| 1 | //===-- AffinePromotion.cpp -----------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This transformation is a prototype that promote FIR loops operations |
| 10 | // to affine dialect operations. |
| 11 | // It is not part of the production pipeline and would need more work in order |
| 12 | // to be used in production. |
| 13 | // More information can be found in this presentation: |
| 14 | // https://slides.com/rajanwalia/deck |
| 15 | // |
| 16 | //===----------------------------------------------------------------------===// |
| 17 | |
| 18 | #include "flang/Optimizer/Dialect/FIRDialect.h" |
| 19 | #include "flang/Optimizer/Dialect/FIROps.h" |
| 20 | #include "flang/Optimizer/Dialect/FIRType.h" |
| 21 | #include "flang/Optimizer/Transforms/Passes.h" |
| 22 | #include "mlir/Dialect/Affine/IR/AffineOps.h" |
| 23 | #include "mlir/Dialect/Func/IR/FuncOps.h" |
| 24 | #include "mlir/Dialect/SCF/IR/SCF.h" |
| 25 | #include "mlir/IR/BuiltinAttributes.h" |
| 26 | #include "mlir/IR/IntegerSet.h" |
| 27 | #include "mlir/IR/Visitors.h" |
| 28 | #include "mlir/Transforms/DialectConversion.h" |
| 29 | #include "llvm/ADT/DenseMap.h" |
| 30 | #include "llvm/Support/Debug.h" |
| 31 | #include <optional> |
| 32 | |
| 33 | namespace fir { |
| 34 | #define GEN_PASS_DEF_AFFINEDIALECTPROMOTION |
| 35 | #include "flang/Optimizer/Transforms/Passes.h.inc" |
| 36 | } // namespace fir |
| 37 | |
| 38 | #define DEBUG_TYPE "flang-affine-promotion" |
| 39 | |
| 40 | using namespace fir; |
| 41 | using namespace mlir; |
| 42 | |
| 43 | namespace { |
| 44 | struct AffineLoopAnalysis; |
| 45 | struct AffineIfAnalysis; |
| 46 | |
| 47 | /// Stores analysis objects for all loops and if operations inside a function |
| 48 | /// these analysis are used twice, first for marking operations for rewrite and |
| 49 | /// second when doing rewrite. |
| 50 | struct AffineFunctionAnalysis { |
| 51 | explicit AffineFunctionAnalysis(mlir::func::FuncOp funcOp) { |
| 52 | funcOp->walk([&](fir::DoLoopOp doloop) { |
| 53 | loopAnalysisMap.try_emplace(doloop, doloop, *this); |
| 54 | }); |
| 55 | } |
| 56 | |
| 57 | AffineLoopAnalysis getChildLoopAnalysis(fir::DoLoopOp op) const; |
| 58 | |
| 59 | AffineIfAnalysis getChildIfAnalysis(fir::IfOp op) const; |
| 60 | |
| 61 | llvm::DenseMap<mlir::Operation *, AffineLoopAnalysis> loopAnalysisMap; |
| 62 | llvm::DenseMap<mlir::Operation *, AffineIfAnalysis> ifAnalysisMap; |
| 63 | }; |
| 64 | } // namespace |
| 65 | |
| 66 | static bool analyzeCoordinate(mlir::Value coordinate, mlir::Operation *op) { |
| 67 | if (auto blockArg = mlir::dyn_cast<mlir::BlockArgument>(coordinate)) { |
| 68 | if (isa<fir::DoLoopOp>(blockArg.getOwner()->getParentOp())) |
| 69 | return true; |
| 70 | LLVM_DEBUG(llvm::dbgs() << "AffineLoopAnalysis: array coordinate is not a " |
| 71 | "loop induction variable (owner not loopOp)\n" ; |
| 72 | op->dump()); |
| 73 | return false; |
| 74 | } |
| 75 | LLVM_DEBUG( |
| 76 | llvm::dbgs() << "AffineLoopAnalysis: array coordinate is not a loop " |
| 77 | "induction variable (not a block argument)\n" ; |
| 78 | op->dump(); coordinate.getDefiningOp()->dump()); |
| 79 | return false; |
| 80 | } |
| 81 | |
| 82 | namespace { |
| 83 | struct AffineLoopAnalysis { |
| 84 | AffineLoopAnalysis() = default; |
| 85 | |
| 86 | explicit AffineLoopAnalysis(fir::DoLoopOp op, AffineFunctionAnalysis &afa) |
| 87 | : legality(analyzeLoop(op, afa)) {} |
| 88 | |
| 89 | bool canPromoteToAffine() { return legality; } |
| 90 | |
| 91 | private: |
| 92 | bool analyzeBody(fir::DoLoopOp loopOperation, |
| 93 | AffineFunctionAnalysis &functionAnalysis) { |
| 94 | for (auto loopOp : loopOperation.getOps<fir::DoLoopOp>()) { |
| 95 | auto analysis = functionAnalysis.loopAnalysisMap |
| 96 | .try_emplace(loopOp, loopOp, functionAnalysis) |
| 97 | .first->getSecond(); |
| 98 | if (!analysis.canPromoteToAffine()) |
| 99 | return false; |
| 100 | } |
| 101 | for (auto ifOp : loopOperation.getOps<fir::IfOp>()) |
| 102 | functionAnalysis.ifAnalysisMap.try_emplace(ifOp, ifOp, functionAnalysis); |
| 103 | return true; |
| 104 | } |
| 105 | |
| 106 | bool analysisResults(fir::DoLoopOp loopOperation) { |
| 107 | if (loopOperation.getFinalValue() && |
| 108 | !loopOperation.getResult(0).use_empty()) { |
| 109 | LLVM_DEBUG( |
| 110 | llvm::dbgs() |
| 111 | << "AffineLoopAnalysis: cannot promote loop final value\n" ;); |
| 112 | return false; |
| 113 | } |
| 114 | |
| 115 | return true; |
| 116 | } |
| 117 | |
| 118 | bool analyzeLoop(fir::DoLoopOp loopOperation, |
| 119 | AffineFunctionAnalysis &functionAnalysis) { |
| 120 | LLVM_DEBUG(llvm::dbgs() << "AffineLoopAnalysis: \n" ; loopOperation.dump();); |
| 121 | return analyzeMemoryAccess(loopOperation) && |
| 122 | analysisResults(loopOperation) && |
| 123 | analyzeBody(loopOperation, functionAnalysis); |
| 124 | } |
| 125 | |
| 126 | bool analyzeReference(mlir::Value memref, mlir::Operation *op) { |
| 127 | if (auto acoOp = memref.getDefiningOp<ArrayCoorOp>()) { |
| 128 | if (mlir::isa<fir::BoxType>(acoOp.getMemref().getType())) { |
| 129 | // TODO: Look if and how fir.box can be promoted to affine. |
| 130 | LLVM_DEBUG(llvm::dbgs() << "AffineLoopAnalysis: cannot promote loop, " |
| 131 | "array memory operation uses fir.box\n" ; |
| 132 | op->dump(); acoOp.dump();); |
| 133 | return false; |
| 134 | } |
| 135 | bool canPromote = true; |
| 136 | for (auto coordinate : acoOp.getIndices()) |
| 137 | canPromote = canPromote && analyzeCoordinate(coordinate, op); |
| 138 | return canPromote; |
| 139 | } |
| 140 | if (auto coOp = memref.getDefiningOp<CoordinateOp>()) { |
| 141 | LLVM_DEBUG(llvm::dbgs() |
| 142 | << "AffineLoopAnalysis: cannot promote loop, " |
| 143 | "array memory operation uses non ArrayCoorOp\n" ; |
| 144 | op->dump(); coOp.dump();); |
| 145 | |
| 146 | return false; |
| 147 | } |
| 148 | LLVM_DEBUG(llvm::dbgs() << "AffineLoopAnalysis: unknown type of memory " |
| 149 | "reference for array load\n" ; |
| 150 | op->dump();); |
| 151 | return false; |
| 152 | } |
| 153 | |
| 154 | bool analyzeMemoryAccess(fir::DoLoopOp loopOperation) { |
| 155 | for (auto loadOp : loopOperation.getOps<fir::LoadOp>()) |
| 156 | if (!analyzeReference(loadOp.getMemref(), loadOp)) |
| 157 | return false; |
| 158 | for (auto storeOp : loopOperation.getOps<fir::StoreOp>()) |
| 159 | if (!analyzeReference(storeOp.getMemref(), storeOp)) |
| 160 | return false; |
| 161 | return true; |
| 162 | } |
| 163 | |
| 164 | bool legality{}; |
| 165 | }; |
| 166 | } // namespace |
| 167 | |
| 168 | AffineLoopAnalysis |
| 169 | AffineFunctionAnalysis::getChildLoopAnalysis(fir::DoLoopOp op) const { |
| 170 | auto it = loopAnalysisMap.find_as(op); |
| 171 | if (it == loopAnalysisMap.end()) { |
| 172 | LLVM_DEBUG(llvm::dbgs() << "AffineFunctionAnalysis: not computed for:\n" ; |
| 173 | op.dump();); |
| 174 | op.emitError("error in fetching loop analysis in AffineFunctionAnalysis\n" ); |
| 175 | return {}; |
| 176 | } |
| 177 | return it->getSecond(); |
| 178 | } |
| 179 | |
| 180 | namespace { |
| 181 | /// Calculates arguments for creating an IntegerSet. symCount, dimCount are the |
| 182 | /// final number of symbols and dimensions of the affine map. Integer set if |
| 183 | /// possible is in Optional IntegerSet. |
| 184 | struct AffineIfCondition { |
| 185 | using MaybeAffineExpr = std::optional<mlir::AffineExpr>; |
| 186 | |
| 187 | explicit AffineIfCondition(mlir::Value fc) : firCondition(fc) { |
| 188 | if (auto condDef = firCondition.getDefiningOp<mlir::arith::CmpIOp>()) |
| 189 | fromCmpIOp(condDef); |
| 190 | } |
| 191 | |
| 192 | bool hasIntegerSet() const { return integerSet.has_value(); } |
| 193 | |
| 194 | mlir::IntegerSet getIntegerSet() const { |
| 195 | assert(hasIntegerSet() && "integer set is missing" ); |
| 196 | return *integerSet; |
| 197 | } |
| 198 | |
| 199 | mlir::ValueRange getAffineArgs() const { return affineArgs; } |
| 200 | |
| 201 | private: |
| 202 | MaybeAffineExpr affineBinaryOp(mlir::AffineExprKind kind, mlir::Value lhs, |
| 203 | mlir::Value rhs) { |
| 204 | return affineBinaryOp(kind, toAffineExpr(lhs), toAffineExpr(rhs)); |
| 205 | } |
| 206 | |
| 207 | MaybeAffineExpr affineBinaryOp(mlir::AffineExprKind kind, MaybeAffineExpr lhs, |
| 208 | MaybeAffineExpr rhs) { |
| 209 | if (lhs && rhs) |
| 210 | return mlir::getAffineBinaryOpExpr(kind, *lhs, *rhs); |
| 211 | return {}; |
| 212 | } |
| 213 | |
| 214 | MaybeAffineExpr toAffineExpr(MaybeAffineExpr e) { return e; } |
| 215 | |
| 216 | MaybeAffineExpr toAffineExpr(int64_t value) { |
| 217 | return {mlir::getAffineConstantExpr(value, firCondition.getContext())}; |
| 218 | } |
| 219 | |
| 220 | /// Returns an AffineExpr if it is a result of operations that can be done |
| 221 | /// in an affine expression, this includes -, +, *, rem, constant. |
| 222 | /// block arguments of a loopOp or forOp are used as dimensions |
| 223 | MaybeAffineExpr toAffineExpr(mlir::Value value) { |
| 224 | if (auto op = value.getDefiningOp<mlir::arith::SubIOp>()) |
| 225 | return affineBinaryOp( |
| 226 | mlir::AffineExprKind::Add, toAffineExpr(op.getLhs()), |
| 227 | affineBinaryOp(mlir::AffineExprKind::Mul, toAffineExpr(op.getRhs()), |
| 228 | toAffineExpr(-1))); |
| 229 | if (auto op = value.getDefiningOp<mlir::arith::AddIOp>()) |
| 230 | return affineBinaryOp(mlir::AffineExprKind::Add, op.getLhs(), |
| 231 | op.getRhs()); |
| 232 | if (auto op = value.getDefiningOp<mlir::arith::MulIOp>()) |
| 233 | return affineBinaryOp(mlir::AffineExprKind::Mul, op.getLhs(), |
| 234 | op.getRhs()); |
| 235 | if (auto op = value.getDefiningOp<mlir::arith::RemUIOp>()) |
| 236 | return affineBinaryOp(mlir::AffineExprKind::Mod, op.getLhs(), |
| 237 | op.getRhs()); |
| 238 | if (auto op = value.getDefiningOp<mlir::arith::ConstantOp>()) |
| 239 | if (auto intConstant = mlir::dyn_cast<IntegerAttr>(op.getValue())) |
| 240 | return toAffineExpr(intConstant.getInt()); |
| 241 | if (auto blockArg = mlir::dyn_cast<mlir::BlockArgument>(value)) { |
| 242 | affineArgs.push_back(value); |
| 243 | if (isa<fir::DoLoopOp>(blockArg.getOwner()->getParentOp()) || |
| 244 | isa<mlir::affine::AffineForOp>(blockArg.getOwner()->getParentOp())) |
| 245 | return {mlir::getAffineDimExpr(dimCount++, value.getContext())}; |
| 246 | return {mlir::getAffineSymbolExpr(symCount++, value.getContext())}; |
| 247 | } |
| 248 | return {}; |
| 249 | } |
| 250 | |
| 251 | void fromCmpIOp(mlir::arith::CmpIOp cmpOp) { |
| 252 | auto lhsAffine = toAffineExpr(cmpOp.getLhs()); |
| 253 | auto rhsAffine = toAffineExpr(cmpOp.getRhs()); |
| 254 | if (!lhsAffine || !rhsAffine) |
| 255 | return; |
| 256 | auto constraintPair = |
| 257 | constraint(cmpOp.getPredicate(), *rhsAffine - *lhsAffine); |
| 258 | if (!constraintPair) |
| 259 | return; |
| 260 | integerSet = mlir::IntegerSet::get( |
| 261 | dimCount, symCount, {constraintPair->first}, {constraintPair->second}); |
| 262 | } |
| 263 | |
| 264 | std::optional<std::pair<AffineExpr, bool>> |
| 265 | constraint(mlir::arith::CmpIPredicate predicate, mlir::AffineExpr basic) { |
| 266 | switch (predicate) { |
| 267 | case mlir::arith::CmpIPredicate::slt: |
| 268 | return {std::make_pair(basic - 1, false)}; |
| 269 | case mlir::arith::CmpIPredicate::sle: |
| 270 | return {std::make_pair(basic, false)}; |
| 271 | case mlir::arith::CmpIPredicate::sgt: |
| 272 | return {std::make_pair(1 - basic, false)}; |
| 273 | case mlir::arith::CmpIPredicate::sge: |
| 274 | return {std::make_pair(0 - basic, false)}; |
| 275 | case mlir::arith::CmpIPredicate::eq: |
| 276 | return {std::make_pair(basic, true)}; |
| 277 | default: |
| 278 | return {}; |
| 279 | } |
| 280 | } |
| 281 | |
| 282 | llvm::SmallVector<mlir::Value> affineArgs; |
| 283 | std::optional<mlir::IntegerSet> integerSet; |
| 284 | mlir::Value firCondition; |
| 285 | unsigned symCount{0u}; |
| 286 | unsigned dimCount{0u}; |
| 287 | }; |
| 288 | } // namespace |
| 289 | |
| 290 | namespace { |
| 291 | /// Analysis for affine promotion of fir.if |
| 292 | struct AffineIfAnalysis { |
| 293 | AffineIfAnalysis() = default; |
| 294 | |
| 295 | explicit AffineIfAnalysis(fir::IfOp op, AffineFunctionAnalysis &afa) |
| 296 | : legality(analyzeIf(op, afa)) {} |
| 297 | |
| 298 | bool canPromoteToAffine() { return legality; } |
| 299 | |
| 300 | private: |
| 301 | bool analyzeIf(fir::IfOp op, AffineFunctionAnalysis &afa) { |
| 302 | if (op.getNumResults() == 0) |
| 303 | return true; |
| 304 | LLVM_DEBUG(llvm::dbgs() |
| 305 | << "AffineIfAnalysis: not promoting as op has results\n" ;); |
| 306 | return false; |
| 307 | } |
| 308 | |
| 309 | bool legality{}; |
| 310 | }; |
| 311 | } // namespace |
| 312 | |
| 313 | AffineIfAnalysis |
| 314 | AffineFunctionAnalysis::getChildIfAnalysis(fir::IfOp op) const { |
| 315 | auto it = ifAnalysisMap.find_as(op); |
| 316 | if (it == ifAnalysisMap.end()) { |
| 317 | LLVM_DEBUG(llvm::dbgs() << "AffineFunctionAnalysis: not computed for:\n" ; |
| 318 | op.dump();); |
| 319 | op.emitError("error in fetching if analysis in AffineFunctionAnalysis\n" ); |
| 320 | return {}; |
| 321 | } |
| 322 | return it->getSecond(); |
| 323 | } |
| 324 | |
| 325 | /// AffineMap rewriting fir.array_coor operation to affine apply, |
| 326 | /// %dim = fir.gendim %lowerBound, %upperBound, %stride |
| 327 | /// %a = fir.array_coor %arr(%dim) %i |
| 328 | /// returning affineMap = affine_map<(i)[lb, ub, st] -> (i*st - lb)> |
| 329 | static mlir::AffineMap createArrayIndexAffineMap(unsigned dimensions, |
| 330 | MLIRContext *context) { |
| 331 | auto index = mlir::getAffineConstantExpr(0, context); |
| 332 | auto accuExtent = mlir::getAffineConstantExpr(1, context); |
| 333 | for (unsigned i = 0; i < dimensions; ++i) { |
| 334 | mlir::AffineExpr idx = mlir::getAffineDimExpr(i, context), |
| 335 | lowerBound = mlir::getAffineSymbolExpr(i * 3, context), |
| 336 | currentExtent = |
| 337 | mlir::getAffineSymbolExpr(i * 3 + 1, context), |
| 338 | stride = mlir::getAffineSymbolExpr(i * 3 + 2, context), |
| 339 | currentPart = (idx * stride - lowerBound) * accuExtent; |
| 340 | index = currentPart + index; |
| 341 | accuExtent = accuExtent * currentExtent; |
| 342 | } |
| 343 | return mlir::AffineMap::get(dimensions, dimensions * 3, index); |
| 344 | } |
| 345 | |
| 346 | static std::optional<int64_t> constantIntegerLike(const mlir::Value value) { |
| 347 | if (auto definition = value.getDefiningOp<mlir::arith::ConstantOp>()) |
| 348 | if (auto stepAttr = mlir::dyn_cast<IntegerAttr>(definition.getValue())) |
| 349 | return stepAttr.getInt(); |
| 350 | return {}; |
| 351 | } |
| 352 | |
| 353 | static mlir::Type coordinateArrayElement(fir::ArrayCoorOp op) { |
| 354 | if (auto refType = |
| 355 | mlir::dyn_cast_or_null<ReferenceType>(op.getMemref().getType())) { |
| 356 | if (auto seqType = |
| 357 | mlir::dyn_cast_or_null<SequenceType>(refType.getEleTy())) { |
| 358 | return seqType.getEleTy(); |
| 359 | } |
| 360 | } |
| 361 | op.emitError( |
| 362 | "AffineLoopConversion: array type in coordinate operation not valid\n" ); |
| 363 | return mlir::Type(); |
| 364 | } |
| 365 | |
| 366 | static void populateIndexArgs(fir::ArrayCoorOp acoOp, fir::ShapeOp shape, |
| 367 | SmallVectorImpl<mlir::Value> &indexArgs, |
| 368 | mlir::PatternRewriter &rewriter) { |
| 369 | auto one = rewriter.create<mlir::arith::ConstantOp>( |
| 370 | acoOp.getLoc(), rewriter.getIndexType(), rewriter.getIndexAttr(1)); |
| 371 | auto extents = shape.getExtents(); |
| 372 | for (auto i = extents.begin(); i < extents.end(); i++) { |
| 373 | indexArgs.push_back(one); |
| 374 | indexArgs.push_back(*i); |
| 375 | indexArgs.push_back(one); |
| 376 | } |
| 377 | } |
| 378 | |
| 379 | static void populateIndexArgs(fir::ArrayCoorOp acoOp, fir::ShapeShiftOp shape, |
| 380 | SmallVectorImpl<mlir::Value> &indexArgs, |
| 381 | mlir::PatternRewriter &rewriter) { |
| 382 | auto one = rewriter.create<mlir::arith::ConstantOp>( |
| 383 | acoOp.getLoc(), rewriter.getIndexType(), rewriter.getIndexAttr(1)); |
| 384 | auto extents = shape.getPairs(); |
| 385 | for (auto i = extents.begin(); i < extents.end();) { |
| 386 | indexArgs.push_back(*i++); |
| 387 | indexArgs.push_back(*i++); |
| 388 | indexArgs.push_back(one); |
| 389 | } |
| 390 | } |
| 391 | |
| 392 | static void populateIndexArgs(fir::ArrayCoorOp acoOp, fir::SliceOp slice, |
| 393 | SmallVectorImpl<mlir::Value> &indexArgs, |
| 394 | mlir::PatternRewriter &rewriter) { |
| 395 | auto extents = slice.getTriples(); |
| 396 | for (auto i = extents.begin(); i < extents.end();) { |
| 397 | indexArgs.push_back(*i++); |
| 398 | indexArgs.push_back(*i++); |
| 399 | indexArgs.push_back(*i++); |
| 400 | } |
| 401 | } |
| 402 | |
| 403 | static void populateIndexArgs(fir::ArrayCoorOp acoOp, |
| 404 | SmallVectorImpl<mlir::Value> &indexArgs, |
| 405 | mlir::PatternRewriter &rewriter) { |
| 406 | if (auto shape = acoOp.getShape().getDefiningOp<ShapeOp>()) |
| 407 | return populateIndexArgs(acoOp, shape, indexArgs, rewriter); |
| 408 | if (auto shapeShift = acoOp.getShape().getDefiningOp<ShapeShiftOp>()) |
| 409 | return populateIndexArgs(acoOp, shapeShift, indexArgs, rewriter); |
| 410 | if (auto slice = acoOp.getShape().getDefiningOp<SliceOp>()) |
| 411 | return populateIndexArgs(acoOp, slice, indexArgs, rewriter); |
| 412 | } |
| 413 | |
| 414 | /// Returns affine.apply and fir.convert from array_coor and gendims |
| 415 | static std::pair<affine::AffineApplyOp, fir::ConvertOp> |
| 416 | createAffineOps(mlir::Value arrayRef, mlir::PatternRewriter &rewriter) { |
| 417 | auto acoOp = arrayRef.getDefiningOp<ArrayCoorOp>(); |
| 418 | auto affineMap = |
| 419 | createArrayIndexAffineMap(acoOp.getIndices().size(), acoOp.getContext()); |
| 420 | SmallVector<mlir::Value> indexArgs; |
| 421 | indexArgs.append(acoOp.getIndices().begin(), acoOp.getIndices().end()); |
| 422 | |
| 423 | populateIndexArgs(acoOp, indexArgs, rewriter); |
| 424 | |
| 425 | auto affineApply = rewriter.create<affine::AffineApplyOp>( |
| 426 | acoOp.getLoc(), affineMap, indexArgs); |
| 427 | auto arrayElementType = coordinateArrayElement(acoOp); |
| 428 | auto newType = |
| 429 | mlir::MemRefType::get({mlir::ShapedType::kDynamic}, arrayElementType); |
| 430 | auto arrayConvert = rewriter.create<fir::ConvertOp>(acoOp.getLoc(), newType, |
| 431 | acoOp.getMemref()); |
| 432 | return std::make_pair(affineApply, arrayConvert); |
| 433 | } |
| 434 | |
| 435 | static void rewriteLoad(fir::LoadOp loadOp, mlir::PatternRewriter &rewriter) { |
| 436 | rewriter.setInsertionPoint(loadOp); |
| 437 | auto affineOps = createAffineOps(loadOp.getMemref(), rewriter); |
| 438 | rewriter.replaceOpWithNewOp<affine::AffineLoadOp>( |
| 439 | loadOp, affineOps.second.getResult(), affineOps.first.getResult()); |
| 440 | } |
| 441 | |
| 442 | static void rewriteStore(fir::StoreOp storeOp, |
| 443 | mlir::PatternRewriter &rewriter) { |
| 444 | rewriter.setInsertionPoint(storeOp); |
| 445 | auto affineOps = createAffineOps(storeOp.getMemref(), rewriter); |
| 446 | rewriter.replaceOpWithNewOp<affine::AffineStoreOp>( |
| 447 | storeOp, storeOp.getValue(), affineOps.second.getResult(), |
| 448 | affineOps.first.getResult()); |
| 449 | } |
| 450 | |
| 451 | static void rewriteMemoryOps(Block *block, mlir::PatternRewriter &rewriter) { |
| 452 | for (auto &bodyOp : block->getOperations()) { |
| 453 | if (isa<fir::LoadOp>(bodyOp)) |
| 454 | rewriteLoad(cast<fir::LoadOp>(bodyOp), rewriter); |
| 455 | if (isa<fir::StoreOp>(bodyOp)) |
| 456 | rewriteStore(cast<fir::StoreOp>(bodyOp), rewriter); |
| 457 | } |
| 458 | } |
| 459 | |
| 460 | namespace { |
| 461 | /// Convert `fir.do_loop` to `affine.for`, creates fir.convert for arrays to |
| 462 | /// memref, rewrites array_coor to affine.apply with affine_map. Rewrites fir |
| 463 | /// loads and stores to affine. |
| 464 | class AffineLoopConversion : public mlir::OpRewritePattern<fir::DoLoopOp> { |
| 465 | public: |
| 466 | using OpRewritePattern::OpRewritePattern; |
| 467 | AffineLoopConversion(mlir::MLIRContext *context, AffineFunctionAnalysis &afa) |
| 468 | : OpRewritePattern(context), functionAnalysis(afa) {} |
| 469 | |
| 470 | llvm::LogicalResult |
| 471 | matchAndRewrite(fir::DoLoopOp loop, |
| 472 | mlir::PatternRewriter &rewriter) const override { |
| 473 | LLVM_DEBUG(llvm::dbgs() << "AffineLoopConversion: rewriting loop:\n" ; |
| 474 | loop.dump();); |
| 475 | LLVM_ATTRIBUTE_UNUSED auto loopAnalysis = |
| 476 | functionAnalysis.getChildLoopAnalysis(loop); |
| 477 | auto &loopOps = loop.getBody()->getOperations(); |
| 478 | auto resultOp = cast<fir::ResultOp>(loop.getBody()->getTerminator()); |
| 479 | auto results = resultOp.getOperands(); |
| 480 | auto loopResults = loop->getResults(); |
| 481 | auto loopAndIndex = createAffineFor(loop, rewriter); |
| 482 | auto affineFor = loopAndIndex.first; |
| 483 | auto inductionVar = loopAndIndex.second; |
| 484 | |
| 485 | if (loop.getFinalValue()) { |
| 486 | results = results.drop_front(); |
| 487 | loopResults = loopResults.drop_front(); |
| 488 | } |
| 489 | |
| 490 | rewriter.startOpModification(affineFor.getOperation()); |
| 491 | affineFor.getBody()->getOperations().splice( |
| 492 | std::prev(affineFor.getBody()->end()), loopOps, loopOps.begin(), |
| 493 | std::prev(loopOps.end())); |
| 494 | rewriter.replaceAllUsesWith(loop.getRegionIterArgs(), |
| 495 | affineFor.getRegionIterArgs()); |
| 496 | if (!results.empty()) { |
| 497 | rewriter.setInsertionPointToEnd(affineFor.getBody()); |
| 498 | rewriter.create<affine::AffineYieldOp>(resultOp->getLoc(), results); |
| 499 | } |
| 500 | rewriter.finalizeOpModification(affineFor.getOperation()); |
| 501 | |
| 502 | rewriter.startOpModification(loop.getOperation()); |
| 503 | loop.getInductionVar().replaceAllUsesWith(inductionVar); |
| 504 | rewriter.finalizeOpModification(loop.getOperation()); |
| 505 | |
| 506 | rewriteMemoryOps(affineFor.getBody(), rewriter); |
| 507 | |
| 508 | LLVM_DEBUG(llvm::dbgs() << "AffineLoopConversion: loop rewriten to:\n" ; |
| 509 | affineFor.dump();); |
| 510 | rewriter.replaceAllUsesWith(loopResults, affineFor->getResults()); |
| 511 | rewriter.eraseOp(loop); |
| 512 | return success(); |
| 513 | } |
| 514 | |
| 515 | private: |
| 516 | std::pair<affine::AffineForOp, mlir::Value> |
| 517 | createAffineFor(fir::DoLoopOp op, mlir::PatternRewriter &rewriter) const { |
| 518 | if (auto constantStep = constantIntegerLike(op.getStep())) |
| 519 | if (*constantStep > 0) |
| 520 | return positiveConstantStep(op, *constantStep, rewriter); |
| 521 | return genericBounds(op, rewriter); |
| 522 | } |
| 523 | |
| 524 | // when step for the loop is positive compile time constant |
| 525 | std::pair<affine::AffineForOp, mlir::Value> |
| 526 | positiveConstantStep(fir::DoLoopOp op, int64_t step, |
| 527 | mlir::PatternRewriter &rewriter) const { |
| 528 | auto affineFor = rewriter.create<affine::AffineForOp>( |
| 529 | op.getLoc(), ValueRange(op.getLowerBound()), |
| 530 | mlir::AffineMap::get(0, 1, |
| 531 | mlir::getAffineSymbolExpr(0, op.getContext())), |
| 532 | ValueRange(op.getUpperBound()), |
| 533 | mlir::AffineMap::get(0, 1, |
| 534 | 1 + mlir::getAffineSymbolExpr(0, op.getContext())), |
| 535 | step, op.getIterOperands()); |
| 536 | return std::make_pair(affineFor, affineFor.getInductionVar()); |
| 537 | } |
| 538 | |
| 539 | std::pair<affine::AffineForOp, mlir::Value> |
| 540 | genericBounds(fir::DoLoopOp op, mlir::PatternRewriter &rewriter) const { |
| 541 | auto lowerBound = mlir::getAffineSymbolExpr(0, op.getContext()); |
| 542 | auto upperBound = mlir::getAffineSymbolExpr(1, op.getContext()); |
| 543 | auto step = mlir::getAffineSymbolExpr(2, op.getContext()); |
| 544 | mlir::AffineMap upperBoundMap = mlir::AffineMap::get( |
| 545 | 0, 3, (upperBound - lowerBound + step).floorDiv(step)); |
| 546 | auto genericUpperBound = rewriter.create<affine::AffineApplyOp>( |
| 547 | op.getLoc(), upperBoundMap, |
| 548 | ValueRange({op.getLowerBound(), op.getUpperBound(), op.getStep()})); |
| 549 | auto actualIndexMap = mlir::AffineMap::get( |
| 550 | 1, 2, |
| 551 | (lowerBound + mlir::getAffineDimExpr(0, op.getContext())) * |
| 552 | mlir::getAffineSymbolExpr(1, op.getContext())); |
| 553 | |
| 554 | auto affineFor = rewriter.create<affine::AffineForOp>( |
| 555 | op.getLoc(), ValueRange(), |
| 556 | AffineMap::getConstantMap(0, op.getContext()), |
| 557 | genericUpperBound.getResult(), |
| 558 | mlir::AffineMap::get(0, 1, |
| 559 | 1 + mlir::getAffineSymbolExpr(0, op.getContext())), |
| 560 | 1, op.getIterOperands()); |
| 561 | rewriter.setInsertionPointToStart(affineFor.getBody()); |
| 562 | auto actualIndex = rewriter.create<affine::AffineApplyOp>( |
| 563 | op.getLoc(), actualIndexMap, |
| 564 | ValueRange( |
| 565 | {affineFor.getInductionVar(), op.getLowerBound(), op.getStep()})); |
| 566 | return std::make_pair(affineFor, actualIndex.getResult()); |
| 567 | } |
| 568 | |
| 569 | AffineFunctionAnalysis &functionAnalysis; |
| 570 | }; |
| 571 | |
| 572 | /// Convert `fir.if` to `affine.if`. |
| 573 | class AffineIfConversion : public mlir::OpRewritePattern<fir::IfOp> { |
| 574 | public: |
| 575 | using OpRewritePattern::OpRewritePattern; |
| 576 | AffineIfConversion(mlir::MLIRContext *context, AffineFunctionAnalysis &afa) |
| 577 | : OpRewritePattern(context) {} |
| 578 | llvm::LogicalResult |
| 579 | matchAndRewrite(fir::IfOp op, |
| 580 | mlir::PatternRewriter &rewriter) const override { |
| 581 | LLVM_DEBUG(llvm::dbgs() << "AffineIfConversion: rewriting if:\n" ; |
| 582 | op.dump();); |
| 583 | auto &ifOps = op.getThenRegion().front().getOperations(); |
| 584 | auto affineCondition = AffineIfCondition(op.getCondition()); |
| 585 | if (!affineCondition.hasIntegerSet()) { |
| 586 | LLVM_DEBUG( |
| 587 | llvm::dbgs() |
| 588 | << "AffineIfConversion: couldn't calculate affine condition\n" ;); |
| 589 | return failure(); |
| 590 | } |
| 591 | auto affineIf = rewriter.create<affine::AffineIfOp>( |
| 592 | op.getLoc(), affineCondition.getIntegerSet(), |
| 593 | affineCondition.getAffineArgs(), !op.getElseRegion().empty()); |
| 594 | rewriter.startOpModification(affineIf); |
| 595 | affineIf.getThenBlock()->getOperations().splice( |
| 596 | std::prev(affineIf.getThenBlock()->end()), ifOps, ifOps.begin(), |
| 597 | std::prev(ifOps.end())); |
| 598 | if (!op.getElseRegion().empty()) { |
| 599 | auto &otherOps = op.getElseRegion().front().getOperations(); |
| 600 | affineIf.getElseBlock()->getOperations().splice( |
| 601 | std::prev(affineIf.getElseBlock()->end()), otherOps, otherOps.begin(), |
| 602 | std::prev(otherOps.end())); |
| 603 | } |
| 604 | rewriter.finalizeOpModification(affineIf); |
| 605 | rewriteMemoryOps(affineIf.getBody(), rewriter); |
| 606 | |
| 607 | LLVM_DEBUG(llvm::dbgs() << "AffineIfConversion: if converted to:\n" ; |
| 608 | affineIf.dump();); |
| 609 | rewriter.replaceOp(op, affineIf.getOperation()->getResults()); |
| 610 | return success(); |
| 611 | } |
| 612 | }; |
| 613 | |
| 614 | /// Promote fir.do_loop and fir.if to affine.for and affine.if, in the cases |
| 615 | /// where such a promotion is possible. |
| 616 | class AffineDialectPromotion |
| 617 | : public fir::impl::AffineDialectPromotionBase<AffineDialectPromotion> { |
| 618 | public: |
| 619 | void runOnOperation() override { |
| 620 | |
| 621 | auto *context = &getContext(); |
| 622 | auto function = getOperation(); |
| 623 | markAllAnalysesPreserved(); |
| 624 | auto functionAnalysis = AffineFunctionAnalysis(function); |
| 625 | mlir::RewritePatternSet patterns(context); |
| 626 | patterns.insert<AffineIfConversion>(context, functionAnalysis); |
| 627 | patterns.insert<AffineLoopConversion>(context, functionAnalysis); |
| 628 | mlir::ConversionTarget target = *context; |
| 629 | target.addLegalDialect<mlir::affine::AffineDialect, FIROpsDialect, |
| 630 | mlir::scf::SCFDialect, mlir::arith::ArithDialect, |
| 631 | mlir::func::FuncDialect>(); |
| 632 | target.addDynamicallyLegalOp<IfOp>([&functionAnalysis](fir::IfOp op) { |
| 633 | return !(functionAnalysis.getChildIfAnalysis(op).canPromoteToAffine()); |
| 634 | }); |
| 635 | target.addDynamicallyLegalOp<DoLoopOp>([&functionAnalysis]( |
| 636 | fir::DoLoopOp op) { |
| 637 | return !(functionAnalysis.getChildLoopAnalysis(op).canPromoteToAffine()); |
| 638 | }); |
| 639 | |
| 640 | LLVM_DEBUG(llvm::dbgs() |
| 641 | << "AffineDialectPromotion: running promotion on: \n" ; |
| 642 | function.print(llvm::dbgs());); |
| 643 | // apply the patterns |
| 644 | if (mlir::failed(mlir::applyPartialConversion(function, target, |
| 645 | std::move(patterns)))) { |
| 646 | mlir::emitError(mlir::UnknownLoc::get(context), |
| 647 | "error in converting to affine dialect\n" ); |
| 648 | signalPassFailure(); |
| 649 | } |
| 650 | } |
| 651 | }; |
| 652 | } // namespace |
| 653 | |
| 654 | /// Convert FIR loop constructs to the Affine dialect |
| 655 | std::unique_ptr<mlir::Pass> fir::createPromoteToAffinePass() { |
| 656 | return std::make_unique<AffineDialectPromotion>(); |
| 657 | } |
| 658 | |