // Load the mask value, if the mask is present. |
| 1214 | builder.setInsertionPointToStart(&ifOp.getThenRegion().front()); |
| 1215 | } |
| 1216 | |
| 1217 | hlfir::Entity maskVar{mask}; |
| 1218 | if (maskVar.isScalar()) { |
| 1219 | if (mlir::isa<fir::BaseBoxType>(mask.getType())) { |
| 1220 | // MASK may be a boxed scalar. |
| 1221 | mlir::Value addr = hlfir::genVariableRawAddress(loc, builder, maskVar); |
| 1222 | mask = builder.create<fir::LoadOp>(loc, hlfir::Entity{addr}); |
| 1223 | } else { |
| 1224 | mask = hlfir::loadTrivialScalar(loc, builder, maskVar); |
| 1225 | } |
| 1226 | } else { |
| 1227 | // Load from the mask array. |
| 1228 | assert(!indices.empty() && "no indices for addressing the mask array" ); |
| 1229 | maskVar = hlfir::getElementAt(loc, builder, maskVar, indices); |
| 1230 | mask = hlfir::loadTrivialScalar(loc, builder, maskVar); |
| 1231 | } |
| 1232 | |
| 1233 | if (!isPresentPred) |
| 1234 | return mask; |
| 1235 | |
| 1236 | builder.create<fir::ResultOp>(loc, mask); |
| 1237 | return ifOp.getResult(0); |
| 1238 | } |
| 1239 | |
| 1240 | /// Convert an operation that is a partial or total reduction |
| 1241 | /// over an array of values into a reduction loop[-nest] |
| 1242 | /// optionally wrapped into hlfir.elemental. |
| 1243 | template <typename Op> |
| 1244 | class ReductionConversion : public mlir::OpRewritePattern<Op> { |
| 1245 | public: |
| 1246 | using mlir::OpRewritePattern<Op>::OpRewritePattern; |
| 1247 | |
| 1248 | llvm::LogicalResult |
| 1249 | matchAndRewrite(Op op, mlir::PatternRewriter &rewriter) const override { |
| 1250 | if constexpr (std::is_same_v<Op, hlfir::MaxlocOp> || |
| 1251 | std::is_same_v<Op, hlfir::MinlocOp>) { |
| 1252 | MinMaxlocAsElementalConverter<Op> converter(op, rewriter); |
| 1253 | return converter.convert(); |
| 1254 | } else if constexpr (std::is_same_v<Op, hlfir::MaxvalOp> || |
| 1255 | std::is_same_v<Op, hlfir::MinvalOp>) { |
| 1256 | MinMaxvalAsElementalConverter<Op> converter(op, rewriter); |
| 1257 | return converter.convert(); |
| 1258 | } else if constexpr (std::is_same_v<Op, hlfir::CountOp>) { |
| 1259 | CountAsElementalConverter converter(op, rewriter); |
| 1260 | return converter.convert(); |
| 1261 | } else if constexpr (std::is_same_v<Op, hlfir::AllOp> || |
| 1262 | std::is_same_v<Op, hlfir::AnyOp>) { |
| 1263 | AllAnyAsElementalConverter<Op> converter(op, rewriter); |
| 1264 | return converter.convert(); |
| 1265 | } else if constexpr (std::is_same_v<Op, hlfir::SumOp>) { |
| 1266 | SumAsElementalConverter converter{op, rewriter}; |
| 1267 | return converter.convert(); |
| 1268 | } |
| 1269 | return rewriter.notifyMatchFailure(op, "unexpected reduction operation" ); |
| 1270 | } |
| 1271 | }; |
| 1272 | |
| 1273 | class CShiftConversion : public mlir::OpRewritePattern<hlfir::CShiftOp> { |
| 1274 | public: |
| 1275 | using mlir::OpRewritePattern<hlfir::CShiftOp>::OpRewritePattern; |
| 1276 | |
| 1277 | llvm::LogicalResult |
| 1278 | matchAndRewrite(hlfir::CShiftOp cshift, |
| 1279 | mlir::PatternRewriter &rewriter) const override { |
| 1280 | |
| 1281 | hlfir::ExprType expr = mlir::dyn_cast<hlfir::ExprType>(cshift.getType()); |
| 1282 | assert(expr && |
| 1283 | "expected an expression type for the result of hlfir.cshift" ); |
| 1284 | unsigned arrayRank = expr.getRank(); |
| 1285 | // When it is a 1D CSHIFT, we may assume that the DIM argument |
| 1286 | // (whether it is present or absent) is equal to 1, otherwise, |
| 1287 | // the program is illegal. |
| 1288 | int64_t dimVal = 1; |
| 1289 | if (arrayRank != 1) |
| 1290 | if (mlir::Value dim = cshift.getDim()) { |
| 1291 | auto constDim = fir::getIntIfConstant(dim); |
| 1292 | if (!constDim) |
| 1293 | return rewriter.notifyMatchFailure(cshift, |
| 1294 | "Nonconstant DIM for CSHIFT" ); |
| 1295 | dimVal = *constDim; |
| 1296 | } |
| 1297 | |
| 1298 | if (dimVal <= 0 || dimVal > arrayRank) |
| 1299 | return rewriter.notifyMatchFailure(cshift, "Invalid DIM for CSHIFT" ); |
| 1300 | |
| 1301 | // When DIM==1 and the contiguity of the input array is not statically |
| 1302 | // known, try to exploit the fact that the leading dimension might be |
| 1303 | // contiguous. We can do this now using hlfir.eval_in_mem with |
| 1304 | // a dynamic check for the leading dimension contiguity. |
| 1305 | // Otherwise, convert hlfir.cshift to hlfir.elemental. |
| 1306 | // |
| 1307 | // Note that the hlfir.elemental can be inlined into other hlfir.elemental, |
| 1308 | // while hlfir.eval_in_mem prevents this, and we will end up creating |
| 1309 | // a temporary array for the result. We may need to come up with |
| 1310 | // a more sophisticated logic for picking the most efficient |
| 1311 | // representation. |
| 1312 | hlfir::Entity array = hlfir::Entity{cshift.getArray()}; |
| 1313 | mlir::Type elementType = array.getFortranElementType(); |
| 1314 | if (dimVal == 1 && fir::isa_trivial(elementType) && |
| 1315 | // genInMemCShift() only works for variables currently. |
| 1316 | array.isVariable()) |
| 1317 | rewriter.replaceOp(cshift, genInMemCShift(rewriter, cshift, dimVal)); |
| 1318 | else |
| 1319 | rewriter.replaceOp(cshift, genElementalCShift(rewriter, cshift, dimVal)); |
| 1320 | return mlir::success(); |
| 1321 | } |
| 1322 | |
| 1323 | private: |
| 1324 | /// Generate MODULO(\p shiftVal, \p extent). |
| 1325 | static mlir::Value normalizeShiftValue(mlir::Location loc, |
| 1326 | fir::FirOpBuilder &builder, |
| 1327 | mlir::Value shiftVal, |
| 1328 | mlir::Value extent, |
| 1329 | mlir::Type calcType) { |
| 1330 | shiftVal = builder.createConvert(loc, calcType, shiftVal); |
| 1331 | extent = builder.createConvert(loc, calcType, extent); |
| 1332 | // Make sure that we do not divide by zero. When the dimension |
| 1333 | // has zero size, turn the extent into 1. Note that the computed |
| 1334 | // MODULO value won't be used in this case, so it does not matter |
| 1335 | // which extent value we use. |
| 1336 | mlir::Value zero = builder.createIntegerConstant(loc, calcType, 0); |
| 1337 | mlir::Value one = builder.createIntegerConstant(loc, calcType, 1); |
| 1338 | mlir::Value isZero = builder.create<mlir::arith::CmpIOp>( |
| 1339 | loc, mlir::arith::CmpIPredicate::eq, extent, zero); |
| 1340 | extent = builder.create<mlir::arith::SelectOp>(loc, isZero, one, extent); |
| 1341 | shiftVal = fir::IntrinsicLibrary{builder, loc}.genModulo( |
| 1342 | calcType, {shiftVal, extent}); |
| 1343 | return builder.createConvert(loc, calcType, shiftVal); |
| 1344 | } |
| 1345 | |
| 1346 | /// Convert \p cshift into an hlfir.elemental using |
| 1347 | /// the pre-computed constant \p dimVal. |
| 1348 | static mlir::Operation *genElementalCShift(mlir::PatternRewriter &rewriter, |
| 1349 | hlfir::CShiftOp cshift, |
| 1350 | int64_t dimVal) { |
| 1351 | using Fortran::common::maxRank; |
| 1352 | hlfir::Entity shift = hlfir::Entity{cshift.getShift()}; |
| 1353 | hlfir::Entity array = hlfir::Entity{cshift.getArray()}; |
| 1354 | |
| 1355 | mlir::Location loc = cshift.getLoc(); |
| 1356 | fir::FirOpBuilder builder{rewriter, cshift.getOperation()}; |
| 1357 | // The new index computation involves MODULO, which is not implemented |
| 1358 | // for IndexType, so use I64 instead. |
| 1359 | mlir::Type calcType = builder.getI64Type(); |
| 1360 | // All the indices arithmetic used below does not overflow |
| 1361 | // signed and unsigned I64. |
| 1362 | builder.setIntegerOverflowFlags(mlir::arith::IntegerOverflowFlags::nsw | |
| 1363 | mlir::arith::IntegerOverflowFlags::nuw); |
| 1364 | |
| 1365 | mlir::Value arrayShape = hlfir::genShape(loc, builder, array); |
| 1366 | llvm::SmallVector<mlir::Value, maxRank> arrayExtents = |
| 1367 | hlfir::getExplicitExtentsFromShape(arrayShape, builder); |
| 1368 | llvm::SmallVector<mlir::Value, 1> typeParams; |
| 1369 | hlfir::genLengthParameters(loc, builder, array, typeParams); |
| 1370 | mlir::Value shiftDimExtent = |
| 1371 | builder.createConvert(loc, calcType, arrayExtents[dimVal - 1]); |
| 1372 | mlir::Value shiftVal; |
| 1373 | if (shift.isScalar()) { |
| 1374 | shiftVal = hlfir::loadTrivialScalar(loc, builder, shift); |
| 1375 | shiftVal = |
| 1376 | normalizeShiftValue(loc, builder, shiftVal, shiftDimExtent, calcType); |
| 1377 | } |
| 1378 | |
| 1379 | auto genKernel = [&](mlir::Location loc, fir::FirOpBuilder &builder, |
| 1380 | mlir::ValueRange inputIndices) -> hlfir::Entity { |
| 1381 | llvm::SmallVector<mlir::Value, maxRank> indices{inputIndices}; |
| 1382 | if (!shiftVal) { |
| 1383 | // When the array is not a vector, section |
| 1384 | // (s(1), s(2), ..., s(dim-1), :, s(dim+1), ..., s(n) |
| 1385 | // of the result has a value equal to: |
| 1386 | // CSHIFT(ARRAY(s(1), s(2), ..., s(dim-1), :, s(dim+1), ..., s(n)), |
| 1387 | // SH, 1), |
| 1388 | // where SH is either SHIFT (if scalar) or |
| 1389 | // SHIFT(s(1), s(2), ..., s(dim-1), s(dim+1), ..., s(n)). |
| 1390 | llvm::SmallVector<mlir::Value, maxRank> shiftIndices{indices}; |
| 1391 | shiftIndices.erase(shiftIndices.begin() + dimVal - 1); |
| 1392 | hlfir::Entity shiftElement = |
| 1393 | hlfir::getElementAt(loc, builder, shift, shiftIndices); |
| 1394 | shiftVal = hlfir::loadTrivialScalar(loc, builder, shiftElement); |
| 1395 | shiftVal = normalizeShiftValue(loc, builder, shiftVal, shiftDimExtent, |
| 1396 | calcType); |
| 1397 | } |
| 1398 | |
| 1399 | // Element i of the result (1-based) is element |
| 1400 | // 'MODULO(i + SH - 1, SIZE(ARRAY,DIM)) + 1' (1-based) of the original |
| 1401 | // ARRAY (or its section, when ARRAY is not a vector). |
| 1402 | |
| 1403 | // Compute the index into the original array using the normalized |
| 1404 | // shift value, which satisfies (SH >= 0 && SH < SIZE(ARRAY,DIM)): |
| 1405 | // newIndex = |
| 1406 | // i + ((i <= SIZE(ARRAY,DIM) - SH) ? SH : SH - SIZE(ARRAY,DIM)) |
| 1407 | // |
| 1408 | // Such index computation allows for further loop vectorization |
| 1409 | // in LLVM. |
| 1410 | mlir::Value wrapBound = |
| 1411 | builder.create<mlir::arith::SubIOp>(loc, shiftDimExtent, shiftVal); |
| 1412 | mlir::Value adjustedShiftVal = |
| 1413 | builder.create<mlir::arith::SubIOp>(loc, shiftVal, shiftDimExtent); |
| 1414 | mlir::Value index = |
| 1415 | builder.createConvert(loc, calcType, inputIndices[dimVal - 1]); |
| 1416 | mlir::Value wrapCheck = builder.create<mlir::arith::CmpIOp>( |
| 1417 | loc, mlir::arith::CmpIPredicate::sle, index, wrapBound); |
| 1418 | mlir::Value actualShift = builder.create<mlir::arith::SelectOp>( |
| 1419 | loc, wrapCheck, shiftVal, adjustedShiftVal); |
| 1420 | mlir::Value newIndex = |
| 1421 | builder.create<mlir::arith::AddIOp>(loc, index, actualShift); |
| 1422 | newIndex = builder.createConvert(loc, builder.getIndexType(), newIndex); |
| 1423 | indices[dimVal - 1] = newIndex; |
| 1424 | hlfir::Entity element = hlfir::getElementAt(loc, builder, array, indices); |
| 1425 | return hlfir::loadTrivialScalar(loc, builder, element); |
| 1426 | }; |
| 1427 | |
| 1428 | mlir::Type elementType = array.getFortranElementType(); |
| 1429 | hlfir::ElementalOp elementalOp = hlfir::genElementalOp( |
| 1430 | loc, builder, elementType, arrayShape, typeParams, genKernel, |
| 1431 | /*isUnordered=*/true, |
| 1432 | array.isPolymorphic() ? static_cast<mlir::Value>(array) : nullptr, |
| 1433 | cshift.getResult().getType()); |
| 1434 | return elementalOp.getOperation(); |
| 1435 | } |
| 1436 | |
| 1437 | /// Convert \p cshift into an hlfir.eval_in_mem using the pre-computed |
| 1438 | /// constant \p dimVal. |
| 1439 | /// The converted code looks like this: |
| 1440 | /// do i=1,SH |
| 1441 | /// result(i + (SIZE(ARRAY,DIM) - SH)) = array(i) |
| 1442 | /// end |
| 1443 | /// do i=1,SIZE(ARRAY,DIM) - SH |
| 1444 | /// result(i) = array(i + SH) |
| 1445 | /// end |
| 1446 | /// |
| 1447 | /// When \p dimVal is 1, we generate the same code twice |
| 1448 | /// under a dynamic check for the contiguity of the leading |
| 1449 | /// dimension. In the code corresponding to the contiguous |
| 1450 | /// leading dimension, the shift dimension is represented |
| 1451 | /// as a contiguous slice of the original array. |
| 1452 | /// This allows recognizing the above two loops as memcpy |
| 1453 | /// loop idioms in LLVM. |
| 1454 | static mlir::Operation *genInMemCShift(mlir::PatternRewriter &rewriter, |
| 1455 | hlfir::CShiftOp cshift, |
| 1456 | int64_t dimVal) { |
| 1457 | using Fortran::common::maxRank; |
| 1458 | hlfir::Entity shift = hlfir::Entity{cshift.getShift()}; |
| 1459 | hlfir::Entity array = hlfir::Entity{cshift.getArray()}; |
| 1460 | assert(array.isVariable() && "array must be a variable" ); |
| 1461 | assert(!array.isPolymorphic() && |
| 1462 | "genInMemCShift does not support polymorphic types" ); |
| 1463 | mlir::Location loc = cshift.getLoc(); |
| 1464 | fir::FirOpBuilder builder{rewriter, cshift.getOperation()}; |
| 1465 | // The new index computation involves MODULO, which is not implemented |
| 1466 | // for IndexType, so use I64 instead. |
| 1467 | mlir::Type calcType = builder.getI64Type(); |
| 1468 | // All the indices arithmetic used below does not overflow |
| 1469 | // signed and unsigned I64. |
| 1470 | builder.setIntegerOverflowFlags(mlir::arith::IntegerOverflowFlags::nsw | |
| 1471 | mlir::arith::IntegerOverflowFlags::nuw); |
| 1472 | |
| 1473 | mlir::Value arrayShape = hlfir::genShape(loc, builder, array); |
| 1474 | llvm::SmallVector<mlir::Value, maxRank> arrayExtents = |
| 1475 | hlfir::getExplicitExtentsFromShape(arrayShape, builder); |
| 1476 | llvm::SmallVector<mlir::Value, 1> typeParams; |
| 1477 | hlfir::genLengthParameters(loc, builder, array, typeParams); |
| 1478 | mlir::Value shiftDimExtent = |
| 1479 | builder.createConvert(loc, calcType, arrayExtents[dimVal - 1]); |
| 1480 | mlir::Value shiftVal; |
| 1481 | if (shift.isScalar()) { |
| 1482 | shiftVal = hlfir::loadTrivialScalar(loc, builder, shift); |
| 1483 | shiftVal = |
| 1484 | normalizeShiftValue(loc, builder, shiftVal, shiftDimExtent, calcType); |
| 1485 | } |
| 1486 | |
| 1487 | hlfir::EvaluateInMemoryOp evalOp = |
| 1488 | builder.create<hlfir::EvaluateInMemoryOp>( |
| 1489 | loc, mlir::cast<hlfir::ExprType>(cshift.getType()), arrayShape); |
| 1490 | builder.setInsertionPointToStart(&evalOp.getBody().front()); |
| 1491 | |
| 1492 | mlir::Value resultArray = evalOp.getMemory(); |
| 1493 | mlir::Type arrayType = fir::dyn_cast_ptrEleTy(resultArray.getType()); |
| 1494 | resultArray = builder.createBox(loc, fir::BoxType::get(arrayType), |
| 1495 | resultArray, arrayShape, /*slice=*/nullptr, |
| 1496 | typeParams, /*tdesc=*/nullptr); |
| 1497 | |
| 1498 | // This is a generator of the dimension shift code. |
| 1499 | // The code is inserted inside a loop nest over the other dimensions |
| 1500 | // (if any). If exposeContiguity is true, the array's section |
| 1501 | // array(s(1), ..., s(dim-1), :, s(dim+1), ..., s(n)) is represented |
| 1502 | // as a contiguous 1D array. |
| 1503 | // shiftVal is the normalized shift value that satisfies (SH >= 0 && SH < |
| 1504 | // SIZE(ARRAY,DIM)). |
| 1505 | // |
| 1506 | auto genDimensionShift = [&](mlir::Location loc, fir::FirOpBuilder &builder, |
| 1507 | mlir::Value shiftVal, bool exposeContiguity, |
| 1508 | mlir::ValueRange oneBasedIndices) |
| 1509 | -> llvm::SmallVector<mlir::Value, 0> { |
| 1510 | // Create a vector of indices (s(1), ..., s(dim-1), nullptr, s(dim+1), |
| 1511 | // ..., s(n)) so that we can update the dimVal index as needed. |
| 1512 | llvm::SmallVector<mlir::Value, maxRank> srcIndices( |
| 1513 | oneBasedIndices.begin(), oneBasedIndices.begin() + (dimVal - 1)); |
| 1514 | srcIndices.push_back(nullptr); |
| 1515 | srcIndices.append(oneBasedIndices.begin() + (dimVal - 1), |
| 1516 | oneBasedIndices.end()); |
| 1517 | llvm::SmallVector<mlir::Value, maxRank> dstIndices(srcIndices); |
| 1518 | |
| 1519 | hlfir::Entity srcArray = array; |
| 1520 | if (exposeContiguity && mlir::isa<fir::BaseBoxType>(srcArray.getType())) { |
| 1521 | assert(dimVal == 1 && "can expose contiguity only for dim 1" ); |
| 1522 | llvm::SmallVector<mlir::Value, maxRank> arrayLbounds = |
| 1523 | hlfir::genLowerbounds(loc, builder, arrayShape, array.getRank()); |
| 1524 | hlfir::Entity section = |
| 1525 | hlfir::gen1DSection(loc, builder, srcArray, dimVal, arrayLbounds, |
| 1526 | arrayExtents, oneBasedIndices, typeParams); |
| 1527 | mlir::Value addr = hlfir::genVariableRawAddress(loc, builder, section); |
| 1528 | mlir::Value shape = hlfir::genShape(loc, builder, section); |
| 1529 | mlir::Type boxType = fir::wrapInClassOrBoxType( |
| 1530 | hlfir::getFortranElementOrSequenceType(section.getType()), |
| 1531 | section.isPolymorphic()); |
| 1532 | srcArray = hlfir::Entity{ |
| 1533 | builder.createBox(loc, boxType, addr, shape, /*slice=*/nullptr, |
| 1534 | /*lengths=*/{}, /*tdesc=*/nullptr)}; |
| 1535 | // When shifting the dimension as a 1D section of the original |
| 1536 | // array, we only need one index for addressing. |
| 1537 | srcIndices.resize(1); |
| 1538 | } |
| 1539 | |
| 1540 | // Copy first portion of the array: |
| 1541 | // do i=1,SH |
| 1542 | // result(i + (SIZE(ARRAY,DIM) - SH)) = array(i) |
| 1543 | // end |
| 1544 | auto genAssign1 = [&](mlir::Location loc, fir::FirOpBuilder &builder, |
| 1545 | mlir::ValueRange index, |
| 1546 | mlir::ValueRange reductionArgs) |
| 1547 | -> llvm::SmallVector<mlir::Value, 0> { |
| 1548 | assert(index.size() == 1 && "expected single loop" ); |
| 1549 | mlir::Value srcIndex = builder.createConvert(loc, calcType, index[0]); |
| 1550 | srcIndices[dimVal - 1] = srcIndex; |
| 1551 | hlfir::Entity srcElementValue = |
| 1552 | hlfir::loadElementAt(loc, builder, srcArray, srcIndices); |
| 1553 | mlir::Value dstIndex = builder.create<mlir::arith::AddIOp>( |
| 1554 | loc, srcIndex, |
| 1555 | builder.create<mlir::arith::SubIOp>(loc, shiftDimExtent, shiftVal)); |
| 1556 | dstIndices[dimVal - 1] = dstIndex; |
| 1557 | hlfir::Entity dstElement = hlfir::getElementAt( |
| 1558 | loc, builder, hlfir::Entity{resultArray}, dstIndices); |
| 1559 | builder.create<hlfir::AssignOp>(loc, srcElementValue, dstElement); |
| 1560 | return {}; |
| 1561 | }; |
| 1562 | |
| 1563 | // Generate the first loop. |
| 1564 | hlfir::genLoopNestWithReductions(loc, builder, {shiftVal}, |
| 1565 | /*reductionInits=*/{}, genAssign1, |
| 1566 | /*isUnordered=*/true); |
| 1567 | |
| 1568 | // Copy second portion of the array: |
| 1569 | // do i=1,SIZE(ARRAY,DIM)-SH |
| 1570 | // result(i) = array(i + SH) |
| 1571 | // end |
| 1572 | auto genAssign2 = [&](mlir::Location loc, fir::FirOpBuilder &builder, |
| 1573 | mlir::ValueRange index, |
| 1574 | mlir::ValueRange reductionArgs) |
| 1575 | -> llvm::SmallVector<mlir::Value, 0> { |
| 1576 | assert(index.size() == 1 && "expected single loop" ); |
| 1577 | mlir::Value dstIndex = builder.createConvert(loc, calcType, index[0]); |
| 1578 | mlir::Value srcIndex = |
| 1579 | builder.create<mlir::arith::AddIOp>(loc, dstIndex, shiftVal); |
| 1580 | srcIndices[dimVal - 1] = srcIndex; |
| 1581 | hlfir::Entity srcElementValue = |
| 1582 | hlfir::loadElementAt(loc, builder, srcArray, srcIndices); |
| 1583 | dstIndices[dimVal - 1] = dstIndex; |
| 1584 | hlfir::Entity dstElement = hlfir::getElementAt( |
| 1585 | loc, builder, hlfir::Entity{resultArray}, dstIndices); |
| 1586 | builder.create<hlfir::AssignOp>(loc, srcElementValue, dstElement); |
| 1587 | return {}; |
| 1588 | }; |
| 1589 | |
| 1590 | // Generate the second loop. |
| 1591 | mlir::Value bound = |
| 1592 | builder.create<mlir::arith::SubIOp>(loc, shiftDimExtent, shiftVal); |
| 1593 | hlfir::genLoopNestWithReductions(loc, builder, {bound}, |
| 1594 | /*reductionInits=*/{}, genAssign2, |
| 1595 | /*isUnordered=*/true); |
| 1596 | return {}; |
| 1597 | }; |
| 1598 | |
| 1599 | // A wrapper around genDimensionShift that computes the normalized |
| 1600 | // shift value and manages the insertion of the multiple versions |
| 1601 | // of the shift based on the dynamic check of the leading dimension's |
| 1602 | // contiguity (when dimVal == 1). |
| 1603 | auto genShiftBody = [&](mlir::Location loc, fir::FirOpBuilder &builder, |
| 1604 | mlir::ValueRange oneBasedIndices, |
| 1605 | mlir::ValueRange reductionArgs) |
| 1606 | -> llvm::SmallVector<mlir::Value, 0> { |
| 1607 | // Copy the dimension with a shift: |
| 1608 | // SH is either SHIFT (if scalar) or SHIFT(oneBasedIndices). |
| 1609 | if (!shiftVal) { |
| 1610 | assert(!oneBasedIndices.empty() && "scalar shift must be precomputed" ); |
| 1611 | hlfir::Entity shiftElement = |
| 1612 | hlfir::getElementAt(loc, builder, shift, oneBasedIndices); |
| 1613 | shiftVal = hlfir::loadTrivialScalar(loc, builder, shiftElement); |
| 1614 | shiftVal = normalizeShiftValue(loc, builder, shiftVal, shiftDimExtent, |
| 1615 | calcType); |
| 1616 | } |
| 1617 | |
| 1618 | // If we can fetch the byte stride of the leading dimension, |
| 1619 | // and the byte size of the element, then we can generate |
| 1620 | // a dynamic contiguity check and expose the leading dimension's |
| 1621 | // contiguity in FIR, making memcpy loop idiom recognition |
| 1622 | // possible. |
| 1623 | mlir::Value elemSize; |
| 1624 | mlir::Value stride; |
| 1625 | if (dimVal == 1 && mlir::isa<fir::BaseBoxType>(array.getType())) { |
| 1626 | mlir::Type indexType = builder.getIndexType(); |
| 1627 | elemSize = |
| 1628 | builder.create<fir::BoxEleSizeOp>(loc, indexType, array.getBase()); |
| 1629 | mlir::Value dimIdx = |
| 1630 | builder.createIntegerConstant(loc, indexType, dimVal - 1); |
| 1631 | auto boxDim = builder.create<fir::BoxDimsOp>( |
| 1632 | loc, indexType, indexType, indexType, array.getBase(), dimIdx); |
| 1633 | stride = boxDim.getByteStride(); |
| 1634 | } |
| 1635 | |
| 1636 | if (array.isSimplyContiguous() || !elemSize || !stride) { |
| 1637 | genDimensionShift(loc, builder, shiftVal, /*exposeContiguity=*/false, |
| 1638 | oneBasedIndices); |
| 1639 | return {}; |
| 1640 | } |
| 1641 | |
| 1642 | mlir::Value isContiguous = builder.create<mlir::arith::CmpIOp>( |
| 1643 | loc, mlir::arith::CmpIPredicate::eq, elemSize, stride); |
| 1644 | builder.genIfOp(loc, {}, isContiguous, /*withElseRegion=*/true) |
| 1645 | .genThen([&]() { |
| 1646 | genDimensionShift(loc, builder, shiftVal, /*exposeContiguity=*/true, |
| 1647 | oneBasedIndices); |
| 1648 | }) |
| 1649 | .genElse([&]() { |
| 1650 | genDimensionShift(loc, builder, shiftVal, |
| 1651 | /*exposeContiguity=*/false, oneBasedIndices); |
| 1652 | }); |
| 1653 | |
| 1654 | return {}; |
| 1655 | }; |
| 1656 | |
| 1657 | // For 1D case, generate a single loop. |
| 1658 | // For ND case, generate a loop nest over the other dimensions |
| 1659 | // with a single loop inside (generated separately). |
| 1660 | llvm::SmallVector<mlir::Value, maxRank> newExtents(arrayExtents); |
| 1661 | newExtents.erase(newExtents.begin() + (dimVal - 1)); |
| 1662 | if (!newExtents.empty()) |
| 1663 | hlfir::genLoopNestWithReductions(loc, builder, newExtents, |
| 1664 | /*reductionInits=*/{}, genShiftBody, |
| 1665 | /*isUnordered=*/true); |
| 1666 | else |
| 1667 | genShiftBody(loc, builder, {}, {}); |
| 1668 | |
| 1669 | return evalOp.getOperation(); |
| 1670 | } |
| 1671 | }; |
| 1672 | |
| 1673 | template <typename Op> |
| 1674 | class MatmulConversion : public mlir::OpRewritePattern<Op> { |
| 1675 | public: |
| 1676 | using mlir::OpRewritePattern<Op>::OpRewritePattern; |
| 1677 | |
| 1678 | llvm::LogicalResult |
| 1679 | matchAndRewrite(Op matmul, mlir::PatternRewriter &rewriter) const override { |
| 1680 | mlir::Location loc = matmul.getLoc(); |
| 1681 | fir::FirOpBuilder builder{rewriter, matmul.getOperation()}; |
| 1682 | hlfir::Entity lhs = hlfir::Entity{matmul.getLhs()}; |
| 1683 | hlfir::Entity rhs = hlfir::Entity{matmul.getRhs()}; |
| 1684 | mlir::Value resultShape, innerProductExtent; |
| 1685 | std::tie(resultShape, innerProductExtent) = |
| 1686 | genResultShape(loc, builder, lhs, rhs); |
| 1687 | |
| 1688 | if (forceMatmulAsElemental || isMatmulTranspose) { |
| 1689 | // Generate hlfir.elemental that produces the result of |
| 1690 | // MATMUL/MATMUL(TRANSPOSE). |
| 1691 | // Note that this implementation is very suboptimal for MATMUL, |
| 1692 | // but is quite good for MATMUL(TRANSPOSE), e.g.: |
| 1693 | // R(1:N) = R(1:N) + MATMUL(TRANSPOSE(X(1:N,1:N)), Y(1:N)) |
| 1694 | // Inlining MATMUL(TRANSPOSE) as hlfir.elemental may result |
| 1695 | // in merging the inner product computation with the elemental |
| 1696 | // addition. Note that the inner product computation will |
| 1697 | // benefit from processing the lowermost dimensions of X and Y, |
| 1698 | // which may be the best when they are contiguous. |
| 1699 | // |
| 1700 | // This is why we always inline MATMUL(TRANSPOSE) as an elemental. |
| 1701 | // MATMUL is inlined below by default unless forceMatmulAsElemental. |
| 1702 | hlfir::ExprType resultType = |
| 1703 | mlir::cast<hlfir::ExprType>(matmul.getType()); |
| 1704 | hlfir::ElementalOp newOp = genElementalMatmul( |
| 1705 | loc, builder, resultType, resultShape, lhs, rhs, innerProductExtent); |
| 1706 | rewriter.replaceOp(matmul, newOp); |
| 1707 | return mlir::success(); |
| 1708 | } |
| 1709 | |
| 1710 | // Generate hlfir.eval_in_mem to mimic the MATMUL implementation |
| 1711 | // from Fortran runtime. The implementation needs to operate |
| 1712 | // with the result array as an in-memory object. |
| 1713 | hlfir::EvaluateInMemoryOp evalOp = |
| 1714 | builder.create<hlfir::EvaluateInMemoryOp>( |
| 1715 | loc, mlir::cast<hlfir::ExprType>(matmul.getType()), resultShape); |
| 1716 | builder.setInsertionPointToStart(&evalOp.getBody().front()); |
| 1717 | |
| 1718 | // Embox the raw array pointer to simplify designating it. |
| 1719 | // TODO: this currently results in redundant lower bounds |
| 1720 | // addition for the designator, but this should be fixed in |
| 1721 | // hlfir::Entity::mayHaveNonDefaultLowerBounds(). |
| 1722 | mlir::Value resultArray = evalOp.getMemory(); |
| 1723 | mlir::Type arrayType = fir::dyn_cast_ptrEleTy(resultArray.getType()); |
| 1724 | resultArray = builder.createBox(loc, fir::BoxType::get(arrayType), |
| 1725 | resultArray, resultShape, /*slice=*/nullptr, |
| 1726 | /*lengths=*/{}, /*tdesc=*/nullptr); |
| 1727 | |
| 1728 | // The contiguous MATMUL version is best for the cases |
| 1729 | // where the input arrays and (maybe) the result are contiguous |
| 1730 | // in their lowermost dimensions. |
| 1731 | // Especially, when LLVM can recognize the continuity |
| 1732 | // and vectorize the loops properly. |
| 1733 | // Note that the contiguous MATMUL inlining is correct |
| 1734 | // even when the input arrays are not contiguous. |
| 1735 | // TODO: we can try to recognize the cases when the continuity |
| 1736 | // is not statically obvious and try to generate an explicitly |
| 1737 | // continuous version under a dynamic check. This should allow |
| 1738 | // LLVM to vectorize the loops better. Note that this can |
| 1739 | // also be postponed up to the LoopVersioning pass. |
| 1740 | // The fallback implementation may use genElementalMatmul() with |
| 1741 | // an hlfir.assign into the result of eval_in_mem. |
| 1742 | mlir::LogicalResult rewriteResult = |
| 1743 | genContiguousMatmul(loc, builder, hlfir::Entity{resultArray}, |
| 1744 | resultShape, lhs, rhs, innerProductExtent); |
| 1745 | |
| 1746 | if (mlir::failed(rewriteResult)) { |
| 1747 | // Erase the unclaimed eval_in_mem op. |
| 1748 | rewriter.eraseOp(evalOp); |
| 1749 | return rewriter.notifyMatchFailure(matmul, |
| 1750 | "genContiguousMatmul() failed" ); |
| 1751 | } |
| 1752 | |
| 1753 | rewriter.replaceOp(matmul, evalOp); |
| 1754 | return mlir::success(); |
| 1755 | } |
| 1756 | |
| 1757 | private: |
| 1758 | static constexpr bool isMatmulTranspose = |
| 1759 | std::is_same_v<Op, hlfir::MatmulTransposeOp>; |
| 1760 | |
| 1761 | // Return a tuple of: |
| 1762 | // * A fir.shape operation representing the shape of the result |
| 1763 | // of a MATMUL/MATMUL(TRANSPOSE). |
| 1764 | // * An extent of the dimensions of the input array |
| 1765 | // that are processed during the inner product computation. |
| 1766 | static std::tuple<mlir::Value, mlir::Value> |
| 1767 | genResultShape(mlir::Location loc, fir::FirOpBuilder &builder, |
| 1768 | hlfir::Entity input1, hlfir::Entity input2) { |
| 1769 | llvm::SmallVector<mlir::Value, 2> input1Extents = |
| 1770 | hlfir::genExtentsVector(loc, builder, input1); |
| 1771 | llvm::SmallVector<mlir::Value, 2> input2Extents = |
| 1772 | hlfir::genExtentsVector(loc, builder, input2); |
| 1773 | |
| 1774 | llvm::SmallVector<mlir::Value, 2> newExtents; |
| 1775 | mlir::Value innerProduct1Extent, innerProduct2Extent; |
| 1776 | if (input1Extents.size() == 1) { |
| 1777 | assert(!isMatmulTranspose && |
| 1778 | "hlfir.matmul_transpose's first operand must be rank-2 array" ); |
| 1779 | assert(input2Extents.size() == 2 && |
| 1780 | "hlfir.matmul second argument must be rank-2 array" ); |
| 1781 | newExtents.push_back(input2Extents[1]); |
| 1782 | innerProduct1Extent = input1Extents[0]; |
| 1783 | innerProduct2Extent = input2Extents[0]; |
| 1784 | } else { |
| 1785 | if (input2Extents.size() == 1) { |
| 1786 | assert(input1Extents.size() == 2 && |
| 1787 | "hlfir.matmul first argument must be rank-2 array" ); |
| 1788 | if constexpr (isMatmulTranspose) |
| 1789 | newExtents.push_back(input1Extents[1]); |
| 1790 | else |
| 1791 | newExtents.push_back(input1Extents[0]); |
| 1792 | } else { |
| 1793 | assert(input1Extents.size() == 2 && input2Extents.size() == 2 && |
| 1794 | "hlfir.matmul arguments must be rank-2 arrays" ); |
| 1795 | if constexpr (isMatmulTranspose) |
| 1796 | newExtents.push_back(input1Extents[1]); |
| 1797 | else |
| 1798 | newExtents.push_back(input1Extents[0]); |
| 1799 | |
| 1800 | newExtents.push_back(input2Extents[1]); |
| 1801 | } |
| 1802 | if constexpr (isMatmulTranspose) |
| 1803 | innerProduct1Extent = input1Extents[0]; |
| 1804 | else |
| 1805 | innerProduct1Extent = input1Extents[1]; |
| 1806 | |
| 1807 | innerProduct2Extent = input2Extents[0]; |
| 1808 | } |
| 1809 | // The inner product dimensions of the input arrays |
| 1810 | // must match. Pick the best (e.g. constant) out of them |
| 1811 | // so that the inner product loop bound can be used in |
| 1812 | // optimizations. |
| 1813 | llvm::SmallVector<mlir::Value> innerProductExtent = |
| 1814 | fir::factory::deduceOptimalExtents({innerProduct1Extent}, |
| 1815 | {innerProduct2Extent}); |
| 1816 | return {builder.create<fir::ShapeOp>(loc, newExtents), |
| 1817 | innerProductExtent[0]}; |
| 1818 | } |
| 1819 | |
| 1820 | static mlir::LogicalResult |
| 1821 | genContiguousMatmul(mlir::Location loc, fir::FirOpBuilder &builder, |
| 1822 | hlfir::Entity result, mlir::Value resultShape, |
| 1823 | hlfir::Entity lhs, hlfir::Entity rhs, |
| 1824 | mlir::Value innerProductExtent) { |
| 1825 | // This code does not support MATMUL(TRANSPOSE), and it is supposed |
| 1826 | // to be inlined as hlfir.elemental. |
| 1827 | if constexpr (isMatmulTranspose) |
| 1828 | return mlir::failure(); |
| 1829 | |
| 1830 | mlir::OpBuilder::InsertionGuard guard(builder); |
| 1831 | mlir::Type resultElementType = result.getFortranElementType(); |
| 1832 | llvm::SmallVector<mlir::Value, 2> resultExtents = |
| 1833 | mlir::cast<fir::ShapeOp>(resultShape.getDefiningOp()).getExtents(); |
| 1834 | |
| 1835 | // The inner product loop may be unordered if FastMathFlags::reassoc |
| 1836 | // transformations are allowed. The integer/logical inner product is |
| 1837 | // always unordered. |
| 1838 | // Note that isUnordered is currently applied to all loops |
| 1839 | // in the loop nests generated below, while it has to be applied |
| 1840 | // only to one. |
| 1841 | bool isUnordered = mlir::isa<mlir::IntegerType>(resultElementType) || |
| 1842 | mlir::isa<fir::LogicalType>(resultElementType) || |
| 1843 | static_cast<bool>(builder.getFastMathFlags() & |
| 1844 | mlir::arith::FastMathFlags::reassoc); |
| 1845 | |
| 1846 | // Insert the initialization loop nest that fills the whole result with |
| 1847 | // zeroes. |
| 1848 | mlir::Value initValue = |
| 1849 | fir::factory::createZeroValue(builder, loc, resultElementType); |
| 1850 | auto genInitBody = [&](mlir::Location loc, fir::FirOpBuilder &builder, |
| 1851 | mlir::ValueRange oneBasedIndices, |
| 1852 | mlir::ValueRange reductionArgs) |
| 1853 | -> llvm::SmallVector<mlir::Value, 0> { |
| 1854 | hlfir::Entity resultElement = |
| 1855 | hlfir::getElementAt(loc, builder, result, oneBasedIndices); |
| 1856 | builder.create<hlfir::AssignOp>(loc, initValue, resultElement); |
| 1857 | return {}; |
| 1858 | }; |
| 1859 | |
| 1860 | hlfir::genLoopNestWithReductions(loc, builder, resultExtents, |
| 1861 | /*reductionInits=*/{}, genInitBody, |
| 1862 | /*isUnordered=*/true); |
| 1863 | |
| 1864 | if (lhs.getRank() == 2 && rhs.getRank() == 2) { |
| 1865 | // LHS(NROWS,N) * RHS(N,NCOLS) -> RESULT(NROWS,NCOLS) |
| 1866 | // |
| 1867 | // Insert the computation loop nest: |
| 1868 | // DO 2 K = 1, N |
| 1869 | // DO 2 J = 1, NCOLS |
| 1870 | // DO 2 I = 1, NROWS |
| 1871 | // 2 RESULT(I,J) = RESULT(I,J) + LHS(I,K)*RHS(K,J) |
| 1872 | auto genMatrixMatrix = [&](mlir::Location loc, fir::FirOpBuilder &builder, |
| 1873 | mlir::ValueRange oneBasedIndices, |
| 1874 | mlir::ValueRange reductionArgs) |
| 1875 | -> llvm::SmallVector<mlir::Value, 0> { |
| 1876 | mlir::Value I = oneBasedIndices[0]; |
| 1877 | mlir::Value J = oneBasedIndices[1]; |
| 1878 | mlir::Value K = oneBasedIndices[2]; |
| 1879 | hlfir::Entity resultElement = |
| 1880 | hlfir::getElementAt(loc, builder, result, {I, J}); |
| 1881 | hlfir::Entity resultElementValue = |
| 1882 | hlfir::loadTrivialScalar(loc, builder, resultElement); |
| 1883 | hlfir::Entity lhsElementValue = |
| 1884 | hlfir::loadElementAt(loc, builder, lhs, {I, K}); |
| 1885 | hlfir::Entity rhsElementValue = |
| 1886 | hlfir::loadElementAt(loc, builder, rhs, {K, J}); |
| 1887 | mlir::Value productValue = |
| 1888 | ProductFactory{loc, builder}.genAccumulateProduct( |
| 1889 | resultElementValue, lhsElementValue, rhsElementValue); |
| 1890 | builder.create<hlfir::AssignOp>(loc, productValue, resultElement); |
| 1891 | return {}; |
| 1892 | }; |
| 1893 | |
| 1894 | // Note that the loops are inserted in reverse order, |
| 1895 | // so innerProductExtent should be passed as the last extent. |
| 1896 | hlfir::genLoopNestWithReductions( |
| 1897 | loc, builder, |
| 1898 | {resultExtents[0], resultExtents[1], innerProductExtent}, |
| 1899 | /*reductionInits=*/{}, genMatrixMatrix, isUnordered); |
| 1900 | return mlir::success(); |
| 1901 | } |
| 1902 | |
| 1903 | if (lhs.getRank() == 2 && rhs.getRank() == 1) { |
| 1904 | // LHS(NROWS,N) * RHS(N) -> RESULT(NROWS) |
| 1905 | // |
| 1906 | // Insert the computation loop nest: |
| 1907 | // DO 2 K = 1, N |
| 1908 | // DO 2 J = 1, NROWS |
| 1909 | // 2 RES(J) = RES(J) + LHS(J,K)*RHS(K) |
| 1910 | auto genMatrixVector = [&](mlir::Location loc, fir::FirOpBuilder &builder, |
| 1911 | mlir::ValueRange oneBasedIndices, |
| 1912 | mlir::ValueRange reductionArgs) |
| 1913 | -> llvm::SmallVector<mlir::Value, 0> { |
| 1914 | mlir::Value J = oneBasedIndices[0]; |
| 1915 | mlir::Value K = oneBasedIndices[1]; |
| 1916 | hlfir::Entity resultElement = |
| 1917 | hlfir::getElementAt(loc, builder, result, {J}); |
| 1918 | hlfir::Entity resultElementValue = |
| 1919 | hlfir::loadTrivialScalar(loc, builder, resultElement); |
| 1920 | hlfir::Entity lhsElementValue = |
| 1921 | hlfir::loadElementAt(loc, builder, lhs, {J, K}); |
| 1922 | hlfir::Entity rhsElementValue = |
| 1923 | hlfir::loadElementAt(loc, builder, rhs, {K}); |
| 1924 | mlir::Value productValue = |
| 1925 | ProductFactory{loc, builder}.genAccumulateProduct( |
| 1926 | resultElementValue, lhsElementValue, rhsElementValue); |
| 1927 | builder.create<hlfir::AssignOp>(loc, productValue, resultElement); |
| 1928 | return {}; |
| 1929 | }; |
| 1930 | hlfir::genLoopNestWithReductions( |
| 1931 | loc, builder, {resultExtents[0], innerProductExtent}, |
| 1932 | /*reductionInits=*/{}, genMatrixVector, isUnordered); |
| 1933 | return mlir::success(); |
| 1934 | } |
| 1935 | if (lhs.getRank() == 1 && rhs.getRank() == 2) { |
| 1936 | // LHS(N) * RHS(N,NCOLS) -> RESULT(NCOLS) |
| 1937 | // |
| 1938 | // Insert the computation loop nest: |
| 1939 | // DO 2 K = 1, N |
| 1940 | // DO 2 J = 1, NCOLS |
| 1941 | // 2 RES(J) = RES(J) + LHS(K)*RHS(K,J) |
| 1942 | auto genVectorMatrix = [&](mlir::Location loc, fir::FirOpBuilder &builder, |
| 1943 | mlir::ValueRange oneBasedIndices, |
| 1944 | mlir::ValueRange reductionArgs) |
| 1945 | -> llvm::SmallVector<mlir::Value, 0> { |
| 1946 | mlir::Value J = oneBasedIndices[0]; |
| 1947 | mlir::Value K = oneBasedIndices[1]; |
| 1948 | hlfir::Entity resultElement = |
| 1949 | hlfir::getElementAt(loc, builder, result, {J}); |
| 1950 | hlfir::Entity resultElementValue = |
| 1951 | hlfir::loadTrivialScalar(loc, builder, resultElement); |
| 1952 | hlfir::Entity lhsElementValue = |
| 1953 | hlfir::loadElementAt(loc, builder, lhs, {K}); |
| 1954 | hlfir::Entity rhsElementValue = |
| 1955 | hlfir::loadElementAt(loc, builder, rhs, {K, J}); |
| 1956 | mlir::Value productValue = |
| 1957 | ProductFactory{loc, builder}.genAccumulateProduct( |
| 1958 | resultElementValue, lhsElementValue, rhsElementValue); |
| 1959 | builder.create<hlfir::AssignOp>(loc, productValue, resultElement); |
| 1960 | return {}; |
| 1961 | }; |
| 1962 | hlfir::genLoopNestWithReductions( |
| 1963 | loc, builder, {resultExtents[0], innerProductExtent}, |
| 1964 | /*reductionInits=*/{}, genVectorMatrix, isUnordered); |
| 1965 | return mlir::success(); |
| 1966 | } |
| 1967 | |
| 1968 | llvm_unreachable("unsupported MATMUL arguments' ranks" ); |
| 1969 | } |
| 1970 | |
| 1971 | static hlfir::ElementalOp |
| 1972 | genElementalMatmul(mlir::Location loc, fir::FirOpBuilder &builder, |
| 1973 | hlfir::ExprType resultType, mlir::Value resultShape, |
| 1974 | hlfir::Entity lhs, hlfir::Entity rhs, |
| 1975 | mlir::Value innerProductExtent) { |
| 1976 | mlir::OpBuilder::InsertionGuard guard(builder); |
| 1977 | mlir::Type resultElementType = resultType.getElementType(); |
| 1978 | auto genKernel = [&](mlir::Location loc, fir::FirOpBuilder &builder, |
| 1979 | mlir::ValueRange resultIndices) -> hlfir::Entity { |
| 1980 | mlir::Value initValue = |
| 1981 | fir::factory::createZeroValue(builder, loc, resultElementType); |
| 1982 | // The inner product loop may be unordered if FastMathFlags::reassoc |
| 1983 | // transformations are allowed. The integer/logical inner product is |
| 1984 | // always unordered. |
| 1985 | bool isUnordered = mlir::isa<mlir::IntegerType>(resultElementType) || |
| 1986 | mlir::isa<fir::LogicalType>(resultElementType) || |
| 1987 | static_cast<bool>(builder.getFastMathFlags() & |
| 1988 | mlir::arith::FastMathFlags::reassoc); |
| 1989 | |
| 1990 | auto genBody = [&](mlir::Location loc, fir::FirOpBuilder &builder, |
| 1991 | mlir::ValueRange oneBasedIndices, |
| 1992 | mlir::ValueRange reductionArgs) |
| 1993 | -> llvm::SmallVector<mlir::Value, 1> { |
| 1994 | llvm::SmallVector<mlir::Value, 2> lhsIndices; |
| 1995 | llvm::SmallVector<mlir::Value, 2> rhsIndices; |
| 1996 | // MATMUL: |
| 1997 | // LHS(NROWS,N) * RHS(N,NCOLS) -> RESULT(NROWS,NCOLS) |
| 1998 | // LHS(NROWS,N) * RHS(N) -> RESULT(NROWS) |
| 1999 | // LHS(N) * RHS(N,NCOLS) -> RESULT(NCOLS) |
| 2000 | // |
| 2001 | // MATMUL(TRANSPOSE): |
| 2002 | // TRANSPOSE(LHS(N,NROWS)) * RHS(N,NCOLS) -> RESULT(NROWS,NCOLS) |
| 2003 | // TRANSPOSE(LHS(N,NROWS)) * RHS(N) -> RESULT(NROWS) |
| 2004 | // |
| 2005 | // The resultIndices iterate over (NROWS[,NCOLS]). |
| 2006 | // The oneBasedIndices iterate over (N). |
| 2007 | if (lhs.getRank() > 1) |
| 2008 | lhsIndices.push_back(resultIndices[0]); |
| 2009 | lhsIndices.push_back(oneBasedIndices[0]); |
| 2010 | |
| 2011 | if constexpr (isMatmulTranspose) { |
| 2012 | // Swap the LHS indices for TRANSPOSE. |
| 2013 | std::swap(lhsIndices[0], lhsIndices[1]); |
| 2014 | } |
| 2015 | |
| 2016 | rhsIndices.push_back(oneBasedIndices[0]); |
| 2017 | if (rhs.getRank() > 1) |
| 2018 | rhsIndices.push_back(resultIndices.back()); |
| 2019 | |
| 2020 | hlfir::Entity lhsElementValue = |
| 2021 | hlfir::loadElementAt(loc, builder, lhs, lhsIndices); |
| 2022 | hlfir::Entity rhsElementValue = |
| 2023 | hlfir::loadElementAt(loc, builder, rhs, rhsIndices); |
| 2024 | mlir::Value productValue = |
| 2025 | ProductFactory{loc, builder}.genAccumulateProduct( |
| 2026 | reductionArgs[0], lhsElementValue, rhsElementValue); |
| 2027 | return {productValue}; |
| 2028 | }; |
| 2029 | llvm::SmallVector<mlir::Value, 1> innerProductValue = |
| 2030 | hlfir::genLoopNestWithReductions(loc, builder, {innerProductExtent}, |
| 2031 | {initValue}, genBody, isUnordered); |
| 2032 | return hlfir::Entity{innerProductValue[0]}; |
| 2033 | }; |
| 2034 | hlfir::ElementalOp elementalOp = hlfir::genElementalOp( |
| 2035 | loc, builder, resultElementType, resultShape, /*typeParams=*/{}, |
| 2036 | genKernel, |
| 2037 | /*isUnordered=*/true, /*polymorphicMold=*/nullptr, resultType); |
| 2038 | |
| 2039 | return elementalOp; |
| 2040 | } |
| 2041 | }; |
| 2042 | |
| 2043 | class DotProductConversion |
| 2044 | : public mlir::OpRewritePattern<hlfir::DotProductOp> { |
| 2045 | public: |
| 2046 | using mlir::OpRewritePattern<hlfir::DotProductOp>::OpRewritePattern; |
| 2047 | |
| 2048 | llvm::LogicalResult |
| 2049 | matchAndRewrite(hlfir::DotProductOp product, |
| 2050 | mlir::PatternRewriter &rewriter) const override { |
| 2051 | hlfir::Entity op = hlfir::Entity{product}; |
| 2052 | if (!op.isScalar()) |
| 2053 | return rewriter.notifyMatchFailure(product, "produces non-scalar result" ); |
| 2054 | |
| 2055 | mlir::Location loc = product.getLoc(); |
| 2056 | fir::FirOpBuilder builder{rewriter, product.getOperation()}; |
| 2057 | hlfir::Entity lhs = hlfir::Entity{product.getLhs()}; |
| 2058 | hlfir::Entity rhs = hlfir::Entity{product.getRhs()}; |
| 2059 | mlir::Type resultElementType = product.getType(); |
| 2060 | bool isUnordered = mlir::isa<mlir::IntegerType>(resultElementType) || |
| 2061 | mlir::isa<fir::LogicalType>(resultElementType) || |
| 2062 | static_cast<bool>(builder.getFastMathFlags() & |
| 2063 | mlir::arith::FastMathFlags::reassoc); |
| 2064 | |
| 2065 | mlir::Value extent = genProductExtent(loc, builder, lhs, rhs); |
| 2066 | |
| 2067 | auto genBody = [&](mlir::Location loc, fir::FirOpBuilder &builder, |
| 2068 | mlir::ValueRange oneBasedIndices, |
| 2069 | mlir::ValueRange reductionArgs) |
| 2070 | -> llvm::SmallVector<mlir::Value, 1> { |
| 2071 | hlfir::Entity lhsElementValue = |
| 2072 | hlfir::loadElementAt(loc, builder, lhs, oneBasedIndices); |
| 2073 | hlfir::Entity rhsElementValue = |
| 2074 | hlfir::loadElementAt(loc, builder, rhs, oneBasedIndices); |
| 2075 | mlir::Value productValue = |
| 2076 | ProductFactory{loc, builder}.genAccumulateProduct</*CONJ=*/true>( |
| 2077 | reductionArgs[0], lhsElementValue, rhsElementValue); |
| 2078 | return {productValue}; |
| 2079 | }; |
| 2080 | |
| 2081 | mlir::Value initValue = |
| 2082 | fir::factory::createZeroValue(builder, loc, resultElementType); |
| 2083 | |
| 2084 | llvm::SmallVector<mlir::Value, 1> result = hlfir::genLoopNestWithReductions( |
| 2085 | loc, builder, {extent}, |
| 2086 | /*reductionInits=*/{initValue}, genBody, isUnordered); |
| 2087 | |
| 2088 | rewriter.replaceOp(product, result[0]); |
| 2089 | return mlir::success(); |
| 2090 | } |
| 2091 | |
| 2092 | private: |
| 2093 | static mlir::Value genProductExtent(mlir::Location loc, |
| 2094 | fir::FirOpBuilder &builder, |
| 2095 | hlfir::Entity input1, |
| 2096 | hlfir::Entity input2) { |
| 2097 | llvm::SmallVector<mlir::Value, 1> input1Extents = |
| 2098 | hlfir::genExtentsVector(loc, builder, input1); |
| 2099 | llvm::SmallVector<mlir::Value, 1> input2Extents = |
| 2100 | hlfir::genExtentsVector(loc, builder, input2); |
| 2101 | |
| 2102 | assert(input1Extents.size() == 1 && input2Extents.size() == 1 && |
| 2103 | "hlfir.dot_product arguments must be vectors" ); |
| 2104 | llvm::SmallVector<mlir::Value, 1> extent = |
| 2105 | fir::factory::deduceOptimalExtents(input1Extents, input2Extents); |
| 2106 | return extent[0]; |
| 2107 | } |
| 2108 | }; |
| 2109 | |
| 2110 | class ReshapeAsElementalConversion |
| 2111 | : public mlir::OpRewritePattern<hlfir::ReshapeOp> { |
| 2112 | public: |
| 2113 | using mlir::OpRewritePattern<hlfir::ReshapeOp>::OpRewritePattern; |
| 2114 | |
| 2115 | llvm::LogicalResult |
| 2116 | matchAndRewrite(hlfir::ReshapeOp reshape, |
| 2117 | mlir::PatternRewriter &rewriter) const override { |
| 2118 | // Do not inline RESHAPE with ORDER yet. The runtime implementation |
| 2119 | // may be good enough, unless the temporary creation overhead |
| 2120 | // is high. |
| 2121 | // TODO: If ORDER is constant, then we can still easily inline. |
| 2122 | // TODO: If the result's rank is 1, then we can assume ORDER == (/1/). |
| 2123 | if (reshape.getOrder()) |
| 2124 | return rewriter.notifyMatchFailure(reshape, |
| 2125 | "RESHAPE with ORDER argument" ); |
| 2126 | |
| 2127 | // Verify that the element types of ARRAY, PAD and the result |
| 2128 | // match before doing any transformations. For example, |
| 2129 | // the character types of different lengths may appear in the dead |
| 2130 | // code, and it just does not make sense to inline hlfir.reshape |
| 2131 | // in this case (a runtime call might have less code size footprint). |
| 2132 | hlfir::Entity result = hlfir::Entity{reshape}; |
| 2133 | hlfir::Entity array = hlfir::Entity{reshape.getArray()}; |
| 2134 | mlir::Type elementType = array.getFortranElementType(); |
| 2135 | if (result.getFortranElementType() != elementType) |
| 2136 | return rewriter.notifyMatchFailure( |
| 2137 | reshape, "ARRAY and result have different types" ); |
| 2138 | mlir::Value pad = reshape.getPad(); |
| 2139 | if (pad && hlfir::getFortranElementType(pad.getType()) != elementType) |
| 2140 | return rewriter.notifyMatchFailure(reshape, |
| 2141 | "ARRAY and PAD have different types" ); |
| 2142 | |
| 2143 | // TODO: selecting between ARRAY and PAD of non-trivial element types |
| 2144 | // requires more work. We have to select between two references |
| 2145 | // to elements in ARRAY and PAD. This requires conditional |
| 2146 | // bufferization of the element, if ARRAY/PAD is an expression. |
| 2147 | if (pad && !fir::isa_trivial(elementType)) |
| 2148 | return rewriter.notifyMatchFailure(reshape, |
| 2149 | "PAD present with non-trivial type" ); |
| 2150 | |
| 2151 | mlir::Location loc = reshape.getLoc(); |
| 2152 | fir::FirOpBuilder builder{rewriter, reshape.getOperation()}; |
| 2153 | // Assume that all the indices arithmetic does not overflow |
| 2154 | // the IndexType. |
| 2155 | builder.setIntegerOverflowFlags(mlir::arith::IntegerOverflowFlags::nuw); |
| 2156 | |
| 2157 | llvm::SmallVector<mlir::Value, 1> typeParams; |
| 2158 | hlfir::genLengthParameters(loc, builder, array, typeParams); |
| 2159 | |
| 2160 | // Fetch the extents of ARRAY, PAD and result beforehand. |
| 2161 | llvm::SmallVector<mlir::Value, Fortran::common::maxRank> arrayExtents = |
| 2162 | hlfir::genExtentsVector(loc, builder, array); |
| 2163 | |
| 2164 | // If PAD is present, we have to use array size to start taking |
| 2165 | // elements from the PAD array. |
| 2166 | mlir::Value arraySize = |
| 2167 | pad ? computeArraySize(loc, builder, arrayExtents) : nullptr; |
| 2168 | hlfir::Entity shape = hlfir::Entity{reshape.getShape()}; |
| 2169 | llvm::SmallVector<mlir::Value, Fortran::common::maxRank> resultExtents; |
| 2170 | mlir::Type indexType = builder.getIndexType(); |
| 2171 | for (int idx = 0; idx < result.getRank(); ++idx) |
| 2172 | resultExtents.push_back(hlfir::loadElementAt( |
| 2173 | loc, builder, shape, |
| 2174 | builder.createIntegerConstant(loc, indexType, idx + 1))); |
| 2175 | auto resultShape = builder.create<fir::ShapeOp>(loc, resultExtents); |
| 2176 | |
| 2177 | auto genKernel = [&](mlir::Location loc, fir::FirOpBuilder &builder, |
| 2178 | mlir::ValueRange inputIndices) -> hlfir::Entity { |
| 2179 | mlir::Value linearIndex = |
| 2180 | computeLinearIndex(loc, builder, resultExtents, inputIndices); |
| 2181 | fir::IfOp ifOp; |
| 2182 | if (pad) { |
| 2183 | // PAD is present. Check if this element comes from the PAD array. |
| 2184 | mlir::Value isInsideArray = builder.create<mlir::arith::CmpIOp>( |
| 2185 | loc, mlir::arith::CmpIPredicate::ult, linearIndex, arraySize); |
| 2186 | ifOp = builder.create<fir::IfOp>(loc, elementType, isInsideArray, |
| 2187 | /*withElseRegion=*/true); |
| 2188 | |
| 2189 | // In the 'else' block, return an element from the PAD. |
| 2190 | builder.setInsertionPointToStart(&ifOp.getElseRegion().front()); |
| 2191 | // PAD is dynamically optional, but we can unconditionally access it |
| 2192 | // in the 'else' block. If we have to start taking elements from it, |
| 2193 | // then it must be present in a valid program. |
| 2194 | llvm::SmallVector<mlir::Value, Fortran::common::maxRank> padExtents = |
| 2195 | hlfir::genExtentsVector(loc, builder, hlfir::Entity{pad}); |
| 2196 | // Subtract the ARRAY size from the zero-based linear index |
| 2197 | // to get the zero-based linear index into PAD. |
| 2198 | mlir::Value padLinearIndex = |
| 2199 | builder.create<mlir::arith::SubIOp>(loc, linearIndex, arraySize); |
| 2200 | llvm::SmallVector<mlir::Value, Fortran::common::maxRank> padIndices = |
| 2201 | delinearizeIndex(loc, builder, padExtents, padLinearIndex, |
| 2202 | /*wrapAround=*/true); |
| 2203 | mlir::Value padElement = |
| 2204 | hlfir::loadElementAt(loc, builder, hlfir::Entity{pad}, padIndices); |
| 2205 | builder.create<fir::ResultOp>(loc, padElement); |
| 2206 | |
| 2207 | // In the 'then' block, return an element from the ARRAY. |
| 2208 | builder.setInsertionPointToStart(&ifOp.getThenRegion().front()); |
| 2209 | } |
| 2210 | |
| 2211 | llvm::SmallVector<mlir::Value, Fortran::common::maxRank> arrayIndices = |
| 2212 | delinearizeIndex(loc, builder, arrayExtents, linearIndex, |
| 2213 | /*wrapAround=*/false); |
| 2214 | mlir::Value arrayElement = |
| 2215 | hlfir::loadElementAt(loc, builder, array, arrayIndices); |
| 2216 | |
| 2217 | if (ifOp) { |
| 2218 | builder.create<fir::ResultOp>(loc, arrayElement); |
| 2219 | builder.setInsertionPointAfter(ifOp); |
| 2220 | arrayElement = ifOp.getResult(0); |
| 2221 | } |
| 2222 | |
| 2223 | return hlfir::Entity{arrayElement}; |
| 2224 | }; |
| 2225 | hlfir::ElementalOp elementalOp = hlfir::genElementalOp( |
| 2226 | loc, builder, elementType, resultShape, typeParams, genKernel, |
| 2227 | /*isUnordered=*/true, |
| 2228 | /*polymorphicMold=*/result.isPolymorphic() ? array : mlir::Value{}, |
| 2229 | reshape.getResult().getType()); |
| 2230 | assert(elementalOp.getResult().getType() == reshape.getResult().getType()); |
| 2231 | rewriter.replaceOp(reshape, elementalOp); |
| 2232 | return mlir::success(); |
| 2233 | } |
| 2234 | |
| 2235 | private: |
| 2236 | /// Compute zero-based linear index given an array extents |
| 2237 | /// and one-based indices: |
| 2238 | /// \p extents: [e0, e1, ..., en] |
| 2239 | /// \p indices: [i0, i1, ..., in] |
| 2240 | /// |
| 2241 | /// linear-index := |
| 2242 | /// (...((in-1)*e(n-1)+(i(n-1)-1))*e(n-2)+...)*e0+(i0-1) |
| 2243 | static mlir::Value computeLinearIndex(mlir::Location loc, |
| 2244 | fir::FirOpBuilder &builder, |
| 2245 | mlir::ValueRange extents, |
| 2246 | mlir::ValueRange indices) { |
| 2247 | std::size_t rank = extents.size(); |
| 2248 | assert(rank == indices.size()); |
| 2249 | mlir::Type indexType = builder.getIndexType(); |
| 2250 | mlir::Value zero = builder.createIntegerConstant(loc, indexType, 0); |
| 2251 | mlir::Value one = builder.createIntegerConstant(loc, indexType, 1); |
| 2252 | mlir::Value linearIndex = zero; |
| 2253 | std::size_t idx = 0; |
| 2254 | for (auto index : llvm::reverse(indices)) { |
| 2255 | mlir::Value tmp = builder.create<mlir::arith::SubIOp>( |
| 2256 | loc, builder.createConvert(loc, indexType, index), one); |
| 2257 | tmp = builder.create<mlir::arith::AddIOp>(loc, linearIndex, tmp); |
| 2258 | if (idx + 1 < rank) |
| 2259 | tmp = builder.create<mlir::arith::MulIOp>( |
| 2260 | loc, tmp, |
| 2261 | builder.createConvert(loc, indexType, extents[rank - idx - 2])); |
| 2262 | |
| 2263 | linearIndex = tmp; |
| 2264 | ++idx; |
| 2265 | } |
| 2266 | return linearIndex; |
| 2267 | } |
| 2268 | |
| 2269 | /// Compute one-based array indices from the given zero-based \p linearIndex |
| 2270 | /// and the array \p extents [e0, e1, ..., en]. |
| 2271 | /// i0 := linearIndex % e0 + 1 |
| 2272 | /// linearIndex := linearIndex / e0 |
| 2273 | /// i1 := linearIndex % e1 + 1 |
| 2274 | /// linearIndex := linearIndex / e1 |
| 2275 | /// ... |
| 2276 | /// i(n-1) := linearIndex % e(n-1) + 1 |
| 2277 | /// linearIndex := linearIndex / e(n-1) |
| 2278 | /// if (wrapAround) { |
| 2279 | /// // If the index is allowed to wrap around, then |
| 2280 | /// // we need to modulo it by the last dimension's extent. |
| 2281 | /// in := linearIndex % en + 1 |
| 2282 | /// } else { |
| 2283 | /// in := linearIndex + 1 |
| 2284 | /// } |
| 2285 | static llvm::SmallVector<mlir::Value, Fortran::common::maxRank> |
| 2286 | delinearizeIndex(mlir::Location loc, fir::FirOpBuilder &builder, |
| 2287 | mlir::ValueRange extents, mlir::Value linearIndex, |
| 2288 | bool wrapAround) { |
| 2289 | llvm::SmallVector<mlir::Value, Fortran::common::maxRank> indices; |
| 2290 | mlir::Type indexType = builder.getIndexType(); |
| 2291 | mlir::Value one = builder.createIntegerConstant(loc, indexType, 1); |
| 2292 | linearIndex = builder.createConvert(loc, indexType, linearIndex); |
| 2293 | |
| 2294 | for (std::size_t dim = 0; dim < extents.size(); ++dim) { |
| 2295 | mlir::Value extent = builder.createConvert(loc, indexType, extents[dim]); |
| 2296 | // Avoid the modulo for the last index, unless wrap around is allowed. |
| 2297 | mlir::Value currentIndex = linearIndex; |
| 2298 | if (dim != extents.size() - 1 || wrapAround) |
| 2299 | currentIndex = |
| 2300 | builder.create<mlir::arith::RemUIOp>(loc, linearIndex, extent); |
| 2301 | // The result of the last division is unused, so it will be DCEd. |
| 2302 | linearIndex = |
| 2303 | builder.create<mlir::arith::DivUIOp>(loc, linearIndex, extent); |
| 2304 | indices.push_back( |
| 2305 | builder.create<mlir::arith::AddIOp>(loc, currentIndex, one)); |
| 2306 | } |
| 2307 | return indices; |
| 2308 | } |
| 2309 | |
| 2310 | /// Return size of an array given its extents. |
| 2311 | static mlir::Value computeArraySize(mlir::Location loc, |
| 2312 | fir::FirOpBuilder &builder, |
| 2313 | mlir::ValueRange extents) { |
| 2314 | mlir::Type indexType = builder.getIndexType(); |
| 2315 | mlir::Value size = builder.createIntegerConstant(loc, indexType, 1); |
| 2316 | for (auto extent : extents) |
| 2317 | size = builder.create<mlir::arith::MulIOp>( |
| 2318 | loc, size, builder.createConvert(loc, indexType, extent)); |
| 2319 | return size; |
| 2320 | } |
| 2321 | }; |
| 2322 | |
| 2323 | class SimplifyHLFIRIntrinsics |
| 2324 | : public hlfir::impl::SimplifyHLFIRIntrinsicsBase<SimplifyHLFIRIntrinsics> { |
| 2325 | public: |
| 2326 | using SimplifyHLFIRIntrinsicsBase< |
| 2327 | SimplifyHLFIRIntrinsics>::SimplifyHLFIRIntrinsicsBase; |
| 2328 | |
| 2329 | void runOnOperation() override { |
| 2330 | mlir::MLIRContext *context = &getContext(); |
| 2331 | |
| 2332 | mlir::GreedyRewriteConfig config; |
| 2333 | // Prevent the pattern driver from merging blocks |
| 2334 | config.setRegionSimplificationLevel( |
| 2335 | mlir::GreedySimplifyRegionLevel::Disabled); |
| 2336 | |
| 2337 | mlir::RewritePatternSet patterns(context); |
| 2338 | patterns.insert<TransposeAsElementalConversion>(context); |
| 2339 | patterns.insert<ReductionConversion<hlfir::SumOp>>(context); |
| 2340 | patterns.insert<CShiftConversion>(context); |
| 2341 | patterns.insert<MatmulConversion<hlfir::MatmulTransposeOp>>(context); |
| 2342 | |
| 2343 | patterns.insert<ReductionConversion<hlfir::CountOp>>(context); |
| 2344 | patterns.insert<ReductionConversion<hlfir::AnyOp>>(context); |
| 2345 | patterns.insert<ReductionConversion<hlfir::AllOp>>(context); |
| 2346 | patterns.insert<ReductionConversion<hlfir::MaxlocOp>>(context); |
| 2347 | patterns.insert<ReductionConversion<hlfir::MinlocOp>>(context); |
| 2348 | patterns.insert<ReductionConversion<hlfir::MaxvalOp>>(context); |
| 2349 | patterns.insert<ReductionConversion<hlfir::MinvalOp>>(context); |
| 2350 | |
| 2351 | // If forceMatmulAsElemental is false, then hlfir.matmul inlining |
| 2352 | // will introduce hlfir.eval_in_mem operation with new memory side |
| 2353 | // effects. This conflicts with CSE and optimized bufferization, e.g.: |
| 2354 | // A(1:N,1:N) = A(1:N,1:N) - MATMUL(...) |
| 2355 | // If we introduce hlfir.eval_in_mem before CSE, then the current |
| 2356 | // MLIR CSE won't be able to optimize the trivial loads of 'N' value |
| 2357 | // that happen before and after hlfir.matmul. |
| 2358 | // If 'N' loads are not optimized, then the optimized bufferization |
| 2359 | // won't be able to prove that the slices of A are identical |
| 2360 | // on both sides of the assignment. |
| 2361 | // This is actually the CSE problem, but we can work it around |
| 2362 | // for the time being. |
| 2363 | if (forceMatmulAsElemental || this->allowNewSideEffects) |
| 2364 | patterns.insert<MatmulConversion<hlfir::MatmulOp>>(context); |
| 2365 | |
| 2366 | patterns.insert<DotProductConversion>(context); |
| 2367 | patterns.insert<ReshapeAsElementalConversion>(context); |
| 2368 | |
| 2369 | if (mlir::failed(mlir::applyPatternsGreedily( |
| 2370 | getOperation(), std::move(patterns), config))) { |
| 2371 | mlir::emitError(getOperation()->getLoc(), |
| 2372 | "failure in HLFIR intrinsic simplification" ); |
| 2373 | signalPassFailure(); |
| 2374 | } |
| 2375 | } |
| 2376 | }; |
| 2377 | } // namespace |
| 2378 | |