| 1 | //===-- ArrayValueCopy.cpp ------------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "flang/Optimizer/Builder/BoxValue.h" |
| 10 | #include "flang/Optimizer/Builder/FIRBuilder.h" |
| 11 | #include "flang/Optimizer/Builder/Factory.h" |
| 12 | #include "flang/Optimizer/Builder/Runtime/Derived.h" |
| 13 | #include "flang/Optimizer/Builder/Todo.h" |
| 14 | #include "flang/Optimizer/Dialect/FIRDialect.h" |
| 15 | #include "flang/Optimizer/Dialect/FIROpsSupport.h" |
| 16 | #include "flang/Optimizer/Dialect/Support/FIRContext.h" |
| 17 | #include "flang/Optimizer/Transforms/Passes.h" |
| 18 | #include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h" |
| 19 | #include "mlir/Dialect/SCF/IR/SCF.h" |
| 20 | #include "mlir/Transforms/DialectConversion.h" |
| 21 | #include "llvm/Support/Debug.h" |
| 22 | |
| 23 | namespace fir { |
| 24 | #define GEN_PASS_DEF_ARRAYVALUECOPY |
| 25 | #include "flang/Optimizer/Transforms/Passes.h.inc" |
| 26 | } // namespace fir |
| 27 | |
| 28 | #define DEBUG_TYPE "flang-array-value-copy" |
| 29 | |
| 30 | using namespace fir; |
| 31 | using namespace mlir; |
| 32 | |
| 33 | using OperationUseMapT = llvm::DenseMap<mlir::Operation *, mlir::Operation *>; |
| 34 | |
| 35 | namespace { |
| 36 | |
| 37 | /// Array copy analysis. |
| 38 | /// Perform an interference analysis between array values. |
| 39 | /// |
| 40 | /// Lowering will generate a sequence of the following form. |
| 41 | /// ```mlir |
| 42 | /// %a_1 = fir.array_load %array_1(%shape) : ... |
| 43 | /// ... |
| 44 | /// %a_j = fir.array_load %array_j(%shape) : ... |
| 45 | /// ... |
| 46 | /// %a_n = fir.array_load %array_n(%shape) : ... |
| 47 | /// ... |
| 48 | /// %v_i = fir.array_fetch %a_i, ... |
| 49 | /// %a_j1 = fir.array_update %a_j, ... |
| 50 | /// ... |
| 51 | /// fir.array_merge_store %a_j, %a_jn to %array_j : ... |
| 52 | /// ``` |
| 53 | /// |
| 54 | /// The analysis is to determine if there are any conflicts. A conflict is when |
| 55 | /// one the following cases occurs. |
| 56 | /// |
| 57 | /// 1. There is an `array_update` to an array value, a_j, such that a_j was |
| 58 | /// loaded from the same array memory reference (array_j) but with a different |
| 59 | /// shape as the other array values a_i, where i != j. [Possible overlapping |
| 60 | /// arrays.] |
| 61 | /// |
| 62 | /// 2. There is either an array_fetch or array_update of a_j with a different |
| 63 | /// set of index values. [Possible loop-carried dependence.] |
| 64 | /// |
| 65 | /// If none of the array values overlap in storage and the accesses are not |
| 66 | /// loop-carried, then the arrays are conflict-free and no copies are required. |
| 67 | class ArrayCopyAnalysisBase { |
| 68 | public: |
| 69 | using ConflictSetT = llvm::SmallPtrSet<mlir::Operation *, 16>; |
| 70 | using UseSetT = llvm::SmallPtrSet<mlir::OpOperand *, 8>; |
| 71 | using LoadMapSetsT = llvm::DenseMap<mlir::Operation *, UseSetT>; |
| 72 | using AmendAccessSetT = llvm::SmallPtrSet<mlir::Operation *, 4>; |
| 73 | |
| 74 | ArrayCopyAnalysisBase(mlir::Operation *op, bool optimized) |
| 75 | : operation{op}, optimizeConflicts(optimized) { |
| 76 | construct(op); |
| 77 | } |
| 78 | virtual ~ArrayCopyAnalysisBase() = default; |
| 79 | |
| 80 | mlir::Operation *getOperation() const { return operation; } |
| 81 | |
| 82 | /// Return true iff the `array_merge_store` has potential conflicts. |
| 83 | bool hasPotentialConflict(mlir::Operation *op) const { |
| 84 | LLVM_DEBUG(llvm::dbgs() |
| 85 | << "looking for a conflict on " << *op |
| 86 | << " and the set has a total of " << conflicts.size() << '\n'); |
| 87 | return conflicts.contains(op); |
| 88 | } |
| 89 | |
| 90 | /// Return the use map. |
| 91 | /// The use map maps array access, amend, fetch and update operations back to |
| 92 | /// the array load that is the original source of the array value. |
| 93 | /// It maps an array_load to an array_merge_store, if and only if the loaded |
| 94 | /// array value has pending modifications to be merged. |
| 95 | const OperationUseMapT &getUseMap() const { return useMap; } |
| 96 | |
| 97 | /// Return the set of array_access ops directly associated with array_amend |
| 98 | /// ops. |
| 99 | bool inAmendAccessSet(mlir::Operation *op) const { |
| 100 | return amendAccesses.count(op); |
| 101 | } |
| 102 | |
| 103 | /// For ArrayLoad `load`, return the transitive set of all OpOperands. |
| 104 | UseSetT getLoadUseSet(mlir::Operation *load) const { |
| 105 | assert(loadMapSets.count(load) && "analysis missed an array load?" ); |
| 106 | return loadMapSets.lookup(load); |
| 107 | } |
| 108 | |
| 109 | void arrayMentions(llvm::SmallVectorImpl<mlir::Operation *> &mentions, |
| 110 | ArrayLoadOp load); |
| 111 | |
| 112 | private: |
| 113 | void construct(mlir::Operation *topLevelOp); |
| 114 | |
| 115 | mlir::Operation *operation; // operation that analysis ran upon |
| 116 | ConflictSetT conflicts; // set of conflicts (loads and merge stores) |
| 117 | OperationUseMapT useMap; |
| 118 | LoadMapSetsT loadMapSets; |
| 119 | // Set of array_access ops associated with array_amend ops. |
| 120 | AmendAccessSetT amendAccesses; |
| 121 | bool optimizeConflicts; |
| 122 | }; |
| 123 | |
| 124 | // Optimized array copy analysis that takes into account Fortran |
| 125 | // variable attributes to prove that no conflict is possible |
| 126 | // and reduce the number of temporary arrays. |
| 127 | class ArrayCopyAnalysisOptimized : public ArrayCopyAnalysisBase { |
| 128 | public: |
| 129 | MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(ArrayCopyAnalysisOptimized) |
| 130 | |
| 131 | ArrayCopyAnalysisOptimized(mlir::Operation *op) |
| 132 | : ArrayCopyAnalysisBase(op, /*optimized=*/true) {} |
| 133 | }; |
| 134 | |
| 135 | // Unoptimized array copy analysis used at O0. |
| 136 | class ArrayCopyAnalysis : public ArrayCopyAnalysisBase { |
| 137 | public: |
| 138 | MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(ArrayCopyAnalysis) |
| 139 | |
| 140 | ArrayCopyAnalysis(mlir::Operation *op) |
| 141 | : ArrayCopyAnalysisBase(op, /*optimized=*/false) {} |
| 142 | }; |
| 143 | } // namespace |
| 144 | |
| 145 | namespace { |
| 146 | /// Helper class to collect all array operations that produced an array value. |
| 147 | class ReachCollector { |
| 148 | public: |
| 149 | ReachCollector(llvm::SmallVectorImpl<mlir::Operation *> &reach, |
| 150 | mlir::Region *loopRegion) |
| 151 | : reach{reach}, loopRegion{loopRegion} {} |
| 152 | |
| 153 | void collectArrayMentionFrom(mlir::Operation *op, mlir::ValueRange range) { |
| 154 | if (range.empty()) { |
| 155 | collectArrayMentionFrom(op, mlir::Value{}); |
| 156 | return; |
| 157 | } |
| 158 | for (mlir::Value v : range) |
| 159 | collectArrayMentionFrom(v); |
| 160 | } |
| 161 | |
| 162 | // Collect all the array_access ops in `block`. This recursively looks into |
| 163 | // blocks in ops with regions. |
| 164 | // FIXME: This is temporarily relying on the array_amend appearing in a |
| 165 | // do_loop Region. This phase ordering assumption can be eliminated by using |
| 166 | // dominance information to find the array_access ops or by scanning the |
| 167 | // transitive closure of the amending array_access's users and the defs that |
| 168 | // reach them. |
| 169 | void collectAccesses(llvm::SmallVector<ArrayAccessOp> &result, |
| 170 | mlir::Block *block) { |
| 171 | for (auto &op : *block) { |
| 172 | if (auto access = mlir::dyn_cast<ArrayAccessOp>(op)) { |
| 173 | LLVM_DEBUG(llvm::dbgs() << "adding access: " << access << '\n'); |
| 174 | result.push_back(access); |
| 175 | continue; |
| 176 | } |
| 177 | for (auto ®ion : op.getRegions()) |
| 178 | for (auto &bb : region.getBlocks()) |
| 179 | collectAccesses(result, &bb); |
| 180 | } |
| 181 | } |
| 182 | |
| 183 | void collectArrayMentionFrom(mlir::Operation *op, mlir::Value val) { |
| 184 | // `val` is defined by an Op, process the defining Op. |
| 185 | // If `val` is defined by a region containing Op, we want to drill down |
| 186 | // and through that Op's region(s). |
| 187 | LLVM_DEBUG(llvm::dbgs() << "popset: " << *op << '\n'); |
| 188 | auto popFn = [&](auto rop) { |
| 189 | assert(val && "op must have a result value" ); |
| 190 | auto resNum = mlir::cast<mlir::OpResult>(val).getResultNumber(); |
| 191 | llvm::SmallVector<mlir::Value> results; |
| 192 | rop.resultToSourceOps(results, resNum); |
| 193 | for (auto u : results) |
| 194 | collectArrayMentionFrom(u); |
| 195 | }; |
| 196 | if (auto rop = mlir::dyn_cast<DoLoopOp>(op)) { |
| 197 | popFn(rop); |
| 198 | return; |
| 199 | } |
| 200 | if (auto rop = mlir::dyn_cast<IterWhileOp>(op)) { |
| 201 | popFn(rop); |
| 202 | return; |
| 203 | } |
| 204 | if (auto rop = mlir::dyn_cast<fir::IfOp>(op)) { |
| 205 | popFn(rop); |
| 206 | return; |
| 207 | } |
| 208 | if (auto box = mlir::dyn_cast<EmboxOp>(op)) { |
| 209 | for (auto *user : box.getMemref().getUsers()) |
| 210 | if (user != op) |
| 211 | collectArrayMentionFrom(user, user->getResults()); |
| 212 | return; |
| 213 | } |
| 214 | if (auto mergeStore = mlir::dyn_cast<ArrayMergeStoreOp>(op)) { |
| 215 | if (opIsInsideLoops(mergeStore)) |
| 216 | collectArrayMentionFrom(mergeStore.getSequence()); |
| 217 | return; |
| 218 | } |
| 219 | |
| 220 | if (mlir::isa<AllocaOp, AllocMemOp>(op)) { |
| 221 | // Look for any stores inside the loops, and collect an array operation |
| 222 | // that produced the value being stored to it. |
| 223 | for (auto *user : op->getUsers()) |
| 224 | if (auto store = mlir::dyn_cast<fir::StoreOp>(user)) |
| 225 | if (opIsInsideLoops(store)) |
| 226 | collectArrayMentionFrom(store.getValue()); |
| 227 | return; |
| 228 | } |
| 229 | |
| 230 | // Scan the uses of amend's memref |
| 231 | if (auto amend = mlir::dyn_cast<ArrayAmendOp>(op)) { |
| 232 | reach.push_back(op); |
| 233 | llvm::SmallVector<ArrayAccessOp> accesses; |
| 234 | collectAccesses(accesses, op->getBlock()); |
| 235 | for (auto access : accesses) |
| 236 | collectArrayMentionFrom(access.getResult()); |
| 237 | } |
| 238 | |
| 239 | // Otherwise, Op does not contain a region so just chase its operands. |
| 240 | if (mlir::isa<ArrayAccessOp, ArrayLoadOp, ArrayUpdateOp, ArrayModifyOp, |
| 241 | ArrayFetchOp>(op)) { |
| 242 | LLVM_DEBUG(llvm::dbgs() << "add " << *op << " to reachable set\n" ); |
| 243 | reach.push_back(op); |
| 244 | } |
| 245 | |
| 246 | // Include all array_access ops using an array_load. |
| 247 | if (auto arrLd = mlir::dyn_cast<ArrayLoadOp>(op)) |
| 248 | for (auto *user : arrLd.getResult().getUsers()) |
| 249 | if (mlir::isa<ArrayAccessOp>(user)) { |
| 250 | LLVM_DEBUG(llvm::dbgs() << "add " << *user << " to reachable set\n" ); |
| 251 | reach.push_back(user); |
| 252 | } |
| 253 | |
| 254 | // Array modify assignment is performed on the result. So the analysis must |
| 255 | // look at the what is done with the result. |
| 256 | if (mlir::isa<ArrayModifyOp>(op)) |
| 257 | for (auto *user : op->getResult(0).getUsers()) |
| 258 | followUsers(user); |
| 259 | |
| 260 | if (mlir::isa<fir::CallOp>(op)) { |
| 261 | LLVM_DEBUG(llvm::dbgs() << "add " << *op << " to reachable set\n" ); |
| 262 | reach.push_back(op); |
| 263 | } |
| 264 | |
| 265 | for (auto u : op->getOperands()) |
| 266 | collectArrayMentionFrom(u); |
| 267 | } |
| 268 | |
| 269 | void collectArrayMentionFrom(mlir::BlockArgument ba) { |
| 270 | auto *parent = ba.getOwner()->getParentOp(); |
| 271 | // If inside an Op holding a region, the block argument corresponds to an |
| 272 | // argument passed to the containing Op. |
| 273 | auto popFn = [&](auto rop) { |
| 274 | collectArrayMentionFrom(rop.blockArgToSourceOp(ba.getArgNumber())); |
| 275 | }; |
| 276 | if (auto rop = mlir::dyn_cast<DoLoopOp>(parent)) { |
| 277 | popFn(rop); |
| 278 | return; |
| 279 | } |
| 280 | if (auto rop = mlir::dyn_cast<IterWhileOp>(parent)) { |
| 281 | popFn(rop); |
| 282 | return; |
| 283 | } |
| 284 | // Otherwise, a block argument is provided via the pred blocks. |
| 285 | for (auto *pred : ba.getOwner()->getPredecessors()) { |
| 286 | auto u = pred->getTerminator()->getOperand(ba.getArgNumber()); |
| 287 | collectArrayMentionFrom(u); |
| 288 | } |
| 289 | } |
| 290 | |
| 291 | // Recursively trace operands to find all array operations relating to the |
| 292 | // values merged. |
| 293 | void collectArrayMentionFrom(mlir::Value val) { |
| 294 | if (!val || visited.contains(val)) |
| 295 | return; |
| 296 | visited.insert(val); |
| 297 | |
| 298 | // Process a block argument. |
| 299 | if (auto ba = mlir::dyn_cast<mlir::BlockArgument>(val)) { |
| 300 | collectArrayMentionFrom(ba); |
| 301 | return; |
| 302 | } |
| 303 | |
| 304 | // Process an Op. |
| 305 | if (auto *op = val.getDefiningOp()) { |
| 306 | collectArrayMentionFrom(op, val); |
| 307 | return; |
| 308 | } |
| 309 | |
| 310 | emitFatalError(val.getLoc(), "unhandled value" ); |
| 311 | } |
| 312 | |
| 313 | /// Return all ops that produce the array value that is stored into the |
| 314 | /// `array_merge_store`. |
| 315 | static void reachingValues(llvm::SmallVectorImpl<mlir::Operation *> &reach, |
| 316 | mlir::Value seq) { |
| 317 | reach.clear(); |
| 318 | mlir::Region *loopRegion = nullptr; |
| 319 | if (auto doLoop = mlir::dyn_cast_or_null<DoLoopOp>(seq.getDefiningOp())) |
| 320 | loopRegion = &doLoop->getRegion(0); |
| 321 | ReachCollector collector(reach, loopRegion); |
| 322 | collector.collectArrayMentionFrom(seq); |
| 323 | } |
| 324 | |
| 325 | private: |
| 326 | /// Is \op inside the loop nest region ? |
| 327 | /// FIXME: replace this structural dependence with graph properties. |
| 328 | bool opIsInsideLoops(mlir::Operation *op) const { |
| 329 | auto *region = op->getParentRegion(); |
| 330 | while (region) { |
| 331 | if (region == loopRegion) |
| 332 | return true; |
| 333 | region = region->getParentRegion(); |
| 334 | } |
| 335 | return false; |
| 336 | } |
| 337 | |
| 338 | /// Recursively trace the use of an operation results, calling |
| 339 | /// collectArrayMentionFrom on the direct and indirect user operands. |
| 340 | void followUsers(mlir::Operation *op) { |
| 341 | for (auto userOperand : op->getOperands()) |
| 342 | collectArrayMentionFrom(userOperand); |
| 343 | // Go through potential converts/coordinate_op. |
| 344 | for (auto indirectUser : op->getUsers()) |
| 345 | followUsers(indirectUser); |
| 346 | } |
| 347 | |
| 348 | llvm::SmallVectorImpl<mlir::Operation *> &reach; |
| 349 | llvm::SmallPtrSet<mlir::Value, 16> visited; |
| 350 | /// Region of the loops nest that produced the array value. |
| 351 | mlir::Region *loopRegion; |
| 352 | }; |
| 353 | } // namespace |
| 354 | |
| 355 | /// Find all the array operations that access the array value that is loaded by |
| 356 | /// the array load operation, `load`. |
| 357 | void ArrayCopyAnalysisBase::arrayMentions( |
| 358 | llvm::SmallVectorImpl<mlir::Operation *> &mentions, ArrayLoadOp load) { |
| 359 | mentions.clear(); |
| 360 | auto lmIter = loadMapSets.find(load); |
| 361 | if (lmIter != loadMapSets.end()) { |
| 362 | for (auto *opnd : lmIter->second) { |
| 363 | auto *owner = opnd->getOwner(); |
| 364 | if (mlir::isa<ArrayAccessOp, ArrayAmendOp, ArrayFetchOp, ArrayUpdateOp, |
| 365 | ArrayModifyOp>(owner)) |
| 366 | mentions.push_back(owner); |
| 367 | } |
| 368 | return; |
| 369 | } |
| 370 | |
| 371 | UseSetT visited; |
| 372 | llvm::SmallVector<mlir::OpOperand *> queue; // uses of ArrayLoad[orig] |
| 373 | |
| 374 | auto appendToQueue = [&](mlir::Value val) { |
| 375 | for (auto &use : val.getUses()) |
| 376 | if (!visited.count(&use)) { |
| 377 | visited.insert(&use); |
| 378 | queue.push_back(&use); |
| 379 | } |
| 380 | }; |
| 381 | |
| 382 | // Build the set of uses of `original`. |
| 383 | // let USES = { uses of original fir.load } |
| 384 | appendToQueue(load); |
| 385 | |
| 386 | // Process the worklist until done. |
| 387 | while (!queue.empty()) { |
| 388 | mlir::OpOperand *operand = queue.pop_back_val(); |
| 389 | mlir::Operation *owner = operand->getOwner(); |
| 390 | if (!owner) |
| 391 | continue; |
| 392 | auto structuredLoop = [&](auto ro) { |
| 393 | if (auto blockArg = ro.iterArgToBlockArg(operand->get())) { |
| 394 | int64_t arg = blockArg.getArgNumber(); |
| 395 | mlir::Value output = ro.getResult(ro.getFinalValue() ? arg : arg - 1); |
| 396 | appendToQueue(output); |
| 397 | appendToQueue(blockArg); |
| 398 | } |
| 399 | }; |
| 400 | // TODO: this need to be updated to use the control-flow interface. |
| 401 | auto branchOp = [&](mlir::Block *dest, OperandRange operands) { |
| 402 | if (operands.empty()) |
| 403 | return; |
| 404 | |
| 405 | // Check if this operand is within the range. |
| 406 | unsigned operandIndex = operand->getOperandNumber(); |
| 407 | unsigned operandsStart = operands.getBeginOperandIndex(); |
| 408 | if (operandIndex < operandsStart || |
| 409 | operandIndex >= (operandsStart + operands.size())) |
| 410 | return; |
| 411 | |
| 412 | // Index the successor. |
| 413 | unsigned argIndex = operandIndex - operandsStart; |
| 414 | appendToQueue(dest->getArgument(argIndex)); |
| 415 | }; |
| 416 | // Thread uses into structured loop bodies and return value uses. |
| 417 | if (auto ro = mlir::dyn_cast<DoLoopOp>(owner)) { |
| 418 | structuredLoop(ro); |
| 419 | } else if (auto ro = mlir::dyn_cast<IterWhileOp>(owner)) { |
| 420 | structuredLoop(ro); |
| 421 | } else if (auto rs = mlir::dyn_cast<ResultOp>(owner)) { |
| 422 | // Thread any uses of fir.if that return the marked array value. |
| 423 | mlir::Operation *parent = rs->getParentRegion()->getParentOp(); |
| 424 | if (auto ifOp = mlir::dyn_cast<fir::IfOp>(parent)) |
| 425 | appendToQueue(ifOp.getResult(operand->getOperandNumber())); |
| 426 | } else if (mlir::isa<ArrayFetchOp>(owner)) { |
| 427 | // Keep track of array value fetches. |
| 428 | LLVM_DEBUG(llvm::dbgs() |
| 429 | << "add fetch {" << *owner << "} to array value set\n" ); |
| 430 | mentions.push_back(owner); |
| 431 | } else if (auto update = mlir::dyn_cast<ArrayUpdateOp>(owner)) { |
| 432 | // Keep track of array value updates and thread the return value uses. |
| 433 | LLVM_DEBUG(llvm::dbgs() |
| 434 | << "add update {" << *owner << "} to array value set\n" ); |
| 435 | mentions.push_back(owner); |
| 436 | appendToQueue(update.getResult()); |
| 437 | } else if (auto update = mlir::dyn_cast<ArrayModifyOp>(owner)) { |
| 438 | // Keep track of array value modification and thread the return value |
| 439 | // uses. |
| 440 | LLVM_DEBUG(llvm::dbgs() |
| 441 | << "add modify {" << *owner << "} to array value set\n" ); |
| 442 | mentions.push_back(owner); |
| 443 | appendToQueue(update.getResult(1)); |
| 444 | } else if (auto mention = mlir::dyn_cast<ArrayAccessOp>(owner)) { |
| 445 | mentions.push_back(owner); |
| 446 | } else if (auto amend = mlir::dyn_cast<ArrayAmendOp>(owner)) { |
| 447 | mentions.push_back(owner); |
| 448 | appendToQueue(amend.getResult()); |
| 449 | } else if (auto br = mlir::dyn_cast<mlir::cf::BranchOp>(owner)) { |
| 450 | branchOp(br.getDest(), br.getDestOperands()); |
| 451 | } else if (auto br = mlir::dyn_cast<mlir::cf::CondBranchOp>(owner)) { |
| 452 | branchOp(br.getTrueDest(), br.getTrueOperands()); |
| 453 | branchOp(br.getFalseDest(), br.getFalseOperands()); |
| 454 | } else if (mlir::isa<ArrayMergeStoreOp>(owner)) { |
| 455 | // do nothing |
| 456 | } else { |
| 457 | llvm::report_fatal_error("array value reached unexpected op" ); |
| 458 | } |
| 459 | } |
| 460 | loadMapSets.insert({load, visited}); |
| 461 | } |
| 462 | |
| 463 | static bool hasPointerType(mlir::Type type) { |
| 464 | if (auto boxTy = mlir::dyn_cast<BoxType>(type)) |
| 465 | type = boxTy.getEleTy(); |
| 466 | return mlir::isa<fir::PointerType>(type); |
| 467 | } |
| 468 | |
| 469 | // This is a NF performance hack. It makes a simple test that the slices of the |
| 470 | // load, \p ld, and the merge store, \p st, are trivially mutually exclusive. |
| 471 | static bool mutuallyExclusiveSliceRange(ArrayLoadOp ld, ArrayMergeStoreOp st) { |
| 472 | // If the same array_load, then no further testing is warranted. |
| 473 | if (ld.getResult() == st.getOriginal()) |
| 474 | return false; |
| 475 | |
| 476 | auto getSliceOp = [](mlir::Value val) -> SliceOp { |
| 477 | if (!val) |
| 478 | return {}; |
| 479 | auto sliceOp = mlir::dyn_cast_or_null<SliceOp>(val.getDefiningOp()); |
| 480 | if (!sliceOp) |
| 481 | return {}; |
| 482 | return sliceOp; |
| 483 | }; |
| 484 | |
| 485 | auto ldSlice = getSliceOp(ld.getSlice()); |
| 486 | auto stSlice = getSliceOp(st.getSlice()); |
| 487 | if (!ldSlice || !stSlice) |
| 488 | return false; |
| 489 | |
| 490 | // Resign on subobject slices. |
| 491 | if (!ldSlice.getFields().empty() || !stSlice.getFields().empty() || |
| 492 | !ldSlice.getSubstr().empty() || !stSlice.getSubstr().empty()) |
| 493 | return false; |
| 494 | |
| 495 | // Crudely test that the two slices do not overlap by looking for the |
| 496 | // following general condition. If the slices look like (i:j) and (j+1:k) then |
| 497 | // these ranges do not overlap. The addend must be a constant. |
| 498 | auto ldTriples = ldSlice.getTriples(); |
| 499 | auto stTriples = stSlice.getTriples(); |
| 500 | const auto size = ldTriples.size(); |
| 501 | if (size != stTriples.size()) |
| 502 | return false; |
| 503 | |
| 504 | auto displacedByConstant = [](mlir::Value v1, mlir::Value v2) { |
| 505 | auto removeConvert = [](mlir::Value v) -> mlir::Operation * { |
| 506 | auto *op = v.getDefiningOp(); |
| 507 | while (auto conv = mlir::dyn_cast_or_null<ConvertOp>(op)) |
| 508 | op = conv.getValue().getDefiningOp(); |
| 509 | return op; |
| 510 | }; |
| 511 | |
| 512 | auto isPositiveConstant = [](mlir::Value v) -> bool { |
| 513 | if (auto conOp = |
| 514 | mlir::dyn_cast<mlir::arith::ConstantOp>(v.getDefiningOp())) |
| 515 | if (auto iattr = mlir::dyn_cast<mlir::IntegerAttr>(conOp.getValue())) |
| 516 | return iattr.getInt() > 0; |
| 517 | return false; |
| 518 | }; |
| 519 | |
| 520 | auto *op1 = removeConvert(v1); |
| 521 | auto *op2 = removeConvert(v2); |
| 522 | if (!op1 || !op2) |
| 523 | return false; |
| 524 | if (auto addi = mlir::dyn_cast<mlir::arith::AddIOp>(op2)) |
| 525 | if ((addi.getLhs().getDefiningOp() == op1 && |
| 526 | isPositiveConstant(addi.getRhs())) || |
| 527 | (addi.getRhs().getDefiningOp() == op1 && |
| 528 | isPositiveConstant(addi.getLhs()))) |
| 529 | return true; |
| 530 | if (auto subi = mlir::dyn_cast<mlir::arith::SubIOp>(op1)) |
| 531 | if (subi.getLhs().getDefiningOp() == op2 && |
| 532 | isPositiveConstant(subi.getRhs())) |
| 533 | return true; |
| 534 | return false; |
| 535 | }; |
| 536 | |
| 537 | for (std::remove_const_t<decltype(size)> i = 0; i < size; i += 3) { |
| 538 | // If both are loop invariant, skip to the next triple. |
| 539 | if (mlir::isa_and_nonnull<fir::UndefOp>(ldTriples[i + 1].getDefiningOp()) && |
| 540 | mlir::isa_and_nonnull<fir::UndefOp>(stTriples[i + 1].getDefiningOp())) { |
| 541 | // Unless either is a vector index, then be conservative. |
| 542 | if (mlir::isa_and_nonnull<fir::UndefOp>(ldTriples[i].getDefiningOp()) || |
| 543 | mlir::isa_and_nonnull<fir::UndefOp>(stTriples[i].getDefiningOp())) |
| 544 | return false; |
| 545 | continue; |
| 546 | } |
| 547 | // If identical, skip to the next triple. |
| 548 | if (ldTriples[i] == stTriples[i] && ldTriples[i + 1] == stTriples[i + 1] && |
| 549 | ldTriples[i + 2] == stTriples[i + 2]) |
| 550 | continue; |
| 551 | // If ubound and lbound are the same with a constant offset, skip to the |
| 552 | // next triple. |
| 553 | if (displacedByConstant(ldTriples[i + 1], stTriples[i]) || |
| 554 | displacedByConstant(stTriples[i + 1], ldTriples[i])) |
| 555 | continue; |
| 556 | return false; |
| 557 | } |
| 558 | LLVM_DEBUG(llvm::dbgs() << "detected non-overlapping slice ranges on " << ld |
| 559 | << " and " << st << ", which is not a conflict\n" ); |
| 560 | return true; |
| 561 | } |
| 562 | |
| 563 | /// Is there a conflict between the array value that was updated and to be |
| 564 | /// stored to `st` and the set of arrays loaded (`reach`) and used to compute |
| 565 | /// the updated value? |
| 566 | /// If `optimize` is true, use the variable attributes to prove that |
| 567 | /// there is no conflict. |
| 568 | static bool conflictOnLoad(llvm::ArrayRef<mlir::Operation *> reach, |
| 569 | ArrayMergeStoreOp st, bool optimize) { |
| 570 | mlir::Value load; |
| 571 | mlir::Value addr = st.getMemref(); |
| 572 | const bool storeHasPointerType = hasPointerType(addr.getType()); |
| 573 | for (auto *op : reach) |
| 574 | if (auto ld = mlir::dyn_cast<ArrayLoadOp>(op)) { |
| 575 | mlir::Type ldTy = ld.getMemref().getType(); |
| 576 | auto globalOpName = mlir::OperationName(fir::GlobalOp::getOperationName(), |
| 577 | ld.getContext()); |
| 578 | if (ld.getMemref() == addr) { |
| 579 | if (mutuallyExclusiveSliceRange(ld, st)) |
| 580 | continue; |
| 581 | if (ld.getResult() != st.getOriginal()) |
| 582 | return true; |
| 583 | if (load) { |
| 584 | // TODO: extend this to allow checking if the first `load` and this |
| 585 | // `ld` are mutually exclusive accesses but not identical. |
| 586 | return true; |
| 587 | } |
| 588 | load = ld; |
| 589 | } else if (storeHasPointerType) { |
| 590 | if (optimize && !hasPointerType(ldTy) && |
| 591 | !valueMayHaveFirAttributes( |
| 592 | ld.getMemref(), |
| 593 | {getTargetAttrName(), |
| 594 | fir::GlobalOp::getTargetAttrName(globalOpName).strref()})) |
| 595 | continue; |
| 596 | |
| 597 | return true; |
| 598 | } else if (hasPointerType(ldTy)) { |
| 599 | if (optimize && !storeHasPointerType && |
| 600 | !valueMayHaveFirAttributes( |
| 601 | addr, |
| 602 | {getTargetAttrName(), |
| 603 | fir::GlobalOp::getTargetAttrName(globalOpName).strref()})) |
| 604 | continue; |
| 605 | |
| 606 | return true; |
| 607 | } |
| 608 | // TODO: Check if types can also allow ruling out some cases. For now, |
| 609 | // the fact that equivalences is using pointer attribute to enforce |
| 610 | // aliasing is preventing any attempt to do so, and in general, it may |
| 611 | // be wrong to use this if any of the types is a complex or a derived |
| 612 | // for which it is possible to create a pointer to a part with a |
| 613 | // different type than the whole, although this deserve some more |
| 614 | // investigation because existing compiler behavior seem to diverge |
| 615 | // here. |
| 616 | } |
| 617 | return false; |
| 618 | } |
| 619 | |
| 620 | /// Is there an access vector conflict on the array being merged into? If the |
| 621 | /// access vectors diverge, then assume that there are potentially overlapping |
| 622 | /// loop-carried references. |
| 623 | static bool conflictOnMerge(llvm::ArrayRef<mlir::Operation *> mentions) { |
| 624 | if (mentions.size() < 2) |
| 625 | return false; |
| 626 | llvm::SmallVector<mlir::Value> indices; |
| 627 | LLVM_DEBUG(llvm::dbgs() << "check merge conflict on with " << mentions.size() |
| 628 | << " mentions on the list\n" ); |
| 629 | bool valSeen = false; |
| 630 | bool refSeen = false; |
| 631 | for (auto *op : mentions) { |
| 632 | llvm::SmallVector<mlir::Value> compareVector; |
| 633 | if (auto u = mlir::dyn_cast<ArrayUpdateOp>(op)) { |
| 634 | valSeen = true; |
| 635 | if (indices.empty()) { |
| 636 | indices = u.getIndices(); |
| 637 | continue; |
| 638 | } |
| 639 | compareVector = u.getIndices(); |
| 640 | } else if (auto f = mlir::dyn_cast<ArrayModifyOp>(op)) { |
| 641 | valSeen = true; |
| 642 | if (indices.empty()) { |
| 643 | indices = f.getIndices(); |
| 644 | continue; |
| 645 | } |
| 646 | compareVector = f.getIndices(); |
| 647 | } else if (auto f = mlir::dyn_cast<ArrayFetchOp>(op)) { |
| 648 | valSeen = true; |
| 649 | if (indices.empty()) { |
| 650 | indices = f.getIndices(); |
| 651 | continue; |
| 652 | } |
| 653 | compareVector = f.getIndices(); |
| 654 | } else if (auto f = mlir::dyn_cast<ArrayAccessOp>(op)) { |
| 655 | refSeen = true; |
| 656 | if (indices.empty()) { |
| 657 | indices = f.getIndices(); |
| 658 | continue; |
| 659 | } |
| 660 | compareVector = f.getIndices(); |
| 661 | } else if (mlir::isa<ArrayAmendOp>(op)) { |
| 662 | refSeen = true; |
| 663 | continue; |
| 664 | } else { |
| 665 | mlir::emitError(op->getLoc(), "unexpected operation in analysis" ); |
| 666 | } |
| 667 | if (compareVector.size() != indices.size() || |
| 668 | llvm::any_of(llvm::zip(compareVector, indices), [&](auto pair) { |
| 669 | return std::get<0>(pair) != std::get<1>(pair); |
| 670 | })) |
| 671 | return true; |
| 672 | LLVM_DEBUG(llvm::dbgs() << "vectors compare equal\n" ); |
| 673 | } |
| 674 | return valSeen && refSeen; |
| 675 | } |
| 676 | |
| 677 | /// With element-by-reference semantics, an amended array with more than once |
| 678 | /// access to the same loaded array are conservatively considered a conflict. |
| 679 | /// Note: the array copy can still be eliminated in subsequent optimizations. |
| 680 | static bool conflictOnReference(llvm::ArrayRef<mlir::Operation *> mentions) { |
| 681 | LLVM_DEBUG(llvm::dbgs() << "checking reference semantics " << mentions.size() |
| 682 | << '\n'); |
| 683 | if (mentions.size() < 3) |
| 684 | return false; |
| 685 | unsigned amendCount = 0; |
| 686 | unsigned accessCount = 0; |
| 687 | for (auto *op : mentions) { |
| 688 | if (mlir::isa<ArrayAmendOp>(op) && ++amendCount > 1) { |
| 689 | LLVM_DEBUG(llvm::dbgs() << "conflict: multiple amends of array value\n" ); |
| 690 | return true; |
| 691 | } |
| 692 | if (mlir::isa<ArrayAccessOp>(op) && ++accessCount > 1) { |
| 693 | LLVM_DEBUG(llvm::dbgs() |
| 694 | << "conflict: multiple accesses of array value\n" ); |
| 695 | return true; |
| 696 | } |
| 697 | if (mlir::isa<ArrayFetchOp, ArrayUpdateOp, ArrayModifyOp>(op)) { |
| 698 | LLVM_DEBUG(llvm::dbgs() |
| 699 | << "conflict: array value has both uses by-value and uses " |
| 700 | "by-reference. conservative assumption.\n" ); |
| 701 | return true; |
| 702 | } |
| 703 | } |
| 704 | return false; |
| 705 | } |
| 706 | |
| 707 | static mlir::Operation * |
| 708 | amendingAccess(llvm::ArrayRef<mlir::Operation *> mentions) { |
| 709 | for (auto *op : mentions) |
| 710 | if (auto amend = mlir::dyn_cast<ArrayAmendOp>(op)) |
| 711 | return amend.getMemref().getDefiningOp(); |
| 712 | return {}; |
| 713 | } |
| 714 | |
| 715 | // Are any conflicts present? The conflicts detected here are described above. |
| 716 | static bool conflictDetected(llvm::ArrayRef<mlir::Operation *> reach, |
| 717 | llvm::ArrayRef<mlir::Operation *> mentions, |
| 718 | ArrayMergeStoreOp st, bool optimize) { |
| 719 | return conflictOnLoad(reach, st, optimize) || conflictOnMerge(mentions); |
| 720 | } |
| 721 | |
| 722 | // Assume that any call to a function that uses host-associations will be |
| 723 | // modifying the output array. |
| 724 | static bool |
| 725 | conservativeCallConflict(llvm::ArrayRef<mlir::Operation *> reaches) { |
| 726 | return llvm::any_of(reaches, [](mlir::Operation *op) { |
| 727 | if (auto call = mlir::dyn_cast<fir::CallOp>(op)) |
| 728 | if (auto callee = mlir::dyn_cast<mlir::SymbolRefAttr>( |
| 729 | call.getCallableForCallee())) { |
| 730 | auto module = op->getParentOfType<mlir::ModuleOp>(); |
| 731 | return isInternalProcedure( |
| 732 | module.lookupSymbol<mlir::func::FuncOp>(callee)); |
| 733 | } |
| 734 | return false; |
| 735 | }); |
| 736 | } |
| 737 | |
| 738 | /// Constructor of the array copy analysis. |
| 739 | /// This performs the analysis and saves the intermediate results. |
| 740 | void ArrayCopyAnalysisBase::construct(mlir::Operation *topLevelOp) { |
| 741 | topLevelOp->walk([&](Operation *op) { |
| 742 | if (auto st = mlir::dyn_cast<fir::ArrayMergeStoreOp>(op)) { |
| 743 | llvm::SmallVector<mlir::Operation *> values; |
| 744 | ReachCollector::reachingValues(values, st.getSequence()); |
| 745 | bool callConflict = conservativeCallConflict(values); |
| 746 | llvm::SmallVector<mlir::Operation *> mentions; |
| 747 | arrayMentions(mentions, |
| 748 | mlir::cast<ArrayLoadOp>(st.getOriginal().getDefiningOp())); |
| 749 | bool conflict = conflictDetected(values, mentions, st, optimizeConflicts); |
| 750 | bool refConflict = conflictOnReference(mentions); |
| 751 | if (callConflict || conflict || refConflict) { |
| 752 | LLVM_DEBUG(llvm::dbgs() |
| 753 | << "CONFLICT: copies required for " << st << '\n' |
| 754 | << " adding conflicts on: " << *op << " and " |
| 755 | << st.getOriginal() << '\n'); |
| 756 | conflicts.insert(op); |
| 757 | conflicts.insert(st.getOriginal().getDefiningOp()); |
| 758 | if (auto *access = amendingAccess(mentions)) |
| 759 | amendAccesses.insert(access); |
| 760 | } |
| 761 | auto *ld = st.getOriginal().getDefiningOp(); |
| 762 | LLVM_DEBUG(llvm::dbgs() |
| 763 | << "map: adding {" << *ld << " -> " << st << "}\n" ); |
| 764 | useMap.insert({ld, op}); |
| 765 | } else if (auto load = mlir::dyn_cast<ArrayLoadOp>(op)) { |
| 766 | llvm::SmallVector<mlir::Operation *> mentions; |
| 767 | arrayMentions(mentions, load); |
| 768 | LLVM_DEBUG(llvm::dbgs() << "process load: " << load |
| 769 | << ", mentions: " << mentions.size() << '\n'); |
| 770 | for (auto *acc : mentions) { |
| 771 | LLVM_DEBUG(llvm::dbgs() << " mention: " << *acc << '\n'); |
| 772 | if (mlir::isa<ArrayAccessOp, ArrayAmendOp, ArrayFetchOp, ArrayUpdateOp, |
| 773 | ArrayModifyOp>(acc)) { |
| 774 | if (useMap.count(acc)) { |
| 775 | mlir::emitError( |
| 776 | load.getLoc(), |
| 777 | "The parallel semantics of multiple array_merge_stores per " |
| 778 | "array_load are not supported." ); |
| 779 | continue; |
| 780 | } |
| 781 | LLVM_DEBUG(llvm::dbgs() |
| 782 | << "map: adding {" << *acc << "} -> {" << load << "}\n" ); |
| 783 | useMap.insert({acc, op}); |
| 784 | } |
| 785 | } |
| 786 | } |
| 787 | }); |
| 788 | } |
| 789 | |
| 790 | //===----------------------------------------------------------------------===// |
| 791 | // Conversions for converting out of array value form. |
| 792 | //===----------------------------------------------------------------------===// |
| 793 | |
| 794 | namespace { |
| 795 | class ArrayLoadConversion : public mlir::OpRewritePattern<ArrayLoadOp> { |
| 796 | public: |
| 797 | using OpRewritePattern::OpRewritePattern; |
| 798 | |
| 799 | llvm::LogicalResult |
| 800 | matchAndRewrite(ArrayLoadOp load, |
| 801 | mlir::PatternRewriter &rewriter) const override { |
| 802 | LLVM_DEBUG(llvm::dbgs() << "replace load " << load << " with undef.\n" ); |
| 803 | rewriter.replaceOpWithNewOp<UndefOp>(load, load.getType()); |
| 804 | return mlir::success(); |
| 805 | } |
| 806 | }; |
| 807 | |
| 808 | class ArrayMergeStoreConversion |
| 809 | : public mlir::OpRewritePattern<ArrayMergeStoreOp> { |
| 810 | public: |
| 811 | using OpRewritePattern::OpRewritePattern; |
| 812 | |
| 813 | llvm::LogicalResult |
| 814 | matchAndRewrite(ArrayMergeStoreOp store, |
| 815 | mlir::PatternRewriter &rewriter) const override { |
| 816 | LLVM_DEBUG(llvm::dbgs() << "marking store " << store << " as dead.\n" ); |
| 817 | rewriter.eraseOp(store); |
| 818 | return mlir::success(); |
| 819 | } |
| 820 | }; |
| 821 | } // namespace |
| 822 | |
| 823 | static mlir::Type getEleTy(mlir::Type ty) { |
| 824 | auto eleTy = unwrapSequenceType(unwrapPassByRefType(ty)); |
| 825 | // FIXME: keep ptr/heap/ref information. |
| 826 | return ReferenceType::get(eleTy); |
| 827 | } |
| 828 | |
| 829 | // This is an unsafe way to deduce this (won't be true in internal |
| 830 | // procedure or inside select-rank for assumed-size). Only here to satisfy |
| 831 | // legacy code until removed. |
| 832 | static bool isAssumedSize(llvm::SmallVectorImpl<mlir::Value> &extents) { |
| 833 | if (extents.empty()) |
| 834 | return false; |
| 835 | auto cstLen = fir::getIntIfConstant(extents.back()); |
| 836 | return cstLen.has_value() && *cstLen == -1; |
| 837 | } |
| 838 | |
| 839 | // Extract extents from the ShapeOp/ShapeShiftOp into the result vector. |
| 840 | static bool getAdjustedExtents(mlir::Location loc, |
| 841 | mlir::PatternRewriter &rewriter, |
| 842 | ArrayLoadOp arrLoad, |
| 843 | llvm::SmallVectorImpl<mlir::Value> &result, |
| 844 | mlir::Value shape) { |
| 845 | bool copyUsingSlice = false; |
| 846 | auto *shapeOp = shape.getDefiningOp(); |
| 847 | if (auto s = mlir::dyn_cast_or_null<ShapeOp>(shapeOp)) { |
| 848 | auto e = s.getExtents(); |
| 849 | result.insert(result.end(), e.begin(), e.end()); |
| 850 | } else if (auto s = mlir::dyn_cast_or_null<ShapeShiftOp>(shapeOp)) { |
| 851 | auto e = s.getExtents(); |
| 852 | result.insert(result.end(), e.begin(), e.end()); |
| 853 | } else { |
| 854 | emitFatalError(loc, "not a fir.shape/fir.shape_shift op" ); |
| 855 | } |
| 856 | auto idxTy = rewriter.getIndexType(); |
| 857 | if (isAssumedSize(result)) { |
| 858 | // Use slice information to compute the extent of the column. |
| 859 | auto one = rewriter.create<mlir::arith::ConstantIndexOp>(loc, 1); |
| 860 | mlir::Value size = one; |
| 861 | if (mlir::Value sliceArg = arrLoad.getSlice()) { |
| 862 | if (auto sliceOp = |
| 863 | mlir::dyn_cast_or_null<SliceOp>(sliceArg.getDefiningOp())) { |
| 864 | auto triples = sliceOp.getTriples(); |
| 865 | const std::size_t tripleSize = triples.size(); |
| 866 | auto module = arrLoad->getParentOfType<mlir::ModuleOp>(); |
| 867 | FirOpBuilder builder(rewriter, module); |
| 868 | size = builder.genExtentFromTriplet(loc, triples[tripleSize - 3], |
| 869 | triples[tripleSize - 2], |
| 870 | triples[tripleSize - 1], idxTy); |
| 871 | copyUsingSlice = true; |
| 872 | } |
| 873 | } |
| 874 | result[result.size() - 1] = size; |
| 875 | } |
| 876 | return copyUsingSlice; |
| 877 | } |
| 878 | |
| 879 | /// Place the extents of the array load, \p arrLoad, into \p result and |
| 880 | /// return a ShapeOp or ShapeShiftOp with the same extents. If \p arrLoad is |
| 881 | /// loading a `!fir.box`, code will be generated to read the extents from the |
| 882 | /// boxed value, and the retunred shape Op will be built with the extents read |
| 883 | /// from the box. Otherwise, the extents will be extracted from the ShapeOp (or |
| 884 | /// ShapeShiftOp) argument of \p arrLoad. \p copyUsingSlice will be set to true |
| 885 | /// if slicing of the output array is to be done in the copy-in/copy-out rather |
| 886 | /// than in the elemental computation step. |
| 887 | static mlir::Value getOrReadExtentsAndShapeOp( |
| 888 | mlir::Location loc, mlir::PatternRewriter &rewriter, ArrayLoadOp arrLoad, |
| 889 | llvm::SmallVectorImpl<mlir::Value> &result, bool ©UsingSlice) { |
| 890 | assert(result.empty()); |
| 891 | if (arrLoad->hasAttr(fir::getOptionalAttrName())) |
| 892 | fir::emitFatalError( |
| 893 | loc, "shapes from array load of OPTIONAL arrays must not be used" ); |
| 894 | if (auto boxTy = mlir::dyn_cast<BoxType>(arrLoad.getMemref().getType())) { |
| 895 | auto rank = |
| 896 | mlir::cast<SequenceType>(dyn_cast_ptrOrBoxEleTy(boxTy)).getDimension(); |
| 897 | auto idxTy = rewriter.getIndexType(); |
| 898 | for (decltype(rank) dim = 0; dim < rank; ++dim) { |
| 899 | auto dimVal = rewriter.create<mlir::arith::ConstantIndexOp>(loc, dim); |
| 900 | auto dimInfo = rewriter.create<BoxDimsOp>(loc, idxTy, idxTy, idxTy, |
| 901 | arrLoad.getMemref(), dimVal); |
| 902 | result.emplace_back(dimInfo.getResult(1)); |
| 903 | } |
| 904 | if (!arrLoad.getShape()) { |
| 905 | auto shapeType = ShapeType::get(rewriter.getContext(), rank); |
| 906 | return rewriter.create<ShapeOp>(loc, shapeType, result); |
| 907 | } |
| 908 | auto shiftOp = arrLoad.getShape().getDefiningOp<ShiftOp>(); |
| 909 | auto shapeShiftType = ShapeShiftType::get(rewriter.getContext(), rank); |
| 910 | llvm::SmallVector<mlir::Value> shapeShiftOperands; |
| 911 | for (auto [lb, extent] : llvm::zip(shiftOp.getOrigins(), result)) { |
| 912 | shapeShiftOperands.push_back(lb); |
| 913 | shapeShiftOperands.push_back(extent); |
| 914 | } |
| 915 | return rewriter.create<ShapeShiftOp>(loc, shapeShiftType, |
| 916 | shapeShiftOperands); |
| 917 | } |
| 918 | copyUsingSlice = |
| 919 | getAdjustedExtents(loc, rewriter, arrLoad, result, arrLoad.getShape()); |
| 920 | return arrLoad.getShape(); |
| 921 | } |
| 922 | |
| 923 | static mlir::Type toRefType(mlir::Type ty) { |
| 924 | if (fir::isa_ref_type(ty)) |
| 925 | return ty; |
| 926 | return fir::ReferenceType::get(ty); |
| 927 | } |
| 928 | |
| 929 | static llvm::SmallVector<mlir::Value> |
| 930 | getTypeParamsIfRawData(mlir::Location loc, FirOpBuilder &builder, |
| 931 | ArrayLoadOp arrLoad, mlir::Type ty) { |
| 932 | if (mlir::isa<BoxType>(ty)) |
| 933 | return {}; |
| 934 | return fir::factory::getTypeParams(loc, builder, arrLoad); |
| 935 | } |
| 936 | |
| 937 | static mlir::Value genCoorOp(mlir::PatternRewriter &rewriter, |
| 938 | mlir::Location loc, mlir::Type eleTy, |
| 939 | mlir::Type resTy, mlir::Value alloc, |
| 940 | mlir::Value shape, mlir::Value slice, |
| 941 | mlir::ValueRange indices, ArrayLoadOp load, |
| 942 | bool skipOrig = false) { |
| 943 | llvm::SmallVector<mlir::Value> originated; |
| 944 | if (skipOrig) |
| 945 | originated.assign(indices.begin(), indices.end()); |
| 946 | else |
| 947 | originated = factory::originateIndices(loc, rewriter, alloc.getType(), |
| 948 | shape, indices); |
| 949 | auto seqTy = dyn_cast_ptrOrBoxEleTy(alloc.getType()); |
| 950 | assert(seqTy && mlir::isa<SequenceType>(seqTy)); |
| 951 | const auto dimension = mlir::cast<SequenceType>(seqTy).getDimension(); |
| 952 | auto module = load->getParentOfType<mlir::ModuleOp>(); |
| 953 | FirOpBuilder builder(rewriter, module); |
| 954 | auto typeparams = getTypeParamsIfRawData(loc, builder, load, alloc.getType()); |
| 955 | mlir::Value result = rewriter.create<ArrayCoorOp>( |
| 956 | loc, eleTy, alloc, shape, slice, |
| 957 | llvm::ArrayRef<mlir::Value>{originated}.take_front(dimension), |
| 958 | typeparams); |
| 959 | if (dimension < originated.size()) |
| 960 | result = rewriter.create<fir::CoordinateOp>( |
| 961 | loc, resTy, result, |
| 962 | llvm::ArrayRef<mlir::Value>{originated}.drop_front(dimension)); |
| 963 | return result; |
| 964 | } |
| 965 | |
| 966 | static mlir::Value getCharacterLen(mlir::Location loc, FirOpBuilder &builder, |
| 967 | ArrayLoadOp load, CharacterType charTy) { |
| 968 | auto charLenTy = builder.getCharacterLengthType(); |
| 969 | if (charTy.hasDynamicLen()) { |
| 970 | if (mlir::isa<BoxType>(load.getMemref().getType())) { |
| 971 | // The loaded array is an emboxed value. Get the CHARACTER length from |
| 972 | // the box value. |
| 973 | auto eleSzInBytes = |
| 974 | builder.create<BoxEleSizeOp>(loc, charLenTy, load.getMemref()); |
| 975 | auto kindSize = |
| 976 | builder.getKindMap().getCharacterBitsize(charTy.getFKind()); |
| 977 | auto kindByteSize = |
| 978 | builder.createIntegerConstant(loc, charLenTy, kindSize / 8); |
| 979 | return builder.create<mlir::arith::DivSIOp>(loc, eleSzInBytes, |
| 980 | kindByteSize); |
| 981 | } |
| 982 | // The loaded array is a (set of) unboxed values. If the CHARACTER's |
| 983 | // length is not a constant, it must be provided as a type parameter to |
| 984 | // the array_load. |
| 985 | auto typeparams = load.getTypeparams(); |
| 986 | assert(typeparams.size() > 0 && "expected type parameters on array_load" ); |
| 987 | return typeparams.back(); |
| 988 | } |
| 989 | // The typical case: the length of the CHARACTER is a compile-time |
| 990 | // constant that is encoded in the type information. |
| 991 | return builder.createIntegerConstant(loc, charLenTy, charTy.getLen()); |
| 992 | } |
| 993 | /// Generate a shallow array copy. This is used for both copy-in and copy-out. |
| 994 | template <bool CopyIn> |
| 995 | void genArrayCopy(mlir::Location loc, mlir::PatternRewriter &rewriter, |
| 996 | mlir::Value dst, mlir::Value src, mlir::Value shapeOp, |
| 997 | mlir::Value sliceOp, ArrayLoadOp arrLoad) { |
| 998 | auto insPt = rewriter.saveInsertionPoint(); |
| 999 | llvm::SmallVector<mlir::Value> indices; |
| 1000 | llvm::SmallVector<mlir::Value> extents; |
| 1001 | bool copyUsingSlice = |
| 1002 | getAdjustedExtents(loc, rewriter, arrLoad, extents, shapeOp); |
| 1003 | auto idxTy = rewriter.getIndexType(); |
| 1004 | // Build loop nest from column to row. |
| 1005 | for (auto sh : llvm::reverse(extents)) { |
| 1006 | auto ubi = rewriter.create<ConvertOp>(loc, idxTy, sh); |
| 1007 | auto zero = rewriter.create<mlir::arith::ConstantIndexOp>(loc, 0); |
| 1008 | auto one = rewriter.create<mlir::arith::ConstantIndexOp>(loc, 1); |
| 1009 | auto ub = rewriter.create<mlir::arith::SubIOp>(loc, idxTy, ubi, one); |
| 1010 | auto loop = rewriter.create<DoLoopOp>(loc, zero, ub, one); |
| 1011 | rewriter.setInsertionPointToStart(loop.getBody()); |
| 1012 | indices.push_back(loop.getInductionVar()); |
| 1013 | } |
| 1014 | // Reverse the indices so they are in column-major order. |
| 1015 | std::reverse(indices.begin(), indices.end()); |
| 1016 | auto module = arrLoad->getParentOfType<mlir::ModuleOp>(); |
| 1017 | FirOpBuilder builder(rewriter, module); |
| 1018 | auto fromAddr = rewriter.create<ArrayCoorOp>( |
| 1019 | loc, getEleTy(src.getType()), src, shapeOp, |
| 1020 | CopyIn && copyUsingSlice ? sliceOp : mlir::Value{}, |
| 1021 | factory::originateIndices(loc, rewriter, src.getType(), shapeOp, indices), |
| 1022 | getTypeParamsIfRawData(loc, builder, arrLoad, src.getType())); |
| 1023 | auto toAddr = rewriter.create<ArrayCoorOp>( |
| 1024 | loc, getEleTy(dst.getType()), dst, shapeOp, |
| 1025 | !CopyIn && copyUsingSlice ? sliceOp : mlir::Value{}, |
| 1026 | factory::originateIndices(loc, rewriter, dst.getType(), shapeOp, indices), |
| 1027 | getTypeParamsIfRawData(loc, builder, arrLoad, dst.getType())); |
| 1028 | auto eleTy = unwrapSequenceType(unwrapPassByRefType(dst.getType())); |
| 1029 | // Copy from (to) object to (from) temp copy of same object. |
| 1030 | if (auto charTy = mlir::dyn_cast<CharacterType>(eleTy)) { |
| 1031 | auto len = getCharacterLen(loc, builder, arrLoad, charTy); |
| 1032 | CharBoxValue toChar(toAddr, len); |
| 1033 | CharBoxValue fromChar(fromAddr, len); |
| 1034 | factory::genScalarAssignment(builder, loc, toChar, fromChar); |
| 1035 | } else { |
| 1036 | if (hasDynamicSize(eleTy)) |
| 1037 | TODO(loc, "copy element of dynamic size" ); |
| 1038 | factory::genScalarAssignment(builder, loc, toAddr, fromAddr); |
| 1039 | } |
| 1040 | rewriter.restoreInsertionPoint(insPt); |
| 1041 | } |
| 1042 | |
| 1043 | /// The array load may be either a boxed or unboxed value. If the value is |
| 1044 | /// boxed, we read the type parameters from the boxed value. |
| 1045 | static llvm::SmallVector<mlir::Value> |
| 1046 | genArrayLoadTypeParameters(mlir::Location loc, mlir::PatternRewriter &rewriter, |
| 1047 | ArrayLoadOp load) { |
| 1048 | if (load.getTypeparams().empty()) { |
| 1049 | auto eleTy = |
| 1050 | unwrapSequenceType(unwrapPassByRefType(load.getMemref().getType())); |
| 1051 | if (hasDynamicSize(eleTy)) { |
| 1052 | if (auto charTy = mlir::dyn_cast<CharacterType>(eleTy)) { |
| 1053 | assert(mlir::isa<BoxType>(load.getMemref().getType())); |
| 1054 | auto module = load->getParentOfType<mlir::ModuleOp>(); |
| 1055 | FirOpBuilder builder(rewriter, module); |
| 1056 | return {getCharacterLen(loc, builder, load, charTy)}; |
| 1057 | } |
| 1058 | TODO(loc, "unhandled dynamic type parameters" ); |
| 1059 | } |
| 1060 | return {}; |
| 1061 | } |
| 1062 | return load.getTypeparams(); |
| 1063 | } |
| 1064 | |
| 1065 | static llvm::SmallVector<mlir::Value> |
| 1066 | findNonconstantExtents(mlir::Type memrefTy, |
| 1067 | llvm::ArrayRef<mlir::Value> extents) { |
| 1068 | llvm::SmallVector<mlir::Value> nce; |
| 1069 | auto arrTy = unwrapPassByRefType(memrefTy); |
| 1070 | auto seqTy = mlir::cast<SequenceType>(arrTy); |
| 1071 | for (auto [s, x] : llvm::zip(seqTy.getShape(), extents)) |
| 1072 | if (s == SequenceType::getUnknownExtent()) |
| 1073 | nce.emplace_back(x); |
| 1074 | if (extents.size() > seqTy.getShape().size()) |
| 1075 | for (auto x : extents.drop_front(seqTy.getShape().size())) |
| 1076 | nce.emplace_back(x); |
| 1077 | return nce; |
| 1078 | } |
| 1079 | |
| 1080 | /// Allocate temporary storage for an ArrayLoadOp \load and initialize any |
| 1081 | /// allocatable direct components of the array elements with an unallocated |
| 1082 | /// status. Returns the temporary address as well as a callback to generate the |
| 1083 | /// temporary clean-up once it has been used. The clean-up will take care of |
| 1084 | /// deallocating all the element allocatable components that may have been |
| 1085 | /// allocated while using the temporary. |
| 1086 | static std::pair<mlir::Value, |
| 1087 | std::function<void(mlir::PatternRewriter &rewriter)>> |
| 1088 | allocateArrayTemp(mlir::Location loc, mlir::PatternRewriter &rewriter, |
| 1089 | ArrayLoadOp load, llvm::ArrayRef<mlir::Value> extents, |
| 1090 | mlir::Value shape) { |
| 1091 | mlir::Type baseType = load.getMemref().getType(); |
| 1092 | llvm::SmallVector<mlir::Value> nonconstantExtents = |
| 1093 | findNonconstantExtents(baseType, extents); |
| 1094 | llvm::SmallVector<mlir::Value> typeParams = |
| 1095 | genArrayLoadTypeParameters(loc, rewriter, load); |
| 1096 | mlir::Value allocmem = rewriter.create<AllocMemOp>( |
| 1097 | loc, dyn_cast_ptrOrBoxEleTy(baseType), typeParams, nonconstantExtents); |
| 1098 | mlir::Type eleType = |
| 1099 | fir::unwrapSequenceType(fir::unwrapPassByRefType(baseType)); |
| 1100 | if (fir::isRecordWithAllocatableMember(eleType)) { |
| 1101 | // The allocatable component descriptors need to be set to a clean |
| 1102 | // deallocated status before anything is done with them. |
| 1103 | mlir::Value box = rewriter.create<fir::EmboxOp>( |
| 1104 | loc, fir::BoxType::get(allocmem.getType()), allocmem, shape, |
| 1105 | /*slice=*/mlir::Value{}, typeParams); |
| 1106 | auto module = load->getParentOfType<mlir::ModuleOp>(); |
| 1107 | FirOpBuilder builder(rewriter, module); |
| 1108 | runtime::genDerivedTypeInitialize(builder, loc, box); |
| 1109 | // Any allocatable component that may have been allocated must be |
| 1110 | // deallocated during the clean-up. |
| 1111 | auto cleanup = [=](mlir::PatternRewriter &r) { |
| 1112 | FirOpBuilder builder(r, module); |
| 1113 | runtime::genDerivedTypeDestroy(builder, loc, box); |
| 1114 | r.create<FreeMemOp>(loc, allocmem); |
| 1115 | }; |
| 1116 | return {allocmem, cleanup}; |
| 1117 | } |
| 1118 | auto cleanup = [=](mlir::PatternRewriter &r) { |
| 1119 | r.create<FreeMemOp>(loc, allocmem); |
| 1120 | }; |
| 1121 | return {allocmem, cleanup}; |
| 1122 | } |
| 1123 | |
| 1124 | namespace { |
| 1125 | /// Conversion of fir.array_update and fir.array_modify Ops. |
| 1126 | /// If there is a conflict for the update, then we need to perform a |
| 1127 | /// copy-in/copy-out to preserve the original values of the array. If there is |
| 1128 | /// no conflict, then it is save to eschew making any copies. |
| 1129 | template <typename ArrayOp> |
| 1130 | class ArrayUpdateConversionBase : public mlir::OpRewritePattern<ArrayOp> { |
| 1131 | public: |
| 1132 | // TODO: Implement copy/swap semantics? |
| 1133 | explicit ArrayUpdateConversionBase(mlir::MLIRContext *ctx, |
| 1134 | const ArrayCopyAnalysisBase &a, |
| 1135 | const OperationUseMapT &m) |
| 1136 | : mlir::OpRewritePattern<ArrayOp>{ctx}, analysis{a}, useMap{m} {} |
| 1137 | |
| 1138 | /// The array_access, \p access, is to be to a cloned copy due to a potential |
| 1139 | /// conflict. Uses copy-in/copy-out semantics and not copy/swap. |
| 1140 | mlir::Value referenceToClone(mlir::Location loc, |
| 1141 | mlir::PatternRewriter &rewriter, |
| 1142 | ArrayOp access) const { |
| 1143 | LLVM_DEBUG(llvm::dbgs() |
| 1144 | << "generating copy-in/copy-out loops for " << access << '\n'); |
| 1145 | auto *op = access.getOperation(); |
| 1146 | auto *loadOp = useMap.lookup(op); |
| 1147 | auto load = mlir::cast<ArrayLoadOp>(loadOp); |
| 1148 | auto eleTy = access.getType(); |
| 1149 | rewriter.setInsertionPoint(loadOp); |
| 1150 | // Copy in. |
| 1151 | llvm::SmallVector<mlir::Value> extents; |
| 1152 | bool copyUsingSlice = false; |
| 1153 | auto shapeOp = getOrReadExtentsAndShapeOp(loc, rewriter, load, extents, |
| 1154 | copyUsingSlice); |
| 1155 | auto [allocmem, genTempCleanUp] = |
| 1156 | allocateArrayTemp(loc, rewriter, load, extents, shapeOp); |
| 1157 | genArrayCopy</*copyIn=*/true>(load.getLoc(), rewriter, allocmem, |
| 1158 | load.getMemref(), shapeOp, load.getSlice(), |
| 1159 | load); |
| 1160 | // Generate the reference for the access. |
| 1161 | rewriter.setInsertionPoint(op); |
| 1162 | auto coor = genCoorOp( |
| 1163 | rewriter, loc, getEleTy(load.getType()), eleTy, allocmem, shapeOp, |
| 1164 | copyUsingSlice ? mlir::Value{} : load.getSlice(), access.getIndices(), |
| 1165 | load, access->hasAttr(factory::attrFortranArrayOffsets())); |
| 1166 | // Copy out. |
| 1167 | auto *storeOp = useMap.lookup(loadOp); |
| 1168 | auto store = mlir::cast<ArrayMergeStoreOp>(storeOp); |
| 1169 | rewriter.setInsertionPoint(storeOp); |
| 1170 | // Copy out. |
| 1171 | genArrayCopy</*copyIn=*/false>(store.getLoc(), rewriter, store.getMemref(), |
| 1172 | allocmem, shapeOp, store.getSlice(), load); |
| 1173 | genTempCleanUp(rewriter); |
| 1174 | return coor; |
| 1175 | } |
| 1176 | |
| 1177 | /// Copy the RHS element into the LHS and insert copy-in/copy-out between a |
| 1178 | /// temp and the LHS if the analysis found potential overlaps between the RHS |
| 1179 | /// and LHS arrays. The element copy generator must be provided in \p |
| 1180 | /// assignElement. \p update must be the ArrayUpdateOp or the ArrayModifyOp. |
| 1181 | /// Returns the address of the LHS element inside the loop and the LHS |
| 1182 | /// ArrayLoad result. |
| 1183 | std::pair<mlir::Value, mlir::Value> |
| 1184 | materializeAssignment(mlir::Location loc, mlir::PatternRewriter &rewriter, |
| 1185 | ArrayOp update, |
| 1186 | const std::function<void(mlir::Value)> &assignElement, |
| 1187 | mlir::Type lhsEltRefType) const { |
| 1188 | auto *op = update.getOperation(); |
| 1189 | auto *loadOp = useMap.lookup(op); |
| 1190 | auto load = mlir::cast<ArrayLoadOp>(loadOp); |
| 1191 | LLVM_DEBUG(llvm::outs() << "does " << load << " have a conflict?\n" ); |
| 1192 | if (analysis.hasPotentialConflict(loadOp)) { |
| 1193 | // If there is a conflict between the arrays, then we copy the lhs array |
| 1194 | // to a temporary, update the temporary, and copy the temporary back to |
| 1195 | // the lhs array. This yields Fortran's copy-in copy-out array semantics. |
| 1196 | LLVM_DEBUG(llvm::outs() << "Yes, conflict was found\n" ); |
| 1197 | rewriter.setInsertionPoint(loadOp); |
| 1198 | // Copy in. |
| 1199 | llvm::SmallVector<mlir::Value> extents; |
| 1200 | bool copyUsingSlice = false; |
| 1201 | auto shapeOp = getOrReadExtentsAndShapeOp(loc, rewriter, load, extents, |
| 1202 | copyUsingSlice); |
| 1203 | auto [allocmem, genTempCleanUp] = |
| 1204 | allocateArrayTemp(loc, rewriter, load, extents, shapeOp); |
| 1205 | |
| 1206 | genArrayCopy</*copyIn=*/true>(load.getLoc(), rewriter, allocmem, |
| 1207 | load.getMemref(), shapeOp, load.getSlice(), |
| 1208 | load); |
| 1209 | rewriter.setInsertionPoint(op); |
| 1210 | auto coor = genCoorOp( |
| 1211 | rewriter, loc, getEleTy(load.getType()), lhsEltRefType, allocmem, |
| 1212 | shapeOp, copyUsingSlice ? mlir::Value{} : load.getSlice(), |
| 1213 | update.getIndices(), load, |
| 1214 | update->hasAttr(factory::attrFortranArrayOffsets())); |
| 1215 | assignElement(coor); |
| 1216 | auto *storeOp = useMap.lookup(loadOp); |
| 1217 | auto store = mlir::cast<ArrayMergeStoreOp>(storeOp); |
| 1218 | rewriter.setInsertionPoint(storeOp); |
| 1219 | // Copy out. |
| 1220 | genArrayCopy</*copyIn=*/false>(store.getLoc(), rewriter, |
| 1221 | store.getMemref(), allocmem, shapeOp, |
| 1222 | store.getSlice(), load); |
| 1223 | genTempCleanUp(rewriter); |
| 1224 | return {coor, load.getResult()}; |
| 1225 | } |
| 1226 | // Otherwise, when there is no conflict (a possible loop-carried |
| 1227 | // dependence), the lhs array can be updated in place. |
| 1228 | LLVM_DEBUG(llvm::outs() << "No, conflict wasn't found\n" ); |
| 1229 | rewriter.setInsertionPoint(op); |
| 1230 | auto coorTy = getEleTy(load.getType()); |
| 1231 | auto coor = |
| 1232 | genCoorOp(rewriter, loc, coorTy, lhsEltRefType, load.getMemref(), |
| 1233 | load.getShape(), load.getSlice(), update.getIndices(), load, |
| 1234 | update->hasAttr(factory::attrFortranArrayOffsets())); |
| 1235 | assignElement(coor); |
| 1236 | return {coor, load.getResult()}; |
| 1237 | } |
| 1238 | |
| 1239 | protected: |
| 1240 | const ArrayCopyAnalysisBase &analysis; |
| 1241 | const OperationUseMapT &useMap; |
| 1242 | }; |
| 1243 | |
| 1244 | class ArrayUpdateConversion : public ArrayUpdateConversionBase<ArrayUpdateOp> { |
| 1245 | public: |
| 1246 | explicit ArrayUpdateConversion(mlir::MLIRContext *ctx, |
| 1247 | const ArrayCopyAnalysisBase &a, |
| 1248 | const OperationUseMapT &m) |
| 1249 | : ArrayUpdateConversionBase{ctx, a, m} {} |
| 1250 | |
| 1251 | llvm::LogicalResult |
| 1252 | matchAndRewrite(ArrayUpdateOp update, |
| 1253 | mlir::PatternRewriter &rewriter) const override { |
| 1254 | auto loc = update.getLoc(); |
| 1255 | auto assignElement = [&](mlir::Value coor) { |
| 1256 | auto input = update.getMerge(); |
| 1257 | if (auto inEleTy = dyn_cast_ptrEleTy(input.getType())) { |
| 1258 | emitFatalError(loc, "array_update on references not supported" ); |
| 1259 | } else { |
| 1260 | rewriter.create<fir::StoreOp>(loc, input, coor); |
| 1261 | } |
| 1262 | }; |
| 1263 | auto lhsEltRefType = toRefType(update.getMerge().getType()); |
| 1264 | auto [_, lhsLoadResult] = materializeAssignment( |
| 1265 | loc, rewriter, update, assignElement, lhsEltRefType); |
| 1266 | update.replaceAllUsesWith(lhsLoadResult); |
| 1267 | rewriter.replaceOp(update, lhsLoadResult); |
| 1268 | return mlir::success(); |
| 1269 | } |
| 1270 | }; |
| 1271 | |
| 1272 | class ArrayModifyConversion : public ArrayUpdateConversionBase<ArrayModifyOp> { |
| 1273 | public: |
| 1274 | explicit ArrayModifyConversion(mlir::MLIRContext *ctx, |
| 1275 | const ArrayCopyAnalysisBase &a, |
| 1276 | const OperationUseMapT &m) |
| 1277 | : ArrayUpdateConversionBase{ctx, a, m} {} |
| 1278 | |
| 1279 | llvm::LogicalResult |
| 1280 | matchAndRewrite(ArrayModifyOp modify, |
| 1281 | mlir::PatternRewriter &rewriter) const override { |
| 1282 | auto loc = modify.getLoc(); |
| 1283 | auto assignElement = [](mlir::Value) { |
| 1284 | // Assignment already materialized by lowering using lhs element address. |
| 1285 | }; |
| 1286 | auto lhsEltRefType = modify.getResult(0).getType(); |
| 1287 | auto [lhsEltCoor, lhsLoadResult] = materializeAssignment( |
| 1288 | loc, rewriter, modify, assignElement, lhsEltRefType); |
| 1289 | modify.replaceAllUsesWith(mlir::ValueRange{lhsEltCoor, lhsLoadResult}); |
| 1290 | rewriter.replaceOp(modify, mlir::ValueRange{lhsEltCoor, lhsLoadResult}); |
| 1291 | return mlir::success(); |
| 1292 | } |
| 1293 | }; |
| 1294 | |
| 1295 | class ArrayFetchConversion : public mlir::OpRewritePattern<ArrayFetchOp> { |
| 1296 | public: |
| 1297 | explicit ArrayFetchConversion(mlir::MLIRContext *ctx, |
| 1298 | const OperationUseMapT &m) |
| 1299 | : OpRewritePattern{ctx}, useMap{m} {} |
| 1300 | |
| 1301 | llvm::LogicalResult |
| 1302 | matchAndRewrite(ArrayFetchOp fetch, |
| 1303 | mlir::PatternRewriter &rewriter) const override { |
| 1304 | auto *op = fetch.getOperation(); |
| 1305 | rewriter.setInsertionPoint(op); |
| 1306 | auto load = mlir::cast<ArrayLoadOp>(useMap.lookup(op)); |
| 1307 | auto loc = fetch.getLoc(); |
| 1308 | auto coor = genCoorOp( |
| 1309 | rewriter, loc, getEleTy(load.getType()), toRefType(fetch.getType()), |
| 1310 | load.getMemref(), load.getShape(), load.getSlice(), fetch.getIndices(), |
| 1311 | load, fetch->hasAttr(factory::attrFortranArrayOffsets())); |
| 1312 | if (isa_ref_type(fetch.getType())) |
| 1313 | rewriter.replaceOp(fetch, coor); |
| 1314 | else |
| 1315 | rewriter.replaceOpWithNewOp<fir::LoadOp>(fetch, coor); |
| 1316 | return mlir::success(); |
| 1317 | } |
| 1318 | |
| 1319 | private: |
| 1320 | const OperationUseMapT &useMap; |
| 1321 | }; |
| 1322 | |
| 1323 | /// As array_access op is like an array_fetch op, except that it does not imply |
| 1324 | /// a load op. (It operates in the reference domain.) |
| 1325 | class ArrayAccessConversion : public ArrayUpdateConversionBase<ArrayAccessOp> { |
| 1326 | public: |
| 1327 | explicit ArrayAccessConversion(mlir::MLIRContext *ctx, |
| 1328 | const ArrayCopyAnalysisBase &a, |
| 1329 | const OperationUseMapT &m) |
| 1330 | : ArrayUpdateConversionBase{ctx, a, m} {} |
| 1331 | |
| 1332 | llvm::LogicalResult |
| 1333 | matchAndRewrite(ArrayAccessOp access, |
| 1334 | mlir::PatternRewriter &rewriter) const override { |
| 1335 | auto *op = access.getOperation(); |
| 1336 | auto loc = access.getLoc(); |
| 1337 | if (analysis.inAmendAccessSet(op)) { |
| 1338 | // This array_access is associated with an array_amend and there is a |
| 1339 | // conflict. Make a copy to store into. |
| 1340 | auto result = referenceToClone(loc, rewriter, access); |
| 1341 | access.replaceAllUsesWith(result); |
| 1342 | rewriter.replaceOp(access, result); |
| 1343 | return mlir::success(); |
| 1344 | } |
| 1345 | rewriter.setInsertionPoint(op); |
| 1346 | auto load = mlir::cast<ArrayLoadOp>(useMap.lookup(op)); |
| 1347 | auto coor = genCoorOp( |
| 1348 | rewriter, loc, getEleTy(load.getType()), toRefType(access.getType()), |
| 1349 | load.getMemref(), load.getShape(), load.getSlice(), access.getIndices(), |
| 1350 | load, access->hasAttr(factory::attrFortranArrayOffsets())); |
| 1351 | rewriter.replaceOp(access, coor); |
| 1352 | return mlir::success(); |
| 1353 | } |
| 1354 | }; |
| 1355 | |
| 1356 | /// An array_amend op is a marker to record which array access is being used to |
| 1357 | /// update an array value. After this pass runs, an array_amend has no |
| 1358 | /// semantics. We rewrite these to undefined values here to remove them while |
| 1359 | /// preserving SSA form. |
| 1360 | class ArrayAmendConversion : public mlir::OpRewritePattern<ArrayAmendOp> { |
| 1361 | public: |
| 1362 | explicit ArrayAmendConversion(mlir::MLIRContext *ctx) |
| 1363 | : OpRewritePattern{ctx} {} |
| 1364 | |
| 1365 | llvm::LogicalResult |
| 1366 | matchAndRewrite(ArrayAmendOp amend, |
| 1367 | mlir::PatternRewriter &rewriter) const override { |
| 1368 | auto *op = amend.getOperation(); |
| 1369 | rewriter.setInsertionPoint(op); |
| 1370 | auto loc = amend.getLoc(); |
| 1371 | auto undef = rewriter.create<UndefOp>(loc, amend.getType()); |
| 1372 | rewriter.replaceOp(amend, undef.getResult()); |
| 1373 | return mlir::success(); |
| 1374 | } |
| 1375 | }; |
| 1376 | |
| 1377 | class ArrayValueCopyConverter |
| 1378 | : public fir::impl::ArrayValueCopyBase<ArrayValueCopyConverter> { |
| 1379 | public: |
| 1380 | ArrayValueCopyConverter() = default; |
| 1381 | ArrayValueCopyConverter(const fir::ArrayValueCopyOptions &options) |
| 1382 | : Base(options) {} |
| 1383 | |
| 1384 | void runOnOperation() override { |
| 1385 | auto func = getOperation(); |
| 1386 | LLVM_DEBUG(llvm::dbgs() << "\n\narray-value-copy pass on function '" |
| 1387 | << func.getName() << "'\n" ); |
| 1388 | auto *context = &getContext(); |
| 1389 | |
| 1390 | // Perform the conflict analysis. |
| 1391 | const ArrayCopyAnalysisBase *analysis; |
| 1392 | if (optimizeConflicts) |
| 1393 | analysis = &getAnalysis<ArrayCopyAnalysisOptimized>(); |
| 1394 | else |
| 1395 | analysis = &getAnalysis<ArrayCopyAnalysis>(); |
| 1396 | |
| 1397 | const auto &useMap = analysis->getUseMap(); |
| 1398 | |
| 1399 | mlir::RewritePatternSet patterns1(context); |
| 1400 | patterns1.insert<ArrayFetchConversion>(context, useMap); |
| 1401 | patterns1.insert<ArrayUpdateConversion>(context, *analysis, useMap); |
| 1402 | patterns1.insert<ArrayModifyConversion>(context, *analysis, useMap); |
| 1403 | patterns1.insert<ArrayAccessConversion>(context, *analysis, useMap); |
| 1404 | patterns1.insert<ArrayAmendConversion>(context); |
| 1405 | mlir::ConversionTarget target(*context); |
| 1406 | target |
| 1407 | .addLegalDialect<FIROpsDialect, mlir::scf::SCFDialect, |
| 1408 | mlir::arith::ArithDialect, mlir::func::FuncDialect>(); |
| 1409 | target.addIllegalOp<ArrayAccessOp, ArrayAmendOp, ArrayFetchOp, |
| 1410 | ArrayUpdateOp, ArrayModifyOp>(); |
| 1411 | // Rewrite the array fetch and array update ops. |
| 1412 | if (mlir::failed( |
| 1413 | mlir::applyPartialConversion(func, target, std::move(patterns1)))) { |
| 1414 | mlir::emitError(mlir::UnknownLoc::get(context), |
| 1415 | "failure in array-value-copy pass, phase 1" ); |
| 1416 | signalPassFailure(); |
| 1417 | } |
| 1418 | |
| 1419 | mlir::RewritePatternSet patterns2(context); |
| 1420 | patterns2.insert<ArrayLoadConversion>(context); |
| 1421 | patterns2.insert<ArrayMergeStoreConversion>(context); |
| 1422 | target.addIllegalOp<ArrayLoadOp, ArrayMergeStoreOp>(); |
| 1423 | if (mlir::failed( |
| 1424 | mlir::applyPartialConversion(func, target, std::move(patterns2)))) { |
| 1425 | mlir::emitError(mlir::UnknownLoc::get(context), |
| 1426 | "failure in array-value-copy pass, phase 2" ); |
| 1427 | signalPassFailure(); |
| 1428 | } |
| 1429 | } |
| 1430 | }; |
| 1431 | } // namespace |
| 1432 | |
| 1433 | std::unique_ptr<mlir::Pass> |
| 1434 | fir::createArrayValueCopyPass(fir::ArrayValueCopyOptions options) { |
| 1435 | return std::make_unique<ArrayValueCopyConverter>(options); |
| 1436 | } |
| 1437 | |