| 1 | //===- SimplifyIntrinsics.cpp -- replace intrinsics with simpler form -----===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | //===----------------------------------------------------------------------===// |
| 10 | /// \file |
| 11 | /// This pass looks for suitable calls to runtime library for intrinsics that |
| 12 | /// can be simplified/specialized and replaces with a specialized function. |
| 13 | /// |
| 14 | /// For example, SUM(arr) can be specialized as a simple function with one loop, |
| 15 | /// compared to the three arguments (plus file & line info) that the runtime |
| 16 | /// call has - when the argument is a 1D-array (multiple loops may be needed |
| 17 | // for higher dimension arrays, of course) |
| 18 | /// |
| 19 | /// The general idea is that besides making the call simpler, it can also be |
| 20 | /// inlined by other passes that run after this pass, which further improves |
| 21 | /// performance, particularly when the work done in the function is trivial |
| 22 | /// and small in size. |
| 23 | //===----------------------------------------------------------------------===// |
| 24 | |
| 25 | #include "flang/Optimizer/Builder/BoxValue.h" |
| 26 | #include "flang/Optimizer/Builder/CUFCommon.h" |
| 27 | #include "flang/Optimizer/Builder/FIRBuilder.h" |
| 28 | #include "flang/Optimizer/Builder/LowLevelIntrinsics.h" |
| 29 | #include "flang/Optimizer/Builder/Todo.h" |
| 30 | #include "flang/Optimizer/Dialect/FIROps.h" |
| 31 | #include "flang/Optimizer/Dialect/FIRType.h" |
| 32 | #include "flang/Optimizer/Dialect/Support/FIRContext.h" |
| 33 | #include "flang/Optimizer/HLFIR/HLFIRDialect.h" |
| 34 | #include "flang/Optimizer/Transforms/Passes.h" |
| 35 | #include "flang/Optimizer/Transforms/Utils.h" |
| 36 | #include "flang/Runtime/entry-names.h" |
| 37 | #include "flang/Support/Fortran.h" |
| 38 | #include "mlir/Dialect/LLVMIR/LLVMDialect.h" |
| 39 | #include "mlir/IR/Matchers.h" |
| 40 | #include "mlir/IR/Operation.h" |
| 41 | #include "mlir/Pass/Pass.h" |
| 42 | #include "mlir/Transforms/DialectConversion.h" |
| 43 | #include "mlir/Transforms/GreedyPatternRewriteDriver.h" |
| 44 | #include "mlir/Transforms/RegionUtils.h" |
| 45 | #include "llvm/Support/Debug.h" |
| 46 | #include "llvm/Support/raw_ostream.h" |
| 47 | #include <llvm/Support/ErrorHandling.h> |
| 48 | #include <mlir/Dialect/Arith/IR/Arith.h> |
| 49 | #include <mlir/IR/BuiltinTypes.h> |
| 50 | #include <mlir/IR/Location.h> |
| 51 | #include <mlir/IR/MLIRContext.h> |
| 52 | #include <mlir/IR/Value.h> |
| 53 | #include <mlir/Support/LLVM.h> |
| 54 | #include <optional> |
| 55 | |
| 56 | namespace fir { |
| 57 | #define GEN_PASS_DEF_SIMPLIFYINTRINSICS |
| 58 | #include "flang/Optimizer/Transforms/Passes.h.inc" |
| 59 | } // namespace fir |
| 60 | |
| 61 | #define DEBUG_TYPE "flang-simplify-intrinsics" |
| 62 | |
| 63 | namespace { |
| 64 | |
| 65 | class SimplifyIntrinsicsPass |
| 66 | : public fir::impl::SimplifyIntrinsicsBase<SimplifyIntrinsicsPass> { |
| 67 | using FunctionTypeGeneratorTy = |
| 68 | llvm::function_ref<mlir::FunctionType(fir::FirOpBuilder &)>; |
| 69 | using FunctionBodyGeneratorTy = |
| 70 | llvm::function_ref<void(fir::FirOpBuilder &, mlir::func::FuncOp &)>; |
| 71 | using GenReductionBodyTy = llvm::function_ref<void( |
| 72 | fir::FirOpBuilder &builder, mlir::func::FuncOp &funcOp, unsigned rank, |
| 73 | mlir::Type elementType)>; |
| 74 | |
| 75 | public: |
| 76 | using fir::impl::SimplifyIntrinsicsBase< |
| 77 | SimplifyIntrinsicsPass>::SimplifyIntrinsicsBase; |
| 78 | |
| 79 | /// Generate a new function implementing a simplified version |
| 80 | /// of a Fortran runtime function defined by \p basename name. |
| 81 | /// \p typeGenerator is a callback that generates the new function's type. |
| 82 | /// \p bodyGenerator is a callback that generates the new function's body. |
| 83 | /// The new function is created in the \p builder's Module. |
| 84 | mlir::func::FuncOp getOrCreateFunction(fir::FirOpBuilder &builder, |
| 85 | const mlir::StringRef &basename, |
| 86 | FunctionTypeGeneratorTy typeGenerator, |
| 87 | FunctionBodyGeneratorTy bodyGenerator); |
| 88 | void runOnOperation() override; |
| 89 | void getDependentDialects(mlir::DialectRegistry ®istry) const override; |
| 90 | |
| 91 | private: |
| 92 | /// Helper functions to replace a reduction type of call with its |
| 93 | /// simplified form. The actual function is generated using a callback |
| 94 | /// function. |
| 95 | /// \p call is the call to be replaced |
| 96 | /// \p kindMap is used to create FIROpBuilder |
| 97 | /// \p genBodyFunc is the callback that builds the replacement function |
| 98 | void simplifyIntOrFloatReduction(fir::CallOp call, |
| 99 | const fir::KindMapping &kindMap, |
| 100 | GenReductionBodyTy genBodyFunc); |
| 101 | void simplifyLogicalDim0Reduction(fir::CallOp call, |
| 102 | const fir::KindMapping &kindMap, |
| 103 | GenReductionBodyTy genBodyFunc); |
| 104 | void simplifyLogicalDim1Reduction(fir::CallOp call, |
| 105 | const fir::KindMapping &kindMap, |
| 106 | GenReductionBodyTy genBodyFunc); |
| 107 | void simplifyMinMaxlocReduction(fir::CallOp call, |
| 108 | const fir::KindMapping &kindMap, bool isMax); |
| 109 | void simplifyReductionBody(fir::CallOp call, const fir::KindMapping &kindMap, |
| 110 | GenReductionBodyTy genBodyFunc, |
| 111 | fir::FirOpBuilder &builder, |
| 112 | const mlir::StringRef &basename, |
| 113 | mlir::Type elementType); |
| 114 | }; |
| 115 | |
| 116 | } // namespace |
| 117 | |
| 118 | /// Create FirOpBuilder with the provided \p op insertion point |
| 119 | /// and \p kindMap additionally inheriting FastMathFlags from \p op. |
| 120 | static fir::FirOpBuilder |
| 121 | getSimplificationBuilder(mlir::Operation *op, const fir::KindMapping &kindMap) { |
| 122 | fir::FirOpBuilder builder{op, kindMap}; |
| 123 | auto fmi = mlir::dyn_cast<mlir::arith::ArithFastMathInterface>(*op); |
| 124 | if (!fmi) |
| 125 | return builder; |
| 126 | |
| 127 | // Regardless of what default FastMathFlags are used by FirOpBuilder, |
| 128 | // override them with FastMathFlags attached to the operation. |
| 129 | builder.setFastMathFlags(fmi.getFastMathFlagsAttr().getValue()); |
| 130 | return builder; |
| 131 | } |
| 132 | |
| 133 | /// Generate function type for the simplified version of RTNAME(Sum) and |
| 134 | /// similar functions with a fir.box<none> type returning \p elementType. |
| 135 | static mlir::FunctionType genNoneBoxType(fir::FirOpBuilder &builder, |
| 136 | const mlir::Type &elementType) { |
| 137 | mlir::Type boxType = fir::BoxType::get(builder.getNoneType()); |
| 138 | return mlir::FunctionType::get(builder.getContext(), {boxType}, |
| 139 | {elementType}); |
| 140 | } |
| 141 | |
| 142 | template <typename Op> |
| 143 | Op expectOp(mlir::Value val) { |
| 144 | if (Op op = mlir::dyn_cast_or_null<Op>(val.getDefiningOp())) |
| 145 | return op; |
| 146 | LLVM_DEBUG(llvm::dbgs() << "Didn't find expected " << Op::getOperationName() |
| 147 | << '\n'); |
| 148 | return nullptr; |
| 149 | } |
| 150 | |
| 151 | template <typename Op> |
| 152 | static mlir::Value findDefSingle(fir::ConvertOp op) { |
| 153 | if (auto defOp = expectOp<Op>(op->getOperand(0))) { |
| 154 | return defOp.getResult(); |
| 155 | } |
| 156 | return {}; |
| 157 | } |
| 158 | |
| 159 | template <typename... Ops> |
| 160 | static mlir::Value findDef(fir::ConvertOp op) { |
| 161 | mlir::Value defOp; |
| 162 | // Loop over the operation types given to see if any match, exiting once |
| 163 | // a match is found. Cast to void is needed to avoid compiler complaining |
| 164 | // that the result of expression is unused |
| 165 | (void)((defOp = findDefSingle<Ops>(op), (defOp)) || ...); |
| 166 | return defOp; |
| 167 | } |
| 168 | |
| 169 | static bool isOperandAbsent(mlir::Value val) { |
| 170 | if (auto op = expectOp<fir::ConvertOp>(val)) { |
| 171 | assert(op->getOperands().size() != 0); |
| 172 | return mlir::isa_and_nonnull<fir::AbsentOp>( |
| 173 | op->getOperand(0).getDefiningOp()); |
| 174 | } |
| 175 | return false; |
| 176 | } |
| 177 | |
| 178 | static bool isTrueOrNotConstant(mlir::Value val) { |
| 179 | if (auto op = expectOp<mlir::arith::ConstantOp>(val)) { |
| 180 | return !mlir::matchPattern(val, mlir::m_Zero()); |
| 181 | } |
| 182 | return true; |
| 183 | } |
| 184 | |
| 185 | static bool isZero(mlir::Value val) { |
| 186 | if (auto op = expectOp<fir::ConvertOp>(val)) { |
| 187 | assert(op->getOperands().size() != 0); |
| 188 | if (mlir::Operation *defOp = op->getOperand(0).getDefiningOp()) |
| 189 | return mlir::matchPattern(defOp, mlir::m_Zero()); |
| 190 | } |
| 191 | return false; |
| 192 | } |
| 193 | |
| 194 | static mlir::Value findBoxDef(mlir::Value val) { |
| 195 | if (auto op = expectOp<fir::ConvertOp>(val)) { |
| 196 | assert(op->getOperands().size() != 0); |
| 197 | return findDef<fir::EmboxOp, fir::ReboxOp>(op); |
| 198 | } |
| 199 | return {}; |
| 200 | } |
| 201 | |
| 202 | static mlir::Value findMaskDef(mlir::Value val) { |
| 203 | if (auto op = expectOp<fir::ConvertOp>(val)) { |
| 204 | assert(op->getOperands().size() != 0); |
| 205 | return findDef<fir::EmboxOp, fir::ReboxOp, fir::AbsentOp>(op); |
| 206 | } |
| 207 | return {}; |
| 208 | } |
| 209 | |
| 210 | static unsigned getDimCount(mlir::Value val) { |
| 211 | // In order to find the dimensions count, we look for EmboxOp/ReboxOp |
| 212 | // and take the count from its *result* type. Note that in case |
| 213 | // of sliced emboxing the operand and the result of EmboxOp/ReboxOp |
| 214 | // have different types. |
| 215 | // Actually, we can take the box type from the operand of |
| 216 | // the first ConvertOp that has non-opaque box type that we meet |
| 217 | // going through the ConvertOp chain. |
| 218 | if (mlir::Value emboxVal = findBoxDef(val)) |
| 219 | if (auto boxTy = mlir::dyn_cast<fir::BoxType>(emboxVal.getType())) |
| 220 | if (auto seqTy = mlir::dyn_cast<fir::SequenceType>(boxTy.getEleTy())) |
| 221 | return seqTy.getDimension(); |
| 222 | return 0; |
| 223 | } |
| 224 | |
| 225 | /// Given the call operation's box argument \p val, discover |
| 226 | /// the element type of the underlying array object. |
| 227 | /// \returns the element type or std::nullopt if the type cannot |
| 228 | /// be reliably found. |
| 229 | /// We expect that the argument is a result of fir.convert |
| 230 | /// with the destination type of !fir.box<none>. |
| 231 | static std::optional<mlir::Type> getArgElementType(mlir::Value val) { |
| 232 | mlir::Operation *defOp; |
| 233 | do { |
| 234 | defOp = val.getDefiningOp(); |
| 235 | // Analyze only sequences of convert operations. |
| 236 | if (!mlir::isa<fir::ConvertOp>(defOp)) |
| 237 | return std::nullopt; |
| 238 | val = defOp->getOperand(0); |
| 239 | // The convert operation is expected to convert from one |
| 240 | // box type to another box type. |
| 241 | auto boxType = mlir::cast<fir::BoxType>(val.getType()); |
| 242 | auto elementType = fir::unwrapSeqOrBoxedSeqType(boxType); |
| 243 | if (!mlir::isa<mlir::NoneType>(elementType)) |
| 244 | return elementType; |
| 245 | } while (true); |
| 246 | } |
| 247 | |
| 248 | using BodyOpGeneratorTy = llvm::function_ref<mlir::Value( |
| 249 | fir::FirOpBuilder &, mlir::Location, const mlir::Type &, mlir::Value, |
| 250 | mlir::Value)>; |
| 251 | using ContinueLoopGenTy = llvm::function_ref<llvm::SmallVector<mlir::Value>( |
| 252 | fir::FirOpBuilder &, mlir::Location, mlir::Value)>; |
| 253 | |
| 254 | /// Generate the reduction loop into \p funcOp. |
| 255 | /// |
| 256 | /// \p initVal is a function, called to get the initial value for |
| 257 | /// the reduction value |
| 258 | /// \p genBody is called to fill in the actual reduciton operation |
| 259 | /// for example add for SUM, MAX for MAXVAL, etc. |
| 260 | /// \p rank is the rank of the input argument. |
| 261 | /// \p elementType is the type of the elements in the input array, |
| 262 | /// which may be different to the return type. |
| 263 | /// \p loopCond is called to generate the condition to continue or |
| 264 | /// not for IterWhile loops |
| 265 | /// \p unorderedOrInitalLoopCond contains either a boolean or bool |
| 266 | /// mlir constant, and controls the inital value for while loops |
| 267 | /// or if DoLoop is ordered/unordered. |
| 268 | |
| 269 | template <typename OP, typename T, int resultIndex> |
| 270 | static void |
| 271 | genReductionLoop(fir::FirOpBuilder &builder, mlir::func::FuncOp &funcOp, |
| 272 | fir::InitValGeneratorTy initVal, ContinueLoopGenTy loopCond, |
| 273 | T unorderedOrInitialLoopCond, BodyOpGeneratorTy genBody, |
| 274 | unsigned rank, mlir::Type elementType, mlir::Location loc) { |
| 275 | |
| 276 | mlir::IndexType idxTy = builder.getIndexType(); |
| 277 | |
| 278 | mlir::Block::BlockArgListType args = funcOp.front().getArguments(); |
| 279 | mlir::Value arg = args[0]; |
| 280 | |
| 281 | mlir::Value zeroIdx = builder.createIntegerConstant(loc, idxTy, 0); |
| 282 | |
| 283 | fir::SequenceType::Shape flatShape(rank, |
| 284 | fir::SequenceType::getUnknownExtent()); |
| 285 | mlir::Type arrTy = fir::SequenceType::get(flatShape, elementType); |
| 286 | mlir::Type boxArrTy = fir::BoxType::get(arrTy); |
| 287 | mlir::Value array = builder.create<fir::ConvertOp>(loc, boxArrTy, arg); |
| 288 | mlir::Type resultType = funcOp.getResultTypes()[0]; |
| 289 | mlir::Value init = initVal(builder, loc, resultType); |
| 290 | |
| 291 | llvm::SmallVector<mlir::Value, Fortran::common::maxRank> bounds; |
| 292 | |
| 293 | assert(rank > 0 && "rank cannot be zero" ); |
| 294 | mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1); |
| 295 | |
| 296 | // Compute all the upper bounds before the loop nest. |
| 297 | // It is not strictly necessary for performance, since the loop nest |
| 298 | // does not have any store operations and any LICM optimization |
| 299 | // should be able to optimize the redundancy. |
| 300 | for (unsigned i = 0; i < rank; ++i) { |
| 301 | mlir::Value dimIdx = builder.createIntegerConstant(loc, idxTy, i); |
| 302 | auto dims = |
| 303 | builder.create<fir::BoxDimsOp>(loc, idxTy, idxTy, idxTy, array, dimIdx); |
| 304 | mlir::Value len = dims.getResult(1); |
| 305 | // We use C indexing here, so len-1 as loopcount |
| 306 | mlir::Value loopCount = builder.create<mlir::arith::SubIOp>(loc, len, one); |
| 307 | bounds.push_back(loopCount); |
| 308 | } |
| 309 | // Create a loop nest consisting of OP operations. |
| 310 | // Collect the loops' induction variables into indices array, |
| 311 | // which will be used in the innermost loop to load the input |
| 312 | // array's element. |
| 313 | // The loops are generated such that the innermost loop processes |
| 314 | // the 0 dimension. |
| 315 | llvm::SmallVector<mlir::Value, Fortran::common::maxRank> indices; |
| 316 | for (unsigned i = rank; 0 < i; --i) { |
| 317 | mlir::Value step = one; |
| 318 | mlir::Value loopCount = bounds[i - 1]; |
| 319 | auto loop = builder.create<OP>(loc, zeroIdx, loopCount, step, |
| 320 | unorderedOrInitialLoopCond, |
| 321 | /*finalCountValue=*/false, init); |
| 322 | init = loop.getRegionIterArgs()[resultIndex]; |
| 323 | indices.push_back(loop.getInductionVar()); |
| 324 | // Set insertion point to the loop body so that the next loop |
| 325 | // is inserted inside the current one. |
| 326 | builder.setInsertionPointToStart(loop.getBody()); |
| 327 | } |
| 328 | |
| 329 | // Reverse the indices such that they are ordered as: |
| 330 | // <dim-0-idx, dim-1-idx, ...> |
| 331 | std::reverse(indices.begin(), indices.end()); |
| 332 | // We are in the innermost loop: generate the reduction body. |
| 333 | mlir::Type eleRefTy = builder.getRefType(elementType); |
| 334 | mlir::Value addr = |
| 335 | builder.create<fir::CoordinateOp>(loc, eleRefTy, array, indices); |
| 336 | mlir::Value elem = builder.create<fir::LoadOp>(loc, addr); |
| 337 | mlir::Value reductionVal = genBody(builder, loc, elementType, elem, init); |
| 338 | // Generate vector with condition to continue while loop at [0] and result |
| 339 | // from current loop at [1] for IterWhileOp loops, just result at [0] for |
| 340 | // DoLoopOp loops. |
| 341 | llvm::SmallVector<mlir::Value> results = loopCond(builder, loc, reductionVal); |
| 342 | |
| 343 | // Unwind the loop nest and insert ResultOp on each level |
| 344 | // to return the updated value of the reduction to the enclosing |
| 345 | // loops. |
| 346 | for (unsigned i = 0; i < rank; ++i) { |
| 347 | auto result = builder.create<fir::ResultOp>(loc, results); |
| 348 | // Proceed to the outer loop. |
| 349 | auto loop = mlir::cast<OP>(result->getParentOp()); |
| 350 | results = loop.getResults(); |
| 351 | // Set insertion point after the loop operation that we have |
| 352 | // just processed. |
| 353 | builder.setInsertionPointAfter(loop.getOperation()); |
| 354 | } |
| 355 | // End of loop nest. The insertion point is after the outermost loop. |
| 356 | // Return the reduction value from the function. |
| 357 | builder.create<mlir::func::ReturnOp>(loc, results[resultIndex]); |
| 358 | } |
| 359 | |
| 360 | static llvm::SmallVector<mlir::Value> nopLoopCond(fir::FirOpBuilder &builder, |
| 361 | mlir::Location loc, |
| 362 | mlir::Value reductionVal) { |
| 363 | return {reductionVal}; |
| 364 | } |
| 365 | |
| 366 | /// Generate function body of the simplified version of RTNAME(Sum) |
| 367 | /// with signature provided by \p funcOp. The caller is responsible |
| 368 | /// for saving/restoring the original insertion point of \p builder. |
| 369 | /// \p funcOp is expected to be empty on entry to this function. |
| 370 | /// \p rank specifies the rank of the input argument. |
| 371 | static void genRuntimeSumBody(fir::FirOpBuilder &builder, |
| 372 | mlir::func::FuncOp &funcOp, unsigned rank, |
| 373 | mlir::Type elementType) { |
| 374 | // function RTNAME(Sum)<T>x<rank>_simplified(arr) |
| 375 | // T, dimension(:) :: arr |
| 376 | // T sum = 0 |
| 377 | // integer iter |
| 378 | // do iter = 0, extent(arr) |
| 379 | // sum = sum + arr[iter] |
| 380 | // end do |
| 381 | // RTNAME(Sum)<T>x<rank>_simplified = sum |
| 382 | // end function RTNAME(Sum)<T>x<rank>_simplified |
| 383 | auto zero = [](fir::FirOpBuilder builder, mlir::Location loc, |
| 384 | mlir::Type elementType) { |
| 385 | if (auto ty = mlir::dyn_cast<mlir::FloatType>(elementType)) { |
| 386 | const llvm::fltSemantics &sem = ty.getFloatSemantics(); |
| 387 | return builder.createRealConstant(loc, elementType, |
| 388 | llvm::APFloat::getZero(sem)); |
| 389 | } |
| 390 | return builder.createIntegerConstant(loc, elementType, 0); |
| 391 | }; |
| 392 | |
| 393 | auto genBodyOp = [](fir::FirOpBuilder builder, mlir::Location loc, |
| 394 | mlir::Type elementType, mlir::Value elem1, |
| 395 | mlir::Value elem2) -> mlir::Value { |
| 396 | if (mlir::isa<mlir::FloatType>(elementType)) |
| 397 | return builder.create<mlir::arith::AddFOp>(loc, elem1, elem2); |
| 398 | if (mlir::isa<mlir::IntegerType>(elementType)) |
| 399 | return builder.create<mlir::arith::AddIOp>(loc, elem1, elem2); |
| 400 | |
| 401 | llvm_unreachable("unsupported type" ); |
| 402 | return {}; |
| 403 | }; |
| 404 | |
| 405 | mlir::Location loc = mlir::UnknownLoc::get(builder.getContext()); |
| 406 | builder.setInsertionPointToEnd(funcOp.addEntryBlock()); |
| 407 | |
| 408 | genReductionLoop<fir::DoLoopOp, bool, 0>(builder, funcOp, zero, nopLoopCond, |
| 409 | false, genBodyOp, rank, elementType, |
| 410 | loc); |
| 411 | } |
| 412 | |
| 413 | static void genRuntimeMaxvalBody(fir::FirOpBuilder &builder, |
| 414 | mlir::func::FuncOp &funcOp, unsigned rank, |
| 415 | mlir::Type elementType) { |
| 416 | auto init = [](fir::FirOpBuilder builder, mlir::Location loc, |
| 417 | mlir::Type elementType) { |
| 418 | if (auto ty = mlir::dyn_cast<mlir::FloatType>(elementType)) { |
| 419 | const llvm::fltSemantics &sem = ty.getFloatSemantics(); |
| 420 | return builder.createRealConstant( |
| 421 | loc, elementType, llvm::APFloat::getLargest(sem, /*Negative=*/true)); |
| 422 | } |
| 423 | unsigned bits = elementType.getIntOrFloatBitWidth(); |
| 424 | int64_t minInt = llvm::APInt::getSignedMinValue(bits).getSExtValue(); |
| 425 | return builder.createIntegerConstant(loc, elementType, minInt); |
| 426 | }; |
| 427 | |
| 428 | auto genBodyOp = [](fir::FirOpBuilder builder, mlir::Location loc, |
| 429 | mlir::Type elementType, mlir::Value elem1, |
| 430 | mlir::Value elem2) -> mlir::Value { |
| 431 | if (mlir::isa<mlir::FloatType>(elementType)) { |
| 432 | // arith.maxf later converted to llvm.intr.maxnum does not work |
| 433 | // correctly for NaNs and -0.0 (see maxnum/minnum pattern matching |
| 434 | // in LLVM's InstCombine pass). Moreover, llvm.intr.maxnum |
| 435 | // for F128 operands is lowered into fmaxl call by LLVM. |
| 436 | // This libm function may not work properly for F128 arguments |
| 437 | // on targets where long double is not F128. It is an LLVM issue, |
| 438 | // but we just use normal select here to resolve all the cases. |
| 439 | auto compare = builder.create<mlir::arith::CmpFOp>( |
| 440 | loc, mlir::arith::CmpFPredicate::OGT, elem1, elem2); |
| 441 | return builder.create<mlir::arith::SelectOp>(loc, compare, elem1, elem2); |
| 442 | } |
| 443 | if (mlir::isa<mlir::IntegerType>(elementType)) |
| 444 | return builder.create<mlir::arith::MaxSIOp>(loc, elem1, elem2); |
| 445 | |
| 446 | llvm_unreachable("unsupported type" ); |
| 447 | return {}; |
| 448 | }; |
| 449 | |
| 450 | mlir::Location loc = mlir::UnknownLoc::get(builder.getContext()); |
| 451 | builder.setInsertionPointToEnd(funcOp.addEntryBlock()); |
| 452 | |
| 453 | genReductionLoop<fir::DoLoopOp, bool, 0>(builder, funcOp, init, nopLoopCond, |
| 454 | false, genBodyOp, rank, elementType, |
| 455 | loc); |
| 456 | } |
| 457 | |
| 458 | static void genRuntimeCountBody(fir::FirOpBuilder &builder, |
| 459 | mlir::func::FuncOp &funcOp, unsigned rank, |
| 460 | mlir::Type elementType) { |
| 461 | auto zero = [](fir::FirOpBuilder builder, mlir::Location loc, |
| 462 | mlir::Type elementType) { |
| 463 | unsigned bits = elementType.getIntOrFloatBitWidth(); |
| 464 | int64_t zeroInt = llvm::APInt::getZero(bits).getSExtValue(); |
| 465 | return builder.createIntegerConstant(loc, elementType, zeroInt); |
| 466 | }; |
| 467 | |
| 468 | auto genBodyOp = [](fir::FirOpBuilder builder, mlir::Location loc, |
| 469 | mlir::Type elementType, mlir::Value elem1, |
| 470 | mlir::Value elem2) -> mlir::Value { |
| 471 | auto zero32 = builder.createIntegerConstant(loc, elementType, 0); |
| 472 | auto zero64 = builder.createIntegerConstant(loc, builder.getI64Type(), 0); |
| 473 | auto one64 = builder.createIntegerConstant(loc, builder.getI64Type(), 1); |
| 474 | |
| 475 | auto compare = builder.create<mlir::arith::CmpIOp>( |
| 476 | loc, mlir::arith::CmpIPredicate::eq, elem1, zero32); |
| 477 | auto select = |
| 478 | builder.create<mlir::arith::SelectOp>(loc, compare, zero64, one64); |
| 479 | return builder.create<mlir::arith::AddIOp>(loc, select, elem2); |
| 480 | }; |
| 481 | |
| 482 | // Count always gets I32 for elementType as it converts logical input to |
| 483 | // logical<4> before passing to the function. |
| 484 | mlir::Location loc = mlir::UnknownLoc::get(builder.getContext()); |
| 485 | builder.setInsertionPointToEnd(funcOp.addEntryBlock()); |
| 486 | |
| 487 | genReductionLoop<fir::DoLoopOp, bool, 0>(builder, funcOp, zero, nopLoopCond, |
| 488 | false, genBodyOp, rank, elementType, |
| 489 | loc); |
| 490 | } |
| 491 | |
| 492 | static void genRuntimeAnyBody(fir::FirOpBuilder &builder, |
| 493 | mlir::func::FuncOp &funcOp, unsigned rank, |
| 494 | mlir::Type elementType) { |
| 495 | auto zero = [](fir::FirOpBuilder builder, mlir::Location loc, |
| 496 | mlir::Type elementType) { |
| 497 | return builder.createIntegerConstant(loc, elementType, 0); |
| 498 | }; |
| 499 | |
| 500 | auto genBodyOp = [](fir::FirOpBuilder builder, mlir::Location loc, |
| 501 | mlir::Type elementType, mlir::Value elem1, |
| 502 | mlir::Value elem2) -> mlir::Value { |
| 503 | auto zero = builder.createIntegerConstant(loc, elementType, 0); |
| 504 | return builder.create<mlir::arith::CmpIOp>( |
| 505 | loc, mlir::arith::CmpIPredicate::ne, elem1, zero); |
| 506 | }; |
| 507 | |
| 508 | auto continueCond = [](fir::FirOpBuilder builder, mlir::Location loc, |
| 509 | mlir::Value reductionVal) { |
| 510 | auto one1 = builder.createIntegerConstant(loc, builder.getI1Type(), 1); |
| 511 | auto eor = builder.create<mlir::arith::XOrIOp>(loc, reductionVal, one1); |
| 512 | llvm::SmallVector<mlir::Value> results = {eor, reductionVal}; |
| 513 | return results; |
| 514 | }; |
| 515 | |
| 516 | mlir::Location loc = mlir::UnknownLoc::get(builder.getContext()); |
| 517 | builder.setInsertionPointToEnd(funcOp.addEntryBlock()); |
| 518 | mlir::Value ok = builder.createBool(loc, true); |
| 519 | |
| 520 | genReductionLoop<fir::IterWhileOp, mlir::Value, 1>( |
| 521 | builder, funcOp, zero, continueCond, ok, genBodyOp, rank, elementType, |
| 522 | loc); |
| 523 | } |
| 524 | |
| 525 | static void genRuntimeAllBody(fir::FirOpBuilder &builder, |
| 526 | mlir::func::FuncOp &funcOp, unsigned rank, |
| 527 | mlir::Type elementType) { |
| 528 | auto one = [](fir::FirOpBuilder builder, mlir::Location loc, |
| 529 | mlir::Type elementType) { |
| 530 | return builder.createIntegerConstant(loc, elementType, 1); |
| 531 | }; |
| 532 | |
| 533 | auto genBodyOp = [](fir::FirOpBuilder builder, mlir::Location loc, |
| 534 | mlir::Type elementType, mlir::Value elem1, |
| 535 | mlir::Value elem2) -> mlir::Value { |
| 536 | auto zero = builder.createIntegerConstant(loc, elementType, 0); |
| 537 | return builder.create<mlir::arith::CmpIOp>( |
| 538 | loc, mlir::arith::CmpIPredicate::ne, elem1, zero); |
| 539 | }; |
| 540 | |
| 541 | auto continueCond = [](fir::FirOpBuilder builder, mlir::Location loc, |
| 542 | mlir::Value reductionVal) { |
| 543 | llvm::SmallVector<mlir::Value> results = {reductionVal, reductionVal}; |
| 544 | return results; |
| 545 | }; |
| 546 | |
| 547 | mlir::Location loc = mlir::UnknownLoc::get(builder.getContext()); |
| 548 | builder.setInsertionPointToEnd(funcOp.addEntryBlock()); |
| 549 | mlir::Value ok = builder.createBool(loc, true); |
| 550 | |
| 551 | genReductionLoop<fir::IterWhileOp, mlir::Value, 1>( |
| 552 | builder, funcOp, one, continueCond, ok, genBodyOp, rank, elementType, |
| 553 | loc); |
| 554 | } |
| 555 | |
| 556 | static mlir::FunctionType genRuntimeMinlocType(fir::FirOpBuilder &builder, |
| 557 | unsigned int rank) { |
| 558 | mlir::Type boxType = fir::BoxType::get(builder.getNoneType()); |
| 559 | mlir::Type boxRefType = builder.getRefType(boxType); |
| 560 | |
| 561 | return mlir::FunctionType::get(builder.getContext(), |
| 562 | {boxRefType, boxType, boxType}, {}); |
| 563 | } |
| 564 | |
| 565 | // Produces a loop nest for a Minloc intrinsic. |
| 566 | void fir::genMinMaxlocReductionLoop( |
| 567 | fir::FirOpBuilder &builder, mlir::Value array, |
| 568 | fir::InitValGeneratorTy initVal, fir::MinlocBodyOpGeneratorTy genBody, |
| 569 | fir::AddrGeneratorTy getAddrFn, unsigned rank, mlir::Type elementType, |
| 570 | mlir::Location loc, mlir::Type maskElemType, mlir::Value resultArr, |
| 571 | bool maskMayBeLogicalScalar) { |
| 572 | mlir::IndexType idxTy = builder.getIndexType(); |
| 573 | |
| 574 | mlir::Value zeroIdx = builder.createIntegerConstant(loc, idxTy, 0); |
| 575 | |
| 576 | fir::SequenceType::Shape flatShape(rank, |
| 577 | fir::SequenceType::getUnknownExtent()); |
| 578 | mlir::Type arrTy = fir::SequenceType::get(flatShape, elementType); |
| 579 | mlir::Type boxArrTy = fir::BoxType::get(arrTy); |
| 580 | array = builder.create<fir::ConvertOp>(loc, boxArrTy, array); |
| 581 | |
| 582 | mlir::Type resultElemType = hlfir::getFortranElementType(resultArr.getType()); |
| 583 | mlir::Value flagSet = builder.createIntegerConstant(loc, resultElemType, 1); |
| 584 | mlir::Value zero = builder.createIntegerConstant(loc, resultElemType, 0); |
| 585 | mlir::Value flagRef = builder.createTemporary(loc, resultElemType); |
| 586 | builder.create<fir::StoreOp>(loc, zero, flagRef); |
| 587 | |
| 588 | mlir::Value init = initVal(builder, loc, elementType); |
| 589 | llvm::SmallVector<mlir::Value, Fortran::common::maxRank> bounds; |
| 590 | |
| 591 | assert(rank > 0 && "rank cannot be zero" ); |
| 592 | mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1); |
| 593 | |
| 594 | // Compute all the upper bounds before the loop nest. |
| 595 | // It is not strictly necessary for performance, since the loop nest |
| 596 | // does not have any store operations and any LICM optimization |
| 597 | // should be able to optimize the redundancy. |
| 598 | for (unsigned i = 0; i < rank; ++i) { |
| 599 | mlir::Value dimIdx = builder.createIntegerConstant(loc, idxTy, i); |
| 600 | auto dims = |
| 601 | builder.create<fir::BoxDimsOp>(loc, idxTy, idxTy, idxTy, array, dimIdx); |
| 602 | mlir::Value len = dims.getResult(1); |
| 603 | // We use C indexing here, so len-1 as loopcount |
| 604 | mlir::Value loopCount = builder.create<mlir::arith::SubIOp>(loc, len, one); |
| 605 | bounds.push_back(loopCount); |
| 606 | } |
| 607 | // Create a loop nest consisting of OP operations. |
| 608 | // Collect the loops' induction variables into indices array, |
| 609 | // which will be used in the innermost loop to load the input |
| 610 | // array's element. |
| 611 | // The loops are generated such that the innermost loop processes |
| 612 | // the 0 dimension. |
| 613 | llvm::SmallVector<mlir::Value, Fortran::common::maxRank> indices; |
| 614 | for (unsigned i = rank; 0 < i; --i) { |
| 615 | mlir::Value step = one; |
| 616 | mlir::Value loopCount = bounds[i - 1]; |
| 617 | auto loop = |
| 618 | builder.create<fir::DoLoopOp>(loc, zeroIdx, loopCount, step, false, |
| 619 | /*finalCountValue=*/false, init); |
| 620 | init = loop.getRegionIterArgs()[0]; |
| 621 | indices.push_back(loop.getInductionVar()); |
| 622 | // Set insertion point to the loop body so that the next loop |
| 623 | // is inserted inside the current one. |
| 624 | builder.setInsertionPointToStart(loop.getBody()); |
| 625 | } |
| 626 | |
| 627 | // Reverse the indices such that they are ordered as: |
| 628 | // <dim-0-idx, dim-1-idx, ...> |
| 629 | std::reverse(indices.begin(), indices.end()); |
| 630 | mlir::Value reductionVal = |
| 631 | genBody(builder, loc, elementType, array, flagRef, init, indices); |
| 632 | |
| 633 | // Unwind the loop nest and insert ResultOp on each level |
| 634 | // to return the updated value of the reduction to the enclosing |
| 635 | // loops. |
| 636 | for (unsigned i = 0; i < rank; ++i) { |
| 637 | auto result = builder.create<fir::ResultOp>(loc, reductionVal); |
| 638 | // Proceed to the outer loop. |
| 639 | auto loop = mlir::cast<fir::DoLoopOp>(result->getParentOp()); |
| 640 | reductionVal = loop.getResult(0); |
| 641 | // Set insertion point after the loop operation that we have |
| 642 | // just processed. |
| 643 | builder.setInsertionPointAfter(loop.getOperation()); |
| 644 | } |
| 645 | // End of loop nest. The insertion point is after the outermost loop. |
| 646 | if (maskMayBeLogicalScalar) { |
| 647 | if (fir::IfOp ifOp = |
| 648 | mlir::dyn_cast<fir::IfOp>(builder.getBlock()->getParentOp())) { |
| 649 | builder.create<fir::ResultOp>(loc, reductionVal); |
| 650 | builder.setInsertionPointAfter(ifOp); |
| 651 | // Redefine flagSet to escape scope of ifOp |
| 652 | flagSet = builder.createIntegerConstant(loc, resultElemType, 1); |
| 653 | reductionVal = ifOp.getResult(0); |
| 654 | } |
| 655 | } |
| 656 | } |
| 657 | |
| 658 | static void genRuntimeMinMaxlocBody(fir::FirOpBuilder &builder, |
| 659 | mlir::func::FuncOp &funcOp, bool isMax, |
| 660 | unsigned rank, int maskRank, |
| 661 | mlir::Type elementType, |
| 662 | mlir::Type maskElemType, |
| 663 | mlir::Type resultElemTy, bool isDim) { |
| 664 | auto init = [isMax](fir::FirOpBuilder builder, mlir::Location loc, |
| 665 | mlir::Type elementType) { |
| 666 | if (auto ty = mlir::dyn_cast<mlir::FloatType>(elementType)) { |
| 667 | const llvm::fltSemantics &sem = ty.getFloatSemantics(); |
| 668 | llvm::APFloat limit = llvm::APFloat::getInf(sem, /*Negative=*/isMax); |
| 669 | return builder.createRealConstant(loc, elementType, limit); |
| 670 | } |
| 671 | unsigned bits = elementType.getIntOrFloatBitWidth(); |
| 672 | int64_t initValue = (isMax ? llvm::APInt::getSignedMinValue(bits) |
| 673 | : llvm::APInt::getSignedMaxValue(bits)) |
| 674 | .getSExtValue(); |
| 675 | return builder.createIntegerConstant(loc, elementType, initValue); |
| 676 | }; |
| 677 | |
| 678 | mlir::Location loc = mlir::UnknownLoc::get(builder.getContext()); |
| 679 | builder.setInsertionPointToEnd(funcOp.addEntryBlock()); |
| 680 | |
| 681 | mlir::Value mask = funcOp.front().getArgument(2); |
| 682 | |
| 683 | // Set up result array in case of early exit / 0 length array |
| 684 | mlir::IndexType idxTy = builder.getIndexType(); |
| 685 | mlir::Type resultTy = fir::SequenceType::get(rank, resultElemTy); |
| 686 | mlir::Type resultHeapTy = fir::HeapType::get(resultTy); |
| 687 | mlir::Type resultBoxTy = fir::BoxType::get(resultHeapTy); |
| 688 | |
| 689 | mlir::Value returnValue = builder.createIntegerConstant(loc, resultElemTy, 0); |
| 690 | mlir::Value resultArrSize = builder.createIntegerConstant(loc, idxTy, rank); |
| 691 | |
| 692 | mlir::Value resultArrInit = builder.create<fir::AllocMemOp>(loc, resultTy); |
| 693 | mlir::Value resultArrShape = builder.create<fir::ShapeOp>(loc, resultArrSize); |
| 694 | mlir::Value resultArr = builder.create<fir::EmboxOp>( |
| 695 | loc, resultBoxTy, resultArrInit, resultArrShape); |
| 696 | |
| 697 | mlir::Type resultRefTy = builder.getRefType(resultElemTy); |
| 698 | |
| 699 | if (maskRank > 0) { |
| 700 | fir::SequenceType::Shape flatShape(rank, |
| 701 | fir::SequenceType::getUnknownExtent()); |
| 702 | mlir::Type maskTy = fir::SequenceType::get(flatShape, maskElemType); |
| 703 | mlir::Type boxMaskTy = fir::BoxType::get(maskTy); |
| 704 | mask = builder.create<fir::ConvertOp>(loc, boxMaskTy, mask); |
| 705 | } |
| 706 | |
| 707 | for (unsigned int i = 0; i < rank; ++i) { |
| 708 | mlir::Value index = builder.createIntegerConstant(loc, idxTy, i); |
| 709 | mlir::Value resultElemAddr = |
| 710 | builder.create<fir::CoordinateOp>(loc, resultRefTy, resultArr, index); |
| 711 | builder.create<fir::StoreOp>(loc, returnValue, resultElemAddr); |
| 712 | } |
| 713 | |
| 714 | auto genBodyOp = |
| 715 | [&rank, &resultArr, isMax, &mask, &maskElemType, &maskRank]( |
| 716 | fir::FirOpBuilder builder, mlir::Location loc, mlir::Type elementType, |
| 717 | mlir::Value array, mlir::Value flagRef, mlir::Value reduction, |
| 718 | const llvm::SmallVectorImpl<mlir::Value> &indices) -> mlir::Value { |
| 719 | // We are in the innermost loop: generate the reduction body. |
| 720 | if (maskRank > 0) { |
| 721 | mlir::Type logicalRef = builder.getRefType(maskElemType); |
| 722 | mlir::Value maskAddr = |
| 723 | builder.create<fir::CoordinateOp>(loc, logicalRef, mask, indices); |
| 724 | mlir::Value maskElem = builder.create<fir::LoadOp>(loc, maskAddr); |
| 725 | |
| 726 | // fir::IfOp requires argument to be I1 - won't accept logical or any |
| 727 | // other Integer. |
| 728 | mlir::Type ifCompatType = builder.getI1Type(); |
| 729 | mlir::Value ifCompatElem = |
| 730 | builder.create<fir::ConvertOp>(loc, ifCompatType, maskElem); |
| 731 | |
| 732 | llvm::SmallVector<mlir::Type> resultsTy = {elementType, elementType}; |
| 733 | fir::IfOp ifOp = builder.create<fir::IfOp>(loc, elementType, ifCompatElem, |
| 734 | /*withElseRegion=*/true); |
| 735 | builder.setInsertionPointToStart(&ifOp.getThenRegion().front()); |
| 736 | } |
| 737 | |
| 738 | // Set flag that mask was true at some point |
| 739 | mlir::Value flagSet = builder.createIntegerConstant( |
| 740 | loc, mlir::cast<fir::ReferenceType>(flagRef.getType()).getEleTy(), 1); |
| 741 | mlir::Value isFirst = builder.create<fir::LoadOp>(loc, flagRef); |
| 742 | mlir::Type eleRefTy = builder.getRefType(elementType); |
| 743 | mlir::Value addr = |
| 744 | builder.create<fir::CoordinateOp>(loc, eleRefTy, array, indices); |
| 745 | mlir::Value elem = builder.create<fir::LoadOp>(loc, addr); |
| 746 | |
| 747 | mlir::Value cmp; |
| 748 | if (mlir::isa<mlir::FloatType>(elementType)) { |
| 749 | // For FP reductions we want the first smallest value to be used, that |
| 750 | // is not NaN. A OGL/OLT condition will usually work for this unless all |
| 751 | // the values are Nan or Inf. This follows the same logic as |
| 752 | // NumericCompare for Minloc/Maxlox in extrema.cpp. |
| 753 | cmp = builder.create<mlir::arith::CmpFOp>( |
| 754 | loc, |
| 755 | isMax ? mlir::arith::CmpFPredicate::OGT |
| 756 | : mlir::arith::CmpFPredicate::OLT, |
| 757 | elem, reduction); |
| 758 | |
| 759 | mlir::Value cmpNan = builder.create<mlir::arith::CmpFOp>( |
| 760 | loc, mlir::arith::CmpFPredicate::UNE, reduction, reduction); |
| 761 | mlir::Value cmpNan2 = builder.create<mlir::arith::CmpFOp>( |
| 762 | loc, mlir::arith::CmpFPredicate::OEQ, elem, elem); |
| 763 | cmpNan = builder.create<mlir::arith::AndIOp>(loc, cmpNan, cmpNan2); |
| 764 | cmp = builder.create<mlir::arith::OrIOp>(loc, cmp, cmpNan); |
| 765 | } else if (mlir::isa<mlir::IntegerType>(elementType)) { |
| 766 | cmp = builder.create<mlir::arith::CmpIOp>( |
| 767 | loc, |
| 768 | isMax ? mlir::arith::CmpIPredicate::sgt |
| 769 | : mlir::arith::CmpIPredicate::slt, |
| 770 | elem, reduction); |
| 771 | } else { |
| 772 | llvm_unreachable("unsupported type" ); |
| 773 | } |
| 774 | |
| 775 | // The condition used for the loop is isFirst || <the condition above>. |
| 776 | isFirst = builder.create<fir::ConvertOp>(loc, cmp.getType(), isFirst); |
| 777 | isFirst = builder.create<mlir::arith::XOrIOp>( |
| 778 | loc, isFirst, builder.createIntegerConstant(loc, cmp.getType(), 1)); |
| 779 | cmp = builder.create<mlir::arith::OrIOp>(loc, cmp, isFirst); |
| 780 | fir::IfOp ifOp = builder.create<fir::IfOp>(loc, elementType, cmp, |
| 781 | /*withElseRegion*/ true); |
| 782 | |
| 783 | builder.setInsertionPointToStart(&ifOp.getThenRegion().front()); |
| 784 | builder.create<fir::StoreOp>(loc, flagSet, flagRef); |
| 785 | mlir::Type resultElemTy = hlfir::getFortranElementType(resultArr.getType()); |
| 786 | mlir::Type returnRefTy = builder.getRefType(resultElemTy); |
| 787 | mlir::IndexType idxTy = builder.getIndexType(); |
| 788 | |
| 789 | mlir::Value one = builder.createIntegerConstant(loc, resultElemTy, 1); |
| 790 | |
| 791 | for (unsigned int i = 0; i < rank; ++i) { |
| 792 | mlir::Value index = builder.createIntegerConstant(loc, idxTy, i); |
| 793 | mlir::Value resultElemAddr = |
| 794 | builder.create<fir::CoordinateOp>(loc, returnRefTy, resultArr, index); |
| 795 | mlir::Value convert = |
| 796 | builder.create<fir::ConvertOp>(loc, resultElemTy, indices[i]); |
| 797 | mlir::Value fortranIndex = |
| 798 | builder.create<mlir::arith::AddIOp>(loc, convert, one); |
| 799 | builder.create<fir::StoreOp>(loc, fortranIndex, resultElemAddr); |
| 800 | } |
| 801 | builder.create<fir::ResultOp>(loc, elem); |
| 802 | builder.setInsertionPointToStart(&ifOp.getElseRegion().front()); |
| 803 | builder.create<fir::ResultOp>(loc, reduction); |
| 804 | builder.setInsertionPointAfter(ifOp); |
| 805 | mlir::Value reductionVal = ifOp.getResult(0); |
| 806 | |
| 807 | // Close the mask if needed |
| 808 | if (maskRank > 0) { |
| 809 | fir::IfOp ifOp = |
| 810 | mlir::dyn_cast<fir::IfOp>(builder.getBlock()->getParentOp()); |
| 811 | builder.create<fir::ResultOp>(loc, reductionVal); |
| 812 | builder.setInsertionPointToStart(&ifOp.getElseRegion().front()); |
| 813 | builder.create<fir::ResultOp>(loc, reduction); |
| 814 | reductionVal = ifOp.getResult(0); |
| 815 | builder.setInsertionPointAfter(ifOp); |
| 816 | } |
| 817 | |
| 818 | return reductionVal; |
| 819 | }; |
| 820 | |
| 821 | // if mask is a logical scalar, we can check its value before the main loop |
| 822 | // and either ignore the fact it is there or exit early. |
| 823 | if (maskRank == 0) { |
| 824 | mlir::Type i1Type = builder.getI1Type(); |
| 825 | mlir::Type logical = maskElemType; |
| 826 | mlir::Type logicalRefTy = builder.getRefType(logical); |
| 827 | mlir::Value condAddr = |
| 828 | builder.create<fir::BoxAddrOp>(loc, logicalRefTy, mask); |
| 829 | mlir::Value cond = builder.create<fir::LoadOp>(loc, condAddr); |
| 830 | mlir::Value condI1 = builder.create<fir::ConvertOp>(loc, i1Type, cond); |
| 831 | |
| 832 | fir::IfOp ifOp = builder.create<fir::IfOp>(loc, elementType, condI1, |
| 833 | /*withElseRegion=*/true); |
| 834 | |
| 835 | builder.setInsertionPointToStart(&ifOp.getElseRegion().front()); |
| 836 | mlir::Value basicValue; |
| 837 | if (mlir::isa<mlir::IntegerType>(elementType)) { |
| 838 | basicValue = builder.createIntegerConstant(loc, elementType, 0); |
| 839 | } else { |
| 840 | basicValue = builder.createRealConstant(loc, elementType, 0); |
| 841 | } |
| 842 | builder.create<fir::ResultOp>(loc, basicValue); |
| 843 | |
| 844 | builder.setInsertionPointToStart(&ifOp.getThenRegion().front()); |
| 845 | } |
| 846 | auto getAddrFn = [](fir::FirOpBuilder builder, mlir::Location loc, |
| 847 | const mlir::Type &resultElemType, mlir::Value resultArr, |
| 848 | mlir::Value index) { |
| 849 | mlir::Type resultRefTy = builder.getRefType(resultElemType); |
| 850 | return builder.create<fir::CoordinateOp>(loc, resultRefTy, resultArr, |
| 851 | index); |
| 852 | }; |
| 853 | |
| 854 | genMinMaxlocReductionLoop(builder, funcOp.front().getArgument(1), init, |
| 855 | genBodyOp, getAddrFn, rank, elementType, loc, |
| 856 | maskElemType, resultArr, maskRank == 0); |
| 857 | |
| 858 | // Store newly created output array to the reference passed in |
| 859 | if (isDim) { |
| 860 | mlir::Type resultBoxTy = |
| 861 | fir::BoxType::get(fir::HeapType::get(resultElemTy)); |
| 862 | mlir::Value outputArr = builder.create<fir::ConvertOp>( |
| 863 | loc, builder.getRefType(resultBoxTy), funcOp.front().getArgument(0)); |
| 864 | mlir::Value resultArrScalar = builder.create<fir::ConvertOp>( |
| 865 | loc, fir::HeapType::get(resultElemTy), resultArrInit); |
| 866 | mlir::Value resultBox = |
| 867 | builder.create<fir::EmboxOp>(loc, resultBoxTy, resultArrScalar); |
| 868 | builder.create<fir::StoreOp>(loc, resultBox, outputArr); |
| 869 | } else { |
| 870 | fir::SequenceType::Shape resultShape(1, rank); |
| 871 | mlir::Type outputArrTy = fir::SequenceType::get(resultShape, resultElemTy); |
| 872 | mlir::Type outputHeapTy = fir::HeapType::get(outputArrTy); |
| 873 | mlir::Type outputBoxTy = fir::BoxType::get(outputHeapTy); |
| 874 | mlir::Type outputRefTy = builder.getRefType(outputBoxTy); |
| 875 | mlir::Value outputArr = builder.create<fir::ConvertOp>( |
| 876 | loc, outputRefTy, funcOp.front().getArgument(0)); |
| 877 | builder.create<fir::StoreOp>(loc, resultArr, outputArr); |
| 878 | } |
| 879 | |
| 880 | builder.create<mlir::func::ReturnOp>(loc); |
| 881 | } |
| 882 | |
| 883 | /// Generate function type for the simplified version of RTNAME(DotProduct) |
| 884 | /// operating on the given \p elementType. |
| 885 | static mlir::FunctionType genRuntimeDotType(fir::FirOpBuilder &builder, |
| 886 | const mlir::Type &elementType) { |
| 887 | mlir::Type boxType = fir::BoxType::get(builder.getNoneType()); |
| 888 | return mlir::FunctionType::get(builder.getContext(), {boxType, boxType}, |
| 889 | {elementType}); |
| 890 | } |
| 891 | |
| 892 | /// Generate function body of the simplified version of RTNAME(DotProduct) |
| 893 | /// with signature provided by \p funcOp. The caller is responsible |
| 894 | /// for saving/restoring the original insertion point of \p builder. |
| 895 | /// \p funcOp is expected to be empty on entry to this function. |
| 896 | /// \p arg1ElementTy and \p arg2ElementTy specify elements types |
| 897 | /// of the underlying array objects - they are used to generate proper |
| 898 | /// element accesses. |
| 899 | static void genRuntimeDotBody(fir::FirOpBuilder &builder, |
| 900 | mlir::func::FuncOp &funcOp, |
| 901 | mlir::Type arg1ElementTy, |
| 902 | mlir::Type arg2ElementTy) { |
| 903 | // function RTNAME(DotProduct)<T>_simplified(arr1, arr2) |
| 904 | // T, dimension(:) :: arr1, arr2 |
| 905 | // T product = 0 |
| 906 | // integer iter |
| 907 | // do iter = 0, extent(arr1) |
| 908 | // product = product + arr1[iter] * arr2[iter] |
| 909 | // end do |
| 910 | // RTNAME(ADotProduct)<T>_simplified = product |
| 911 | // end function RTNAME(DotProduct)<T>_simplified |
| 912 | auto loc = mlir::UnknownLoc::get(builder.getContext()); |
| 913 | mlir::Type resultElementType = funcOp.getResultTypes()[0]; |
| 914 | builder.setInsertionPointToEnd(funcOp.addEntryBlock()); |
| 915 | |
| 916 | mlir::IndexType idxTy = builder.getIndexType(); |
| 917 | |
| 918 | mlir::Value zero = |
| 919 | mlir::isa<mlir::FloatType>(resultElementType) |
| 920 | ? builder.createRealConstant(loc, resultElementType, 0.0) |
| 921 | : builder.createIntegerConstant(loc, resultElementType, 0); |
| 922 | |
| 923 | mlir::Block::BlockArgListType args = funcOp.front().getArguments(); |
| 924 | mlir::Value arg1 = args[0]; |
| 925 | mlir::Value arg2 = args[1]; |
| 926 | |
| 927 | mlir::Value zeroIdx = builder.createIntegerConstant(loc, idxTy, 0); |
| 928 | |
| 929 | fir::SequenceType::Shape flatShape = {fir::SequenceType::getUnknownExtent()}; |
| 930 | mlir::Type arrTy1 = fir::SequenceType::get(flatShape, arg1ElementTy); |
| 931 | mlir::Type boxArrTy1 = fir::BoxType::get(arrTy1); |
| 932 | mlir::Value array1 = builder.create<fir::ConvertOp>(loc, boxArrTy1, arg1); |
| 933 | mlir::Type arrTy2 = fir::SequenceType::get(flatShape, arg2ElementTy); |
| 934 | mlir::Type boxArrTy2 = fir::BoxType::get(arrTy2); |
| 935 | mlir::Value array2 = builder.create<fir::ConvertOp>(loc, boxArrTy2, arg2); |
| 936 | // This version takes the loop trip count from the first argument. |
| 937 | // If the first argument's box has unknown (at compilation time) |
| 938 | // extent, then it may be better to take the extent from the second |
| 939 | // argument - so that after inlining the loop may be better optimized, e.g. |
| 940 | // fully unrolled. This requires generating two versions of the simplified |
| 941 | // function and some analysis at the call site to choose which version |
| 942 | // is more profitable to call. |
| 943 | // Note that we can assume that both arguments have the same extent. |
| 944 | auto dims = |
| 945 | builder.create<fir::BoxDimsOp>(loc, idxTy, idxTy, idxTy, array1, zeroIdx); |
| 946 | mlir::Value len = dims.getResult(1); |
| 947 | mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1); |
| 948 | mlir::Value step = one; |
| 949 | |
| 950 | // We use C indexing here, so len-1 as loopcount |
| 951 | mlir::Value loopCount = builder.create<mlir::arith::SubIOp>(loc, len, one); |
| 952 | auto loop = builder.create<fir::DoLoopOp>(loc, zeroIdx, loopCount, step, |
| 953 | /*unordered=*/false, |
| 954 | /*finalCountValue=*/false, zero); |
| 955 | mlir::Value sumVal = loop.getRegionIterArgs()[0]; |
| 956 | |
| 957 | // Begin loop code |
| 958 | mlir::OpBuilder::InsertPoint loopEndPt = builder.saveInsertionPoint(); |
| 959 | builder.setInsertionPointToStart(loop.getBody()); |
| 960 | |
| 961 | mlir::Type eleRef1Ty = builder.getRefType(arg1ElementTy); |
| 962 | mlir::Value index = loop.getInductionVar(); |
| 963 | mlir::Value addr1 = |
| 964 | builder.create<fir::CoordinateOp>(loc, eleRef1Ty, array1, index); |
| 965 | mlir::Value elem1 = builder.create<fir::LoadOp>(loc, addr1); |
| 966 | // Convert to the result type. |
| 967 | elem1 = builder.create<fir::ConvertOp>(loc, resultElementType, elem1); |
| 968 | |
| 969 | mlir::Type eleRef2Ty = builder.getRefType(arg2ElementTy); |
| 970 | mlir::Value addr2 = |
| 971 | builder.create<fir::CoordinateOp>(loc, eleRef2Ty, array2, index); |
| 972 | mlir::Value elem2 = builder.create<fir::LoadOp>(loc, addr2); |
| 973 | // Convert to the result type. |
| 974 | elem2 = builder.create<fir::ConvertOp>(loc, resultElementType, elem2); |
| 975 | |
| 976 | if (mlir::isa<mlir::FloatType>(resultElementType)) |
| 977 | sumVal = builder.create<mlir::arith::AddFOp>( |
| 978 | loc, builder.create<mlir::arith::MulFOp>(loc, elem1, elem2), sumVal); |
| 979 | else if (mlir::isa<mlir::IntegerType>(resultElementType)) |
| 980 | sumVal = builder.create<mlir::arith::AddIOp>( |
| 981 | loc, builder.create<mlir::arith::MulIOp>(loc, elem1, elem2), sumVal); |
| 982 | else |
| 983 | llvm_unreachable("unsupported type" ); |
| 984 | |
| 985 | builder.create<fir::ResultOp>(loc, sumVal); |
| 986 | // End of loop. |
| 987 | builder.restoreInsertionPoint(loopEndPt); |
| 988 | |
| 989 | mlir::Value resultVal = loop.getResult(0); |
| 990 | builder.create<mlir::func::ReturnOp>(loc, resultVal); |
| 991 | } |
| 992 | |
| 993 | mlir::func::FuncOp SimplifyIntrinsicsPass::getOrCreateFunction( |
| 994 | fir::FirOpBuilder &builder, const mlir::StringRef &baseName, |
| 995 | FunctionTypeGeneratorTy typeGenerator, |
| 996 | FunctionBodyGeneratorTy bodyGenerator) { |
| 997 | // WARNING: if the function generated here changes its signature |
| 998 | // or behavior (the body code), we should probably embed some |
| 999 | // versioning information into its name, otherwise libraries |
| 1000 | // statically linked with older versions of Flang may stop |
| 1001 | // working with object files created with newer Flang. |
| 1002 | // We can also avoid this by using internal linkage, but |
| 1003 | // this may increase the size of final executable/shared library. |
| 1004 | std::string replacementName = mlir::Twine{baseName, "_simplified" }.str(); |
| 1005 | // If we already have a function, just return it. |
| 1006 | mlir::func::FuncOp newFunc = builder.getNamedFunction(replacementName); |
| 1007 | mlir::FunctionType fType = typeGenerator(builder); |
| 1008 | if (newFunc) { |
| 1009 | assert(newFunc.getFunctionType() == fType && |
| 1010 | "type mismatch for simplified function" ); |
| 1011 | return newFunc; |
| 1012 | } |
| 1013 | |
| 1014 | // Need to build the function! |
| 1015 | auto loc = mlir::UnknownLoc::get(builder.getContext()); |
| 1016 | newFunc = builder.createFunction(loc, replacementName, fType); |
| 1017 | auto inlineLinkage = mlir::LLVM::linkage::Linkage::LinkonceODR; |
| 1018 | auto linkage = |
| 1019 | mlir::LLVM::LinkageAttr::get(builder.getContext(), inlineLinkage); |
| 1020 | newFunc->setAttr("llvm.linkage" , linkage); |
| 1021 | |
| 1022 | // Save the position of the original call. |
| 1023 | mlir::OpBuilder::InsertPoint insertPt = builder.saveInsertionPoint(); |
| 1024 | |
| 1025 | bodyGenerator(builder, newFunc); |
| 1026 | |
| 1027 | // Now back to where we were adding code earlier... |
| 1028 | builder.restoreInsertionPoint(insertPt); |
| 1029 | |
| 1030 | return newFunc; |
| 1031 | } |
| 1032 | |
| 1033 | void SimplifyIntrinsicsPass::simplifyIntOrFloatReduction( |
| 1034 | fir::CallOp call, const fir::KindMapping &kindMap, |
| 1035 | GenReductionBodyTy genBodyFunc) { |
| 1036 | // args[1] and args[2] are source filename and line number, ignored. |
| 1037 | mlir::Operation::operand_range args = call.getArgs(); |
| 1038 | |
| 1039 | const mlir::Value &dim = args[3]; |
| 1040 | const mlir::Value &mask = args[4]; |
| 1041 | // dim is zero when it is absent, which is an implementation |
| 1042 | // detail in the runtime library. |
| 1043 | |
| 1044 | bool dimAndMaskAbsent = isZero(dim) && isOperandAbsent(mask); |
| 1045 | unsigned rank = getDimCount(args[0]); |
| 1046 | |
| 1047 | // Rank is set to 0 for assumed shape arrays, don't simplify |
| 1048 | // in these cases |
| 1049 | if (!(dimAndMaskAbsent && rank > 0)) |
| 1050 | return; |
| 1051 | |
| 1052 | mlir::Type resultType = call.getResult(0).getType(); |
| 1053 | |
| 1054 | if (!mlir::isa<mlir::FloatType>(resultType) && |
| 1055 | !mlir::isa<mlir::IntegerType>(resultType)) |
| 1056 | return; |
| 1057 | |
| 1058 | auto argType = getArgElementType(args[0]); |
| 1059 | if (!argType) |
| 1060 | return; |
| 1061 | assert(*argType == resultType && |
| 1062 | "Argument/result types mismatch in reduction" ); |
| 1063 | |
| 1064 | mlir::SymbolRefAttr callee = call.getCalleeAttr(); |
| 1065 | |
| 1066 | fir::FirOpBuilder builder{getSimplificationBuilder(call, kindMap)}; |
| 1067 | std::string fmfString{builder.getFastMathFlagsString()}; |
| 1068 | std::string funcName = |
| 1069 | (mlir::Twine{callee.getLeafReference().getValue(), "x" } + |
| 1070 | mlir::Twine{rank} + |
| 1071 | // We must mangle the generated function name with FastMathFlags |
| 1072 | // value. |
| 1073 | (fmfString.empty() ? mlir::Twine{} : mlir::Twine{"_" , fmfString})) |
| 1074 | .str(); |
| 1075 | |
| 1076 | simplifyReductionBody(call, kindMap, genBodyFunc, builder, funcName, |
| 1077 | resultType); |
| 1078 | } |
| 1079 | |
| 1080 | void SimplifyIntrinsicsPass::simplifyLogicalDim0Reduction( |
| 1081 | fir::CallOp call, const fir::KindMapping &kindMap, |
| 1082 | GenReductionBodyTy genBodyFunc) { |
| 1083 | |
| 1084 | mlir::Operation::operand_range args = call.getArgs(); |
| 1085 | const mlir::Value &dim = args[3]; |
| 1086 | unsigned rank = getDimCount(args[0]); |
| 1087 | |
| 1088 | // getDimCount returns a rank of 0 for assumed shape arrays, don't simplify in |
| 1089 | // these cases. |
| 1090 | if (!(isZero(dim) && rank > 0)) |
| 1091 | return; |
| 1092 | |
| 1093 | mlir::Value inputBox = findBoxDef(args[0]); |
| 1094 | |
| 1095 | mlir::Type elementType = hlfir::getFortranElementType(inputBox.getType()); |
| 1096 | mlir::SymbolRefAttr callee = call.getCalleeAttr(); |
| 1097 | |
| 1098 | fir::FirOpBuilder builder{getSimplificationBuilder(call, kindMap)}; |
| 1099 | |
| 1100 | // Treating logicals as integers makes things a lot easier |
| 1101 | fir::LogicalType logicalType = { |
| 1102 | mlir::dyn_cast<fir::LogicalType>(elementType)}; |
| 1103 | fir::KindTy kind = logicalType.getFKind(); |
| 1104 | mlir::Type intElementType = builder.getIntegerType(kind * 8); |
| 1105 | |
| 1106 | // Mangle kind into function name as it is not done by default |
| 1107 | std::string funcName = |
| 1108 | (mlir::Twine{callee.getLeafReference().getValue(), "Logical" } + |
| 1109 | mlir::Twine{kind} + "x" + mlir::Twine{rank}) |
| 1110 | .str(); |
| 1111 | |
| 1112 | simplifyReductionBody(call, kindMap, genBodyFunc, builder, funcName, |
| 1113 | intElementType); |
| 1114 | } |
| 1115 | |
| 1116 | void SimplifyIntrinsicsPass::simplifyLogicalDim1Reduction( |
| 1117 | fir::CallOp call, const fir::KindMapping &kindMap, |
| 1118 | GenReductionBodyTy genBodyFunc) { |
| 1119 | |
| 1120 | mlir::Operation::operand_range args = call.getArgs(); |
| 1121 | mlir::SymbolRefAttr callee = call.getCalleeAttr(); |
| 1122 | mlir::StringRef funcNameBase = callee.getLeafReference().getValue(); |
| 1123 | unsigned rank = getDimCount(args[0]); |
| 1124 | |
| 1125 | // getDimCount returns a rank of 0 for assumed shape arrays, don't simplify in |
| 1126 | // these cases. We check for Dim at the end as some logical functions (Any, |
| 1127 | // All) set dim to 1 instead of 0 when the argument is not present. |
| 1128 | if (funcNameBase.ends_with("Dim" ) || !(rank > 0)) |
| 1129 | return; |
| 1130 | |
| 1131 | mlir::Value inputBox = findBoxDef(args[0]); |
| 1132 | mlir::Type elementType = hlfir::getFortranElementType(inputBox.getType()); |
| 1133 | |
| 1134 | fir::FirOpBuilder builder{getSimplificationBuilder(call, kindMap)}; |
| 1135 | |
| 1136 | // Treating logicals as integers makes things a lot easier |
| 1137 | fir::LogicalType logicalType = { |
| 1138 | mlir::dyn_cast<fir::LogicalType>(elementType)}; |
| 1139 | fir::KindTy kind = logicalType.getFKind(); |
| 1140 | mlir::Type intElementType = builder.getIntegerType(kind * 8); |
| 1141 | |
| 1142 | // Mangle kind into function name as it is not done by default |
| 1143 | std::string funcName = |
| 1144 | (mlir::Twine{callee.getLeafReference().getValue(), "Logical" } + |
| 1145 | mlir::Twine{kind} + "x" + mlir::Twine{rank}) |
| 1146 | .str(); |
| 1147 | |
| 1148 | simplifyReductionBody(call, kindMap, genBodyFunc, builder, funcName, |
| 1149 | intElementType); |
| 1150 | } |
| 1151 | |
| 1152 | void SimplifyIntrinsicsPass::simplifyMinMaxlocReduction( |
| 1153 | fir::CallOp call, const fir::KindMapping &kindMap, bool isMax) { |
| 1154 | |
| 1155 | mlir::Operation::operand_range args = call.getArgs(); |
| 1156 | |
| 1157 | mlir::SymbolRefAttr callee = call.getCalleeAttr(); |
| 1158 | mlir::StringRef funcNameBase = callee.getLeafReference().getValue(); |
| 1159 | bool isDim = funcNameBase.ends_with("Dim" ); |
| 1160 | mlir::Value back = args[isDim ? 7 : 6]; |
| 1161 | if (isTrueOrNotConstant(back)) |
| 1162 | return; |
| 1163 | |
| 1164 | mlir::Value mask = args[isDim ? 6 : 5]; |
| 1165 | mlir::Value maskDef = findMaskDef(mask); |
| 1166 | |
| 1167 | // maskDef is set to NULL when the defining op is not one we accept. |
| 1168 | // This tends to be because it is a selectOp, in which case let the |
| 1169 | // runtime deal with it. |
| 1170 | if (maskDef == NULL) |
| 1171 | return; |
| 1172 | |
| 1173 | unsigned rank = getDimCount(args[1]); |
| 1174 | if ((isDim && rank != 1) || !(rank > 0)) |
| 1175 | return; |
| 1176 | |
| 1177 | fir::FirOpBuilder builder{getSimplificationBuilder(call, kindMap)}; |
| 1178 | mlir::Location loc = call.getLoc(); |
| 1179 | auto inputBox = findBoxDef(args[1]); |
| 1180 | mlir::Type inputType = hlfir::getFortranElementType(inputBox.getType()); |
| 1181 | |
| 1182 | if (mlir::isa<fir::CharacterType>(inputType)) |
| 1183 | return; |
| 1184 | |
| 1185 | int maskRank; |
| 1186 | fir::KindTy kind = 0; |
| 1187 | mlir::Type logicalElemType = builder.getI1Type(); |
| 1188 | if (isOperandAbsent(mask)) { |
| 1189 | maskRank = -1; |
| 1190 | } else { |
| 1191 | maskRank = getDimCount(mask); |
| 1192 | mlir::Type maskElemTy = hlfir::getFortranElementType(maskDef.getType()); |
| 1193 | fir::LogicalType logicalFirType = { |
| 1194 | mlir::dyn_cast<fir::LogicalType>(maskElemTy)}; |
| 1195 | kind = logicalFirType.getFKind(); |
| 1196 | // Convert fir::LogicalType to mlir::Type |
| 1197 | logicalElemType = logicalFirType; |
| 1198 | } |
| 1199 | |
| 1200 | mlir::Operation *outputDef = args[0].getDefiningOp(); |
| 1201 | mlir::Value outputAlloc = outputDef->getOperand(0); |
| 1202 | mlir::Type outType = hlfir::getFortranElementType(outputAlloc.getType()); |
| 1203 | |
| 1204 | std::string fmfString{builder.getFastMathFlagsString()}; |
| 1205 | std::string funcName = |
| 1206 | (mlir::Twine{callee.getLeafReference().getValue(), "x" } + |
| 1207 | mlir::Twine{rank} + |
| 1208 | (maskRank >= 0 |
| 1209 | ? "_Logical" + mlir::Twine{kind} + "x" + mlir::Twine{maskRank} |
| 1210 | : "" ) + |
| 1211 | "_" ) |
| 1212 | .str(); |
| 1213 | |
| 1214 | llvm::raw_string_ostream nameOS(funcName); |
| 1215 | outType.print(nameOS); |
| 1216 | if (isDim) |
| 1217 | nameOS << '_' << inputType; |
| 1218 | nameOS << '_' << fmfString; |
| 1219 | |
| 1220 | auto typeGenerator = [rank](fir::FirOpBuilder &builder) { |
| 1221 | return genRuntimeMinlocType(builder, rank); |
| 1222 | }; |
| 1223 | auto bodyGenerator = [rank, maskRank, inputType, logicalElemType, outType, |
| 1224 | isMax, isDim](fir::FirOpBuilder &builder, |
| 1225 | mlir::func::FuncOp &funcOp) { |
| 1226 | genRuntimeMinMaxlocBody(builder, funcOp, isMax, rank, maskRank, inputType, |
| 1227 | logicalElemType, outType, isDim); |
| 1228 | }; |
| 1229 | |
| 1230 | mlir::func::FuncOp newFunc = |
| 1231 | getOrCreateFunction(builder, funcName, typeGenerator, bodyGenerator); |
| 1232 | builder.create<fir::CallOp>(loc, newFunc, |
| 1233 | mlir::ValueRange{args[0], args[1], mask}); |
| 1234 | call->dropAllReferences(); |
| 1235 | call->erase(); |
| 1236 | } |
| 1237 | |
| 1238 | void SimplifyIntrinsicsPass::simplifyReductionBody( |
| 1239 | fir::CallOp call, const fir::KindMapping &kindMap, |
| 1240 | GenReductionBodyTy genBodyFunc, fir::FirOpBuilder &builder, |
| 1241 | const mlir::StringRef &funcName, mlir::Type elementType) { |
| 1242 | |
| 1243 | mlir::Operation::operand_range args = call.getArgs(); |
| 1244 | |
| 1245 | mlir::Type resultType = call.getResult(0).getType(); |
| 1246 | unsigned rank = getDimCount(args[0]); |
| 1247 | |
| 1248 | mlir::Location loc = call.getLoc(); |
| 1249 | |
| 1250 | auto typeGenerator = [&resultType](fir::FirOpBuilder &builder) { |
| 1251 | return genNoneBoxType(builder, resultType); |
| 1252 | }; |
| 1253 | auto bodyGenerator = [&rank, &genBodyFunc, |
| 1254 | &elementType](fir::FirOpBuilder &builder, |
| 1255 | mlir::func::FuncOp &funcOp) { |
| 1256 | genBodyFunc(builder, funcOp, rank, elementType); |
| 1257 | }; |
| 1258 | // Mangle the function name with the rank value as "x<rank>". |
| 1259 | mlir::func::FuncOp newFunc = |
| 1260 | getOrCreateFunction(builder, funcName, typeGenerator, bodyGenerator); |
| 1261 | auto newCall = |
| 1262 | builder.create<fir::CallOp>(loc, newFunc, mlir::ValueRange{args[0]}); |
| 1263 | call->replaceAllUsesWith(newCall.getResults()); |
| 1264 | call->dropAllReferences(); |
| 1265 | call->erase(); |
| 1266 | } |
| 1267 | |
| 1268 | void SimplifyIntrinsicsPass::runOnOperation() { |
| 1269 | LLVM_DEBUG(llvm::dbgs() << "=== Begin " DEBUG_TYPE " ===\n" ); |
| 1270 | mlir::ModuleOp module = getOperation(); |
| 1271 | fir::KindMapping kindMap = fir::getKindMapping(module); |
| 1272 | module.walk([&](mlir::Operation *op) { |
| 1273 | if (auto call = mlir::dyn_cast<fir::CallOp>(op)) { |
| 1274 | if (cuf::isCUDADeviceContext(op)) |
| 1275 | return; |
| 1276 | if (mlir::SymbolRefAttr callee = call.getCalleeAttr()) { |
| 1277 | mlir::StringRef funcName = callee.getLeafReference().getValue(); |
| 1278 | // Replace call to runtime function for SUM when it has single |
| 1279 | // argument (no dim or mask argument) for 1D arrays with either |
| 1280 | // Integer4 or Real8 types. Other forms are ignored. |
| 1281 | // The new function is added to the module. |
| 1282 | // |
| 1283 | // Prototype for runtime call (from sum.cpp): |
| 1284 | // RTNAME(Sum<T>)(const Descriptor &x, const char *source, int line, |
| 1285 | // int dim, const Descriptor *mask) |
| 1286 | // |
| 1287 | if (funcName.starts_with(RTNAME_STRING(Sum))) { |
| 1288 | simplifyIntOrFloatReduction(call, kindMap, genRuntimeSumBody); |
| 1289 | return; |
| 1290 | } |
| 1291 | if (funcName.starts_with(RTNAME_STRING(DotProduct))) { |
| 1292 | LLVM_DEBUG(llvm::dbgs() << "Handling " << funcName << "\n" ); |
| 1293 | LLVM_DEBUG(llvm::dbgs() << "Call operation:\n" ; op->dump(); |
| 1294 | llvm::dbgs() << "\n" ); |
| 1295 | mlir::Operation::operand_range args = call.getArgs(); |
| 1296 | const mlir::Value &v1 = args[0]; |
| 1297 | const mlir::Value &v2 = args[1]; |
| 1298 | mlir::Location loc = call.getLoc(); |
| 1299 | fir::FirOpBuilder builder{getSimplificationBuilder(op, kindMap)}; |
| 1300 | // Stringize the builder's FastMathFlags flags for mangling |
| 1301 | // the generated function name. |
| 1302 | std::string fmfString{builder.getFastMathFlagsString()}; |
| 1303 | |
| 1304 | mlir::Type type = call.getResult(0).getType(); |
| 1305 | if (!mlir::isa<mlir::FloatType>(type) && |
| 1306 | !mlir::isa<mlir::IntegerType>(type)) |
| 1307 | return; |
| 1308 | |
| 1309 | // Try to find the element types of the boxed arguments. |
| 1310 | auto arg1Type = getArgElementType(v1); |
| 1311 | auto arg2Type = getArgElementType(v2); |
| 1312 | |
| 1313 | if (!arg1Type || !arg2Type) |
| 1314 | return; |
| 1315 | |
| 1316 | // Support only floating point and integer arguments |
| 1317 | // now (e.g. logical is skipped here). |
| 1318 | if (!mlir::isa<mlir::FloatType, mlir::IntegerType>(*arg1Type)) |
| 1319 | return; |
| 1320 | if (!mlir::isa<mlir::FloatType, mlir::IntegerType>(*arg2Type)) |
| 1321 | return; |
| 1322 | |
| 1323 | auto typeGenerator = [&type](fir::FirOpBuilder &builder) { |
| 1324 | return genRuntimeDotType(builder, type); |
| 1325 | }; |
| 1326 | auto bodyGenerator = [&arg1Type, |
| 1327 | &arg2Type](fir::FirOpBuilder &builder, |
| 1328 | mlir::func::FuncOp &funcOp) { |
| 1329 | genRuntimeDotBody(builder, funcOp, *arg1Type, *arg2Type); |
| 1330 | }; |
| 1331 | |
| 1332 | // Suffix the function name with the element types |
| 1333 | // of the arguments. |
| 1334 | std::string typedFuncName(funcName); |
| 1335 | llvm::raw_string_ostream nameOS(typedFuncName); |
| 1336 | // We must mangle the generated function name with FastMathFlags |
| 1337 | // value. |
| 1338 | if (!fmfString.empty()) |
| 1339 | nameOS << '_' << fmfString; |
| 1340 | nameOS << '_'; |
| 1341 | arg1Type->print(nameOS); |
| 1342 | nameOS << '_'; |
| 1343 | arg2Type->print(nameOS); |
| 1344 | |
| 1345 | mlir::func::FuncOp newFunc = getOrCreateFunction( |
| 1346 | builder, typedFuncName, typeGenerator, bodyGenerator); |
| 1347 | auto newCall = builder.create<fir::CallOp>(loc, newFunc, |
| 1348 | mlir::ValueRange{v1, v2}); |
| 1349 | call->replaceAllUsesWith(newCall.getResults()); |
| 1350 | call->dropAllReferences(); |
| 1351 | call->erase(); |
| 1352 | |
| 1353 | LLVM_DEBUG(llvm::dbgs() << "Replaced with:\n" ; newCall.dump(); |
| 1354 | llvm::dbgs() << "\n" ); |
| 1355 | return; |
| 1356 | } |
| 1357 | if (funcName.starts_with(RTNAME_STRING(Maxval))) { |
| 1358 | simplifyIntOrFloatReduction(call, kindMap, genRuntimeMaxvalBody); |
| 1359 | return; |
| 1360 | } |
| 1361 | if (funcName.starts_with(RTNAME_STRING(Count))) { |
| 1362 | simplifyLogicalDim0Reduction(call, kindMap, genRuntimeCountBody); |
| 1363 | return; |
| 1364 | } |
| 1365 | if (funcName.starts_with(RTNAME_STRING(Any))) { |
| 1366 | simplifyLogicalDim1Reduction(call, kindMap, genRuntimeAnyBody); |
| 1367 | return; |
| 1368 | } |
| 1369 | if (funcName.ends_with(RTNAME_STRING(All))) { |
| 1370 | simplifyLogicalDim1Reduction(call, kindMap, genRuntimeAllBody); |
| 1371 | return; |
| 1372 | } |
| 1373 | if (funcName.starts_with(RTNAME_STRING(Minloc))) { |
| 1374 | simplifyMinMaxlocReduction(call, kindMap, false); |
| 1375 | return; |
| 1376 | } |
| 1377 | if (funcName.starts_with(RTNAME_STRING(Maxloc))) { |
| 1378 | simplifyMinMaxlocReduction(call, kindMap, true); |
| 1379 | return; |
| 1380 | } |
| 1381 | } |
| 1382 | } |
| 1383 | }); |
| 1384 | LLVM_DEBUG(llvm::dbgs() << "=== End " DEBUG_TYPE " ===\n" ); |
| 1385 | } |
| 1386 | |
| 1387 | void SimplifyIntrinsicsPass::getDependentDialects( |
| 1388 | mlir::DialectRegistry ®istry) const { |
| 1389 | // LLVM::LinkageAttr creation requires that LLVM dialect is loaded. |
| 1390 | registry.insert<mlir::LLVM::LLVMDialect>(); |
| 1391 | } |
| 1392 | |