1//===-- lib/Semantics/expression.cpp --------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "flang/Semantics/expression.h"
10#include "check-call.h"
11#include "pointer-assignment.h"
12#include "resolve-names-utils.h"
13#include "resolve-names.h"
14#include "flang/Common/idioms.h"
15#include "flang/Common/type-kinds.h"
16#include "flang/Evaluate/common.h"
17#include "flang/Evaluate/fold.h"
18#include "flang/Evaluate/tools.h"
19#include "flang/Parser/characters.h"
20#include "flang/Parser/dump-parse-tree.h"
21#include "flang/Parser/parse-tree-visitor.h"
22#include "flang/Parser/parse-tree.h"
23#include "flang/Semantics/scope.h"
24#include "flang/Semantics/semantics.h"
25#include "flang/Semantics/symbol.h"
26#include "flang/Semantics/tools.h"
27#include "flang/Support/Fortran.h"
28#include "llvm/Support/raw_ostream.h"
29#include <algorithm>
30#include <functional>
31#include <optional>
32#include <set>
33#include <vector>
34
35// Typedef for optional generic expressions (ubiquitous in this file)
36using MaybeExpr =
37 std::optional<Fortran::evaluate::Expr<Fortran::evaluate::SomeType>>;
38
39// Much of the code that implements semantic analysis of expressions is
40// tightly coupled with their typed representations in lib/Evaluate,
41// and appears here in namespace Fortran::evaluate for convenience.
42namespace Fortran::evaluate {
43
44using common::LanguageFeature;
45using common::NumericOperator;
46using common::TypeCategory;
47
48static inline std::string ToUpperCase(std::string_view str) {
49 return parser::ToUpperCaseLetters(str);
50}
51
52struct DynamicTypeWithLength : public DynamicType {
53 explicit DynamicTypeWithLength(const DynamicType &t) : DynamicType{t} {}
54 std::optional<Expr<SubscriptInteger>> LEN() const;
55 std::optional<Expr<SubscriptInteger>> length;
56};
57
58std::optional<Expr<SubscriptInteger>> DynamicTypeWithLength::LEN() const {
59 if (length) {
60 return length;
61 } else {
62 return GetCharLength();
63 }
64}
65
66static std::optional<DynamicTypeWithLength> AnalyzeTypeSpec(
67 const std::optional<parser::TypeSpec> &spec, FoldingContext &context) {
68 if (spec) {
69 if (const semantics::DeclTypeSpec *typeSpec{spec->declTypeSpec}) {
70 // Name resolution sets TypeSpec::declTypeSpec only when it's valid
71 // (viz., an intrinsic type with valid known kind or a non-polymorphic
72 // & non-ABSTRACT derived type).
73 if (const semantics::IntrinsicTypeSpec *intrinsic{
74 typeSpec->AsIntrinsic()}) {
75 TypeCategory category{intrinsic->category()};
76 if (auto optKind{ToInt64(intrinsic->kind())}) {
77 int kind{static_cast<int>(*optKind)};
78 if (category == TypeCategory::Character) {
79 const semantics::CharacterTypeSpec &cts{
80 typeSpec->characterTypeSpec()};
81 const semantics::ParamValue &len{cts.length()};
82 if (len.isAssumed() || len.isDeferred()) {
83 context.messages().Say(
84 "A length specifier of '*' or ':' may not appear in the type of an array constructor"_err_en_US);
85 }
86 DynamicTypeWithLength type{DynamicType{kind, len}};
87 if (auto lenExpr{type.LEN()}) {
88 type.length = Fold(context,
89 AsExpr(Extremum<SubscriptInteger>{Ordering::Greater,
90 Expr<SubscriptInteger>{0}, std::move(*lenExpr)}));
91 }
92 return type;
93 } else {
94 return DynamicTypeWithLength{DynamicType{category, kind}};
95 }
96 }
97 } else if (const semantics::DerivedTypeSpec *derived{
98 typeSpec->AsDerived()}) {
99 return DynamicTypeWithLength{DynamicType{*derived}};
100 }
101 }
102 }
103 return std::nullopt;
104}
105
106// Utilities to set a source location, if we have one, on an actual argument,
107// when it is statically present.
108static void SetArgSourceLocation(ActualArgument &x, parser::CharBlock at) {
109 x.set_sourceLocation(at);
110}
111static void SetArgSourceLocation(
112 std::optional<ActualArgument> &x, parser::CharBlock at) {
113 if (x) {
114 x->set_sourceLocation(at);
115 }
116}
117static void SetArgSourceLocation(
118 std::optional<ActualArgument> &x, std::optional<parser::CharBlock> at) {
119 if (x && at) {
120 x->set_sourceLocation(*at);
121 }
122}
123
124class ArgumentAnalyzer {
125public:
126 explicit ArgumentAnalyzer(ExpressionAnalyzer &context)
127 : context_{context}, source_{context.GetContextualMessages().at()},
128 isProcedureCall_{false} {}
129 ArgumentAnalyzer(ExpressionAnalyzer &context, parser::CharBlock source,
130 bool isProcedureCall = false)
131 : context_{context}, source_{source}, isProcedureCall_{isProcedureCall} {}
132 bool fatalErrors() const { return fatalErrors_; }
133 ActualArguments &&GetActuals() {
134 CHECK(!fatalErrors_);
135 return std::move(actuals_);
136 }
137 const Expr<SomeType> &GetExpr(std::size_t i) const {
138 return DEREF(actuals_.at(i).value().UnwrapExpr());
139 }
140 Expr<SomeType> &&MoveExpr(std::size_t i) {
141 return std::move(DEREF(actuals_.at(i).value().UnwrapExpr()));
142 }
143 void Analyze(const common::Indirection<parser::Expr> &x) {
144 Analyze(x: x.value());
145 }
146 void Analyze(const parser::Expr &x) {
147 actuals_.emplace_back(AnalyzeExpr(x));
148 SetArgSourceLocation(actuals_.back(), x.source);
149 fatalErrors_ |= !actuals_.back();
150 }
151 void Analyze(const parser::Variable &);
152 void Analyze(const parser::ActualArgSpec &, bool isSubroutine);
153 void ConvertBOZOperand(std::optional<DynamicType> *thisType, std::size_t,
154 std::optional<DynamicType> otherType);
155 void ConvertBOZAssignmentRHS(const DynamicType &lhsType);
156
157 bool IsIntrinsicRelational(
158 RelationalOperator, const DynamicType &, const DynamicType &) const;
159 bool IsIntrinsicLogical() const;
160 bool IsIntrinsicNumeric(NumericOperator) const;
161 bool IsIntrinsicConcat() const;
162
163 bool CheckConformance();
164 bool CheckAssignmentConformance();
165 bool CheckForNullPointer(const char *where = "as an operand here");
166 bool CheckForAssumedRank(const char *where = "as an operand here");
167
168 // Find and return a user-defined operator or report an error.
169 // The provided message is used if there is no such operator.
170 // If a definedOpSymbolPtr is provided, the caller must check
171 // for its accessibility.
172 MaybeExpr TryDefinedOp(
173 const char *, parser::MessageFixedText, bool isUserOp = false);
174 template <typename E>
175 MaybeExpr TryDefinedOp(E opr, parser::MessageFixedText msg) {
176 return TryDefinedOp(
177 context_.context().languageFeatures().GetNames(opr), msg);
178 }
179 // Find and return a user-defined assignment
180 std::optional<ProcedureRef> TryDefinedAssignment();
181 std::optional<ProcedureRef> GetDefinedAssignmentProc();
182 std::optional<DynamicType> GetType(std::size_t) const;
183 void Dump(llvm::raw_ostream &);
184
185private:
186 MaybeExpr TryDefinedOp(
187 const std::vector<const char *> &, parser::MessageFixedText);
188 MaybeExpr TryBoundOp(const Symbol &, int passIndex);
189 std::optional<ActualArgument> AnalyzeExpr(const parser::Expr &);
190 std::optional<ActualArgument> AnalyzeVariable(const parser::Variable &);
191 MaybeExpr AnalyzeExprOrWholeAssumedSizeArray(const parser::Expr &);
192 bool AreConformable() const;
193 const Symbol *FindBoundOp(parser::CharBlock, int passIndex,
194 const Symbol *&generic, bool isSubroutine);
195 void AddAssignmentConversion(
196 const DynamicType &lhsType, const DynamicType &rhsType);
197 bool OkLogicalIntegerAssignment(TypeCategory lhs, TypeCategory rhs);
198 int GetRank(std::size_t) const;
199 bool IsBOZLiteral(std::size_t i) const {
200 return evaluate::IsBOZLiteral(GetExpr(i));
201 }
202 void SayNoMatch(const std::string &, bool isAssignment = false);
203 std::string TypeAsFortran(std::size_t);
204 bool AnyUntypedOrMissingOperand();
205
206 ExpressionAnalyzer &context_;
207 ActualArguments actuals_;
208 parser::CharBlock source_;
209 bool fatalErrors_{false};
210 const bool isProcedureCall_; // false for user-defined op or assignment
211};
212
213// Wraps a data reference in a typed Designator<>, and a procedure
214// or procedure pointer reference in a ProcedureDesignator.
215MaybeExpr ExpressionAnalyzer::Designate(DataRef &&ref) {
216 const Symbol &last{ref.GetLastSymbol()};
217 const Symbol &specific{BypassGeneric(last)};
218 const Symbol &symbol{specific.GetUltimate()};
219 if (semantics::IsProcedure(symbol)) {
220 if (symbol.attrs().test(semantics::Attr::ABSTRACT)) {
221 Say("Abstract procedure interface '%s' may not be used as a designator"_err_en_US,
222 last.name());
223 }
224 if (auto *component{std::get_if<Component>(&ref.u)}) {
225 if (!CheckDataRef(ref)) {
226 return std::nullopt;
227 }
228 return Expr<SomeType>{ProcedureDesignator{std::move(*component)}};
229 } else if (!std::holds_alternative<SymbolRef>(ref.u)) {
230 DIE("unexpected alternative in DataRef");
231 } else if (!symbol.attrs().test(semantics::Attr::INTRINSIC)) {
232 if (symbol.has<semantics::GenericDetails>()) {
233 Say("'%s' is not a specific procedure"_err_en_US, last.name());
234 } else if (IsProcedurePointer(specific)) {
235 // For procedure pointers, retain associations so that data accesses
236 // from client modules will work.
237 return Expr<SomeType>{ProcedureDesignator{specific}};
238 } else {
239 return Expr<SomeType>{ProcedureDesignator{symbol}};
240 }
241 } else if (auto interface{context_.intrinsics().IsSpecificIntrinsicFunction(
242 symbol.name().ToString())};
243 interface && !interface->isRestrictedSpecific) {
244 SpecificIntrinsic intrinsic{
245 symbol.name().ToString(), std::move(*interface)};
246 intrinsic.isRestrictedSpecific = interface->isRestrictedSpecific;
247 return Expr<SomeType>{ProcedureDesignator{std::move(intrinsic)}};
248 } else {
249 Say("'%s' is not an unrestricted specific intrinsic procedure"_err_en_US,
250 last.name());
251 }
252 return std::nullopt;
253 } else if (MaybeExpr result{AsGenericExpr(std::move(ref))}) {
254 return result;
255 } else if (semantics::HadUseError(
256 context_, GetContextualMessages().at(), &symbol)) {
257 return std::nullopt;
258 } else {
259 if (!context_.HasError(last) && !context_.HasError(symbol)) {
260 AttachDeclaration(
261 Say("'%s' is not an object that can appear in an expression"_err_en_US,
262 last.name()),
263 symbol);
264 context_.SetError(last);
265 }
266 return std::nullopt;
267 }
268}
269
270// Returns false if any dimension could be empty (e.g. A(1:0)) or has an error
271static bool FoldSubscripts(semantics::SemanticsContext &context,
272 const Symbol &arraySymbol, std::vector<Subscript> &subscripts, Shape &lb,
273 Shape &ub) {
274 FoldingContext &foldingContext{context.foldingContext()};
275 lb = GetLBOUNDs(foldingContext, NamedEntity{arraySymbol});
276 CHECK(lb.size() >= subscripts.size());
277 ub = GetUBOUNDs(foldingContext, NamedEntity{arraySymbol});
278 CHECK(ub.size() >= subscripts.size());
279 bool anyPossiblyEmptyDim{false};
280 int dim{0};
281 for (Subscript &ss : subscripts) {
282 if (Triplet * triplet{std::get_if<Triplet>(&ss.u)}) {
283 auto expr{Fold(foldingContext, triplet->stride())};
284 auto stride{ToInt64(expr)};
285 triplet->set_stride(std::move(expr));
286 std::optional<ConstantSubscript> lower, upper;
287 if (auto expr{triplet->lower()}) {
288 *expr = Fold(foldingContext, std::move(*expr));
289 lower = ToInt64(*expr);
290 triplet->set_lower(std::move(*expr));
291 } else {
292 lower = ToInt64(lb[dim]);
293 }
294 if (auto expr{triplet->upper()}) {
295 *expr = Fold(foldingContext, std::move(*expr));
296 upper = ToInt64(*expr);
297 triplet->set_upper(std::move(*expr));
298 } else {
299 upper = ToInt64(ub[dim]);
300 }
301 if (stride) {
302 if (*stride == 0) {
303 foldingContext.messages().Say(
304 "Stride of triplet must not be zero"_err_en_US);
305 return false; // error
306 }
307 if (lower && upper) {
308 if (*stride > 0) {
309 anyPossiblyEmptyDim |= *lower > *upper;
310 } else {
311 anyPossiblyEmptyDim |= *lower < *upper;
312 }
313 } else {
314 anyPossiblyEmptyDim = true;
315 }
316 } else { // non-constant stride
317 if (lower && upper && *lower == *upper) {
318 // stride is not relevant
319 } else {
320 anyPossiblyEmptyDim = true;
321 }
322 }
323 } else { // not triplet
324 auto &expr{std::get<IndirectSubscriptIntegerExpr>(ss.u).value()};
325 expr = Fold(foldingContext, std::move(expr));
326 anyPossiblyEmptyDim |= expr.Rank() > 0; // vector subscript
327 }
328 ++dim;
329 }
330 return !anyPossiblyEmptyDim;
331}
332
333static void ValidateSubscriptValue(parser::ContextualMessages &messages,
334 const Symbol &symbol, ConstantSubscript val,
335 std::optional<ConstantSubscript> lb, std::optional<ConstantSubscript> ub,
336 int dim, const char *co = "") {
337 std::optional<parser::MessageFixedText> msg;
338 std::optional<ConstantSubscript> bound;
339 if (lb && val < *lb) {
340 msg =
341 "%ssubscript %jd is less than lower %sbound %jd for %sdimension %d of array"_err_en_US;
342 bound = *lb;
343 } else if (ub && val > *ub) {
344 msg =
345 "%ssubscript %jd is greater than upper %sbound %jd for %sdimension %d of array"_err_en_US;
346 bound = *ub;
347 if (dim + 1 == symbol.Rank() && IsDummy(symbol) && *bound == 1) {
348 // Old-school overindexing of a dummy array isn't fatal when
349 // it's on the last dimension and the extent is 1.
350 msg->set_severity(parser::Severity::Warning);
351 }
352 }
353 if (msg) {
354 AttachDeclaration(
355 messages.Say(std::move(*msg), co, static_cast<std::intmax_t>(val), co,
356 static_cast<std::intmax_t>(bound.value()), co, dim + 1),
357 symbol);
358 }
359}
360
361static void ValidateSubscripts(semantics::SemanticsContext &context,
362 const Symbol &arraySymbol, const std::vector<Subscript> &subscripts,
363 const Shape &lb, const Shape &ub) {
364 int dim{0};
365 for (const Subscript &ss : subscripts) {
366 auto dimLB{ToInt64(lb[dim])};
367 auto dimUB{ToInt64(ub[dim])};
368 if (dimUB && dimLB && *dimUB < *dimLB) {
369 AttachDeclaration(
370 context.Warn(common::UsageWarning::SubscriptedEmptyArray,
371 context.foldingContext().messages().at(),
372 "Empty array dimension %d should not be subscripted as an element or non-empty array section"_err_en_US,
373 dim + 1),
374 arraySymbol);
375 break;
376 }
377 std::optional<ConstantSubscript> val[2];
378 int vals{0};
379 if (auto *triplet{std::get_if<Triplet>(&ss.u)}) {
380 auto stride{ToInt64(triplet->stride())};
381 std::optional<ConstantSubscript> lower, upper;
382 if (const auto *lowerExpr{triplet->GetLower()}) {
383 lower = ToInt64(*lowerExpr);
384 } else if (lb[dim]) {
385 lower = ToInt64(*lb[dim]);
386 }
387 if (const auto *upperExpr{triplet->GetUpper()}) {
388 upper = ToInt64(*upperExpr);
389 } else if (ub[dim]) {
390 upper = ToInt64(*ub[dim]);
391 }
392 if (lower) {
393 val[vals++] = *lower;
394 if (upper && *upper != lower && (stride && *stride != 0)) {
395 // Normalize upper bound for non-unit stride
396 // 1:10:2 -> 1:9:2, 10:1:-2 -> 10:2:-2
397 val[vals++] = *lower + *stride * ((*upper - *lower) / *stride);
398 }
399 }
400 } else {
401 val[vals++] =
402 ToInt64(std::get<IndirectSubscriptIntegerExpr>(ss.u).value());
403 }
404 for (int j{0}; j < vals; ++j) {
405 if (val[j]) {
406 ValidateSubscriptValue(context.foldingContext().messages(), arraySymbol,
407 *val[j], dimLB, dimUB, dim);
408 }
409 }
410 ++dim;
411 }
412}
413
414static void CheckSubscripts(
415 semantics::SemanticsContext &context, ArrayRef &ref) {
416 const Symbol &arraySymbol{ref.base().GetLastSymbol()};
417 Shape lb, ub;
418 if (FoldSubscripts(context, arraySymbol, ref.subscript(), lb, ub)) {
419 ValidateSubscripts(context, arraySymbol, ref.subscript(), lb, ub);
420 }
421}
422
423static void CheckCosubscripts(
424 semantics::SemanticsContext &context, CoarrayRef &ref) {
425 const Symbol &coarraySymbol{ref.GetLastSymbol()};
426 FoldingContext &foldingContext{context.foldingContext()};
427 int dim{0};
428 for (auto &expr : ref.cosubscript()) {
429 expr = Fold(foldingContext, std::move(expr));
430 if (auto val{ToInt64(expr)}) {
431 ValidateSubscriptValue(foldingContext.messages(), coarraySymbol, *val,
432 ToInt64(GetLCOBOUND(coarraySymbol, dim)),
433 ToInt64(GetUCOBOUND(coarraySymbol, dim)), dim, "co");
434 }
435 ++dim;
436 }
437}
438
439// Some subscript semantic checks must be deferred until all of the
440// subscripts are in hand.
441MaybeExpr ExpressionAnalyzer::CompleteSubscripts(ArrayRef &&ref) {
442 const Symbol &symbol{ref.GetLastSymbol().GetUltimate()};
443 int symbolRank{symbol.Rank()};
444 int subscripts{static_cast<int>(ref.size())};
445 if (subscripts == 0) {
446 return std::nullopt; // error recovery
447 } else if (subscripts != symbolRank) {
448 if (symbolRank != 0) {
449 Say("Reference to rank-%d object '%s' has %d subscripts"_err_en_US,
450 symbolRank, symbol.name(), subscripts);
451 }
452 return std::nullopt;
453 } else if (symbol.has<semantics::ObjectEntityDetails>() ||
454 symbol.has<semantics::AssocEntityDetails>()) {
455 // C928 & C1002
456 if (Triplet * last{std::get_if<Triplet>(&ref.subscript().back().u)}) {
457 if (!last->upper() && IsAssumedSizeArray(symbol)) {
458 Say("Assumed-size array '%s' must have explicit final subscript upper bound value"_err_en_US,
459 symbol.name());
460 return std::nullopt;
461 }
462 }
463 } else {
464 // Shouldn't get here from Analyze(ArrayElement) without a valid base,
465 // which, if not an object, must be a construct entity from
466 // SELECT TYPE/RANK or ASSOCIATE.
467 CHECK(symbol.has<semantics::AssocEntityDetails>());
468 }
469 if (!semantics::IsNamedConstant(symbol) && !inDataStmtObject_) {
470 // Subscripts of named constants are checked in folding.
471 // Subscripts of DATA statement objects are checked in data statement
472 // conversion to initializers.
473 CheckSubscripts(context_, ref);
474 }
475 return Designate(DataRef{std::move(ref)});
476}
477
478// Applies subscripts to a data reference.
479MaybeExpr ExpressionAnalyzer::ApplySubscripts(
480 DataRef &&dataRef, std::vector<Subscript> &&subscripts) {
481 if (subscripts.empty()) {
482 return std::nullopt; // error recovery
483 }
484 return common::visit(common::visitors{
485 [&](SymbolRef &&symbol) {
486 return CompleteSubscripts(
487 ArrayRef{symbol, std::move(subscripts)});
488 },
489 [&](Component &&c) {
490 return CompleteSubscripts(
491 ArrayRef{std::move(c), std::move(subscripts)});
492 },
493 [&](auto &&) -> MaybeExpr {
494 DIE("bad base for ArrayRef");
495 return std::nullopt;
496 },
497 },
498 std::move(dataRef.u));
499}
500
501// C919a - only one part-ref of a data-ref may have rank > 0
502bool ExpressionAnalyzer::CheckRanks(const DataRef &dataRef) {
503 return common::visit(
504 common::visitors{
505 [this](const Component &component) {
506 const Symbol &symbol{component.GetLastSymbol()};
507 if (int componentRank{symbol.Rank()}; componentRank > 0) {
508 if (int baseRank{component.base().Rank()}; baseRank > 0) {
509 Say("Reference to whole rank-%d component '%s' of rank-%d array of derived type is not allowed"_err_en_US,
510 componentRank, symbol.name(), baseRank);
511 return false;
512 }
513 } else {
514 return CheckRanks(component.base());
515 }
516 return true;
517 },
518 [this](const ArrayRef &arrayRef) {
519 if (const auto *component{arrayRef.base().UnwrapComponent()}) {
520 int subscriptRank{0};
521 for (const Subscript &subscript : arrayRef.subscript()) {
522 subscriptRank += subscript.Rank();
523 }
524 if (subscriptRank > 0) {
525 if (int componentBaseRank{component->base().Rank()};
526 componentBaseRank > 0) {
527 Say("Subscripts of component '%s' of rank-%d derived type array have rank %d but must all be scalar"_err_en_US,
528 component->GetLastSymbol().name(), componentBaseRank,
529 subscriptRank);
530 return false;
531 }
532 } else {
533 return CheckRanks(component->base());
534 }
535 }
536 return true;
537 },
538 [](const SymbolRef &) { return true; },
539 [](const CoarrayRef &) { return true; },
540 },
541 dataRef.u);
542}
543
544// C911 - if the last name in a data-ref has an abstract derived type,
545// it must also be polymorphic.
546bool ExpressionAnalyzer::CheckPolymorphic(const DataRef &dataRef) {
547 if (auto type{DynamicType::From(dataRef.GetLastSymbol())}) {
548 if (type->category() == TypeCategory::Derived && !type->IsPolymorphic()) {
549 const Symbol &typeSymbol{
550 type->GetDerivedTypeSpec().typeSymbol().GetUltimate()};
551 if (typeSymbol.attrs().test(semantics::Attr::ABSTRACT)) {
552 AttachDeclaration(
553 Say("Reference to object with abstract derived type '%s' must be polymorphic"_err_en_US,
554 typeSymbol.name()),
555 typeSymbol);
556 return false;
557 }
558 }
559 }
560 return true;
561}
562
563bool ExpressionAnalyzer::CheckDataRef(const DataRef &dataRef) {
564 // Always check both, don't short-circuit
565 bool ranksOk{CheckRanks(dataRef)};
566 bool polyOk{CheckPolymorphic(dataRef)};
567 return ranksOk && polyOk;
568}
569
570// Parse tree correction after a substring S(j:k) was misparsed as an
571// array section. Fortran substrings must have a range, not a
572// single index.
573static std::optional<parser::Substring> FixMisparsedSubstringDataRef(
574 parser::DataRef &dataRef) {
575 if (auto *ae{
576 std::get_if<common::Indirection<parser::ArrayElement>>(&dataRef.u)}) {
577 // ...%a(j:k) and "a" is a character scalar
578 parser::ArrayElement &arrElement{ae->value()};
579 if (arrElement.subscripts.size() == 1) {
580 if (auto *triplet{std::get_if<parser::SubscriptTriplet>(
581 &arrElement.subscripts.front().u)}) {
582 if (!std::get<2 /*stride*/>(triplet->t).has_value()) {
583 if (const Symbol *symbol{
584 parser::GetLastName(arrElement.base).symbol}) {
585 const Symbol &ultimate{symbol->GetUltimate()};
586 if (const semantics::DeclTypeSpec *type{ultimate.GetType()}) {
587 if (ultimate.Rank() == 0 &&
588 type->category() == semantics::DeclTypeSpec::Character) {
589 // The ambiguous S(j:k) was parsed as an array section
590 // reference, but it's now clear that it's a substring.
591 // Fix the parse tree in situ.
592 return arrElement.ConvertToSubstring();
593 }
594 }
595 }
596 }
597 }
598 }
599 }
600 return std::nullopt;
601}
602
603// When a designator is a misparsed type-param-inquiry of a misparsed
604// substring -- it looks like a structure component reference of an array
605// slice -- fix the substring and then convert to an intrinsic function
606// call to KIND() or LEN(). And when the designator is a misparsed
607// substring, convert it into a substring reference in place.
608MaybeExpr ExpressionAnalyzer::FixMisparsedSubstring(
609 const parser::Designator &d) {
610 auto &mutate{const_cast<parser::Designator &>(d)};
611 if (auto *dataRef{std::get_if<parser::DataRef>(&mutate.u)}) {
612 if (auto *sc{std::get_if<common::Indirection<parser::StructureComponent>>(
613 &dataRef->u)}) {
614 parser::StructureComponent &structComponent{sc->value()};
615 parser::CharBlock which{structComponent.component.source};
616 if (which == "kind" || which == "len") {
617 if (auto substring{
618 FixMisparsedSubstringDataRef(structComponent.base)}) {
619 // ...%a(j:k)%kind or %len and "a" is a character scalar
620 mutate.u = std::move(*substring);
621 if (MaybeExpr substringExpr{Analyze(d)}) {
622 return MakeFunctionRef(which,
623 ActualArguments{ActualArgument{std::move(*substringExpr)}});
624 }
625 }
626 }
627 } else if (auto substring{FixMisparsedSubstringDataRef(*dataRef)}) {
628 mutate.u = std::move(*substring);
629 }
630 }
631 return std::nullopt;
632}
633
634MaybeExpr ExpressionAnalyzer::Analyze(const parser::Designator &d) {
635 auto restorer{GetContextualMessages().SetLocation(d.source)};
636 if (auto substringInquiry{FixMisparsedSubstring(d)}) {
637 return substringInquiry;
638 }
639 // These checks have to be deferred to these "top level" data-refs where
640 // we can be sure that there are no following subscripts (yet).
641 MaybeExpr result{Analyze(d.u)};
642 if (result) {
643 std::optional<DataRef> dataRef{ExtractDataRef(std::move(result))};
644 if (!dataRef) {
645 dataRef = ExtractDataRef(std::move(result), /*intoSubstring=*/true);
646 }
647 if (!dataRef) {
648 dataRef = ExtractDataRef(std::move(result),
649 /*intoSubstring=*/false, /*intoComplexPart=*/true);
650 }
651 if (dataRef) {
652 if (!CheckDataRef(*dataRef)) {
653 result.reset();
654 } else if (ExtractCoarrayRef(*dataRef).has_value()) {
655 if (auto dyType{result->GetType()};
656 dyType && dyType->category() == TypeCategory::Derived) {
657 if (!std::holds_alternative<CoarrayRef>(dataRef->u) &&
658 dyType->IsPolymorphic()) { // F'2023 C918
659 Say("The base of a polymorphic object may not be coindexed"_err_en_US);
660 }
661 if (const auto *derived{GetDerivedTypeSpec(*dyType)}) {
662 if (auto bad{FindPolymorphicAllocatablePotentialComponent(
663 *derived)}) { // F'2023 C917
664 Say("A coindexed designator may not have a type with the polymorphic potential subobject component '%s'"_err_en_US,
665 bad.BuildResultDesignatorName());
666 }
667 }
668 }
669 }
670 }
671 }
672 return result;
673}
674
675// A utility subroutine to repackage optional expressions of various levels
676// of type specificity as fully general MaybeExpr values.
677template <typename A> common::IfNoLvalue<MaybeExpr, A> AsMaybeExpr(A &&x) {
678 return AsGenericExpr(std::move(x));
679}
680template <typename A> MaybeExpr AsMaybeExpr(std::optional<A> &&x) {
681 if (x) {
682 return AsMaybeExpr(std::move(*x));
683 }
684 return std::nullopt;
685}
686
687// Type kind parameter values for literal constants.
688int ExpressionAnalyzer::AnalyzeKindParam(
689 const std::optional<parser::KindParam> &kindParam, int defaultKind) {
690 if (!kindParam) {
691 return defaultKind;
692 }
693 std::int64_t kind{common::visit(
694 common::visitors{
695 [](std::uint64_t k) { return static_cast<std::int64_t>(k); },
696 [&](const parser::Scalar<
697 parser::Integer<parser::Constant<parser::Name>>> &n) {
698 if (MaybeExpr ie{Analyze(n)}) {
699 return ToInt64(*ie).value_or(defaultKind);
700 }
701 return static_cast<std::int64_t>(defaultKind);
702 },
703 },
704 kindParam->u)};
705 if (kind != static_cast<int>(kind)) {
706 Say("Unsupported type kind value (%jd)"_err_en_US,
707 static_cast<std::intmax_t>(kind));
708 kind = defaultKind;
709 }
710 return static_cast<int>(kind);
711}
712
713// Common handling of parser::IntLiteralConstant, SignedIntLiteralConstant,
714// and UnsignedLiteralConstant
715template <typename TYPES, TypeCategory CAT> struct IntTypeVisitor {
716 using Result = MaybeExpr;
717 using Types = TYPES;
718 template <typename T> Result Test() {
719 if (T::kind >= kind) {
720 const char *p{digits.begin()};
721 using Int = typename T::Scalar;
722 typename Int::ValueWithOverflow num{0, false};
723 const char *typeName{
724 CAT == TypeCategory::Integer ? "INTEGER" : "UNSIGNED"};
725 if (isNegated) {
726 auto unsignedNum{Int::Read(p, 10, false /*unsigned*/)};
727 num.value = unsignedNum.value.Negate().value;
728 num.overflow = unsignedNum.overflow ||
729 (CAT == TypeCategory::Integer && num.value > Int{0});
730 if (!num.overflow && num.value.Negate().overflow) {
731 analyzer.Warn(LanguageFeature::BigIntLiterals, digits,
732 "negated maximum INTEGER(KIND=%d) literal"_port_en_US, T::kind);
733 }
734 } else {
735 num = Int::Read(p, 10, /*isSigned=*/CAT == TypeCategory::Integer);
736 }
737 if (num.overflow) {
738 if constexpr (CAT == TypeCategory::Unsigned) {
739 analyzer.Warn(common::UsageWarning::UnsignedLiteralTruncation,
740 "Unsigned literal too large for UNSIGNED(KIND=%d); truncated"_warn_en_US,
741 kind);
742 return Expr<SomeType>{
743 Expr<SomeKind<CAT>>{Expr<T>{Constant<T>{std::move(num.value)}}}};
744 }
745 } else {
746 if (T::kind > kind) {
747 if (!isDefaultKind ||
748 !analyzer.context().IsEnabled(LanguageFeature::BigIntLiterals)) {
749 return std::nullopt;
750 } else {
751 analyzer.Warn(LanguageFeature::BigIntLiterals, digits,
752 "Integer literal is too large for default %s(KIND=%d); "
753 "assuming %s(KIND=%d)"_port_en_US,
754 typeName, kind, typeName, T::kind);
755 }
756 }
757 return Expr<SomeType>{
758 Expr<SomeKind<CAT>>{Expr<T>{Constant<T>{std::move(num.value)}}}};
759 }
760 }
761 return std::nullopt;
762 }
763 ExpressionAnalyzer &analyzer;
764 parser::CharBlock digits;
765 std::int64_t kind;
766 bool isDefaultKind;
767 bool isNegated;
768};
769
770template <typename TYPES, TypeCategory CAT, typename PARSED>
771MaybeExpr ExpressionAnalyzer::IntLiteralConstant(
772 const PARSED &x, bool isNegated) {
773 const auto &kindParam{std::get<std::optional<parser::KindParam>>(x.t)};
774 bool isDefaultKind{!kindParam};
775 int kind{AnalyzeKindParam(kindParam, GetDefaultKind(CAT))};
776 const char *typeName{CAT == TypeCategory::Integer ? "INTEGER" : "UNSIGNED"};
777 if (CheckIntrinsicKind(CAT, kind)) {
778 auto digits{std::get<parser::CharBlock>(x.t)};
779 if (MaybeExpr result{common::SearchTypes(IntTypeVisitor<TYPES, CAT>{
780 *this, digits, kind, isDefaultKind, isNegated})}) {
781 return result;
782 } else if (isDefaultKind) {
783 Say(digits,
784 "Integer literal is too large for any allowable kind of %s"_err_en_US,
785 typeName);
786 } else {
787 Say(digits, "Integer literal is too large for %s(KIND=%d)"_err_en_US,
788 typeName, kind);
789 }
790 }
791 return std::nullopt;
792}
793
794MaybeExpr ExpressionAnalyzer::Analyze(
795 const parser::IntLiteralConstant &x, bool isNegated) {
796 auto restorer{
797 GetContextualMessages().SetLocation(std::get<parser::CharBlock>(x.t))};
798 return IntLiteralConstant<IntegerTypes, TypeCategory::Integer>(x, isNegated);
799}
800
801MaybeExpr ExpressionAnalyzer::Analyze(
802 const parser::SignedIntLiteralConstant &x) {
803 auto restorer{GetContextualMessages().SetLocation(x.source)};
804 return IntLiteralConstant<IntegerTypes, TypeCategory::Integer>(x);
805}
806
807MaybeExpr ExpressionAnalyzer::Analyze(
808 const parser::UnsignedLiteralConstant &x) {
809 parser::CharBlock at{std::get<parser::CharBlock>(x.t)};
810 auto restorer{GetContextualMessages().SetLocation(at)};
811 if (!context().IsEnabled(common::LanguageFeature::Unsigned) &&
812 !context().AnyFatalError()) {
813 context().Say(
814 at, "-funsigned is required to enable UNSIGNED constants"_err_en_US);
815 }
816 return IntLiteralConstant<UnsignedTypes, TypeCategory::Unsigned>(x);
817}
818
819template <typename TYPE>
820Constant<TYPE> ReadRealLiteral(
821 parser::CharBlock source, FoldingContext &context) {
822 const char *p{source.begin()};
823 auto valWithFlags{
824 Scalar<TYPE>::Read(p, context.targetCharacteristics().roundingMode())};
825 CHECK(p == source.end());
826 RealFlagWarnings(context, valWithFlags.flags, "conversion of REAL literal");
827 auto value{valWithFlags.value};
828 if (context.targetCharacteristics().areSubnormalsFlushedToZero()) {
829 value = value.FlushSubnormalToZero();
830 }
831 return {value};
832}
833
834struct RealTypeVisitor {
835 using Result = std::optional<Expr<SomeReal>>;
836 using Types = RealTypes;
837
838 RealTypeVisitor(int k, parser::CharBlock lit, FoldingContext &ctx)
839 : kind{k}, literal{lit}, context{ctx} {}
840
841 template <typename T> Result Test() {
842 if (kind == T::kind) {
843 return {AsCategoryExpr(ReadRealLiteral<T>(literal, context))};
844 }
845 return std::nullopt;
846 }
847
848 int kind;
849 parser::CharBlock literal;
850 FoldingContext &context;
851};
852
853// Reads a real literal constant and encodes it with the right kind.
854MaybeExpr ExpressionAnalyzer::Analyze(const parser::RealLiteralConstant &x) {
855 // Use a local message context around the real literal for better
856 // provenance on any messages.
857 auto restorer{GetContextualMessages().SetLocation(x.real.source)};
858 // If a kind parameter appears, it defines the kind of the literal and the
859 // letter used in an exponent part must be 'E' (e.g., the 'E' in
860 // "6.02214E+23"). In the absence of an explicit kind parameter, any
861 // exponent letter determines the kind. Otherwise, defaults apply.
862 auto &defaults{context_.defaultKinds()};
863 int defaultKind{defaults.GetDefaultKind(TypeCategory::Real)};
864 const char *end{x.real.source.end()};
865 char expoLetter{' '};
866 std::optional<int> letterKind;
867 for (const char *p{x.real.source.begin()}; p < end; ++p) {
868 if (parser::IsLetter(*p)) {
869 expoLetter = *p;
870 switch (expoLetter) {
871 case 'e':
872 letterKind = defaults.GetDefaultKind(TypeCategory::Real);
873 break;
874 case 'd':
875 letterKind = defaults.doublePrecisionKind();
876 break;
877 case 'q':
878 letterKind = defaults.quadPrecisionKind();
879 break;
880 default:
881 Say("Unknown exponent letter '%c'"_err_en_US, expoLetter);
882 }
883 break;
884 }
885 }
886 if (letterKind) {
887 defaultKind = *letterKind;
888 }
889 // C716 requires 'E' as an exponent.
890 // Extension: allow exponent-letter matching the kind-param.
891 auto kind{AnalyzeKindParam(x.kind, defaultKind)};
892 if (letterKind && expoLetter != 'e') {
893 if (kind != *letterKind) {
894 Warn(common::LanguageFeature::ExponentMatchingKindParam,
895 "Explicit kind parameter on real constant disagrees with exponent letter '%c'"_warn_en_US,
896 expoLetter);
897 } else if (x.kind) {
898 Warn(common::LanguageFeature::ExponentMatchingKindParam,
899 "Explicit kind parameter together with non-'E' exponent letter is not standard"_port_en_US);
900 }
901 }
902 auto result{common::SearchTypes(
903 RealTypeVisitor{kind, x.real.source, GetFoldingContext()})};
904 if (!result) { // C717
905 Say("Unsupported REAL(KIND=%d)"_err_en_US, kind);
906 }
907 return AsMaybeExpr(std::move(result));
908}
909
910MaybeExpr ExpressionAnalyzer::Analyze(
911 const parser::SignedRealLiteralConstant &x) {
912 if (auto result{Analyze(std::get<parser::RealLiteralConstant>(x.t))}) {
913 auto &realExpr{std::get<Expr<SomeReal>>(result->u)};
914 if (auto sign{std::get<std::optional<parser::Sign>>(x.t)}) {
915 if (sign == parser::Sign::Negative) {
916 return AsGenericExpr(-std::move(realExpr));
917 }
918 }
919 return result;
920 }
921 return std::nullopt;
922}
923
924MaybeExpr ExpressionAnalyzer::Analyze(
925 const parser::SignedComplexLiteralConstant &x) {
926 auto result{Analyze(std::get<parser::ComplexLiteralConstant>(x.t))};
927 if (!result) {
928 return std::nullopt;
929 } else if (std::get<parser::Sign>(x.t) == parser::Sign::Negative) {
930 return AsGenericExpr(-std::move(std::get<Expr<SomeComplex>>(result->u)));
931 } else {
932 return result;
933 }
934}
935
936MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexPart &x) {
937 return Analyze(x.u);
938}
939
940MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexLiteralConstant &z) {
941 return AnalyzeComplex(Analyze(std::get<0>(z.t)), Analyze(std::get<1>(z.t)),
942 "complex literal constant");
943}
944
945// CHARACTER literal processing.
946MaybeExpr ExpressionAnalyzer::AnalyzeString(std::string &&string, int kind) {
947 if (!CheckIntrinsicKind(TypeCategory::Character, kind)) {
948 return std::nullopt;
949 }
950 switch (kind) {
951 case 1:
952 return AsGenericExpr(Constant<Type<TypeCategory::Character, 1>>{
953 parser::DecodeString<std::string, parser::Encoding::LATIN_1>(
954 string, true)});
955 case 2:
956 return AsGenericExpr(Constant<Type<TypeCategory::Character, 2>>{
957 parser::DecodeString<std::u16string, parser::Encoding::UTF_8>(
958 string, true)});
959 case 4:
960 return AsGenericExpr(Constant<Type<TypeCategory::Character, 4>>{
961 parser::DecodeString<std::u32string, parser::Encoding::UTF_8>(
962 string, true)});
963 default:
964 CRASH_NO_CASE;
965 }
966}
967
968MaybeExpr ExpressionAnalyzer::Analyze(const parser::CharLiteralConstant &x) {
969 int kind{
970 AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t), 1)};
971 auto value{std::get<std::string>(x.t)};
972 return AnalyzeString(std::move(value), kind);
973}
974
975MaybeExpr ExpressionAnalyzer::Analyze(
976 const parser::HollerithLiteralConstant &x) {
977 int kind{GetDefaultKind(TypeCategory::Character)};
978 auto result{AnalyzeString(std::string{x.v}, kind)};
979 if (auto *constant{UnwrapConstantValue<Ascii>(result)}) {
980 constant->set_wasHollerith(true);
981 }
982 return result;
983}
984
985// .TRUE. and .FALSE. of various kinds
986MaybeExpr ExpressionAnalyzer::Analyze(const parser::LogicalLiteralConstant &x) {
987 auto kind{AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t),
988 GetDefaultKind(TypeCategory::Logical))};
989 bool value{std::get<bool>(x.t)};
990 auto result{common::SearchTypes(
991 TypeKindVisitor<TypeCategory::Logical, Constant, bool>{
992 kind, std::move(value)})};
993 if (!result) {
994 Say("unsupported LOGICAL(KIND=%d)"_err_en_US, kind); // C728
995 }
996 return result;
997}
998
999// BOZ typeless literals
1000MaybeExpr ExpressionAnalyzer::Analyze(const parser::BOZLiteralConstant &x) {
1001 const char *p{x.v.c_str()};
1002 std::uint64_t base{16};
1003 switch (*p++) {
1004 case 'b':
1005 base = 2;
1006 break;
1007 case 'o':
1008 base = 8;
1009 break;
1010 case 'z':
1011 break;
1012 case 'x':
1013 break;
1014 default:
1015 CRASH_NO_CASE;
1016 }
1017 CHECK(*p == '"');
1018 ++p;
1019 auto value{BOZLiteralConstant::Read(p, base, false /*unsigned*/)};
1020 if (*p != '"') {
1021 Say("Invalid digit ('%c') in BOZ literal '%s'"_err_en_US, *p,
1022 x.v); // C7107, C7108
1023 return std::nullopt;
1024 }
1025 if (value.overflow) {
1026 Say("BOZ literal '%s' too large"_err_en_US, x.v);
1027 return std::nullopt;
1028 }
1029 return AsGenericExpr(std::move(value.value));
1030}
1031
1032// Names and named constants
1033MaybeExpr ExpressionAnalyzer::Analyze(const parser::Name &n) {
1034 auto restorer{GetContextualMessages().SetLocation(n.source)};
1035 if (std::optional<int> kind{IsImpliedDo(n.source)}) {
1036 return AsMaybeExpr(ConvertToKind<TypeCategory::Integer>(
1037 *kind, AsExpr(ImpliedDoIndex{n.source})));
1038 }
1039 if (context_.HasError(n.symbol)) { // includes case of no symbol
1040 return std::nullopt;
1041 } else {
1042 const Symbol &ultimate{n.symbol->GetUltimate()};
1043 if (ultimate.has<semantics::TypeParamDetails>()) {
1044 // A bare reference to a derived type parameter within a parameterized
1045 // derived type definition.
1046 auto dyType{DynamicType::From(ultimate)};
1047 if (!dyType) {
1048 // When the integer kind of this type parameter is not known now,
1049 // it's either an error or because it depends on earlier-declared kind
1050 // type parameters. So assume that it's a subscript integer for now
1051 // while processing other specification expressions in the PDT
1052 // definition; the right kind value will be used later in each of its
1053 // instantiations.
1054 int kind{SubscriptInteger::kind};
1055 if (const auto *typeSpec{ultimate.GetType()}) {
1056 if (const semantics::IntrinsicTypeSpec *
1057 intrinType{typeSpec->AsIntrinsic()}) {
1058 if (auto k{ToInt64(Fold(semantics::KindExpr{intrinType->kind()}))};
1059 k &&
1060 common::IsValidKindOfIntrinsicType(TypeCategory::Integer, *k)) {
1061 kind = *k;
1062 }
1063 }
1064 }
1065 dyType = DynamicType{TypeCategory::Integer, kind};
1066 }
1067 return Fold(ConvertToType(
1068 *dyType, AsGenericExpr(TypeParamInquiry{std::nullopt, ultimate})));
1069 } else {
1070 if (n.symbol->attrs().test(semantics::Attr::VOLATILE)) {
1071 if (const semantics::Scope *pure{semantics::FindPureProcedureContaining(
1072 context_.FindScope(n.source))}) {
1073 SayAt(n,
1074 "VOLATILE variable '%s' may not be referenced in pure subprogram '%s'"_err_en_US,
1075 n.source, DEREF(pure->symbol()).name());
1076 n.symbol->attrs().reset(semantics::Attr::VOLATILE);
1077 }
1078 }
1079 CheckForWholeAssumedSizeArray(n.source, n.symbol);
1080 return Designate(DataRef{*n.symbol});
1081 }
1082 }
1083}
1084
1085void ExpressionAnalyzer::CheckForWholeAssumedSizeArray(
1086 parser::CharBlock at, const Symbol *symbol) {
1087 if (!isWholeAssumedSizeArrayOk_ && symbol &&
1088 semantics::IsAssumedSizeArray(ResolveAssociations(*symbol))) {
1089 AttachDeclaration(
1090 SayAt(at,
1091 "Whole assumed-size array '%s' may not appear here without subscripts"_err_en_US,
1092 symbol->name()),
1093 *symbol);
1094 }
1095}
1096
1097MaybeExpr ExpressionAnalyzer::Analyze(const parser::NamedConstant &n) {
1098 auto restorer{GetContextualMessages().SetLocation(n.v.source)};
1099 if (MaybeExpr value{Analyze(n.v)}) {
1100 Expr<SomeType> folded{Fold(std::move(*value))};
1101 if (IsConstantExpr(folded)) {
1102 return folded;
1103 }
1104 Say(n.v.source, "must be a constant"_err_en_US); // C718
1105 }
1106 return std::nullopt;
1107}
1108
1109MaybeExpr ExpressionAnalyzer::Analyze(const parser::NullInit &n) {
1110 auto restorer{AllowNullPointer()};
1111 if (MaybeExpr value{Analyze(n.v.value())}) {
1112 // Subtle: when the NullInit is a DataStmtConstant, it might
1113 // be a misparse of a structure constructor without parameters
1114 // or components (e.g., T()). Checking the result to ensure
1115 // that a "=>" data entity initializer actually resolved to
1116 // a null pointer has to be done by the caller.
1117 return Fold(std::move(*value));
1118 }
1119 return std::nullopt;
1120}
1121
1122MaybeExpr ExpressionAnalyzer::Analyze(
1123 const parser::StmtFunctionStmt &stmtFunc) {
1124 inStmtFunctionDefinition_ = true;
1125 return Analyze(std::get<parser::Scalar<parser::Expr>>(stmtFunc.t));
1126}
1127
1128MaybeExpr ExpressionAnalyzer::Analyze(const parser::InitialDataTarget &x) {
1129 return Analyze(x.value());
1130}
1131
1132MaybeExpr ExpressionAnalyzer::Analyze(const parser::DataStmtValue &x) {
1133 if (const auto &repeat{
1134 std::get<std::optional<parser::DataStmtRepeat>>(x.t)}) {
1135 x.repetitions = -1;
1136 if (MaybeExpr expr{Analyze(repeat->u)}) {
1137 Expr<SomeType> folded{Fold(std::move(*expr))};
1138 if (auto value{ToInt64(folded)}) {
1139 if (*value >= 0) { // C882
1140 x.repetitions = *value;
1141 } else {
1142 Say(FindSourceLocation(repeat),
1143 "Repeat count (%jd) for data value must not be negative"_err_en_US,
1144 *value);
1145 }
1146 }
1147 }
1148 }
1149 return Analyze(std::get<parser::DataStmtConstant>(x.t));
1150}
1151
1152// Substring references
1153std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::GetSubstringBound(
1154 const std::optional<parser::ScalarIntExpr> &bound) {
1155 if (bound) {
1156 if (MaybeExpr expr{Analyze(*bound)}) {
1157 if (expr->Rank() > 1) {
1158 Say("substring bound expression has rank %d"_err_en_US, expr->Rank());
1159 }
1160 if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) {
1161 if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) {
1162 return {std::move(*ssIntExpr)};
1163 }
1164 return {Expr<SubscriptInteger>{
1165 Convert<SubscriptInteger, TypeCategory::Integer>{
1166 std::move(*intExpr)}}};
1167 } else {
1168 Say("substring bound expression is not INTEGER"_err_en_US);
1169 }
1170 }
1171 }
1172 return std::nullopt;
1173}
1174
1175MaybeExpr ExpressionAnalyzer::Analyze(const parser::Substring &ss) {
1176 if (MaybeExpr baseExpr{Analyze(std::get<parser::DataRef>(ss.t))}) {
1177 if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*baseExpr))}) {
1178 if (MaybeExpr newBaseExpr{Designate(std::move(*dataRef))}) {
1179 if (std::optional<DataRef> checked{
1180 ExtractDataRef(std::move(*newBaseExpr))}) {
1181 const parser::SubstringRange &range{
1182 std::get<parser::SubstringRange>(ss.t)};
1183 std::optional<Expr<SubscriptInteger>> first{
1184 Fold(GetSubstringBound(std::get<0>(range.t)))};
1185 std::optional<Expr<SubscriptInteger>> last{
1186 Fold(GetSubstringBound(std::get<1>(range.t)))};
1187 const Symbol &symbol{checked->GetLastSymbol()};
1188 if (std::optional<DynamicType> dynamicType{
1189 DynamicType::From(symbol)}) {
1190 if (dynamicType->category() == TypeCategory::Character) {
1191 auto lbValue{ToInt64(first)};
1192 if (!lbValue) {
1193 lbValue = 1;
1194 }
1195 auto ubValue{ToInt64(last)};
1196 auto len{dynamicType->knownLength()};
1197 if (!ubValue) {
1198 ubValue = len;
1199 }
1200 if (lbValue && ubValue && *lbValue > *ubValue) {
1201 // valid, substring is empty
1202 } else if (lbValue && *lbValue < 1 && (ubValue || !last)) {
1203 Say("Substring must begin at 1 or later, not %jd"_err_en_US,
1204 static_cast<std::intmax_t>(*lbValue));
1205 return std::nullopt;
1206 } else if (ubValue && len && *ubValue > *len &&
1207 (lbValue || !first)) {
1208 Say("Substring must end at %zd or earlier, not %jd"_err_en_US,
1209 static_cast<std::intmax_t>(*len),
1210 static_cast<std::intmax_t>(*ubValue));
1211 return std::nullopt;
1212 }
1213 return WrapperHelper<TypeCategory::Character, Designator,
1214 Substring>(dynamicType->kind(),
1215 Substring{std::move(checked.value()), std::move(first),
1216 std::move(last)});
1217 }
1218 }
1219 Say("substring may apply only to CHARACTER"_err_en_US);
1220 }
1221 }
1222 }
1223 }
1224 return std::nullopt;
1225}
1226
1227// CHARACTER literal substrings
1228MaybeExpr ExpressionAnalyzer::Analyze(
1229 const parser::CharLiteralConstantSubstring &x) {
1230 const parser::SubstringRange &range{std::get<parser::SubstringRange>(x.t)};
1231 std::optional<Expr<SubscriptInteger>> lower{
1232 GetSubstringBound(std::get<0>(range.t))};
1233 std::optional<Expr<SubscriptInteger>> upper{
1234 GetSubstringBound(std::get<1>(range.t))};
1235 if (MaybeExpr string{Analyze(std::get<parser::CharLiteralConstant>(x.t))}) {
1236 if (auto *charExpr{std::get_if<Expr<SomeCharacter>>(&string->u)}) {
1237 Expr<SubscriptInteger> length{
1238 common::visit([](const auto &ckExpr) { return ckExpr.LEN().value(); },
1239 charExpr->u)};
1240 if (!lower) {
1241 lower = Expr<SubscriptInteger>{1};
1242 }
1243 if (!upper) {
1244 upper = Expr<SubscriptInteger>{
1245 static_cast<std::int64_t>(ToInt64(length).value())};
1246 }
1247 return common::visit(
1248 [&](auto &&ckExpr) -> MaybeExpr {
1249 using Result = ResultType<decltype(ckExpr)>;
1250 auto *cp{std::get_if<Constant<Result>>(&ckExpr.u)};
1251 CHECK(DEREF(cp).size() == 1);
1252 StaticDataObject::Pointer staticData{StaticDataObject::Create()};
1253 staticData->set_alignment(Result::kind)
1254 .set_itemBytes(Result::kind)
1255 .Push(cp->GetScalarValue().value(),
1256 foldingContext_.targetCharacteristics().isBigEndian());
1257 Substring substring{std::move(staticData), std::move(lower.value()),
1258 std::move(upper.value())};
1259 return AsGenericExpr(
1260 Expr<Result>{Designator<Result>{std::move(substring)}});
1261 },
1262 std::move(charExpr->u));
1263 }
1264 }
1265 return std::nullopt;
1266}
1267
1268// substring%KIND/LEN
1269MaybeExpr ExpressionAnalyzer::Analyze(const parser::SubstringInquiry &x) {
1270 if (MaybeExpr substring{Analyze(x.v)}) {
1271 CHECK(x.source.size() >= 8);
1272 int nameLen{x.source.end()[-1] == 'n' ? 3 /*LEN*/ : 4 /*KIND*/};
1273 parser::CharBlock name{
1274 x.source.end() - nameLen, static_cast<std::size_t>(nameLen)};
1275 CHECK(name == "len" || name == "kind");
1276 return MakeFunctionRef(
1277 name, ActualArguments{ActualArgument{std::move(*substring)}});
1278 } else {
1279 return std::nullopt;
1280 }
1281}
1282
1283// Subscripted array references
1284std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::AsSubscript(
1285 MaybeExpr &&expr) {
1286 if (expr) {
1287 if (expr->Rank() > 1) {
1288 Say("Subscript expression has rank %d greater than 1"_err_en_US,
1289 expr->Rank());
1290 }
1291 if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) {
1292 if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) {
1293 return std::move(*ssIntExpr);
1294 } else {
1295 return Expr<SubscriptInteger>{
1296 Convert<SubscriptInteger, TypeCategory::Integer>{
1297 std::move(*intExpr)}};
1298 }
1299 } else {
1300 Say("Subscript expression is not INTEGER"_err_en_US);
1301 }
1302 }
1303 return std::nullopt;
1304}
1305
1306std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::TripletPart(
1307 const std::optional<parser::Subscript> &s) {
1308 if (s) {
1309 return AsSubscript(Analyze(*s));
1310 } else {
1311 return std::nullopt;
1312 }
1313}
1314
1315std::optional<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscript(
1316 const parser::SectionSubscript &ss) {
1317 return common::visit(
1318 common::visitors{
1319 [&](const parser::SubscriptTriplet &t) -> std::optional<Subscript> {
1320 const auto &lower{std::get<0>(t.t)};
1321 const auto &upper{std::get<1>(t.t)};
1322 const auto &stride{std::get<2>(t.t)};
1323 auto result{Triplet{
1324 TripletPart(lower), TripletPart(upper), TripletPart(stride)}};
1325 if ((lower && !result.lower()) || (upper && !result.upper())) {
1326 return std::nullopt;
1327 } else {
1328 return std::make_optional<Subscript>(result);
1329 }
1330 },
1331 [&](const auto &s) -> std::optional<Subscript> {
1332 if (auto subscriptExpr{AsSubscript(Analyze(s))}) {
1333 return Subscript{std::move(*subscriptExpr)};
1334 } else {
1335 return std::nullopt;
1336 }
1337 },
1338 },
1339 ss.u);
1340}
1341
1342// Empty result means an error occurred
1343std::vector<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscripts(
1344 const std::list<parser::SectionSubscript> &sss) {
1345 bool error{false};
1346 std::vector<Subscript> subscripts;
1347 for (const auto &s : sss) {
1348 if (auto subscript{AnalyzeSectionSubscript(s)}) {
1349 subscripts.emplace_back(std::move(*subscript));
1350 } else {
1351 error = true;
1352 }
1353 }
1354 return !error ? subscripts : std::vector<Subscript>{};
1355}
1356
1357MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayElement &ae) {
1358 MaybeExpr baseExpr;
1359 {
1360 auto restorer{AllowWholeAssumedSizeArray()};
1361 baseExpr = Analyze(ae.base);
1362 }
1363 if (baseExpr) {
1364 if (ae.subscripts.empty()) {
1365 // will be converted to function call later or error reported
1366 } else if (baseExpr->Rank() == 0) {
1367 if (const Symbol *symbol{GetLastSymbol(*baseExpr)}) {
1368 if (!context_.HasError(symbol)) {
1369 if (inDataStmtConstant_) {
1370 // Better error for NULL(X) with a MOLD= argument
1371 Say("'%s' must be an array or structure constructor if used with non-empty parentheses as a DATA statement constant"_err_en_US,
1372 symbol->name());
1373 } else {
1374 Say("'%s' is not an array"_err_en_US, symbol->name());
1375 }
1376 context_.SetError(*symbol);
1377 }
1378 }
1379 } else if (std::optional<DataRef> dataRef{
1380 ExtractDataRef(std::move(*baseExpr))}) {
1381 return ApplySubscripts(
1382 std::move(*dataRef), AnalyzeSectionSubscripts(ae.subscripts));
1383 } else {
1384 Say("Subscripts may be applied only to an object, component, or array constant"_err_en_US);
1385 }
1386 }
1387 // error was reported: analyze subscripts without reporting more errors
1388 auto restorer{GetContextualMessages().DiscardMessages()};
1389 AnalyzeSectionSubscripts(ae.subscripts);
1390 return std::nullopt;
1391}
1392
1393// Type parameter inquiries apply to data references, but don't depend
1394// on any trailing (co)subscripts.
1395static NamedEntity IgnoreAnySubscripts(Designator<SomeDerived> &&designator) {
1396 return common::visit(
1397 common::visitors{
1398 [](SymbolRef &&symbol) { return NamedEntity{symbol}; },
1399 [](Component &&component) {
1400 return NamedEntity{std::move(component)};
1401 },
1402 [](ArrayRef &&arrayRef) { return std::move(arrayRef.base()); },
1403 [](CoarrayRef &&coarrayRef) {
1404 return NamedEntity{coarrayRef.GetLastSymbol()};
1405 },
1406 },
1407 std::move(designator.u));
1408}
1409
1410// Components, but not bindings, of parent derived types are explicitly
1411// represented as such.
1412std::optional<Component> ExpressionAnalyzer::CreateComponent(DataRef &&base,
1413 const Symbol &component, const semantics::Scope &scope,
1414 bool C919bAlreadyEnforced) {
1415 if (!C919bAlreadyEnforced && IsAllocatableOrPointer(component) &&
1416 base.Rank() > 0) { // C919b
1417 Say("An allocatable or pointer component reference must be applied to a scalar base"_err_en_US);
1418 }
1419 if (&component.owner() == &scope ||
1420 component.has<semantics::ProcBindingDetails>()) {
1421 return Component{std::move(base), component};
1422 }
1423 if (const Symbol *typeSymbol{scope.GetSymbol()}) {
1424 if (const Symbol *parentComponent{typeSymbol->GetParentComponent(&scope)}) {
1425 if (const auto *object{
1426 parentComponent->detailsIf<semantics::ObjectEntityDetails>()}) {
1427 if (const auto *parentType{object->type()}) {
1428 if (const semantics::Scope *parentScope{
1429 parentType->derivedTypeSpec().scope()}) {
1430 return CreateComponent(
1431 DataRef{Component{std::move(base), *parentComponent}},
1432 component, *parentScope, C919bAlreadyEnforced);
1433 }
1434 }
1435 }
1436 }
1437 }
1438 return std::nullopt;
1439}
1440
1441// Derived type component references and type parameter inquiries
1442MaybeExpr ExpressionAnalyzer::Analyze(const parser::StructureComponent &sc) {
1443 Symbol *sym{sc.component.symbol};
1444 if (context_.HasError(sym)) {
1445 return std::nullopt;
1446 }
1447 const auto *misc{sym->detailsIf<semantics::MiscDetails>()};
1448 bool isTypeParamInquiry{sym->has<semantics::TypeParamDetails>() ||
1449 (misc &&
1450 (misc->kind() == semantics::MiscDetails::Kind::KindParamInquiry ||
1451 misc->kind() == semantics::MiscDetails::Kind::LenParamInquiry))};
1452 MaybeExpr base;
1453 if (isTypeParamInquiry) {
1454 auto restorer{AllowWholeAssumedSizeArray()};
1455 base = Analyze(sc.base);
1456 } else {
1457 base = Analyze(sc.base);
1458 }
1459 if (!base) {
1460 return std::nullopt;
1461 }
1462 const auto &name{sc.component.source};
1463 if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) {
1464 const auto *dtSpec{GetDerivedTypeSpec(dtExpr->GetType())};
1465 if (isTypeParamInquiry) {
1466 if (auto *designator{UnwrapExpr<Designator<SomeDerived>>(*dtExpr)}) {
1467 if (std::optional<DynamicType> dyType{DynamicType::From(*sym)}) {
1468 if (dyType->category() == TypeCategory::Integer) {
1469 auto restorer{GetContextualMessages().SetLocation(name)};
1470 return Fold(ConvertToType(*dyType,
1471 AsGenericExpr(TypeParamInquiry{
1472 IgnoreAnySubscripts(std::move(*designator)), *sym})));
1473 }
1474 }
1475 Say(name, "Type parameter is not INTEGER"_err_en_US);
1476 } else {
1477 Say(name,
1478 "A type parameter inquiry must be applied to a designator"_err_en_US);
1479 }
1480 } else if (!dtSpec || !dtSpec->scope()) {
1481 CHECK(context_.AnyFatalError() || !foldingContext_.messages().empty());
1482 return std::nullopt;
1483 } else if (std::optional<DataRef> dataRef{
1484 ExtractDataRef(std::move(*dtExpr))}) {
1485 auto restorer{GetContextualMessages().SetLocation(name)};
1486 if (auto component{
1487 CreateComponent(std::move(*dataRef), *sym, *dtSpec->scope())}) {
1488 return Designate(DataRef{std::move(*component)});
1489 } else {
1490 Say(name, "Component is not in scope of derived TYPE(%s)"_err_en_US,
1491 dtSpec->typeSymbol().name());
1492 }
1493 } else {
1494 Say(name,
1495 "Base of component reference must be a data reference"_err_en_US);
1496 }
1497 } else if (auto *details{sym->detailsIf<semantics::MiscDetails>()}) {
1498 // special part-ref: %re, %im, %kind, %len
1499 // Type errors on the base of %re/%im/%len are detected and
1500 // reported in name resolution.
1501 using MiscKind = semantics::MiscDetails::Kind;
1502 MiscKind kind{details->kind()};
1503 if (kind == MiscKind::ComplexPartRe || kind == MiscKind::ComplexPartIm) {
1504 if (auto *zExpr{std::get_if<Expr<SomeComplex>>(&base->u)}) {
1505 if (std::optional<DataRef> dataRef{ExtractDataRef(*zExpr)}) {
1506 // Represent %RE/%IM as a designator
1507 Expr<SomeReal> realExpr{common::visit(
1508 [&](const auto &z) {
1509 using PartType = typename ResultType<decltype(z)>::Part;
1510 auto part{kind == MiscKind::ComplexPartRe
1511 ? ComplexPart::Part::RE
1512 : ComplexPart::Part::IM};
1513 return AsCategoryExpr(Designator<PartType>{
1514 ComplexPart{std::move(*dataRef), part}});
1515 },
1516 zExpr->u)};
1517 return AsGenericExpr(std::move(realExpr));
1518 }
1519 }
1520 } else if (isTypeParamInquiry) { // %kind or %len
1521 ActualArgument arg{std::move(*base)};
1522 SetArgSourceLocation(arg, name);
1523 return MakeFunctionRef(name, ActualArguments{std::move(arg)});
1524 } else {
1525 DIE("unexpected MiscDetails::Kind");
1526 }
1527 } else {
1528 Say(name, "derived type required before component reference"_err_en_US);
1529 }
1530 return std::nullopt;
1531}
1532
1533MaybeExpr ExpressionAnalyzer::Analyze(const parser::CoindexedNamedObject &x) {
1534 if (auto dataRef{ExtractDataRef(Analyze(x.base))}) {
1535 if (!std::holds_alternative<ArrayRef>(dataRef->u) &&
1536 dataRef->GetLastSymbol().Rank() > 0) { // F'2023 C916
1537 Say("Subscripts must appear in a coindexed reference when its base is an array"_err_en_US);
1538 }
1539 std::vector<Expr<SubscriptInteger>> cosubscripts;
1540 bool cosubsOk{true};
1541 for (const auto &cosub :
1542 std::get<std::list<parser::Cosubscript>>(x.imageSelector.t)) {
1543 MaybeExpr coex{Analyze(cosub)};
1544 if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(coex)}) {
1545 cosubscripts.push_back(
1546 ConvertToType<SubscriptInteger>(std::move(*intExpr)));
1547 } else {
1548 cosubsOk = false;
1549 }
1550 }
1551 if (cosubsOk) {
1552 int numCosubscripts{static_cast<int>(cosubscripts.size())};
1553 const Symbol &symbol{dataRef->GetLastSymbol()};
1554 if (numCosubscripts != GetCorank(symbol)) {
1555 Say("'%s' has corank %d, but coindexed reference has %d cosubscripts"_err_en_US,
1556 symbol.name(), GetCorank(symbol), numCosubscripts);
1557 }
1558 }
1559 CoarrayRef coarrayRef{std::move(*dataRef), std::move(cosubscripts)};
1560 for (const auto &imageSelSpec :
1561 std::get<std::list<parser::ImageSelectorSpec>>(x.imageSelector.t)) {
1562 common::visit(
1563 common::visitors{
1564 [&](const parser::ImageSelectorSpec::Stat &x) {
1565 Analyze(x.v);
1566 if (const auto *expr{GetExpr(context_, x.v)}) {
1567 if (const auto *intExpr{
1568 std::get_if<Expr<SomeInteger>>(&expr->u)}) {
1569 if (coarrayRef.stat()) {
1570 Say("coindexed reference has multiple STAT= specifiers"_err_en_US);
1571 } else {
1572 coarrayRef.set_stat(Expr<SomeInteger>{*intExpr});
1573 }
1574 }
1575 }
1576 },
1577 [&](const parser::TeamValue &x) {
1578 Analyze(x.v);
1579 if (const auto *expr{GetExpr(context_, x.v)}) {
1580 if (coarrayRef.team()) {
1581 Say("coindexed reference has multiple TEAM= or TEAM_NUMBER= specifiers"_err_en_US);
1582 } else if (auto dyType{expr->GetType()};
1583 dyType && IsTeamType(GetDerivedTypeSpec(*dyType))) {
1584 coarrayRef.set_team(Expr<SomeType>{*expr});
1585 } else {
1586 Say("TEAM= specifier must have type TEAM_TYPE from ISO_FORTRAN_ENV"_err_en_US);
1587 }
1588 }
1589 },
1590 [&](const parser::ImageSelectorSpec::Team_Number &x) {
1591 Analyze(x.v);
1592 if (const auto *expr{GetExpr(context_, x.v)}) {
1593 if (coarrayRef.team()) {
1594 Say("coindexed reference has multiple TEAM= or TEAM_NUMBER= specifiers"_err_en_US);
1595 } else {
1596 coarrayRef.set_team(Expr<SomeType>{*expr});
1597 }
1598 }
1599 }},
1600 imageSelSpec.u);
1601 }
1602 CheckCosubscripts(context_, coarrayRef);
1603 return Designate(DataRef{std::move(coarrayRef)});
1604 }
1605 return std::nullopt;
1606}
1607
1608int ExpressionAnalyzer::IntegerTypeSpecKind(
1609 const parser::IntegerTypeSpec &spec) {
1610 Expr<SubscriptInteger> value{
1611 AnalyzeKindSelector(TypeCategory::Integer, spec.v)};
1612 if (auto kind{ToInt64(value)}) {
1613 return static_cast<int>(*kind);
1614 }
1615 SayAt(spec, "Constant INTEGER kind value required here"_err_en_US);
1616 return GetDefaultKind(TypeCategory::Integer);
1617}
1618
1619// Array constructors
1620
1621// Inverts a collection of generic ArrayConstructorValues<SomeType> that
1622// all happen to have the same actual type T into one ArrayConstructor<T>.
1623template <typename T>
1624ArrayConstructorValues<T> MakeSpecific(
1625 ArrayConstructorValues<SomeType> &&from) {
1626 ArrayConstructorValues<T> to;
1627 for (ArrayConstructorValue<SomeType> &x : from) {
1628 common::visit(
1629 common::visitors{
1630 [&](common::CopyableIndirection<Expr<SomeType>> &&expr) {
1631 auto *typed{UnwrapExpr<Expr<T>>(expr.value())};
1632 to.Push(std::move(DEREF(typed)));
1633 },
1634 [&](ImpliedDo<SomeType> &&impliedDo) {
1635 to.Push(ImpliedDo<T>{impliedDo.name(),
1636 std::move(impliedDo.lower()), std::move(impliedDo.upper()),
1637 std::move(impliedDo.stride()),
1638 MakeSpecific<T>(std::move(impliedDo.values()))});
1639 },
1640 },
1641 std::move(x.u));
1642 }
1643 return to;
1644}
1645
1646class ArrayConstructorContext {
1647public:
1648 ArrayConstructorContext(
1649 ExpressionAnalyzer &c, std::optional<DynamicTypeWithLength> &&t)
1650 : exprAnalyzer_{c}, type_{std::move(t)} {}
1651
1652 void Add(const parser::AcValue &);
1653 MaybeExpr ToExpr();
1654
1655 // These interfaces allow *this to be used as a type visitor argument to
1656 // common::SearchTypes() to convert the array constructor to a typed
1657 // expression in ToExpr().
1658 using Result = MaybeExpr;
1659 using Types = AllTypes;
1660 template <typename T> Result Test() {
1661 if (type_ && type_->category() == T::category) {
1662 if constexpr (T::category == TypeCategory::Derived) {
1663 if (!type_->IsUnlimitedPolymorphic()) {
1664 return AsMaybeExpr(ArrayConstructor<T>{type_->GetDerivedTypeSpec(),
1665 MakeSpecific<T>(std::move(values_))});
1666 }
1667 } else if (type_->kind() == T::kind) {
1668 ArrayConstructor<T> result{MakeSpecific<T>(std::move(values_))};
1669 if constexpr (T::category == TypeCategory::Character) {
1670 if (auto len{LengthIfGood()}) {
1671 // The ac-do-variables may be treated as constant expressions,
1672 // if some conditions on ac-implied-do-control hold (10.1.12 (12)).
1673 // At the same time, they may be treated as constant expressions
1674 // only in the context of the ac-implied-do, but setting
1675 // the character length here may result in complete elimination
1676 // of the ac-implied-do. For example:
1677 // character(10) :: c
1678 // ... len([(c(i:i), integer(8)::i = 1,4)])
1679 // would be evaulated into:
1680 // ... int(max(0_8,i-i+1_8),kind=4)
1681 // with a dangling reference to the ac-do-variable.
1682 // Prevent this by checking for the ac-do-variable references
1683 // in the 'len' expression.
1684 result.set_LEN(std::move(*len));
1685 }
1686 }
1687 return AsMaybeExpr(std::move(result));
1688 }
1689 }
1690 return std::nullopt;
1691 }
1692
1693private:
1694 using ImpliedDoIntType = ResultType<ImpliedDoIndex>;
1695
1696 std::optional<Expr<SubscriptInteger>> LengthIfGood() const {
1697 if (type_) {
1698 auto len{type_->LEN()};
1699 if (explicitType_ ||
1700 (len && IsConstantExpr(*len) && !ContainsAnyImpliedDoIndex(*len))) {
1701 return len;
1702 }
1703 }
1704 return std::nullopt;
1705 }
1706 bool NeedLength() const {
1707 return type_ && type_->category() == TypeCategory::Character &&
1708 !LengthIfGood();
1709 }
1710 void Push(MaybeExpr &&);
1711 void Add(const parser::AcValue::Triplet &);
1712 void Add(const parser::Expr &);
1713 void Add(const parser::AcImpliedDo &);
1714 void UnrollConstantImpliedDo(const parser::AcImpliedDo &,
1715 parser::CharBlock name, std::int64_t lower, std::int64_t upper,
1716 std::int64_t stride);
1717
1718 template <int KIND>
1719 std::optional<Expr<Type<TypeCategory::Integer, KIND>>> ToSpecificInt(
1720 MaybeExpr &&y) {
1721 if (y) {
1722 Expr<SomeInteger> *intExpr{UnwrapExpr<Expr<SomeInteger>>(*y)};
1723 return Fold(exprAnalyzer_.GetFoldingContext(),
1724 ConvertToType<Type<TypeCategory::Integer, KIND>>(
1725 std::move(DEREF(intExpr))));
1726 } else {
1727 return std::nullopt;
1728 }
1729 }
1730
1731 template <int KIND, typename A>
1732 std::optional<Expr<Type<TypeCategory::Integer, KIND>>> GetSpecificIntExpr(
1733 const A &x) {
1734 return ToSpecificInt<KIND>(exprAnalyzer_.Analyze(x));
1735 }
1736
1737 // Nested array constructors all reference the same ExpressionAnalyzer,
1738 // which represents the nest of active implied DO loop indices.
1739 ExpressionAnalyzer &exprAnalyzer_;
1740 std::optional<DynamicTypeWithLength> type_;
1741 bool explicitType_{type_.has_value()};
1742 std::optional<std::int64_t> constantLength_;
1743 ArrayConstructorValues<SomeType> values_;
1744 std::uint64_t messageDisplayedSet_{0};
1745};
1746
1747void ArrayConstructorContext::Push(MaybeExpr &&x) {
1748 if (!x) {
1749 return;
1750 }
1751 if (!type_) {
1752 if (auto *boz{std::get_if<BOZLiteralConstant>(&x->u)}) {
1753 // Treat an array constructor of BOZ as if default integer.
1754 exprAnalyzer_.Warn(common::LanguageFeature::BOZAsDefaultInteger,
1755 "BOZ literal in array constructor without explicit type is assumed to be default INTEGER"_port_en_US);
1756 x = AsGenericExpr(ConvertToKind<TypeCategory::Integer>(
1757 exprAnalyzer_.GetDefaultKind(TypeCategory::Integer),
1758 std::move(*boz)));
1759 }
1760 }
1761 std::optional<DynamicType> dyType{x->GetType()};
1762 if (!dyType) {
1763 if (auto *boz{std::get_if<BOZLiteralConstant>(&x->u)}) {
1764 if (!type_) {
1765 // Treat an array constructor of BOZ as if default integer.
1766 exprAnalyzer_.Warn(common::LanguageFeature::BOZAsDefaultInteger,
1767 "BOZ literal in array constructor without explicit type is assumed to be default INTEGER"_port_en_US);
1768 x = AsGenericExpr(ConvertToKind<TypeCategory::Integer>(
1769 exprAnalyzer_.GetDefaultKind(TypeCategory::Integer),
1770 std::move(*boz)));
1771 dyType = x.value().GetType();
1772 } else if (auto cast{ConvertToType(*type_, std::move(*x))}) {
1773 x = std::move(cast);
1774 dyType = *type_;
1775 } else {
1776 if (!(messageDisplayedSet_ & 0x80)) {
1777 exprAnalyzer_.Say(
1778 "BOZ literal is not suitable for use in this array constructor"_err_en_US);
1779 messageDisplayedSet_ |= 0x80;
1780 }
1781 return;
1782 }
1783 } else { // procedure name, &c.
1784 if (!(messageDisplayedSet_ & 0x40)) {
1785 exprAnalyzer_.Say(
1786 "Item is not suitable for use in an array constructor"_err_en_US);
1787 messageDisplayedSet_ |= 0x40;
1788 }
1789 return;
1790 }
1791 } else if (dyType->IsUnlimitedPolymorphic()) {
1792 if (!(messageDisplayedSet_ & 8)) {
1793 exprAnalyzer_.Say("Cannot have an unlimited polymorphic value in an "
1794 "array constructor"_err_en_US); // C7113
1795 messageDisplayedSet_ |= 8;
1796 }
1797 return;
1798 } else if (dyType->category() == TypeCategory::Derived &&
1799 dyType->GetDerivedTypeSpec().typeSymbol().attrs().test(
1800 semantics::Attr::ABSTRACT)) { // F'2023 C7125
1801 if (!(messageDisplayedSet_ & 0x200)) {
1802 exprAnalyzer_.Say(
1803 "An item whose declared type is ABSTRACT may not appear in an array constructor"_err_en_US);
1804 messageDisplayedSet_ |= 0x200;
1805 }
1806 }
1807 DynamicTypeWithLength xType{dyType.value()};
1808 if (Expr<SomeCharacter> * charExpr{UnwrapExpr<Expr<SomeCharacter>>(*x)}) {
1809 CHECK(xType.category() == TypeCategory::Character);
1810 xType.length =
1811 common::visit([](const auto &kc) { return kc.LEN(); }, charExpr->u);
1812 }
1813 if (!type_) {
1814 // If there is no explicit type-spec in an array constructor, the type
1815 // of the array is the declared type of all of the elements, which must
1816 // be well-defined and all match.
1817 // TODO: Possible language extension: use the most general type of
1818 // the values as the type of a numeric constructed array, convert all
1819 // of the other values to that type. Alternative: let the first value
1820 // determine the type, and convert the others to that type.
1821 CHECK(!explicitType_);
1822 type_ = std::move(xType);
1823 constantLength_ = ToInt64(type_->length);
1824 values_.Push(std::move(*x));
1825 } else if (!explicitType_) {
1826 if (type_->IsTkCompatibleWith(xType) && xType.IsTkCompatibleWith(*type_)) {
1827 values_.Push(std::move(*x));
1828 auto xLen{xType.LEN()};
1829 if (auto thisLen{ToInt64(xLen)}) {
1830 if (constantLength_) {
1831 if (*thisLen != *constantLength_ && !(messageDisplayedSet_ & 1)) {
1832 exprAnalyzer_.Warn(
1833 common::LanguageFeature::DistinctArrayConstructorLengths,
1834 "Character literal in array constructor without explicit "
1835 "type has different length than earlier elements"_port_en_US);
1836 messageDisplayedSet_ |= 1;
1837 }
1838 if (*thisLen > *constantLength_) {
1839 // Language extension: use the longest literal to determine the
1840 // length of the array constructor's character elements, not the
1841 // first, when there is no explicit type.
1842 *constantLength_ = *thisLen;
1843 type_->length = std::move(xLen);
1844 }
1845 } else {
1846 constantLength_ = *thisLen;
1847 type_->length = std::move(xLen);
1848 }
1849 } else if (xLen && NeedLength()) {
1850 type_->length = std::move(xLen);
1851 }
1852 } else {
1853 if (!(messageDisplayedSet_ & 2)) {
1854 exprAnalyzer_.Say(
1855 "Values in array constructor must have the same declared type "
1856 "when no explicit type appears"_err_en_US); // C7110
1857 messageDisplayedSet_ |= 2;
1858 }
1859 }
1860 } else {
1861 if (auto cast{ConvertToType(*type_, std::move(*x))}) {
1862 values_.Push(std::move(*cast));
1863 } else if (!(messageDisplayedSet_ & 4)) {
1864 exprAnalyzer_.Say("Value in array constructor of type '%s' could not "
1865 "be converted to the type of the array '%s'"_err_en_US,
1866 x->GetType()->AsFortran(), type_->AsFortran()); // C7111, C7112
1867 messageDisplayedSet_ |= 4;
1868 }
1869 }
1870}
1871
1872void ArrayConstructorContext::Add(const parser::AcValue &x) {
1873 common::visit(
1874 common::visitors{
1875 [&](const parser::AcValue::Triplet &triplet) { Add(triplet); },
1876 [&](const common::Indirection<parser::Expr> &expr) {
1877 Add(expr.value());
1878 },
1879 [&](const common::Indirection<parser::AcImpliedDo> &impliedDo) {
1880 Add(impliedDo.value());
1881 },
1882 },
1883 x.u);
1884}
1885
1886// Transforms l:u(:s) into (_,_=l,u(,s)) with an anonymous index '_'
1887void ArrayConstructorContext::Add(const parser::AcValue::Triplet &triplet) {
1888 MaybeExpr lowerExpr{exprAnalyzer_.Analyze(std::get<0>(triplet.t))};
1889 MaybeExpr upperExpr{exprAnalyzer_.Analyze(std::get<1>(triplet.t))};
1890 MaybeExpr strideExpr{exprAnalyzer_.Analyze(std::get<2>(triplet.t))};
1891 if (lowerExpr && upperExpr) {
1892 auto lowerType{lowerExpr->GetType()};
1893 auto upperType{upperExpr->GetType()};
1894 auto strideType{strideExpr ? strideExpr->GetType() : lowerType};
1895 if (lowerType && upperType && strideType) {
1896 int kind{lowerType->kind()};
1897 if (upperType->kind() > kind) {
1898 kind = upperType->kind();
1899 }
1900 if (strideType->kind() > kind) {
1901 kind = strideType->kind();
1902 }
1903 auto lower{ToSpecificInt<ImpliedDoIntType::kind>(std::move(lowerExpr))};
1904 auto upper{ToSpecificInt<ImpliedDoIntType::kind>(std::move(upperExpr))};
1905 if (lower && upper) {
1906 auto stride{
1907 ToSpecificInt<ImpliedDoIntType::kind>(std::move(strideExpr))};
1908 if (!stride) {
1909 stride = Expr<ImpliedDoIntType>{1};
1910 }
1911 DynamicType type{TypeCategory::Integer, kind};
1912 if (!type_) {
1913 type_ = DynamicTypeWithLength{type};
1914 }
1915 parser::CharBlock anonymous;
1916 if (auto converted{ConvertToType(type,
1917 AsGenericExpr(
1918 Expr<ImpliedDoIntType>{ImpliedDoIndex{anonymous}}))}) {
1919 auto v{std::move(values_)};
1920 Push(std::move(converted));
1921 std::swap(v, values_);
1922 values_.Push(ImpliedDo<SomeType>{anonymous, std::move(*lower),
1923 std::move(*upper), std::move(*stride), std::move(v)});
1924 }
1925 }
1926 }
1927 }
1928}
1929
1930void ArrayConstructorContext::Add(const parser::Expr &expr) {
1931 auto restorer1{
1932 exprAnalyzer_.GetContextualMessages().SetLocation(expr.source)};
1933 auto restorer2{exprAnalyzer_.AllowWholeAssumedSizeArray(false)};
1934 Push(exprAnalyzer_.Analyze(expr));
1935}
1936
1937void ArrayConstructorContext::Add(const parser::AcImpliedDo &impliedDo) {
1938 const auto &control{std::get<parser::AcImpliedDoControl>(impliedDo.t)};
1939 const auto &bounds{std::get<parser::AcImpliedDoControl::Bounds>(control.t)};
1940 exprAnalyzer_.Analyze(bounds.name);
1941 parser::CharBlock name{bounds.name.thing.thing.source};
1942 int kind{ImpliedDoIntType::kind};
1943 if (const Symbol * symbol{bounds.name.thing.thing.symbol}) {
1944 if (auto dynamicType{DynamicType::From(symbol)}) {
1945 if (dynamicType->category() == TypeCategory::Integer) {
1946 kind = dynamicType->kind();
1947 }
1948 }
1949 }
1950 std::optional<Expr<ImpliedDoIntType>> lower{
1951 GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.lower)};
1952 std::optional<Expr<ImpliedDoIntType>> upper{
1953 GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.upper)};
1954 if (lower && upper) {
1955 std::optional<Expr<ImpliedDoIntType>> stride{
1956 GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.step)};
1957 if (!stride) {
1958 stride = Expr<ImpliedDoIntType>{1};
1959 }
1960 if (exprAnalyzer_.AddImpliedDo(name, kind)) {
1961 // Check for constant bounds; the loop may require complete unrolling
1962 // of the parse tree if all bounds are constant in order to allow the
1963 // implied DO loop index to qualify as a constant expression.
1964 auto cLower{ToInt64(lower)};
1965 auto cUpper{ToInt64(upper)};
1966 auto cStride{ToInt64(stride)};
1967 if (!(messageDisplayedSet_ & 0x10) && cStride && *cStride == 0) {
1968 exprAnalyzer_.SayAt(bounds.step.value().thing.thing.value().source,
1969 "The stride of an implied DO loop must not be zero"_err_en_US);
1970 messageDisplayedSet_ |= 0x10;
1971 }
1972 bool isConstant{cLower && cUpper && cStride && *cStride != 0};
1973 bool isNonemptyConstant{isConstant &&
1974 ((*cStride > 0 && *cLower <= *cUpper) ||
1975 (*cStride < 0 && *cLower >= *cUpper))};
1976 bool isEmpty{isConstant && !isNonemptyConstant};
1977 bool unrollConstantLoop{false};
1978 parser::Messages buffer;
1979 auto saveMessagesDisplayed{messageDisplayedSet_};
1980 {
1981 auto messageRestorer{
1982 exprAnalyzer_.GetContextualMessages().SetMessages(buffer)};
1983 auto v{std::move(values_)};
1984 for (const auto &value :
1985 std::get<std::list<parser::AcValue>>(impliedDo.t)) {
1986 Add(value);
1987 }
1988 std::swap(v, values_);
1989 if (isNonemptyConstant && buffer.AnyFatalError()) {
1990 unrollConstantLoop = true;
1991 } else {
1992 values_.Push(ImpliedDo<SomeType>{name, std::move(*lower),
1993 std::move(*upper), std::move(*stride), std::move(v)});
1994 }
1995 }
1996 // F'2023 7.8 p5
1997 if (!(messageDisplayedSet_ & 0x100) && isEmpty && NeedLength()) {
1998 exprAnalyzer_.SayAt(name,
1999 "Array constructor implied DO loop has no iterations and indeterminate character length"_err_en_US);
2000 messageDisplayedSet_ |= 0x100;
2001 }
2002 if (unrollConstantLoop) {
2003 messageDisplayedSet_ = saveMessagesDisplayed;
2004 UnrollConstantImpliedDo(impliedDo, name, *cLower, *cUpper, *cStride);
2005 } else if (auto *messages{
2006 exprAnalyzer_.GetContextualMessages().messages()}) {
2007 messages->Annex(std::move(buffer));
2008 }
2009 exprAnalyzer_.RemoveImpliedDo(name);
2010 } else if (!(messageDisplayedSet_ & 0x20)) {
2011 exprAnalyzer_.SayAt(name,
2012 "Implied DO index '%s' is active in a surrounding implied DO loop "
2013 "and may not have the same name"_err_en_US,
2014 name); // C7115
2015 messageDisplayedSet_ |= 0x20;
2016 }
2017 }
2018}
2019
2020// Fortran considers an implied DO index of an array constructor to be
2021// a constant expression if the bounds of the implied DO loop are constant.
2022// Usually this doesn't matter, but if we emitted spurious messages as a
2023// result of not using constant values for the index while analyzing the
2024// items, we need to do it again the "hard" way with multiple iterations over
2025// the parse tree.
2026void ArrayConstructorContext::UnrollConstantImpliedDo(
2027 const parser::AcImpliedDo &impliedDo, parser::CharBlock name,
2028 std::int64_t lower, std::int64_t upper, std::int64_t stride) {
2029 auto &foldingContext{exprAnalyzer_.GetFoldingContext()};
2030 auto restorer{exprAnalyzer_.DoNotUseSavedTypedExprs()};
2031 for (auto &at{foldingContext.StartImpliedDo(name, lower)};
2032 (stride > 0 && at <= upper) || (stride < 0 && at >= upper);
2033 at += stride) {
2034 for (const auto &value :
2035 std::get<std::list<parser::AcValue>>(impliedDo.t)) {
2036 Add(value);
2037 }
2038 }
2039 foldingContext.EndImpliedDo(name);
2040}
2041
2042MaybeExpr ArrayConstructorContext::ToExpr() {
2043 return common::SearchTypes(std::move(*this));
2044}
2045
2046MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayConstructor &array) {
2047 const parser::AcSpec &acSpec{array.v};
2048 ArrayConstructorContext acContext{
2049 *this, AnalyzeTypeSpec(acSpec.type, GetFoldingContext())};
2050 for (const parser::AcValue &value : acSpec.values) {
2051 acContext.Add(value);
2052 }
2053 return acContext.ToExpr();
2054}
2055
2056// Check if implicit conversion of expr to the symbol type is legal (if needed),
2057// and make it explicit if requested.
2058static MaybeExpr ImplicitConvertTo(const semantics::Symbol &sym,
2059 Expr<SomeType> &&expr, bool keepConvertImplicit) {
2060 if (!keepConvertImplicit) {
2061 return ConvertToType(sym, std::move(expr));
2062 } else {
2063 // Test if a convert could be inserted, but do not make it explicit to
2064 // preserve the information that expr is a variable.
2065 if (ConvertToType(sym, common::Clone(expr))) {
2066 return MaybeExpr{std::move(expr)};
2067 }
2068 }
2069 // Illegal implicit convert.
2070 return std::nullopt;
2071}
2072
2073MaybeExpr ExpressionAnalyzer::CheckStructureConstructor(
2074 parser::CharBlock typeName, const semantics::DerivedTypeSpec &spec,
2075 std::list<ComponentSpec> &&componentSpecs) {
2076 const Symbol &typeSymbol{spec.typeSymbol()};
2077 if (!spec.scope() || !typeSymbol.has<semantics::DerivedTypeDetails>()) {
2078 return std::nullopt; // error recovery
2079 }
2080 const semantics::Scope &scope{context_.FindScope(typeName)};
2081 const semantics::Scope *pureContext{FindPureProcedureContaining(scope)};
2082 const auto &typeDetails{typeSymbol.get<semantics::DerivedTypeDetails>()};
2083 const Symbol *parentComponent{typeDetails.GetParentComponent(*spec.scope())};
2084
2085 if (typeSymbol.attrs().test(semantics::Attr::ABSTRACT)) { // C796
2086 AttachDeclaration(
2087 Say(typeName,
2088 "ABSTRACT derived type '%s' may not be used in a structure constructor"_err_en_US,
2089 typeName),
2090 typeSymbol); // C7114
2091 }
2092
2093 // This iterator traverses all of the components in the derived type and its
2094 // parents. The symbols for whole parent components appear after their
2095 // own components and before the components of the types that extend them.
2096 // E.g., TYPE :: A; REAL X; END TYPE
2097 // TYPE, EXTENDS(A) :: B; REAL Y; END TYPE
2098 // produces the component list X, A, Y.
2099 // The order is important below because a structure constructor can
2100 // initialize X or A by name, but not both.
2101 auto components{semantics::OrderedComponentIterator{spec}};
2102 auto nextAnonymous{components.begin()};
2103 auto afterLastParentComponentIter{components.end()};
2104 if (parentComponent) {
2105 for (auto iter{components.begin()}; iter != components.end(); ++iter) {
2106 if (iter->test(Symbol::Flag::ParentComp)) {
2107 afterLastParentComponentIter = iter;
2108 ++afterLastParentComponentIter;
2109 }
2110 }
2111 }
2112
2113 std::set<parser::CharBlock> unavailable;
2114 bool anyKeyword{false};
2115 StructureConstructor result{spec};
2116 bool checkConflicts{true}; // until we hit one
2117 auto &messages{GetContextualMessages()};
2118
2119 for (ComponentSpec &componentSpec : componentSpecs) {
2120 parser::CharBlock source{componentSpec.source};
2121 parser::CharBlock exprSource{componentSpec.exprSource};
2122 auto restorer{messages.SetLocation(source)};
2123 const Symbol *symbol{componentSpec.keywordSymbol};
2124 MaybeExpr &maybeValue{componentSpec.expr};
2125 if (!maybeValue.has_value()) {
2126 return std::nullopt;
2127 }
2128 Expr<SomeType> &value{*maybeValue};
2129 std::optional<DynamicType> valueType{DynamicType::From(value)};
2130 if (componentSpec.hasKeyword) {
2131 anyKeyword = true;
2132 if (!symbol) {
2133 // Skip overridden inaccessible parent components in favor of
2134 // their later overrides.
2135 for (const Symbol &sym : components) {
2136 if (sym.name() == source) {
2137 symbol = &sym;
2138 }
2139 }
2140 }
2141 if (!symbol) { // C7101
2142 Say(source,
2143 "Keyword '%s=' does not name a component of derived type '%s'"_err_en_US,
2144 source, typeName);
2145 }
2146 } else {
2147 if (anyKeyword) { // C7100
2148 Say(source,
2149 "Value in structure constructor lacks a component name"_err_en_US);
2150 checkConflicts = false; // stem cascade
2151 }
2152 // Here's a regrettably common extension of the standard: anonymous
2153 // initialization of parent components, e.g., T(PT(1)) rather than
2154 // T(1) or T(PT=PT(1)). There may be multiple parent components.
2155 if (nextAnonymous == components.begin() && parentComponent && valueType &&
2156 context().IsEnabled(LanguageFeature::AnonymousParents)) {
2157 for (auto parent{components.begin()};
2158 parent != afterLastParentComponentIter; ++parent) {
2159 if (auto parentType{DynamicType::From(*parent)}; parentType &&
2160 parent->test(Symbol::Flag::ParentComp) &&
2161 valueType->IsEquivalentTo(*parentType)) {
2162 symbol = &*parent;
2163 nextAnonymous = ++parent;
2164 Warn(LanguageFeature::AnonymousParents, source,
2165 "Whole parent component '%s' in structure constructor should not be anonymous"_port_en_US,
2166 symbol->name());
2167 break;
2168 }
2169 }
2170 }
2171 while (!symbol && nextAnonymous != components.end()) {
2172 const Symbol &next{*nextAnonymous};
2173 ++nextAnonymous;
2174 if (!next.test(Symbol::Flag::ParentComp)) {
2175 symbol = &next;
2176 }
2177 }
2178 if (!symbol) {
2179 Say(source, "Unexpected value in structure constructor"_err_en_US);
2180 }
2181 }
2182 if (symbol) {
2183 const semantics::Scope &innermost{context_.FindScope(exprSource)};
2184 if (auto msg{CheckAccessibleSymbol(innermost, *symbol)}) {
2185 Say(exprSource, std::move(*msg));
2186 }
2187 if (checkConflicts) {
2188 auto componentIter{
2189 std::find(components.begin(), components.end(), *symbol)};
2190 if (unavailable.find(symbol->name()) != unavailable.cend()) {
2191 // C797, C798
2192 Say(source,
2193 "Component '%s' conflicts with another component earlier in this structure constructor"_err_en_US,
2194 symbol->name());
2195 } else if (symbol->test(Symbol::Flag::ParentComp)) {
2196 // Make earlier components unavailable once a whole parent appears.
2197 for (auto it{components.begin()}; it != componentIter; ++it) {
2198 unavailable.insert(it->name());
2199 }
2200 } else {
2201 // Make whole parent components unavailable after any of their
2202 // constituents appear.
2203 for (auto it{componentIter}; it != components.end(); ++it) {
2204 if (it->test(Symbol::Flag::ParentComp)) {
2205 unavailable.insert(it->name());
2206 }
2207 }
2208 }
2209 }
2210 unavailable.insert(symbol->name());
2211 if (symbol->has<semantics::TypeParamDetails>()) {
2212 Say(exprSource,
2213 "Type parameter '%s' may not appear as a component of a structure constructor"_err_en_US,
2214 symbol->name());
2215 }
2216 if (!(symbol->has<semantics::ProcEntityDetails>() ||
2217 symbol->has<semantics::ObjectEntityDetails>())) {
2218 continue; // recovery
2219 }
2220 if (IsPointer(*symbol)) { // C7104, C7105, C1594(4)
2221 semantics::CheckStructConstructorPointerComponent(
2222 context_, *symbol, value, innermost);
2223 result.Add(*symbol, Fold(std::move(value)));
2224 continue;
2225 }
2226 if (IsNullPointer(&value)) {
2227 if (IsAllocatable(*symbol)) {
2228 if (IsBareNullPointer(&value)) {
2229 // NULL() with no arguments allowed by 7.5.10 para 6 for
2230 // ALLOCATABLE.
2231 result.Add(*symbol, Expr<SomeType>{NullPointer{}});
2232 continue;
2233 }
2234 if (IsNullObjectPointer(&value)) {
2235 AttachDeclaration(
2236 Warn(common::LanguageFeature::NullMoldAllocatableComponentValue,
2237 exprSource,
2238 "NULL() with arguments is not standard conforming as the value for allocatable component '%s'"_port_en_US,
2239 symbol->name()),
2240 *symbol);
2241 // proceed to check type & shape
2242 } else {
2243 AttachDeclaration(
2244 Say(exprSource,
2245 "A NULL procedure pointer may not be used as the value for component '%s'"_err_en_US,
2246 symbol->name()),
2247 *symbol);
2248 continue;
2249 }
2250 } else {
2251 AttachDeclaration(
2252 Say(exprSource,
2253 "A NULL pointer may not be used as the value for component '%s'"_err_en_US,
2254 symbol->name()),
2255 *symbol);
2256 continue;
2257 }
2258 } else if (IsNullAllocatable(&value) && IsAllocatable(*symbol)) {
2259 result.Add(*symbol, Expr<SomeType>{NullPointer{}});
2260 continue;
2261 } else if (auto *derived{evaluate::GetDerivedTypeSpec(
2262 evaluate::DynamicType::From(*symbol))}) {
2263 if (auto iter{FindPointerPotentialComponent(*derived)};
2264 iter && pureContext) { // F'2023 C15104(4)
2265 if (const Symbol *
2266 visible{semantics::FindExternallyVisibleObject(
2267 value, *pureContext)}) {
2268 Say(exprSource,
2269 "The externally visible object '%s' may not be used in a pure procedure as the value for component '%s' which has the pointer component '%s'"_err_en_US,
2270 visible->name(), symbol->name(),
2271 iter.BuildResultDesignatorName());
2272 } else if (ExtractCoarrayRef(value)) {
2273 Say(exprSource,
2274 "A coindexed object may not be used in a pure procedure as the value for component '%s' which has the pointer component '%s'"_err_en_US,
2275 symbol->name(), iter.BuildResultDesignatorName());
2276 }
2277 }
2278 }
2279 // Make implicit conversion explicit to allow folding of the structure
2280 // constructors and help semantic checking, unless the component is
2281 // allocatable, in which case the value could be an unallocated
2282 // allocatable (see Fortran 2018 7.5.10 point 7). The explicit
2283 // convert would cause a segfault. Lowering will deal with
2284 // conditionally converting and preserving the lower bounds in this
2285 // case.
2286 if (MaybeExpr converted{ImplicitConvertTo(
2287 *symbol, std::move(value), IsAllocatable(*symbol))}) {
2288 if (auto componentShape{GetShape(GetFoldingContext(), *symbol)}) {
2289 if (auto valueShape{GetShape(GetFoldingContext(), *converted)}) {
2290 if (GetRank(*componentShape) == 0 && GetRank(*valueShape) > 0) {
2291 AttachDeclaration(
2292 Say(exprSource,
2293 "Rank-%d array value is not compatible with scalar component '%s'"_err_en_US,
2294 GetRank(*valueShape), symbol->name()),
2295 *symbol);
2296 } else {
2297 auto checked{CheckConformance(messages, *componentShape,
2298 *valueShape, CheckConformanceFlags::RightIsExpandableDeferred,
2299 "component", "value")};
2300 if (checked && *checked && GetRank(*componentShape) > 0 &&
2301 GetRank(*valueShape) == 0 &&
2302 (IsDeferredShape(*symbol) ||
2303 !IsExpandableScalar(*converted, GetFoldingContext(),
2304 *componentShape, true /*admit PURE call*/))) {
2305 AttachDeclaration(
2306 Say(exprSource,
2307 "Scalar value cannot be expanded to shape of array component '%s'"_err_en_US,
2308 symbol->name()),
2309 *symbol);
2310 }
2311 if (checked.value_or(true)) {
2312 result.Add(*symbol, std::move(*converted));
2313 }
2314 }
2315 } else {
2316 Say(exprSource, "Shape of value cannot be determined"_err_en_US);
2317 }
2318 } else {
2319 AttachDeclaration(
2320 Say(exprSource,
2321 "Shape of component '%s' cannot be determined"_err_en_US,
2322 symbol->name()),
2323 *symbol);
2324 }
2325 } else if (auto symType{DynamicType::From(symbol)}) {
2326 if (IsAllocatable(*symbol) && symType->IsUnlimitedPolymorphic() &&
2327 valueType) {
2328 // ok
2329 } else if (valueType) {
2330 AttachDeclaration(
2331 Say(exprSource,
2332 "Value in structure constructor of type '%s' is incompatible with component '%s' of type '%s'"_err_en_US,
2333 valueType->AsFortran(), symbol->name(), symType->AsFortran()),
2334 *symbol);
2335 } else {
2336 AttachDeclaration(
2337 Say(exprSource,
2338 "Value in structure constructor is incompatible with component '%s' of type %s"_err_en_US,
2339 symbol->name(), symType->AsFortran()),
2340 *symbol);
2341 }
2342 }
2343 }
2344 }
2345
2346 // Ensure that unmentioned component objects have default initializers.
2347 for (const Symbol &symbol : components) {
2348 if (!symbol.test(Symbol::Flag::ParentComp) &&
2349 unavailable.find(symbol.name()) == unavailable.cend()) {
2350 if (IsAllocatable(symbol)) {
2351 // Set all remaining allocatables to explicit NULL().
2352 result.Add(symbol, Expr<SomeType>{NullPointer{}});
2353 } else {
2354 const auto *object{symbol.detailsIf<semantics::ObjectEntityDetails>()};
2355 if (object && object->init()) {
2356 result.Add(symbol, common::Clone(*object->init()));
2357 } else if (IsPointer(symbol)) {
2358 result.Add(symbol, Expr<SomeType>{NullPointer{}});
2359 } else if (object) { // C799
2360 AttachDeclaration(
2361 Say(typeName,
2362 "Structure constructor lacks a value for component '%s'"_err_en_US,
2363 symbol.name()),
2364 symbol);
2365 }
2366 }
2367 }
2368 }
2369
2370 return AsMaybeExpr(Expr<SomeDerived>{std::move(result)});
2371}
2372
2373MaybeExpr ExpressionAnalyzer::Analyze(
2374 const parser::StructureConstructor &structure) {
2375 const auto &parsedType{std::get<parser::DerivedTypeSpec>(structure.t)};
2376 parser::Name structureType{std::get<parser::Name>(parsedType.t)};
2377 parser::CharBlock &typeName{structureType.source};
2378 if (semantics::Symbol * typeSymbol{structureType.symbol}) {
2379 if (typeSymbol->has<semantics::DerivedTypeDetails>()) {
2380 semantics::DerivedTypeSpec dtSpec{typeName, typeSymbol->GetUltimate()};
2381 if (!CheckIsValidForwardReference(dtSpec)) {
2382 return std::nullopt;
2383 }
2384 }
2385 }
2386 if (!parsedType.derivedTypeSpec) {
2387 return std::nullopt;
2388 }
2389 auto restorer{AllowNullPointer()}; // NULL() can be a valid component
2390 std::list<ComponentSpec> componentSpecs;
2391 for (const auto &component :
2392 std::get<std::list<parser::ComponentSpec>>(structure.t)) {
2393 const parser::Expr &expr{
2394 std::get<parser::ComponentDataSource>(component.t).v.value()};
2395 auto restorer{GetContextualMessages().SetLocation(expr.source)};
2396 ComponentSpec compSpec;
2397 compSpec.exprSource = expr.source;
2398 compSpec.expr = Analyze(expr);
2399 if (const auto &kw{std::get<std::optional<parser::Keyword>>(component.t)}) {
2400 compSpec.source = kw->v.source;
2401 compSpec.hasKeyword = true;
2402 compSpec.keywordSymbol = kw->v.symbol;
2403 } else {
2404 compSpec.source = expr.source;
2405 }
2406 componentSpecs.emplace_back(std::move(compSpec));
2407 }
2408 return CheckStructureConstructor(
2409 typeName, DEREF(parsedType.derivedTypeSpec), std::move(componentSpecs));
2410}
2411
2412static std::optional<parser::CharBlock> GetPassName(
2413 const semantics::Symbol &proc) {
2414 return common::visit(
2415 [](const auto &details) {
2416 if constexpr (std::is_base_of_v<semantics::WithPassArg,
2417 std::decay_t<decltype(details)>>) {
2418 return details.passName();
2419 } else {
2420 return std::optional<parser::CharBlock>{};
2421 }
2422 },
2423 proc.details());
2424}
2425
2426static std::optional<int> GetPassIndex(const Symbol &proc) {
2427 CHECK(!proc.attrs().test(semantics::Attr::NOPASS));
2428 std::optional<parser::CharBlock> passName{GetPassName(proc)};
2429 const auto *interface {
2430 semantics::FindInterface(proc)
2431 };
2432 if (!passName || !interface) {
2433 return 0; // first argument is passed-object
2434 }
2435 const auto &subp{interface->get<semantics::SubprogramDetails>()};
2436 int index{0};
2437 for (const auto *arg : subp.dummyArgs()) {
2438 if (arg && arg->name() == passName) {
2439 return index;
2440 }
2441 ++index;
2442 }
2443 return std::nullopt;
2444}
2445
2446// Injects an expression into an actual argument list as the "passed object"
2447// for a type-bound procedure reference that is not NOPASS. Adds an
2448// argument keyword if possible, but not when the passed object goes
2449// before a positional argument.
2450// e.g., obj%tbp(x) -> tbp(obj,x).
2451static void AddPassArg(ActualArguments &actuals, const Expr<SomeDerived> &expr,
2452 const Symbol &component, bool isPassedObject = true) {
2453 if (component.attrs().test(semantics::Attr::NOPASS)) {
2454 return;
2455 }
2456 std::optional<int> passIndex{GetPassIndex(component)};
2457 if (!passIndex) {
2458 return; // error recovery
2459 }
2460 auto iter{actuals.begin()};
2461 int at{0};
2462 while (iter < actuals.end() && at < *passIndex) {
2463 if (*iter && (*iter)->keyword()) {
2464 iter = actuals.end();
2465 break;
2466 }
2467 ++iter;
2468 ++at;
2469 }
2470 ActualArgument passed{AsGenericExpr(common::Clone(expr))};
2471 passed.set_isPassedObject(isPassedObject);
2472 if (iter == actuals.end()) {
2473 if (auto passName{GetPassName(component)}) {
2474 passed.set_keyword(*passName);
2475 }
2476 }
2477 actuals.emplace(iter, std::move(passed));
2478}
2479
2480// Return the compile-time resolution of a procedure binding, if possible.
2481static const Symbol *GetBindingResolution(
2482 const std::optional<DynamicType> &baseType, const Symbol &component) {
2483 const auto *binding{component.detailsIf<semantics::ProcBindingDetails>()};
2484 if (!binding) {
2485 return nullptr;
2486 }
2487 if (!component.attrs().test(semantics::Attr::NON_OVERRIDABLE) &&
2488 (!baseType || baseType->IsPolymorphic())) {
2489 return nullptr;
2490 }
2491 return &binding->symbol();
2492}
2493
2494auto ExpressionAnalyzer::AnalyzeProcedureComponentRef(
2495 const parser::ProcComponentRef &pcr, ActualArguments &&arguments,
2496 bool isSubroutine) -> std::optional<CalleeAndArguments> {
2497 const parser::StructureComponent &sc{pcr.v.thing};
2498 if (MaybeExpr base{Analyze(sc.base)}) {
2499 if (const Symbol *sym{sc.component.symbol}) {
2500 if (context_.HasError(sym)) {
2501 return std::nullopt;
2502 }
2503 if (!IsProcedure(*sym)) {
2504 AttachDeclaration(
2505 Say(sc.component.source, "'%s' is not a procedure"_err_en_US,
2506 sc.component.source),
2507 *sym);
2508 return std::nullopt;
2509 }
2510 if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) {
2511 if (sym->has<semantics::GenericDetails>()) {
2512 const Symbol &generic{*sym};
2513 auto dyType{dtExpr->GetType()};
2514 AdjustActuals adjustment{
2515 [&](const Symbol &proc, ActualArguments &actuals) {
2516 if (!proc.attrs().test(semantics::Attr::NOPASS)) {
2517 AddPassArg(actuals, std::move(*dtExpr), proc);
2518 }
2519 return true;
2520 }};
2521 auto pair{
2522 ResolveGeneric(generic, arguments, adjustment, isSubroutine)};
2523 sym = pair.first;
2524 if (!sym) {
2525 EmitGenericResolutionError(generic, pair.second, isSubroutine);
2526 return std::nullopt;
2527 }
2528 // re-resolve the name to the specific binding
2529 CHECK(sym->has<semantics::ProcBindingDetails>());
2530 // Use the most recent override of a binding, respecting
2531 // the rule that inaccessible bindings may not be overridden
2532 // outside their module. Fortran doesn't allow a PUBLIC
2533 // binding to be overridden by a PRIVATE one.
2534 CHECK(dyType && dyType->category() == TypeCategory::Derived &&
2535 !dyType->IsUnlimitedPolymorphic());
2536 if (const Symbol *
2537 latest{DEREF(dyType->GetDerivedTypeSpec().typeSymbol().scope())
2538 .FindComponent(sym->name())}) {
2539 if (sym->attrs().test(semantics::Attr::PRIVATE)) {
2540 const auto *bindingModule{FindModuleContaining(generic.owner())};
2541 const Symbol *s{latest};
2542 while (s && FindModuleContaining(s->owner()) != bindingModule) {
2543 if (const auto *parent{s->owner().GetDerivedTypeParent()}) {
2544 s = parent->FindComponent(sym->name());
2545 } else {
2546 s = nullptr;
2547 }
2548 }
2549 if (s && !s->attrs().test(semantics::Attr::PRIVATE)) {
2550 // The latest override in the same module as the binding
2551 // is public, so it can be overridden.
2552 } else {
2553 latest = s;
2554 }
2555 }
2556 if (latest) {
2557 sym = latest;
2558 }
2559 }
2560 sc.component.symbol = const_cast<Symbol *>(sym);
2561 }
2562 std::optional<DataRef> dataRef{ExtractDataRef(std::move(*dtExpr))};
2563 if (dataRef && !CheckDataRef(*dataRef)) {
2564 return std::nullopt;
2565 }
2566 if (dataRef && dataRef->Rank() > 0) {
2567 if (sym->has<semantics::ProcBindingDetails>() &&
2568 sym->attrs().test(semantics::Attr::NOPASS)) {
2569 // F'2023 C1529 seems unnecessary and most compilers don't
2570 // enforce it.
2571 AttachDeclaration(
2572 Warn(common::LanguageFeature::NopassScalarBase,
2573 sc.component.source,
2574 "Base of NOPASS type-bound procedure reference should be scalar"_port_en_US),
2575 *sym);
2576 } else if (IsProcedurePointer(*sym)) { // C919
2577 Say(sc.component.source,
2578 "Base of procedure component reference must be scalar"_err_en_US);
2579 }
2580 }
2581 if (const Symbol *resolution{
2582 GetBindingResolution(dtExpr->GetType(), *sym)}) {
2583 AddPassArg(arguments, std::move(*dtExpr), *sym, false);
2584 return CalleeAndArguments{
2585 ProcedureDesignator{*resolution}, std::move(arguments)};
2586 } else if (dataRef.has_value()) {
2587 if (ExtractCoarrayRef(*dataRef)) {
2588 if (IsProcedurePointer(*sym)) {
2589 Say(sc.component.source,
2590 "Base of procedure component reference may not be coindexed"_err_en_US);
2591 } else {
2592 Say(sc.component.source,
2593 "A procedure binding may not be coindexed unless it can be resolved at compilation time"_err_en_US);
2594 }
2595 }
2596 if (sym->attrs().test(semantics::Attr::NOPASS)) {
2597 const auto *dtSpec{GetDerivedTypeSpec(dtExpr->GetType())};
2598 if (dtSpec && dtSpec->scope()) {
2599 if (auto component{CreateComponent(std::move(*dataRef), *sym,
2600 *dtSpec->scope(), /*C919bAlreadyEnforced=*/true)}) {
2601 return CalleeAndArguments{
2602 ProcedureDesignator{std::move(*component)},
2603 std::move(arguments)};
2604 }
2605 }
2606 Say(sc.component.source,
2607 "Component is not in scope of base derived type"_err_en_US);
2608 return std::nullopt;
2609 } else {
2610 AddPassArg(arguments,
2611 Expr<SomeDerived>{Designator<SomeDerived>{std::move(*dataRef)}},
2612 *sym);
2613 return CalleeAndArguments{
2614 ProcedureDesignator{*sym}, std::move(arguments)};
2615 }
2616 }
2617 }
2618 Say(sc.component.source,
2619 "Base of procedure component reference is not a derived-type object"_err_en_US);
2620 }
2621 }
2622 CHECK(context_.AnyFatalError());
2623 return std::nullopt;
2624}
2625
2626// Can actual be argument associated with dummy?
2627static bool CheckCompatibleArgument(bool isElemental,
2628 const ActualArgument &actual, const characteristics::DummyArgument &dummy,
2629 FoldingContext &foldingContext) {
2630 const auto *expr{actual.UnwrapExpr()};
2631 return common::visit(
2632 common::visitors{
2633 [&](const characteristics::DummyDataObject &x) {
2634 if ((x.attrs.test(
2635 characteristics::DummyDataObject::Attr::Pointer) ||
2636 x.attrs.test(
2637 characteristics::DummyDataObject::Attr::Allocatable)) &&
2638 IsBareNullPointer(expr)) {
2639 // NULL() without MOLD= is compatible with any dummy data pointer
2640 // or allocatable, but cannot be allowed to lead to ambiguity.
2641 return true;
2642 } else if (!isElemental && actual.Rank() != x.type.Rank() &&
2643 !x.type.attrs().test(
2644 characteristics::TypeAndShape::Attr::AssumedRank) &&
2645 !x.ignoreTKR.test(common::IgnoreTKR::Rank)) {
2646 return false;
2647 } else if (auto actualType{actual.GetType()}) {
2648 return x.type.type().IsTkCompatibleWith(*actualType, x.ignoreTKR);
2649 }
2650 return false;
2651 },
2652 [&](const characteristics::DummyProcedure &dummy) {
2653 if ((dummy.attrs.test(
2654 characteristics::DummyProcedure::Attr::Optional) ||
2655 dummy.attrs.test(
2656 characteristics::DummyProcedure::Attr::Pointer)) &&
2657 IsBareNullPointer(expr)) {
2658 // NULL() is compatible with any dummy pointer
2659 // or optional dummy procedure.
2660 return true;
2661 }
2662 if (!expr || !IsProcedurePointerTarget(*expr)) {
2663 return false;
2664 }
2665 if (auto actualProc{characteristics::Procedure::Characterize(
2666 *expr, foldingContext)}) {
2667 const auto &dummyResult{dummy.procedure.value().functionResult};
2668 const auto *dummyTypeAndShape{
2669 dummyResult ? dummyResult->GetTypeAndShape() : nullptr};
2670 const auto &actualResult{actualProc->functionResult};
2671 const auto *actualTypeAndShape{
2672 actualResult ? actualResult->GetTypeAndShape() : nullptr};
2673 if (dummyTypeAndShape && actualTypeAndShape) {
2674 // Return false when the function results' types are both
2675 // known and not compatible.
2676 return actualTypeAndShape->type().IsTkCompatibleWith(
2677 dummyTypeAndShape->type());
2678 }
2679 }
2680 return true;
2681 },
2682 [&](const characteristics::AlternateReturn &) {
2683 return actual.isAlternateReturn();
2684 },
2685 },
2686 dummy.u);
2687}
2688
2689// Are the actual arguments compatible with the dummy arguments of procedure?
2690static bool CheckCompatibleArguments(
2691 const characteristics::Procedure &procedure, const ActualArguments &actuals,
2692 FoldingContext &foldingContext) {
2693 bool isElemental{procedure.IsElemental()};
2694 const auto &dummies{procedure.dummyArguments};
2695 CHECK(dummies.size() == actuals.size());
2696 for (std::size_t i{0}; i < dummies.size(); ++i) {
2697 const characteristics::DummyArgument &dummy{dummies[i]};
2698 const std::optional<ActualArgument> &actual{actuals[i]};
2699 if (actual &&
2700 !CheckCompatibleArgument(isElemental, *actual, dummy, foldingContext)) {
2701 return false;
2702 }
2703 }
2704 return true;
2705}
2706
2707static constexpr int cudaInfMatchingValue{std::numeric_limits<int>::max()};
2708
2709// Compute the matching distance as described in section 3.2.3 of the CUDA
2710// Fortran references.
2711static int GetMatchingDistance(const common::LanguageFeatureControl &features,
2712 const characteristics::DummyArgument &dummy,
2713 const std::optional<ActualArgument> &actual) {
2714 bool isCudaManaged{features.IsEnabled(common::LanguageFeature::CudaManaged)};
2715 bool isCudaUnified{features.IsEnabled(common::LanguageFeature::CudaUnified)};
2716 CHECK(!(isCudaUnified && isCudaManaged) && "expect only one enabled.");
2717
2718 std::optional<common::CUDADataAttr> actualDataAttr, dummyDataAttr;
2719 if (actual) {
2720 if (auto *expr{actual->UnwrapExpr()}) {
2721 const auto *actualLastSymbol{evaluate::GetLastSymbol(*expr)};
2722 if (actualLastSymbol) {
2723 actualLastSymbol = &semantics::ResolveAssociations(*actualLastSymbol);
2724 if (const auto *actualObject{actualLastSymbol
2725 ? actualLastSymbol
2726 ->detailsIf<semantics::ObjectEntityDetails>()
2727 : nullptr}) {
2728 actualDataAttr = actualObject->cudaDataAttr();
2729 }
2730 }
2731 }
2732 }
2733
2734 common::visit(common::visitors{
2735 [&](const characteristics::DummyDataObject &object) {
2736 dummyDataAttr = object.cudaDataAttr;
2737 },
2738 [&](const auto &) {},
2739 },
2740 dummy.u);
2741
2742 if (!dummyDataAttr) {
2743 if (!actualDataAttr) {
2744 if (isCudaUnified || isCudaManaged) {
2745 return 3;
2746 }
2747 return 0;
2748 } else if (*actualDataAttr == common::CUDADataAttr::Device) {
2749 return cudaInfMatchingValue;
2750 } else if (*actualDataAttr == common::CUDADataAttr::Managed ||
2751 *actualDataAttr == common::CUDADataAttr::Unified) {
2752 return 3;
2753 }
2754 } else if (*dummyDataAttr == common::CUDADataAttr::Device) {
2755 if (!actualDataAttr) {
2756 if (isCudaUnified || isCudaManaged) {
2757 return 2;
2758 }
2759 return cudaInfMatchingValue;
2760 } else if (*actualDataAttr == common::CUDADataAttr::Device) {
2761 return 0;
2762 } else if (*actualDataAttr == common::CUDADataAttr::Managed ||
2763 *actualDataAttr == common::CUDADataAttr::Unified) {
2764 return 2;
2765 }
2766 } else if (*dummyDataAttr == common::CUDADataAttr::Managed) {
2767 if (!actualDataAttr) {
2768 return isCudaUnified ? 1 : isCudaManaged ? 0 : cudaInfMatchingValue;
2769 }
2770 if (*actualDataAttr == common::CUDADataAttr::Device) {
2771 return cudaInfMatchingValue;
2772 } else if (*actualDataAttr == common::CUDADataAttr::Managed) {
2773 return 0;
2774 } else if (*actualDataAttr == common::CUDADataAttr::Unified) {
2775 return 1;
2776 }
2777 } else if (*dummyDataAttr == common::CUDADataAttr::Unified) {
2778 if (!actualDataAttr) {
2779 return isCudaUnified ? 0 : isCudaManaged ? 1 : cudaInfMatchingValue;
2780 }
2781 if (*actualDataAttr == common::CUDADataAttr::Device) {
2782 return cudaInfMatchingValue;
2783 } else if (*actualDataAttr == common::CUDADataAttr::Managed) {
2784 return 1;
2785 } else if (*actualDataAttr == common::CUDADataAttr::Unified) {
2786 return 0;
2787 }
2788 }
2789 return cudaInfMatchingValue;
2790}
2791
2792static int ComputeCudaMatchingDistance(
2793 const common::LanguageFeatureControl &features,
2794 const characteristics::Procedure &procedure,
2795 const ActualArguments &actuals) {
2796 const auto &dummies{procedure.dummyArguments};
2797 CHECK(dummies.size() == actuals.size());
2798 int distance{0};
2799 for (std::size_t i{0}; i < dummies.size(); ++i) {
2800 const characteristics::DummyArgument &dummy{dummies[i]};
2801 const std::optional<ActualArgument> &actual{actuals[i]};
2802 int d{GetMatchingDistance(features, dummy, actual)};
2803 if (d == cudaInfMatchingValue)
2804 return d;
2805 distance += d;
2806 }
2807 return distance;
2808}
2809
2810// Handles a forward reference to a module function from what must
2811// be a specification expression. Return false if the symbol is
2812// an invalid forward reference.
2813const Symbol *ExpressionAnalyzer::ResolveForward(const Symbol &symbol) {
2814 if (context_.HasError(symbol)) {
2815 return nullptr;
2816 }
2817 if (const auto *details{
2818 symbol.detailsIf<semantics::SubprogramNameDetails>()}) {
2819 if (details->kind() == semantics::SubprogramKind::Module) {
2820 // If this symbol is still a SubprogramNameDetails, we must be
2821 // checking a specification expression in a sibling module
2822 // procedure. Resolve its names now so that its interface
2823 // is known.
2824 const semantics::Scope &scope{symbol.owner()};
2825 semantics::ResolveSpecificationParts(context_, symbol);
2826 const Symbol *resolved{nullptr};
2827 if (auto iter{scope.find(symbol.name())}; iter != scope.cend()) {
2828 resolved = &*iter->second;
2829 }
2830 if (!resolved || resolved->has<semantics::SubprogramNameDetails>()) {
2831 // When the symbol hasn't had its details updated, we must have
2832 // already been in the process of resolving the function's
2833 // specification part; but recursive function calls are not
2834 // allowed in specification parts (10.1.11 para 5).
2835 Say("The module function '%s' may not be referenced recursively in a specification expression"_err_en_US,
2836 symbol.name());
2837 context_.SetError(symbol);
2838 }
2839 return resolved;
2840 } else if (inStmtFunctionDefinition_) {
2841 semantics::ResolveSpecificationParts(context_, symbol);
2842 CHECK(symbol.has<semantics::SubprogramDetails>());
2843 } else { // 10.1.11 para 4
2844 Say("The internal function '%s' may not be referenced in a specification expression"_err_en_US,
2845 symbol.name());
2846 context_.SetError(symbol);
2847 return nullptr;
2848 }
2849 }
2850 return &symbol;
2851}
2852
2853// Resolve a call to a generic procedure with given actual arguments.
2854// adjustActuals is called on procedure bindings to handle pass arg.
2855std::pair<const Symbol *, bool> ExpressionAnalyzer::ResolveGeneric(
2856 const Symbol &symbol, const ActualArguments &actuals,
2857 const AdjustActuals &adjustActuals, bool isSubroutine,
2858 bool mightBeStructureConstructor) {
2859 const Symbol &ultimate{symbol.GetUltimate()};
2860 // Check for a match with an explicit INTRINSIC
2861 const Symbol *explicitIntrinsic{nullptr};
2862 if (ultimate.attrs().test(semantics::Attr::INTRINSIC)) {
2863 parser::Messages buffer;
2864 auto restorer{GetContextualMessages().SetMessages(buffer)};
2865 ActualArguments localActuals{actuals};
2866 if (context_.intrinsics().Probe(
2867 CallCharacteristics{ultimate.name().ToString(), isSubroutine},
2868 localActuals, foldingContext_) &&
2869 !buffer.AnyFatalError()) {
2870 explicitIntrinsic = &ultimate;
2871 }
2872 }
2873 const Symbol *elemental{nullptr}; // matching elemental specific proc
2874 const Symbol *nonElemental{nullptr}; // matching non-elemental specific
2875 const auto *genericDetails{ultimate.detailsIf<semantics::GenericDetails>()};
2876 if (genericDetails && !explicitIntrinsic) {
2877 int crtMatchingDistance{cudaInfMatchingValue};
2878 for (const Symbol &specific0 : genericDetails->specificProcs()) {
2879 const Symbol &specific1{BypassGeneric(specific0)};
2880 if (isSubroutine != !IsFunction(specific1)) {
2881 continue;
2882 }
2883 const Symbol *specific{ResolveForward(specific1)};
2884 if (!specific) {
2885 continue;
2886 }
2887 if (std::optional<characteristics::Procedure> procedure{
2888 characteristics::Procedure::Characterize(
2889 ProcedureDesignator{*specific}, context_.foldingContext(),
2890 /*emitError=*/false)}) {
2891 ActualArguments localActuals{actuals};
2892 if (specific->has<semantics::ProcBindingDetails>()) {
2893 if (!adjustActuals.value()(*specific, localActuals)) {
2894 continue;
2895 }
2896 }
2897 if (semantics::CheckInterfaceForGeneric(*procedure, localActuals,
2898 context_, false /* no integer conversions */) &&
2899 CheckCompatibleArguments(
2900 *procedure, localActuals, foldingContext_)) {
2901 if ((procedure->IsElemental() && elemental) ||
2902 (!procedure->IsElemental() && nonElemental)) {
2903 int d{ComputeCudaMatchingDistance(
2904 context_.languageFeatures(), *procedure, localActuals)};
2905 if (d != crtMatchingDistance) {
2906 if (d > crtMatchingDistance) {
2907 continue;
2908 }
2909 // Matching distance is smaller than the previously matched
2910 // specific. Let it go through so the current procedure is picked.
2911 } else {
2912 // 16.9.144(6): a bare NULL() is not allowed as an actual
2913 // argument to a generic procedure if the specific procedure
2914 // cannot be unambiguously distinguished
2915 // Underspecified external procedure actual arguments can
2916 // also lead to ambiguity.
2917 return {nullptr, true /* due to ambiguity */};
2918 }
2919 }
2920 if (!procedure->IsElemental()) {
2921 // takes priority over elemental match
2922 nonElemental = specific;
2923 } else {
2924 elemental = specific;
2925 }
2926 crtMatchingDistance = ComputeCudaMatchingDistance(
2927 context_.languageFeatures(), *procedure, localActuals);
2928 }
2929 }
2930 }
2931 }
2932 // Is there a derived type of the same name?
2933 const Symbol *derivedType{nullptr};
2934 if (mightBeStructureConstructor && !isSubroutine && genericDetails) {
2935 if (const Symbol * dt{genericDetails->derivedType()}) {
2936 const Symbol &ultimate{dt->GetUltimate()};
2937 if (ultimate.has<semantics::DerivedTypeDetails>()) {
2938 derivedType = &ultimate;
2939 }
2940 }
2941 }
2942 // F'2023 C7108 checking. No Fortran compiler actually enforces this
2943 // constraint, so it's just a portability warning here.
2944 if (derivedType && (explicitIntrinsic || nonElemental || elemental) &&
2945 context_.ShouldWarn(
2946 common::LanguageFeature::AmbiguousStructureConstructor)) {
2947 // See whethr there's ambiguity with a structure constructor.
2948 bool possiblyAmbiguous{true};
2949 if (const semantics::Scope * dtScope{derivedType->scope()}) {
2950 parser::Messages buffer;
2951 auto restorer{GetContextualMessages().SetMessages(buffer)};
2952 std::list<ComponentSpec> componentSpecs;
2953 for (const auto &actual : actuals) {
2954 if (actual) {
2955 ComponentSpec compSpec;
2956 if (const Expr<SomeType> *expr{actual->UnwrapExpr()}) {
2957 compSpec.expr = *expr;
2958 } else {
2959 possiblyAmbiguous = false;
2960 }
2961 if (auto loc{actual->sourceLocation()}) {
2962 compSpec.source = compSpec.exprSource = *loc;
2963 }
2964 if (auto kw{actual->keyword()}) {
2965 compSpec.hasKeyword = true;
2966 compSpec.keywordSymbol = dtScope->FindComponent(*kw);
2967 }
2968 componentSpecs.emplace_back(std::move(compSpec));
2969 } else {
2970 possiblyAmbiguous = false;
2971 }
2972 }
2973 semantics::DerivedTypeSpec dtSpec{derivedType->name(), *derivedType};
2974 dtSpec.set_scope(*dtScope);
2975 possiblyAmbiguous = possiblyAmbiguous &&
2976 CheckStructureConstructor(
2977 derivedType->name(), dtSpec, std::move(componentSpecs))
2978 .has_value() &&
2979 !buffer.AnyFatalError();
2980 }
2981 if (possiblyAmbiguous) {
2982 if (explicitIntrinsic) {
2983 Warn(common::LanguageFeature::AmbiguousStructureConstructor,
2984 "Reference to the intrinsic function '%s' is ambiguous with a structure constructor of the same name"_port_en_US,
2985 symbol.name());
2986 } else {
2987 Warn(common::LanguageFeature::AmbiguousStructureConstructor,
2988 "Reference to generic function '%s' (resolving to specific '%s') is ambiguous with a structure constructor of the same name"_port_en_US,
2989 symbol.name(),
2990 nonElemental ? nonElemental->name() : elemental->name());
2991 }
2992 }
2993 }
2994 // Return the right resolution, if there is one. Explicit intrinsics
2995 // are preferred, then non-elements specifics, then elementals, and
2996 // lastly structure constructors.
2997 if (explicitIntrinsic) {
2998 return {explicitIntrinsic, false};
2999 } else if (nonElemental) {
3000 return {&AccessSpecific(symbol, *nonElemental), false};
3001 } else if (elemental) {
3002 return {&AccessSpecific(symbol, *elemental), false};
3003 }
3004 // Check parent derived type
3005 if (const auto *parentScope{symbol.owner().GetDerivedTypeParent()}) {
3006 if (const Symbol * extended{parentScope->FindComponent(symbol.name())}) {
3007 auto pair{ResolveGeneric(
3008 *extended, actuals, adjustActuals, isSubroutine, false)};
3009 if (pair.first) {
3010 return pair;
3011 }
3012 }
3013 }
3014 // Structure constructor?
3015 if (derivedType) {
3016 return {derivedType, false};
3017 }
3018 // Check for generic or explicit INTRINSIC of the same name in outer scopes.
3019 // See 15.5.5.2 for details.
3020 if (!symbol.owner().IsGlobal() && !symbol.owner().IsDerivedType()) {
3021 if (const Symbol *
3022 outer{symbol.owner().parent().FindSymbol(symbol.name())}) {
3023 auto pair{ResolveGeneric(*outer, actuals, adjustActuals, isSubroutine,
3024 mightBeStructureConstructor)};
3025 if (pair.first) {
3026 return pair;
3027 }
3028 }
3029 }
3030 return {nullptr, false};
3031}
3032
3033const Symbol &ExpressionAnalyzer::AccessSpecific(
3034 const Symbol &originalGeneric, const Symbol &specific) {
3035 if (const auto *hosted{
3036 originalGeneric.detailsIf<semantics::HostAssocDetails>()}) {
3037 return AccessSpecific(hosted->symbol(), specific);
3038 } else if (const auto *used{
3039 originalGeneric.detailsIf<semantics::UseDetails>()}) {
3040 const auto &scope{originalGeneric.owner()};
3041 if (auto iter{scope.find(specific.name())}; iter != scope.end()) {
3042 if (const auto *useDetails{
3043 iter->second->detailsIf<semantics::UseDetails>()}) {
3044 const Symbol &usedSymbol{useDetails->symbol()};
3045 const auto *usedGeneric{
3046 usedSymbol.detailsIf<semantics::GenericDetails>()};
3047 if (&usedSymbol == &specific ||
3048 (usedGeneric && usedGeneric->specific() == &specific)) {
3049 return specific;
3050 }
3051 }
3052 }
3053 // Create a renaming USE of the specific procedure.
3054 auto rename{context_.SaveTempName(
3055 used->symbol().owner().GetName().value().ToString() + "$" +
3056 specific.owner().GetName().value().ToString() + "$" +
3057 specific.name().ToString())};
3058 return *const_cast<semantics::Scope &>(scope)
3059 .try_emplace(rename, specific.attrs(),
3060 semantics::UseDetails{rename, specific})
3061 .first->second;
3062 } else {
3063 return specific;
3064 }
3065}
3066
3067void ExpressionAnalyzer::EmitGenericResolutionError(
3068 const Symbol &symbol, bool dueToAmbiguity, bool isSubroutine) {
3069 Say(dueToAmbiguity
3070 ? "The actual arguments to the generic procedure '%s' matched multiple specific procedures, perhaps due to use of NULL() without MOLD= or an actual procedure with an implicit interface"_err_en_US
3071 : semantics::IsGenericDefinedOp(symbol)
3072 ? "No specific procedure of generic operator '%s' matches the actual arguments"_err_en_US
3073 : isSubroutine
3074 ? "No specific subroutine of generic '%s' matches the actual arguments"_err_en_US
3075 : "No specific function of generic '%s' matches the actual arguments"_err_en_US,
3076 symbol.name());
3077}
3078
3079auto ExpressionAnalyzer::GetCalleeAndArguments(
3080 const parser::ProcedureDesignator &pd, ActualArguments &&arguments,
3081 bool isSubroutine, bool mightBeStructureConstructor)
3082 -> std::optional<CalleeAndArguments> {
3083 return common::visit(common::visitors{
3084 [&](const parser::Name &name) {
3085 return GetCalleeAndArguments(name,
3086 std::move(arguments), isSubroutine,
3087 mightBeStructureConstructor);
3088 },
3089 [&](const parser::ProcComponentRef &pcr) {
3090 return AnalyzeProcedureComponentRef(
3091 pcr, std::move(arguments), isSubroutine);
3092 },
3093 },
3094 pd.u);
3095}
3096
3097auto ExpressionAnalyzer::GetCalleeAndArguments(const parser::Name &name,
3098 ActualArguments &&arguments, bool isSubroutine,
3099 bool mightBeStructureConstructor) -> std::optional<CalleeAndArguments> {
3100 const Symbol *symbol{name.symbol};
3101 if (context_.HasError(symbol)) {
3102 return std::nullopt; // also handles null symbol
3103 }
3104 symbol = ResolveForward(*symbol);
3105 if (!symbol) {
3106 return std::nullopt;
3107 }
3108 name.symbol = const_cast<Symbol *>(symbol);
3109 const Symbol &ultimate{symbol->GetUltimate()};
3110 CheckForBadRecursion(name.source, ultimate);
3111 bool dueToAmbiguity{false};
3112 bool isGenericInterface{ultimate.has<semantics::GenericDetails>()};
3113 bool isExplicitIntrinsic{ultimate.attrs().test(semantics::Attr::INTRINSIC)};
3114 const Symbol *resolution{nullptr};
3115 if (isGenericInterface || isExplicitIntrinsic) {
3116 ExpressionAnalyzer::AdjustActuals noAdjustment;
3117 auto pair{ResolveGeneric(*symbol, arguments, noAdjustment, isSubroutine,
3118 mightBeStructureConstructor)};
3119 resolution = pair.first;
3120 dueToAmbiguity = pair.second;
3121 if (resolution) {
3122 if (context_.GetPPCBuiltinsScope() &&
3123 resolution->name().ToString().rfind("__ppc_", 0) == 0) {
3124 semantics::CheckPPCIntrinsic(
3125 *symbol, *resolution, arguments, GetFoldingContext());
3126 }
3127 // re-resolve name to the specific procedure
3128 name.symbol = const_cast<Symbol *>(resolution);
3129 }
3130 } else if (IsProcedure(ultimate) &&
3131 ultimate.attrs().test(semantics::Attr::ABSTRACT)) {
3132 Say("Abstract procedure interface '%s' may not be referenced"_err_en_US,
3133 name.source);
3134 } else {
3135 resolution = symbol;
3136 }
3137 if (resolution && context_.targetCharacteristics().isOSWindows()) {
3138 semantics::CheckWindowsIntrinsic(*resolution, GetFoldingContext());
3139 }
3140 if (!resolution || resolution->attrs().test(semantics::Attr::INTRINSIC)) {
3141 auto name{resolution ? resolution->name() : ultimate.name()};
3142 if (std::optional<SpecificCall> specificCall{context_.intrinsics().Probe(
3143 CallCharacteristics{name.ToString(), isSubroutine}, arguments,
3144 GetFoldingContext())}) {
3145 CheckBadExplicitType(*specificCall, *symbol);
3146 return CalleeAndArguments{
3147 ProcedureDesignator{std::move(specificCall->specificIntrinsic)},
3148 std::move(specificCall->arguments)};
3149 } else {
3150 if (isGenericInterface) {
3151 EmitGenericResolutionError(*symbol, dueToAmbiguity, isSubroutine);
3152 }
3153 return std::nullopt;
3154 }
3155 }
3156 if (resolution->GetUltimate().has<semantics::DerivedTypeDetails>()) {
3157 if (mightBeStructureConstructor) {
3158 return CalleeAndArguments{
3159 semantics::SymbolRef{*resolution}, std::move(arguments)};
3160 }
3161 } else if (IsProcedure(*resolution)) {
3162 return CalleeAndArguments{
3163 ProcedureDesignator{*resolution}, std::move(arguments)};
3164 }
3165 if (!context_.HasError(*resolution)) {
3166 AttachDeclaration(
3167 Say(name.source, "'%s' is not a callable procedure"_err_en_US,
3168 name.source),
3169 *resolution);
3170 }
3171 return std::nullopt;
3172}
3173
3174// Fortran 2018 expressly states (8.2 p3) that any declared type for a
3175// generic intrinsic function "has no effect" on the result type of a
3176// call to that intrinsic. So one can declare "character*8 cos" and
3177// still get a real result from "cos(1.)". This is a dangerous feature,
3178// especially since implementations are free to extend their sets of
3179// intrinsics, and in doing so might clash with a name in a program.
3180// So we emit a warning in this situation, and perhaps it should be an
3181// error -- any correctly working program can silence the message by
3182// simply deleting the pointless type declaration.
3183void ExpressionAnalyzer::CheckBadExplicitType(
3184 const SpecificCall &call, const Symbol &intrinsic) {
3185 if (intrinsic.GetUltimate().GetType()) {
3186 const auto &procedure{call.specificIntrinsic.characteristics.value()};
3187 if (const auto &result{procedure.functionResult}) {
3188 if (const auto *typeAndShape{result->GetTypeAndShape()}) {
3189 if (auto declared{
3190 typeAndShape->Characterize(intrinsic, GetFoldingContext())}) {
3191 if (!declared->type().IsTkCompatibleWith(typeAndShape->type())) {
3192 if (auto *msg{Warn(
3193 common::UsageWarning::IgnoredIntrinsicFunctionType,
3194 "The result type '%s' of the intrinsic function '%s' is not the explicit declared type '%s'"_warn_en_US,
3195 typeAndShape->AsFortran(), intrinsic.name(),
3196 declared->AsFortran())}) {
3197 msg->Attach(intrinsic.name(),
3198 "Ignored declaration of intrinsic function '%s'"_en_US,
3199 intrinsic.name());
3200 }
3201 }
3202 }
3203 }
3204 }
3205 }
3206}
3207
3208void ExpressionAnalyzer::CheckForBadRecursion(
3209 parser::CharBlock callSite, const semantics::Symbol &proc) {
3210 if (const auto *scope{proc.scope()}) {
3211 if (scope->sourceRange().Contains(callSite)) {
3212 parser::Message *msg{nullptr};
3213 if (proc.attrs().test(semantics::Attr::NON_RECURSIVE)) { // 15.6.2.1(3)
3214 msg = Say("NON_RECURSIVE procedure '%s' cannot call itself"_err_en_US,
3215 callSite);
3216 } else if (IsAssumedLengthCharacter(proc) && IsExternal(proc)) {
3217 // TODO: Also catch assumed PDT type parameters
3218 msg = Say( // 15.6.2.1(3)
3219 "Assumed-length CHARACTER(*) function '%s' cannot call itself"_err_en_US,
3220 callSite);
3221 } else if (FindCUDADeviceContext(scope)) {
3222 msg = Say(
3223 "Device subprogram '%s' cannot call itself"_err_en_US, callSite);
3224 }
3225 AttachDeclaration(msg, proc);
3226 }
3227 }
3228}
3229
3230template <typename A> static const Symbol *AssumedTypeDummy(const A &x) {
3231 if (const auto *designator{
3232 std::get_if<common::Indirection<parser::Designator>>(&x.u)}) {
3233 if (const auto *dataRef{
3234 std::get_if<parser::DataRef>(&designator->value().u)}) {
3235 if (const auto *name{std::get_if<parser::Name>(&dataRef->u)}) {
3236 return AssumedTypeDummy(*name);
3237 }
3238 }
3239 }
3240 return nullptr;
3241}
3242template <>
3243const Symbol *AssumedTypeDummy<parser::Name>(const parser::Name &name) {
3244 if (const Symbol *symbol{name.symbol}) {
3245 if (const auto *type{symbol->GetType()}) {
3246 if (type->category() == semantics::DeclTypeSpec::TypeStar) {
3247 return symbol;
3248 }
3249 }
3250 }
3251 return nullptr;
3252}
3253template <typename A>
3254static const Symbol *AssumedTypePointerOrAllocatableDummy(const A &object) {
3255 // It is illegal for allocatable of pointer objects to be TYPE(*), but at that
3256 // point it is not guaranteed that it has been checked the object has
3257 // POINTER or ALLOCATABLE attribute, so do not assume nullptr can be directly
3258 // returned.
3259 return common::visit(
3260 common::visitors{
3261 [&](const parser::StructureComponent &x) {
3262 return AssumedTypeDummy(x.component);
3263 },
3264 [&](const parser::Name &x) { return AssumedTypeDummy(x); },
3265 },
3266 object.u);
3267}
3268template <>
3269const Symbol *AssumedTypeDummy<parser::AllocateObject>(
3270 const parser::AllocateObject &x) {
3271 return AssumedTypePointerOrAllocatableDummy(x);
3272}
3273template <>
3274const Symbol *AssumedTypeDummy<parser::PointerObject>(
3275 const parser::PointerObject &x) {
3276 return AssumedTypePointerOrAllocatableDummy(x);
3277}
3278
3279bool ExpressionAnalyzer::CheckIsValidForwardReference(
3280 const semantics::DerivedTypeSpec &dtSpec) {
3281 if (dtSpec.IsForwardReferenced()) {
3282 Say("Cannot construct value for derived type '%s' before it is defined"_err_en_US,
3283 dtSpec.name());
3284 return false;
3285 }
3286 return true;
3287}
3288
3289std::optional<Chevrons> ExpressionAnalyzer::AnalyzeChevrons(
3290 const parser::CallStmt &call) {
3291 Chevrons result;
3292 auto checkLaunchArg{[&](const Expr<SomeType> &expr, const char *which) {
3293 if (auto dyType{expr.GetType()}) {
3294 if (dyType->category() == TypeCategory::Integer) {
3295 return true;
3296 }
3297 if (dyType->category() == TypeCategory::Derived &&
3298 !dyType->IsPolymorphic() &&
3299 IsBuiltinDerivedType(&dyType->GetDerivedTypeSpec(), "dim3")) {
3300 return true;
3301 }
3302 }
3303 Say("Kernel launch %s parameter must be either integer or TYPE(dim3)"_err_en_US,
3304 which);
3305 return false;
3306 }};
3307 if (const auto &chevrons{call.chevrons}) {
3308 auto &starOrExpr{std::get<0>(chevrons->t)};
3309 if (starOrExpr.v) {
3310 if (auto expr{Analyze(*starOrExpr.v)};
3311 expr && checkLaunchArg(*expr, "grid")) {
3312 result.emplace_back(*expr);
3313 } else {
3314 return std::nullopt;
3315 }
3316 } else {
3317 result.emplace_back(
3318 AsGenericExpr(evaluate::Constant<evaluate::CInteger>{-1}));
3319 }
3320 if (auto expr{Analyze(std::get<1>(chevrons->t))};
3321 expr && checkLaunchArg(*expr, "block")) {
3322 result.emplace_back(*expr);
3323 } else {
3324 return std::nullopt;
3325 }
3326 if (const auto &maybeExpr{std::get<2>(chevrons->t)}) {
3327 if (auto expr{Analyze(*maybeExpr)}) {
3328 result.emplace_back(*expr);
3329 } else {
3330 return std::nullopt;
3331 }
3332 }
3333 if (const auto &maybeExpr{std::get<3>(chevrons->t)}) {
3334 if (auto expr{Analyze(*maybeExpr)}) {
3335 result.emplace_back(*expr);
3336 } else {
3337 return std::nullopt;
3338 }
3339 }
3340 }
3341 return std::move(result);
3342}
3343
3344MaybeExpr ExpressionAnalyzer::Analyze(const parser::FunctionReference &funcRef,
3345 std::optional<parser::StructureConstructor> *structureConstructor) {
3346 const parser::Call &call{funcRef.v};
3347 auto restorer{GetContextualMessages().SetLocation(funcRef.source)};
3348 ArgumentAnalyzer analyzer{*this, funcRef.source, true /* isProcedureCall */};
3349 for (const auto &arg : std::get<std::list<parser::ActualArgSpec>>(call.t)) {
3350 analyzer.Analyze(arg, false /* not subroutine call */);
3351 }
3352 if (analyzer.fatalErrors()) {
3353 return std::nullopt;
3354 }
3355 bool mightBeStructureConstructor{structureConstructor != nullptr};
3356 if (std::optional<CalleeAndArguments> callee{GetCalleeAndArguments(
3357 std::get<parser::ProcedureDesignator>(call.t), analyzer.GetActuals(),
3358 false /* not subroutine */, mightBeStructureConstructor)}) {
3359 if (auto *proc{std::get_if<ProcedureDesignator>(&callee->u)}) {
3360 return MakeFunctionRef(
3361 funcRef.source, std::move(*proc), std::move(callee->arguments));
3362 }
3363 CHECK(std::holds_alternative<semantics::SymbolRef>(callee->u));
3364 const Symbol &symbol{*std::get<semantics::SymbolRef>(callee->u)};
3365 if (mightBeStructureConstructor) {
3366 // Structure constructor misparsed as function reference?
3367 const auto &designator{std::get<parser::ProcedureDesignator>(call.t)};
3368 if (const auto *name{std::get_if<parser::Name>(&designator.u)}) {
3369 semantics::Scope &scope{context_.FindScope(name->source)};
3370 semantics::DerivedTypeSpec dtSpec{name->source, symbol};
3371 if (!CheckIsValidForwardReference(dtSpec)) {
3372 return std::nullopt;
3373 }
3374 const semantics::DeclTypeSpec &type{
3375 semantics::FindOrInstantiateDerivedType(scope, std::move(dtSpec))};
3376 auto &mutableRef{const_cast<parser::FunctionReference &>(funcRef)};
3377 *structureConstructor =
3378 mutableRef.ConvertToStructureConstructor(type.derivedTypeSpec());
3379 // Don't use saved typed expressions left over from argument
3380 // analysis; they might not be valid structure components
3381 // (e.g., a TYPE(*) argument)
3382 auto restorer{DoNotUseSavedTypedExprs()};
3383 return Analyze(structureConstructor->value());
3384 }
3385 }
3386 if (!context_.HasError(symbol)) {
3387 AttachDeclaration(
3388 Say("'%s' is called like a function but is not a procedure"_err_en_US,
3389 symbol.name()),
3390 symbol);
3391 context_.SetError(symbol);
3392 }
3393 }
3394 return std::nullopt;
3395}
3396
3397static bool HasAlternateReturns(const evaluate::ActualArguments &args) {
3398 for (const auto &arg : args) {
3399 if (arg && arg->isAlternateReturn()) {
3400 return true;
3401 }
3402 }
3403 return false;
3404}
3405
3406void ExpressionAnalyzer::Analyze(const parser::CallStmt &callStmt) {
3407 const parser::Call &call{callStmt.call};
3408 auto restorer{GetContextualMessages().SetLocation(callStmt.source)};
3409 ArgumentAnalyzer analyzer{*this, callStmt.source, true /* isProcedureCall */};
3410 const auto &actualArgList{std::get<std::list<parser::ActualArgSpec>>(call.t)};
3411 for (const auto &arg : actualArgList) {
3412 analyzer.Analyze(arg, true /* is subroutine call */);
3413 }
3414 if (auto chevrons{AnalyzeChevrons(callStmt)};
3415 chevrons && !analyzer.fatalErrors()) {
3416 if (std::optional<CalleeAndArguments> callee{
3417 GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t),
3418 analyzer.GetActuals(), true /* subroutine */)}) {
3419 ProcedureDesignator *proc{std::get_if<ProcedureDesignator>(&callee->u)};
3420 CHECK(proc);
3421 bool isKernel{false};
3422 if (const Symbol * procSym{proc->GetSymbol()}) {
3423 const Symbol &ultimate{procSym->GetUltimate()};
3424 if (const auto *subpDetails{
3425 ultimate.detailsIf<semantics::SubprogramDetails>()}) {
3426 if (auto attrs{subpDetails->cudaSubprogramAttrs()}) {
3427 isKernel = *attrs == common::CUDASubprogramAttrs::Global ||
3428 *attrs == common::CUDASubprogramAttrs::Grid_Global;
3429 }
3430 } else if (const auto *procDetails{
3431 ultimate.detailsIf<semantics::ProcEntityDetails>()}) {
3432 isKernel = procDetails->isCUDAKernel();
3433 }
3434 if (isKernel && chevrons->empty()) {
3435 Say("'%s' is a kernel subroutine and must be called with kernel launch parameters in chevrons"_err_en_US,
3436 procSym->name());
3437 }
3438 }
3439 if (!isKernel && !chevrons->empty()) {
3440 Say("Kernel launch parameters in chevrons may not be used unless calling a kernel subroutine"_err_en_US);
3441 }
3442 if (CheckCall(callStmt.source, *proc, callee->arguments)) {
3443 callStmt.typedCall.Reset(
3444 new ProcedureRef{std::move(*proc), std::move(callee->arguments),
3445 HasAlternateReturns(callee->arguments)},
3446 ProcedureRef::Deleter);
3447 DEREF(callStmt.typedCall.get()).set_chevrons(std::move(*chevrons));
3448 return;
3449 }
3450 }
3451 if (!context_.AnyFatalError()) {
3452 std::string buf;
3453 llvm::raw_string_ostream dump{buf};
3454 parser::DumpTree(dump, callStmt);
3455 Say("Internal error: Expression analysis failed on CALL statement: %s"_err_en_US,
3456 buf);
3457 }
3458 }
3459}
3460
3461const Assignment *ExpressionAnalyzer::Analyze(const parser::AssignmentStmt &x) {
3462 if (!x.typedAssignment) {
3463 ArgumentAnalyzer analyzer{*this};
3464 const auto &variable{std::get<parser::Variable>(x.t)};
3465 analyzer.Analyze(variable);
3466 const auto &rhsExpr{std::get<parser::Expr>(x.t)};
3467 analyzer.Analyze(rhsExpr);
3468 std::optional<Assignment> assignment;
3469 if (!analyzer.fatalErrors()) {
3470 auto restorer{GetContextualMessages().SetLocation(variable.GetSource())};
3471 std::optional<ProcedureRef> procRef{analyzer.TryDefinedAssignment()};
3472 if (!procRef) {
3473 analyzer.CheckForNullPointer(
3474 "in a non-pointer intrinsic assignment statement");
3475 analyzer.CheckForAssumedRank("in an assignment statement");
3476 const Expr<SomeType> &lhs{analyzer.GetExpr(0)};
3477 if (auto dyType{lhs.GetType()}) {
3478 if (dyType->IsPolymorphic()) { // 10.2.1.2p1(1)
3479 const Symbol *lastWhole0{UnwrapWholeSymbolOrComponentDataRef(lhs)};
3480 const Symbol *lastWhole{
3481 lastWhole0 ? &ResolveAssociations(*lastWhole0) : nullptr};
3482 if (!lastWhole || !IsAllocatable(*lastWhole)) {
3483 Say("Left-hand side of intrinsic assignment may not be polymorphic unless assignment is to an entire allocatable"_err_en_US);
3484 } else if (evaluate::IsCoarray(*lastWhole)) {
3485 Say("Left-hand side of intrinsic assignment may not be polymorphic if it is a coarray"_err_en_US);
3486 }
3487 }
3488 if (auto *derived{GetDerivedTypeSpec(*dyType)}) {
3489 if (auto iter{FindAllocatableUltimateComponent(*derived)}) {
3490 if (ExtractCoarrayRef(lhs)) {
3491 Say("Left-hand side of intrinsic assignment must not be coindexed due to allocatable ultimate component '%s'"_err_en_US,
3492 iter.BuildResultDesignatorName());
3493 }
3494 }
3495 }
3496 }
3497 CheckForWholeAssumedSizeArray(
3498 rhsExpr.source, UnwrapWholeSymbolDataRef(analyzer.GetExpr(1)));
3499 }
3500 assignment.emplace(analyzer.MoveExpr(0), analyzer.MoveExpr(1));
3501 if (procRef) {
3502 assignment->u = std::move(*procRef);
3503 }
3504 }
3505 x.typedAssignment.Reset(new GenericAssignmentWrapper{std::move(assignment)},
3506 GenericAssignmentWrapper::Deleter);
3507 }
3508 return common::GetPtrFromOptional(x.typedAssignment->v);
3509}
3510
3511const Assignment *ExpressionAnalyzer::Analyze(
3512 const parser::PointerAssignmentStmt &x) {
3513 if (!x.typedAssignment) {
3514 MaybeExpr lhs{Analyze(std::get<parser::DataRef>(x.t))};
3515 MaybeExpr rhs;
3516 {
3517 auto restorer{AllowNullPointer()};
3518 rhs = Analyze(std::get<parser::Expr>(x.t));
3519 }
3520 if (!lhs || !rhs) {
3521 x.typedAssignment.Reset(
3522 new GenericAssignmentWrapper{}, GenericAssignmentWrapper::Deleter);
3523 } else {
3524 Assignment assignment{std::move(*lhs), std::move(*rhs)};
3525 common::visit(
3526 common::visitors{
3527 [&](const std::list<parser::BoundsRemapping> &list) {
3528 Assignment::BoundsRemapping bounds;
3529 for (const auto &elem : list) {
3530 auto lower{AsSubscript(Analyze(std::get<0>(elem.t)))};
3531 auto upper{AsSubscript(Analyze(std::get<1>(elem.t)))};
3532 if (lower && upper) {
3533 bounds.emplace_back(
3534 Fold(std::move(*lower)), Fold(std::move(*upper)));
3535 }
3536 }
3537 assignment.u = std::move(bounds);
3538 },
3539 [&](const std::list<parser::BoundsSpec> &list) {
3540 Assignment::BoundsSpec bounds;
3541 for (const auto &bound : list) {
3542 if (auto lower{AsSubscript(Analyze(bound.v))}) {
3543 bounds.emplace_back(Fold(std::move(*lower)));
3544 }
3545 }
3546 assignment.u = std::move(bounds);
3547 },
3548 },
3549 std::get<parser::PointerAssignmentStmt::Bounds>(x.t).u);
3550 x.typedAssignment.Reset(
3551 new GenericAssignmentWrapper{std::move(assignment)},
3552 GenericAssignmentWrapper::Deleter);
3553 }
3554 }
3555 return common::GetPtrFromOptional(x.typedAssignment->v);
3556}
3557
3558static bool IsExternalCalledImplicitly(
3559 parser::CharBlock callSite, const Symbol *symbol) {
3560 return symbol && symbol->owner().IsGlobal() &&
3561 symbol->has<semantics::SubprogramDetails>() &&
3562 (!symbol->scope() /*ENTRY*/ ||
3563 !symbol->scope()->sourceRange().Contains(callSite));
3564}
3565
3566std::optional<characteristics::Procedure> ExpressionAnalyzer::CheckCall(
3567 parser::CharBlock callSite, const ProcedureDesignator &proc,
3568 ActualArguments &arguments) {
3569 bool treatExternalAsImplicit{
3570 IsExternalCalledImplicitly(callSite, proc.GetSymbol())};
3571 const Symbol *procSymbol{proc.GetSymbol()};
3572 std::optional<characteristics::Procedure> chars;
3573 if (procSymbol && procSymbol->has<semantics::ProcEntityDetails>() &&
3574 procSymbol->owner().IsGlobal()) {
3575 // Unknown global external, implicit interface; assume
3576 // characteristics from the actual arguments, and check
3577 // for consistency with other references.
3578 chars = characteristics::Procedure::FromActuals(
3579 proc, arguments, context_.foldingContext());
3580 if (chars && procSymbol) {
3581 // Ensure calls over implicit interfaces are consistent
3582 auto name{procSymbol->name()};
3583 if (auto iter{implicitInterfaces_.find(name)};
3584 iter != implicitInterfaces_.end()) {
3585 std::string whyNot;
3586 if (!chars->IsCompatibleWith(iter->second.second,
3587 /*ignoreImplicitVsExplicit=*/false, &whyNot)) {
3588 if (auto *msg{Warn(
3589 common::UsageWarning::IncompatibleImplicitInterfaces,
3590 callSite,
3591 "Reference to the procedure '%s' has an implicit interface that is distinct from another reference: %s"_warn_en_US,
3592 name, whyNot)}) {
3593 msg->Attach(
3594 iter->second.first, "previous reference to '%s'"_en_US, name);
3595 }
3596 }
3597 } else {
3598 implicitInterfaces_.insert(
3599 std::make_pair(name, std::make_pair(callSite, *chars)));
3600 }
3601 }
3602 }
3603 if (!chars) {
3604 chars = characteristics::Procedure::Characterize(
3605 proc, context_.foldingContext(), /*emitError=*/true);
3606 }
3607 bool ok{true};
3608 if (chars) {
3609 std::string whyNot;
3610 if (treatExternalAsImplicit &&
3611 !chars->CanBeCalledViaImplicitInterface(&whyNot)) {
3612 if (auto *msg{Say(callSite,
3613 "References to the procedure '%s' require an explicit interface"_err_en_US,
3614 DEREF(procSymbol).name())};
3615 msg && !whyNot.empty()) {
3616 msg->Attach(callSite, "%s"_because_en_US, whyNot);
3617 }
3618 }
3619 const SpecificIntrinsic *specificIntrinsic{proc.GetSpecificIntrinsic()};
3620 bool procIsDummy{procSymbol && IsDummy(*procSymbol)};
3621 if (chars->functionResult &&
3622 chars->functionResult->IsAssumedLengthCharacter() &&
3623 !specificIntrinsic && !procIsDummy) {
3624 Say(callSite,
3625 "Assumed-length character function must be defined with a length to be called"_err_en_US);
3626 }
3627 ok &= semantics::CheckArguments(*chars, arguments, context_,
3628 context_.FindScope(callSite), treatExternalAsImplicit,
3629 /*ignoreImplicitVsExplicit=*/false, specificIntrinsic);
3630 }
3631 if (procSymbol && !IsPureProcedure(*procSymbol)) {
3632 if (const semantics::Scope *
3633 pure{semantics::FindPureProcedureContaining(
3634 context_.FindScope(callSite))}) {
3635 Say(callSite,
3636 "Procedure '%s' referenced in pure subprogram '%s' must be pure too"_err_en_US,
3637 procSymbol->name(), DEREF(pure->symbol()).name());
3638 }
3639 }
3640 if (ok && !treatExternalAsImplicit && procSymbol &&
3641 !(chars && chars->HasExplicitInterface())) {
3642 if (const Symbol *global{FindGlobal(*procSymbol)};
3643 global && global != procSymbol && IsProcedure(*global)) {
3644 // Check a known global definition behind a local interface
3645 if (auto globalChars{characteristics::Procedure::Characterize(
3646 *global, context_.foldingContext())}) {
3647 semantics::CheckArguments(*globalChars, arguments, context_,
3648 context_.FindScope(callSite), /*treatExternalAsImplicit=*/true,
3649 /*ignoreImplicitVsExplicit=*/false,
3650 nullptr /*not specific intrinsic*/);
3651 }
3652 }
3653 }
3654 return chars;
3655}
3656
3657// Unary operations
3658
3659MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Parentheses &x) {
3660 if (MaybeExpr operand{Analyze(x.v.value())}) {
3661 if (const semantics::Symbol *symbol{GetLastSymbol(*operand)}) {
3662 if (const semantics::Symbol *result{FindFunctionResult(*symbol)}) {
3663 if (semantics::IsProcedurePointer(*result)) {
3664 Say("A function reference that returns a procedure "
3665 "pointer may not be parenthesized"_err_en_US); // C1003
3666 }
3667 }
3668 }
3669 return Parenthesize(std::move(*operand));
3670 }
3671 return std::nullopt;
3672}
3673
3674static MaybeExpr NumericUnaryHelper(ExpressionAnalyzer &context,
3675 NumericOperator opr, const parser::Expr::IntrinsicUnary &x) {
3676 ArgumentAnalyzer analyzer{context};
3677 analyzer.Analyze(x: x.v);
3678 if (!analyzer.fatalErrors()) {
3679 if (analyzer.IsIntrinsicNumeric(opr)) {
3680 analyzer.CheckForNullPointer();
3681 analyzer.CheckForAssumedRank();
3682 if (opr == NumericOperator::Add) {
3683 return analyzer.MoveExpr(0);
3684 } else {
3685 return Negation(context.GetContextualMessages(), analyzer.MoveExpr(0));
3686 }
3687 } else {
3688 return analyzer.TryDefinedOp(AsFortran(opr),
3689 "Operand of unary %s must be numeric; have %s"_err_en_US);
3690 }
3691 }
3692 return std::nullopt;
3693}
3694
3695MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::UnaryPlus &x) {
3696 return NumericUnaryHelper(*this, NumericOperator::Add, x);
3697}
3698
3699MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Negate &x) {
3700 if (const auto *litConst{
3701 std::get_if<parser::LiteralConstant>(&x.v.value().u)}) {
3702 if (const auto *intConst{
3703 std::get_if<parser::IntLiteralConstant>(&litConst->u)}) {
3704 return Analyze(*intConst, true);
3705 }
3706 }
3707 return NumericUnaryHelper(*this, NumericOperator::Subtract, x);
3708}
3709
3710MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NOT &x) {
3711 ArgumentAnalyzer analyzer{*this};
3712 analyzer.Analyze(x.v);
3713 if (!analyzer.fatalErrors()) {
3714 if (analyzer.IsIntrinsicLogical()) {
3715 analyzer.CheckForNullPointer();
3716 analyzer.CheckForAssumedRank();
3717 return AsGenericExpr(
3718 LogicalNegation(std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u)));
3719 } else {
3720 return analyzer.TryDefinedOp(LogicalOperator::Not,
3721 "Operand of %s must be LOGICAL; have %s"_err_en_US);
3722 }
3723 }
3724 return std::nullopt;
3725}
3726
3727MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::PercentLoc &x) {
3728 // Represent %LOC() exactly as if it had been a call to the LOC() extension
3729 // intrinsic function.
3730 // Use the actual source for the name of the call for error reporting.
3731 std::optional<ActualArgument> arg;
3732 if (const Symbol *assumedTypeDummy{AssumedTypeDummy(x.v.value())}) {
3733 arg = ActualArgument{ActualArgument::AssumedType{*assumedTypeDummy}};
3734 } else if (MaybeExpr argExpr{Analyze(x.v.value())}) {
3735 arg = ActualArgument{std::move(*argExpr)};
3736 } else {
3737 return std::nullopt;
3738 }
3739 parser::CharBlock at{GetContextualMessages().at()};
3740 CHECK(at.size() >= 4);
3741 parser::CharBlock loc{at.begin() + 1, 3};
3742 CHECK(loc == "loc");
3743 return MakeFunctionRef(loc, ActualArguments{std::move(*arg)});
3744}
3745
3746MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedUnary &x) {
3747 const auto &name{std::get<parser::DefinedOpName>(x.t).v};
3748 ArgumentAnalyzer analyzer{*this, name.source};
3749 analyzer.Analyze(std::get<1>(x.t));
3750 return analyzer.TryDefinedOp(name.source.ToString().c_str(),
3751 "No operator %s defined for %s"_err_en_US, true);
3752}
3753
3754// Binary (dyadic) operations
3755
3756template <template <typename> class OPR, NumericOperator opr>
3757MaybeExpr NumericBinaryHelper(
3758 ExpressionAnalyzer &context, const parser::Expr::IntrinsicBinary &x) {
3759 ArgumentAnalyzer analyzer{context};
3760 analyzer.Analyze(x: std::get<0>(x.t));
3761 analyzer.Analyze(x: std::get<1>(x.t));
3762 if (!analyzer.fatalErrors()) {
3763 if (analyzer.IsIntrinsicNumeric(opr)) {
3764 analyzer.CheckForNullPointer();
3765 analyzer.CheckForAssumedRank();
3766 analyzer.CheckConformance();
3767 constexpr bool canBeUnsigned{opr != NumericOperator::Power};
3768 return NumericOperation<OPR, canBeUnsigned>(
3769 context.GetContextualMessages(), analyzer.MoveExpr(0),
3770 analyzer.MoveExpr(1), context.GetDefaultKind(TypeCategory::Real));
3771 } else {
3772 return analyzer.TryDefinedOp(AsFortran(opr),
3773 "Operands of %s must be numeric; have %s and %s"_err_en_US);
3774 }
3775 }
3776 return std::nullopt;
3777}
3778
3779MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Power &x) {
3780 return NumericBinaryHelper<Power, NumericOperator::Power>(*this, x);
3781}
3782
3783MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Multiply &x) {
3784 return NumericBinaryHelper<Multiply, NumericOperator::Multiply>(*this, x);
3785}
3786
3787MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Divide &x) {
3788 return NumericBinaryHelper<Divide, NumericOperator::Divide>(*this, x);
3789}
3790
3791MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Add &x) {
3792 return NumericBinaryHelper<Add, NumericOperator::Add>(*this, x);
3793}
3794
3795MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Subtract &x) {
3796 return NumericBinaryHelper<Subtract, NumericOperator::Subtract>(*this, x);
3797}
3798
3799MaybeExpr ExpressionAnalyzer::Analyze(
3800 const parser::Expr::ComplexConstructor &z) {
3801 Warn(common::LanguageFeature::ComplexConstructor,
3802 "nonstandard usage: generalized COMPLEX constructor"_port_en_US);
3803 return AnalyzeComplex(Analyze(std::get<0>(z.t).value()),
3804 Analyze(std::get<1>(z.t).value()), "complex constructor");
3805}
3806
3807MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Concat &x) {
3808 ArgumentAnalyzer analyzer{*this};
3809 analyzer.Analyze(std::get<0>(x.t));
3810 analyzer.Analyze(std::get<1>(x.t));
3811 if (!analyzer.fatalErrors()) {
3812 if (analyzer.IsIntrinsicConcat()) {
3813 analyzer.CheckForNullPointer();
3814 analyzer.CheckForAssumedRank();
3815 return common::visit(
3816 [&](auto &&x, auto &&y) -> MaybeExpr {
3817 using T = ResultType<decltype(x)>;
3818 if constexpr (std::is_same_v<T, ResultType<decltype(y)>>) {
3819 return AsGenericExpr(Concat<T::kind>{std::move(x), std::move(y)});
3820 } else {
3821 DIE("different types for intrinsic concat");
3822 }
3823 },
3824 std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(0).u).u),
3825 std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(1).u).u));
3826 } else {
3827 return analyzer.TryDefinedOp("//",
3828 "Operands of %s must be CHARACTER with the same kind; have %s and %s"_err_en_US);
3829 }
3830 }
3831 return std::nullopt;
3832}
3833
3834// The Name represents a user-defined intrinsic operator.
3835// If the actuals match one of the specific procedures, return a function ref.
3836// Otherwise report the error in messages.
3837MaybeExpr ExpressionAnalyzer::AnalyzeDefinedOp(const parser::Name &name,
3838 ActualArguments &&actuals, const Symbol *&symbol) {
3839 if (auto callee{GetCalleeAndArguments(name, std::move(actuals))}) {
3840 auto &proc{std::get<evaluate::ProcedureDesignator>(callee->u)};
3841 symbol = proc.GetSymbol();
3842 return MakeFunctionRef(
3843 name.source, std::move(proc), std::move(callee->arguments));
3844 } else {
3845 return std::nullopt;
3846 }
3847}
3848
3849MaybeExpr RelationHelper(ExpressionAnalyzer &context, RelationalOperator opr,
3850 const parser::Expr::IntrinsicBinary &x) {
3851 ArgumentAnalyzer analyzer{context};
3852 analyzer.Analyze(x: std::get<0>(x.t));
3853 analyzer.Analyze(x: std::get<1>(x.t));
3854 if (!analyzer.fatalErrors()) {
3855 std::optional<DynamicType> leftType{analyzer.GetType(0)};
3856 std::optional<DynamicType> rightType{analyzer.GetType(1)};
3857 analyzer.ConvertBOZOperand(&leftType, 0, rightType);
3858 analyzer.ConvertBOZOperand(&rightType, 1, leftType);
3859 if (leftType && rightType &&
3860 analyzer.IsIntrinsicRelational(opr, *leftType, *rightType)) {
3861 analyzer.CheckForNullPointer(where: "as a relational operand");
3862 analyzer.CheckForAssumedRank(where: "as a relational operand");
3863 if (auto cmp{Relate(context.GetContextualMessages(), opr,
3864 analyzer.MoveExpr(0), analyzer.MoveExpr(1))}) {
3865 return AsMaybeExpr(ConvertToKind<TypeCategory::Logical>(
3866 context.GetDefaultKind(TypeCategory::Logical),
3867 AsExpr(std::move(*cmp))));
3868 }
3869 } else {
3870 return analyzer.TryDefinedOp(opr,
3871 leftType && leftType->category() == TypeCategory::Logical &&
3872 rightType && rightType->category() == TypeCategory::Logical
3873 ? "LOGICAL operands must be compared using .EQV. or .NEQV."_err_en_US
3874 : "Operands of %s must have comparable types; have %s and %s"_err_en_US);
3875 }
3876 }
3877 return std::nullopt;
3878}
3879
3880MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LT &x) {
3881 return RelationHelper(*this, RelationalOperator::LT, x);
3882}
3883
3884MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LE &x) {
3885 return RelationHelper(*this, RelationalOperator::LE, x);
3886}
3887
3888MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQ &x) {
3889 return RelationHelper(*this, RelationalOperator::EQ, x);
3890}
3891
3892MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NE &x) {
3893 return RelationHelper(*this, RelationalOperator::NE, x);
3894}
3895
3896MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GE &x) {
3897 return RelationHelper(*this, RelationalOperator::GE, x);
3898}
3899
3900MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GT &x) {
3901 return RelationHelper(*this, RelationalOperator::GT, x);
3902}
3903
3904MaybeExpr LogicalBinaryHelper(ExpressionAnalyzer &context, LogicalOperator opr,
3905 const parser::Expr::IntrinsicBinary &x) {
3906 ArgumentAnalyzer analyzer{context};
3907 analyzer.Analyze(x: std::get<0>(x.t));
3908 analyzer.Analyze(x: std::get<1>(x.t));
3909 if (!analyzer.fatalErrors()) {
3910 if (analyzer.IsIntrinsicLogical()) {
3911 analyzer.CheckForNullPointer(where: "as a logical operand");
3912 analyzer.CheckForAssumedRank(where: "as a logical operand");
3913 return AsGenericExpr(BinaryLogicalOperation(opr,
3914 std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u),
3915 std::get<Expr<SomeLogical>>(analyzer.MoveExpr(1).u)));
3916 } else {
3917 return analyzer.TryDefinedOp(
3918 opr, "Operands of %s must be LOGICAL; have %s and %s"_err_en_US);
3919 }
3920 }
3921 return std::nullopt;
3922}
3923
3924MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::AND &x) {
3925 return LogicalBinaryHelper(*this, LogicalOperator::And, x);
3926}
3927
3928MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::OR &x) {
3929 return LogicalBinaryHelper(*this, LogicalOperator::Or, x);
3930}
3931
3932MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQV &x) {
3933 return LogicalBinaryHelper(*this, LogicalOperator::Eqv, x);
3934}
3935
3936MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NEQV &x) {
3937 return LogicalBinaryHelper(*this, LogicalOperator::Neqv, x);
3938}
3939
3940MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedBinary &x) {
3941 const auto &name{std::get<parser::DefinedOpName>(x.t).v};
3942 ArgumentAnalyzer analyzer{*this, name.source};
3943 analyzer.Analyze(std::get<1>(x.t));
3944 analyzer.Analyze(std::get<2>(x.t));
3945 return analyzer.TryDefinedOp(name.source.ToString().c_str(),
3946 "No operator %s defined for %s and %s"_err_en_US, true);
3947}
3948
3949// Returns true if a parsed function reference should be converted
3950// into an array element reference.
3951static bool CheckFuncRefToArrayElement(semantics::SemanticsContext &context,
3952 const parser::FunctionReference &funcRef) {
3953 // Emit message if the function reference fix will end up an array element
3954 // reference with no subscripts, or subscripts on a scalar, because it will
3955 // not be possible to later distinguish in expressions between an empty
3956 // subscript list due to bad subscripts error recovery or because the
3957 // user did not put any.
3958 auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)};
3959 const auto *name{std::get_if<parser::Name>(&proc.u)};
3960 if (!name) {
3961 name = &std::get<parser::ProcComponentRef>(proc.u).v.thing.component;
3962 }
3963 if (!name->symbol) {
3964 return false;
3965 } else if (name->symbol->Rank() == 0) {
3966 if (const Symbol *function{
3967 semantics::IsFunctionResultWithSameNameAsFunction(*name->symbol)}) {
3968 auto &msg{context.Say(funcRef.source,
3969 function->flags().test(Symbol::Flag::StmtFunction)
3970 ? "Recursive call to statement function '%s' is not allowed"_err_en_US
3971 : "Recursive call to '%s' requires a distinct RESULT in its declaration"_err_en_US,
3972 name->source)};
3973 AttachDeclaration(&msg, *function);
3974 name->symbol = const_cast<Symbol *>(function);
3975 }
3976 return false;
3977 } else {
3978 if (std::get<std::list<parser::ActualArgSpec>>(funcRef.v.t).empty()) {
3979 auto &msg{context.Say(funcRef.source,
3980 "Reference to array '%s' with empty subscript list"_err_en_US,
3981 name->source)};
3982 if (name->symbol) {
3983 AttachDeclaration(&msg, *name->symbol);
3984 }
3985 }
3986 return true;
3987 }
3988}
3989
3990// Converts, if appropriate, an original misparse of ambiguous syntax like
3991// A(1) as a function reference into an array reference.
3992// Misparsed structure constructors are detected elsewhere after generic
3993// function call resolution fails.
3994template <typename... A>
3995static void FixMisparsedFunctionReference(
3996 semantics::SemanticsContext &context, const std::variant<A...> &constU) {
3997 // The parse tree is updated in situ when resolving an ambiguous parse.
3998 using uType = std::decay_t<decltype(constU)>;
3999 auto &u{const_cast<uType &>(constU)};
4000 if (auto *func{
4001 std::get_if<common::Indirection<parser::FunctionReference>>(&u)}) {
4002 parser::FunctionReference &funcRef{func->value()};
4003 // Ensure that there are no argument keywords
4004 for (const auto &arg :
4005 std::get<std::list<parser::ActualArgSpec>>(funcRef.v.t)) {
4006 if (std::get<std::optional<parser::Keyword>>(arg.t)) {
4007 return;
4008 }
4009 }
4010 auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)};
4011 if (Symbol *origSymbol{
4012 common::visit(common::visitors{
4013 [&](parser::Name &name) { return name.symbol; },
4014 [&](parser::ProcComponentRef &pcr) {
4015 return pcr.v.thing.component.symbol;
4016 },
4017 },
4018 proc.u)}) {
4019 Symbol &symbol{origSymbol->GetUltimate()};
4020 if (symbol.has<semantics::ObjectEntityDetails>() ||
4021 symbol.has<semantics::AssocEntityDetails>()) {
4022 // Note that expression in AssocEntityDetails cannot be a procedure
4023 // pointer as per C1105 so this cannot be a function reference.
4024 if constexpr (common::HasMember<common::Indirection<parser::Designator>,
4025 uType>) {
4026 if (CheckFuncRefToArrayElement(context, funcRef)) {
4027 u = common::Indirection{funcRef.ConvertToArrayElementRef()};
4028 }
4029 } else {
4030 DIE("can't fix misparsed function as array reference");
4031 }
4032 }
4033 }
4034 }
4035}
4036
4037// Common handling of parse tree node types that retain the
4038// representation of the analyzed expression.
4039template <typename PARSED>
4040MaybeExpr ExpressionAnalyzer::ExprOrVariable(
4041 const PARSED &x, parser::CharBlock source) {
4042 auto restorer{GetContextualMessages().SetLocation(source)};
4043 if constexpr (std::is_same_v<PARSED, parser::Expr> ||
4044 std::is_same_v<PARSED, parser::Variable>) {
4045 FixMisparsedFunctionReference(context_, x.u);
4046 }
4047 if (AssumedTypeDummy(x)) { // C710
4048 Say("TYPE(*) dummy argument may only be used as an actual argument"_err_en_US);
4049 ResetExpr(x);
4050 return std::nullopt;
4051 }
4052 MaybeExpr result;
4053 if constexpr (common::HasMember<parser::StructureConstructor,
4054 std::decay_t<decltype(x.u)>> &&
4055 common::HasMember<common::Indirection<parser::FunctionReference>,
4056 std::decay_t<decltype(x.u)>>) {
4057 if (const auto *funcRef{
4058 std::get_if<common::Indirection<parser::FunctionReference>>(
4059 &x.u)}) {
4060 // Function references in Exprs might turn out to be misparsed structure
4061 // constructors; we have to try generic procedure resolution
4062 // first to be sure.
4063 std::optional<parser::StructureConstructor> ctor;
4064 result = Analyze(funcRef->value(), &ctor);
4065 if (ctor) {
4066 // A misparsed function reference is really a structure
4067 // constructor. Repair the parse tree in situ.
4068 const_cast<PARSED &>(x).u = std::move(*ctor);
4069 }
4070 } else {
4071 result = Analyze(x.u);
4072 }
4073 } else {
4074 result = Analyze(x.u);
4075 }
4076 if (result) {
4077 if constexpr (std::is_same_v<PARSED, parser::Expr>) {
4078 if (!isNullPointerOk_ && IsNullPointerOrAllocatable(&*result)) {
4079 Say(source,
4080 "NULL() may not be used as an expression in this context"_err_en_US);
4081 }
4082 }
4083 SetExpr(x, Fold(std::move(*result)));
4084 return x.typedExpr->v;
4085 } else {
4086 ResetExpr(x);
4087 if (!context_.AnyFatalError()) {
4088 std::string buf;
4089 llvm::raw_string_ostream dump{buf};
4090 parser::DumpTree(dump, x);
4091 Say("Internal error: Expression analysis failed on: %s"_err_en_US, buf);
4092 }
4093 return std::nullopt;
4094 }
4095}
4096
4097// This is an optional preliminary pass over parser::Expr subtrees.
4098// Given an expression tree, iteratively traverse it in a bottom-up order
4099// to analyze all of its subexpressions. A later normal top-down analysis
4100// will then be able to use the results that will have been saved in the
4101// parse tree without having to recurse deeply. This technique keeps
4102// absurdly deep expression parse trees from causing the analyzer to overflow
4103// its stack.
4104MaybeExpr ExpressionAnalyzer::IterativelyAnalyzeSubexpressions(
4105 const parser::Expr &top) {
4106 std::vector<const parser::Expr *> queue, finish;
4107 queue.push_back(&top);
4108 do {
4109 const parser::Expr &expr{*queue.back()};
4110 queue.pop_back();
4111 if (!expr.typedExpr) {
4112 const parser::Expr::IntrinsicUnary *unary{nullptr};
4113 const parser::Expr::IntrinsicBinary *binary{nullptr};
4114 common::visit(
4115 [&unary, &binary](auto &y) {
4116 if constexpr (std::is_convertible_v<decltype(&y),
4117 decltype(unary)>) {
4118 // Don't evaluate a constant operand to Negate
4119 if (!std::holds_alternative<parser::LiteralConstant>(
4120 y.v.value().u)) {
4121 unary = &y;
4122 }
4123 } else if constexpr (std::is_convertible_v<decltype(&y),
4124 decltype(binary)>) {
4125 binary = &y;
4126 }
4127 },
4128 expr.u);
4129 if (unary) {
4130 queue.push_back(&unary->v.value());
4131 } else if (binary) {
4132 queue.push_back(&std::get<0>(binary->t).value());
4133 queue.push_back(&std::get<1>(binary->t).value());
4134 }
4135 finish.push_back(&expr);
4136 }
4137 } while (!queue.empty());
4138 // Analyze the collected subexpressions in bottom-up order.
4139 // On an error, bail out and leave partial results in place.
4140 MaybeExpr result;
4141 for (auto riter{finish.rbegin()}; riter != finish.rend(); ++riter) {
4142 const parser::Expr &expr{**riter};
4143 result = ExprOrVariable(expr, expr.source);
4144 if (!result) {
4145 return result;
4146 }
4147 }
4148 return result; // last value was from analysis of "top"
4149}
4150
4151MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr &expr) {
4152 bool wasIterativelyAnalyzing{iterativelyAnalyzingSubexpressions_};
4153 MaybeExpr result;
4154 if (useSavedTypedExprs_) {
4155 if (expr.typedExpr) {
4156 return expr.typedExpr->v;
4157 }
4158 if (!wasIterativelyAnalyzing) {
4159 iterativelyAnalyzingSubexpressions_ = true;
4160 result = IterativelyAnalyzeSubexpressions(expr);
4161 }
4162 }
4163 if (!result) {
4164 result = ExprOrVariable(expr, expr.source);
4165 }
4166 iterativelyAnalyzingSubexpressions_ = wasIterativelyAnalyzing;
4167 return result;
4168}
4169
4170MaybeExpr ExpressionAnalyzer::Analyze(const parser::Variable &variable) {
4171 if (useSavedTypedExprs_ && variable.typedExpr) {
4172 return variable.typedExpr->v;
4173 }
4174 return ExprOrVariable(variable, variable.GetSource());
4175}
4176
4177MaybeExpr ExpressionAnalyzer::Analyze(const parser::Selector &selector) {
4178 if (const auto *var{std::get_if<parser::Variable>(&selector.u)}) {
4179 if (!useSavedTypedExprs_ || !var->typedExpr) {
4180 parser::CharBlock source{var->GetSource()};
4181 auto restorer{GetContextualMessages().SetLocation(source)};
4182 FixMisparsedFunctionReference(context_, var->u);
4183 if (const auto *funcRef{
4184 std::get_if<common::Indirection<parser::FunctionReference>>(
4185 &var->u)}) {
4186 // A Selector that parsed as a Variable might turn out during analysis
4187 // to actually be a structure constructor. In that case, repair the
4188 // Variable parse tree node into an Expr
4189 std::optional<parser::StructureConstructor> ctor;
4190 if (MaybeExpr result{Analyze(funcRef->value(), &ctor)}) {
4191 if (ctor) {
4192 auto &writable{const_cast<parser::Selector &>(selector)};
4193 writable.u = parser::Expr{std::move(*ctor)};
4194 auto &expr{std::get<parser::Expr>(writable.u)};
4195 expr.source = source;
4196 SetExpr(expr, Fold(std::move(*result)));
4197 return expr.typedExpr->v;
4198 } else {
4199 SetExpr(*var, Fold(std::move(*result)));
4200 return var->typedExpr->v;
4201 }
4202 } else {
4203 ResetExpr(*var);
4204 if (context_.AnyFatalError()) {
4205 return std::nullopt;
4206 }
4207 }
4208 }
4209 }
4210 // Not a Variable -> FunctionReference
4211 auto restorer{AllowWholeAssumedSizeArray()};
4212 return Analyze(selector.u);
4213 } else { // Expr
4214 return Analyze(selector.u);
4215 }
4216}
4217
4218MaybeExpr ExpressionAnalyzer::Analyze(const parser::DataStmtConstant &x) {
4219 auto restorer{common::ScopedSet(inDataStmtConstant_, true)};
4220 return ExprOrVariable(x, x.source);
4221}
4222
4223MaybeExpr ExpressionAnalyzer::Analyze(const parser::AllocateObject &x) {
4224 return ExprOrVariable(x, parser::FindSourceLocation(x));
4225}
4226
4227MaybeExpr ExpressionAnalyzer::Analyze(const parser::PointerObject &x) {
4228 return ExprOrVariable(x, parser::FindSourceLocation(x));
4229}
4230
4231Expr<SubscriptInteger> ExpressionAnalyzer::AnalyzeKindSelector(
4232 TypeCategory category,
4233 const std::optional<parser::KindSelector> &selector) {
4234 int defaultKind{GetDefaultKind(category)};
4235 if (!selector) {
4236 return Expr<SubscriptInteger>{defaultKind};
4237 }
4238 return common::visit(
4239 common::visitors{
4240 [&](const parser::ScalarIntConstantExpr &x) {
4241 if (MaybeExpr kind{Analyze(x)}) {
4242 if (std::optional<std::int64_t> code{ToInt64(*kind)}) {
4243 if (CheckIntrinsicKind(category, *code)) {
4244 return Expr<SubscriptInteger>{*code};
4245 }
4246 } else if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(*kind)}) {
4247 return ConvertToType<SubscriptInteger>(std::move(*intExpr));
4248 }
4249 }
4250 return Expr<SubscriptInteger>{defaultKind};
4251 },
4252 [&](const parser::KindSelector::StarSize &x) {
4253 std::intmax_t size = x.v;
4254 if (!CheckIntrinsicSize(category, size)) {
4255 size = defaultKind;
4256 } else if (category == TypeCategory::Complex) {
4257 size /= 2;
4258 }
4259 return Expr<SubscriptInteger>{size};
4260 },
4261 },
4262 selector->u);
4263}
4264
4265int ExpressionAnalyzer::GetDefaultKind(common::TypeCategory category) {
4266 return context_.GetDefaultKind(category);
4267}
4268
4269DynamicType ExpressionAnalyzer::GetDefaultKindOfType(
4270 common::TypeCategory category) {
4271 return {category, GetDefaultKind(category)};
4272}
4273
4274bool ExpressionAnalyzer::CheckIntrinsicKind(
4275 TypeCategory category, std::int64_t kind) {
4276 if (foldingContext_.targetCharacteristics().IsTypeEnabled(
4277 category, kind)) { // C712, C714, C715, C727
4278 return true;
4279 } else if (foldingContext_.targetCharacteristics().CanSupportType(
4280 category, kind)) {
4281 Say("%s(KIND=%jd) is not an enabled type for this target"_err_en_US,
4282 ToUpperCase(EnumToString(category)), kind);
4283 return true;
4284 } else {
4285 Say("%s(KIND=%jd) is not a supported type"_err_en_US,
4286 ToUpperCase(EnumToString(category)), kind);
4287 return false;
4288 }
4289}
4290
4291bool ExpressionAnalyzer::CheckIntrinsicSize(
4292 TypeCategory category, std::int64_t size) {
4293 std::int64_t kind{size};
4294 if (category == TypeCategory::Complex) {
4295 // COMPLEX*16 == COMPLEX(KIND=8)
4296 if (size % 2 == 0) {
4297 kind = size / 2;
4298 } else {
4299 Say("COMPLEX*%jd is not a supported type"_err_en_US, size);
4300 return false;
4301 }
4302 }
4303 return CheckIntrinsicKind(category, kind);
4304}
4305
4306bool ExpressionAnalyzer::AddImpliedDo(parser::CharBlock name, int kind) {
4307 return impliedDos_.insert(std::make_pair(name, kind)).second;
4308}
4309
4310void ExpressionAnalyzer::RemoveImpliedDo(parser::CharBlock name) {
4311 auto iter{impliedDos_.find(name)};
4312 if (iter != impliedDos_.end()) {
4313 impliedDos_.erase(iter);
4314 }
4315}
4316
4317std::optional<int> ExpressionAnalyzer::IsImpliedDo(
4318 parser::CharBlock name) const {
4319 auto iter{impliedDos_.find(name)};
4320 if (iter != impliedDos_.cend()) {
4321 return {iter->second};
4322 } else {
4323 return std::nullopt;
4324 }
4325}
4326
4327bool ExpressionAnalyzer::EnforceTypeConstraint(parser::CharBlock at,
4328 const MaybeExpr &result, TypeCategory category, bool defaultKind) {
4329 if (result) {
4330 if (auto type{result->GetType()}) {
4331 if (type->category() != category) { // C885
4332 Say(at, "Must have %s type, but is %s"_err_en_US,
4333 ToUpperCase(EnumToString(category)),
4334 ToUpperCase(type->AsFortran()));
4335 return false;
4336 } else if (defaultKind) {
4337 int kind{context_.GetDefaultKind(category)};
4338 if (type->kind() != kind) {
4339 Say(at, "Must have default kind(%d) of %s type, but is %s"_err_en_US,
4340 kind, ToUpperCase(EnumToString(category)),
4341 ToUpperCase(type->AsFortran()));
4342 return false;
4343 }
4344 }
4345 } else {
4346 Say(at, "Must have %s type, but is typeless"_err_en_US,
4347 ToUpperCase(EnumToString(category)));
4348 return false;
4349 }
4350 }
4351 return true;
4352}
4353
4354MaybeExpr ExpressionAnalyzer::MakeFunctionRef(parser::CharBlock callSite,
4355 ProcedureDesignator &&proc, ActualArguments &&arguments) {
4356 if (const auto *intrinsic{std::get_if<SpecificIntrinsic>(&proc.u)}) {
4357 if (intrinsic->characteristics.value().attrs.test(
4358 characteristics::Procedure::Attr::NullPointer) &&
4359 arguments.empty()) {
4360 return Expr<SomeType>{NullPointer{}};
4361 }
4362 }
4363 if (const Symbol *symbol{proc.GetSymbol()}) {
4364 if (!ResolveForward(*symbol)) {
4365 return std::nullopt;
4366 }
4367 }
4368 if (auto chars{CheckCall(callSite, proc, arguments)}) {
4369 if (chars->functionResult) {
4370 const auto &result{*chars->functionResult};
4371 ProcedureRef procRef{std::move(proc), std::move(arguments)};
4372 if (result.IsProcedurePointer()) {
4373 return Expr<SomeType>{std::move(procRef)};
4374 } else {
4375 // Not a procedure pointer, so type and shape are known.
4376 return TypedWrapper<FunctionRef, ProcedureRef>(
4377 DEREF(result.GetTypeAndShape()).type(), std::move(procRef));
4378 }
4379 } else {
4380 Say("Function result characteristics are not known"_err_en_US);
4381 }
4382 }
4383 return std::nullopt;
4384}
4385
4386MaybeExpr ExpressionAnalyzer::MakeFunctionRef(
4387 parser::CharBlock intrinsic, ActualArguments &&arguments) {
4388 if (std::optional<SpecificCall> specificCall{
4389 context_.intrinsics().Probe(CallCharacteristics{intrinsic.ToString()},
4390 arguments, GetFoldingContext())}) {
4391 return MakeFunctionRef(intrinsic,
4392 ProcedureDesignator{std::move(specificCall->specificIntrinsic)},
4393 std::move(specificCall->arguments));
4394 } else {
4395 return std::nullopt;
4396 }
4397}
4398
4399MaybeExpr ExpressionAnalyzer::AnalyzeComplex(
4400 MaybeExpr &&re, MaybeExpr &&im, const char *what) {
4401 if (re && re->Rank() > 0) {
4402 Warn(common::LanguageFeature::ComplexConstructor,
4403 "Real part of %s is not scalar"_port_en_US, what);
4404 }
4405 if (im && im->Rank() > 0) {
4406 Warn(common::LanguageFeature::ComplexConstructor,
4407 "Imaginary part of %s is not scalar"_port_en_US, what);
4408 }
4409 if (re && im) {
4410 ConformabilityCheck(GetContextualMessages(), *re, *im);
4411 }
4412 return AsMaybeExpr(ConstructComplex(GetContextualMessages(), std::move(re),
4413 std::move(im), GetDefaultKind(TypeCategory::Real)));
4414}
4415
4416std::optional<ActualArgument> ArgumentAnalyzer::AnalyzeVariable(
4417 const parser::Variable &x) {
4418 source_.ExtendToCover(x.GetSource());
4419 if (MaybeExpr expr{context_.Analyze(x)}) {
4420 if (!IsConstantExpr(*expr)) {
4421 ActualArgument actual{std::move(*expr)};
4422 SetArgSourceLocation(actual, x.GetSource());
4423 return actual;
4424 }
4425 const Symbol *symbol{GetLastSymbol(*expr)};
4426 if (!symbol) {
4427 context_.SayAt(x, "Assignment to constant '%s' is not allowed"_err_en_US,
4428 x.GetSource());
4429 } else if (IsProcedure(*symbol)) {
4430 if (auto *msg{context_.SayAt(x,
4431 "Assignment to procedure '%s' is not allowed"_err_en_US,
4432 symbol->name())}) {
4433 if (auto *subp{symbol->detailsIf<semantics::SubprogramDetails>()}) {
4434 if (subp->isFunction()) {
4435 const auto &result{subp->result().name()};
4436 msg->Attach(result, "Function result is '%s'"_en_US, result);
4437 }
4438 }
4439 }
4440 } else {
4441 context_.SayAt(
4442 x, "Assignment to '%s' is not allowed"_err_en_US, symbol->name());
4443 }
4444 }
4445 fatalErrors_ = true;
4446 return std::nullopt;
4447}
4448
4449void ArgumentAnalyzer::Analyze(const parser::Variable &x) {
4450 if (auto actual = AnalyzeVariable(x)) {
4451 actuals_.emplace_back(std::move(actual));
4452 }
4453}
4454
4455void ArgumentAnalyzer::Analyze(
4456 const parser::ActualArgSpec &arg, bool isSubroutine) {
4457 // TODO: C1534: Don't allow a "restricted" specific intrinsic to be passed.
4458 std::optional<ActualArgument> actual;
4459 auto restorer{context_.AllowWholeAssumedSizeArray()};
4460 common::visit(
4461 common::visitors{
4462 [&](const common::Indirection<parser::Expr> &x) {
4463 actual = AnalyzeExpr(x.value());
4464 },
4465 [&](const parser::AltReturnSpec &label) {
4466 if (!isSubroutine) {
4467 context_.Say(
4468 "alternate return specification may not appear on function reference"_err_en_US);
4469 }
4470 actual = ActualArgument(label.v);
4471 },
4472 [&](const parser::ActualArg::PercentRef &percentRef) {
4473 actual = AnalyzeExpr(percentRef.v);
4474 if (actual.has_value()) {
4475 actual->set_isPercentRef();
4476 }
4477 },
4478 [&](const parser::ActualArg::PercentVal &percentVal) {
4479 actual = AnalyzeExpr(percentVal.v);
4480 if (actual.has_value()) {
4481 actual->set_isPercentVal();
4482 }
4483 },
4484 },
4485 std::get<parser::ActualArg>(arg.t).u);
4486 if (actual) {
4487 if (const auto &argKW{std::get<std::optional<parser::Keyword>>(arg.t)}) {
4488 actual->set_keyword(argKW->v.source);
4489 }
4490 actuals_.emplace_back(std::move(*actual));
4491 } else {
4492 fatalErrors_ = true;
4493 }
4494}
4495
4496bool ArgumentAnalyzer::IsIntrinsicRelational(RelationalOperator opr,
4497 const DynamicType &leftType, const DynamicType &rightType) const {
4498 CHECK(actuals_.size() == 2);
4499 return semantics::IsIntrinsicRelational(
4500 opr, leftType, GetRank(0), rightType, GetRank(1));
4501}
4502
4503bool ArgumentAnalyzer::IsIntrinsicNumeric(NumericOperator opr) const {
4504 std::optional<DynamicType> leftType{GetType(0)};
4505 if (actuals_.size() == 1) {
4506 if (IsBOZLiteral(i: 0)) {
4507 return opr == NumericOperator::Add; // unary '+'
4508 } else {
4509 return leftType && semantics::IsIntrinsicNumeric(*leftType);
4510 }
4511 } else {
4512 std::optional<DynamicType> rightType{GetType(1)};
4513 if (IsBOZLiteral(i: 0) && rightType) { // BOZ opr Integer/Unsigned/Real
4514 auto cat1{rightType->category()};
4515 return cat1 == TypeCategory::Integer || cat1 == TypeCategory::Unsigned ||
4516 cat1 == TypeCategory::Real;
4517 } else if (IsBOZLiteral(i: 1) && leftType) { // Integer/Unsigned/Real opr BOZ
4518 auto cat0{leftType->category()};
4519 return cat0 == TypeCategory::Integer || cat0 == TypeCategory::Unsigned ||
4520 cat0 == TypeCategory::Real;
4521 } else {
4522 return leftType && rightType &&
4523 semantics::IsIntrinsicNumeric(
4524 *leftType, GetRank(0), *rightType, GetRank(1));
4525 }
4526 }
4527}
4528
4529bool ArgumentAnalyzer::IsIntrinsicLogical() const {
4530 if (std::optional<DynamicType> leftType{GetType(0)}) {
4531 if (actuals_.size() == 1) {
4532 return semantics::IsIntrinsicLogical(*leftType);
4533 } else if (std::optional<DynamicType> rightType{GetType(1)}) {
4534 return semantics::IsIntrinsicLogical(
4535 *leftType, GetRank(0), *rightType, GetRank(1));
4536 }
4537 }
4538 return false;
4539}
4540
4541bool ArgumentAnalyzer::IsIntrinsicConcat() const {
4542 if (std::optional<DynamicType> leftType{GetType(0)}) {
4543 if (std::optional<DynamicType> rightType{GetType(1)}) {
4544 return semantics::IsIntrinsicConcat(
4545 *leftType, GetRank(0), *rightType, GetRank(1));
4546 }
4547 }
4548 return false;
4549}
4550
4551bool ArgumentAnalyzer::CheckConformance() {
4552 if (actuals_.size() == 2) {
4553 const auto *lhs{actuals_.at(0).value().UnwrapExpr()};
4554 const auto *rhs{actuals_.at(1).value().UnwrapExpr()};
4555 if (lhs && rhs) {
4556 auto &foldingContext{context_.GetFoldingContext()};
4557 auto lhShape{GetShape(foldingContext, *lhs)};
4558 auto rhShape{GetShape(foldingContext, *rhs)};
4559 if (lhShape && rhShape) {
4560 if (!evaluate::CheckConformance(foldingContext.messages(), *lhShape,
4561 *rhShape, CheckConformanceFlags::EitherScalarExpandable,
4562 "left operand", "right operand")
4563 .value_or(false /*fail when conformance is not known now*/)) {
4564 fatalErrors_ = true;
4565 return false;
4566 }
4567 }
4568 }
4569 }
4570 return true; // no proven problem
4571}
4572
4573bool ArgumentAnalyzer::CheckAssignmentConformance() {
4574 if (actuals_.size() == 2 && actuals_[0] && actuals_[1]) {
4575 const auto *lhs{actuals_[0]->UnwrapExpr()};
4576 const auto *rhs{actuals_[1]->UnwrapExpr()};
4577 if (lhs && rhs) {
4578 auto &foldingContext{context_.GetFoldingContext()};
4579 auto lhShape{GetShape(foldingContext, *lhs)};
4580 auto rhShape{GetShape(foldingContext, *rhs)};
4581 if (lhShape && rhShape) {
4582 if (!evaluate::CheckConformance(foldingContext.messages(), *lhShape,
4583 *rhShape, CheckConformanceFlags::RightScalarExpandable,
4584 "left-hand side", "right-hand side")
4585 .value_or(true /*ok when conformance is not known now*/)) {
4586 fatalErrors_ = true;
4587 return false;
4588 }
4589 }
4590 }
4591 }
4592 return true; // no proven problem
4593}
4594
4595bool ArgumentAnalyzer::CheckForNullPointer(const char *where) {
4596 for (const std::optional<ActualArgument> &arg : actuals_) {
4597 if (arg && IsNullPointerOrAllocatable(arg->UnwrapExpr())) {
4598 context_.Say(
4599 source_, "A NULL() pointer is not allowed %s"_err_en_US, where);
4600 fatalErrors_ = true;
4601 return false;
4602 }
4603 }
4604 return true;
4605}
4606
4607bool ArgumentAnalyzer::CheckForAssumedRank(const char *where) {
4608 for (const std::optional<ActualArgument> &arg : actuals_) {
4609 if (arg && IsAssumedRank(arg->UnwrapExpr())) {
4610 context_.Say(source_,
4611 "An assumed-rank dummy argument is not allowed %s"_err_en_US, where);
4612 fatalErrors_ = true;
4613 return false;
4614 }
4615 }
4616 return true;
4617}
4618
4619MaybeExpr ArgumentAnalyzer::TryDefinedOp(
4620 const char *opr, parser::MessageFixedText error, bool isUserOp) {
4621 if (AnyUntypedOrMissingOperand()) {
4622 context_.Say(error, ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1));
4623 return std::nullopt;
4624 }
4625 MaybeExpr result;
4626 bool anyPossibilities{false};
4627 std::optional<parser::MessageFormattedText> inaccessible;
4628 std::vector<const Symbol *> hit;
4629 std::string oprNameString{
4630 isUserOp ? std::string{opr} : "operator("s + opr + ')'};
4631 parser::CharBlock oprName{oprNameString};
4632 parser::Messages hitBuffer;
4633 {
4634 parser::Messages buffer;
4635 auto restorer{context_.GetContextualMessages().SetMessages(buffer)};
4636 const auto &scope{context_.context().FindScope(source_)};
4637
4638 auto FoundOne{[&](MaybeExpr &&thisResult, const Symbol &generic,
4639 const Symbol *resolution) {
4640 anyPossibilities = true;
4641 if (thisResult) {
4642 if (auto thisInaccessible{CheckAccessibleSymbol(scope, generic)}) {
4643 inaccessible = thisInaccessible;
4644 } else {
4645 bool isElemental{IsElementalProcedure(DEREF(resolution))};
4646 bool hitsAreNonElemental{
4647 !hit.empty() && !IsElementalProcedure(DEREF(hit[0]))};
4648 if (isElemental && hitsAreNonElemental) {
4649 // ignore elemental resolutions in favor of a non-elemental one
4650 } else {
4651 if (!isElemental && !hitsAreNonElemental) {
4652 hit.clear();
4653 }
4654 result = std::move(thisResult);
4655 hit.push_back(resolution);
4656 hitBuffer = std::move(buffer);
4657 }
4658 }
4659 }
4660 }};
4661
4662 if (Symbol * generic{scope.FindSymbol(oprName)}; generic && !fatalErrors_) {
4663 parser::Name name{generic->name(), generic};
4664 const Symbol *resultSymbol{nullptr};
4665 MaybeExpr possibleResult{context_.AnalyzeDefinedOp(
4666 name, ActualArguments{actuals_}, resultSymbol)};
4667 FoundOne(std::move(possibleResult), *generic, resultSymbol);
4668 }
4669 for (std::size_t passIndex{0}; passIndex < actuals_.size(); ++passIndex) {
4670 buffer.clear();
4671 const Symbol *generic{nullptr};
4672 if (const Symbol *
4673 binding{FindBoundOp(
4674 oprName, passIndex, generic, /*isSubroutine=*/false)}) {
4675 FoundOne(TryBoundOp(*binding, passIndex), DEREF(generic), binding);
4676 }
4677 }
4678 }
4679 if (result) {
4680 if (hit.size() > 1) {
4681 if (auto *msg{context_.Say(
4682 "%zd matching accessible generic interfaces for %s were found"_err_en_US,
4683 hit.size(), ToUpperCase(opr))}) {
4684 for (const Symbol *symbol : hit) {
4685 AttachDeclaration(*msg, *symbol);
4686 }
4687 }
4688 }
4689 if (auto *msgs{context_.GetContextualMessages().messages()}) {
4690 msgs->Annex(std::move(hitBuffer));
4691 }
4692 } else if (inaccessible) {
4693 context_.Say(source_, std::move(*inaccessible));
4694 } else if (anyPossibilities) {
4695 SayNoMatch(ToUpperCase(str: oprNameString), isAssignment: false);
4696 } else if (actuals_.size() == 2 && !AreConformable()) {
4697 context_.Say(
4698 "Operands of %s are not conformable; have rank %d and rank %d"_err_en_US,
4699 ToUpperCase(opr), actuals_[0]->Rank(), actuals_[1]->Rank());
4700 } else if (CheckForNullPointer() && CheckForAssumedRank()) {
4701 context_.Say(error, ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1));
4702 }
4703 return result;
4704}
4705
4706MaybeExpr ArgumentAnalyzer::TryDefinedOp(
4707 const std::vector<const char *> &oprs, parser::MessageFixedText error) {
4708 if (oprs.size() == 1) {
4709 return TryDefinedOp(oprs[0], error);
4710 }
4711 MaybeExpr result;
4712 std::vector<const char *> hit;
4713 parser::Messages hitBuffer;
4714 {
4715 for (std::size_t i{0}; i < oprs.size(); ++i) {
4716 parser::Messages buffer;
4717 auto restorer{context_.GetContextualMessages().SetMessages(buffer)};
4718 if (MaybeExpr thisResult{TryDefinedOp(oprs[i], error)}) {
4719 result = std::move(thisResult);
4720 hit.push_back(x: oprs[i]);
4721 hitBuffer = std::move(buffer);
4722 }
4723 }
4724 }
4725 if (hit.empty()) { // for the error
4726 result = TryDefinedOp(oprs[0], error);
4727 } else if (hit.size() > 1) {
4728 context_.Say(
4729 "Matching accessible definitions were found with %zd variant spellings of the generic operator ('%s', '%s')"_err_en_US,
4730 hit.size(), ToUpperCase(hit[0]), ToUpperCase(hit[1]));
4731 } else { // one hit; preserve errors
4732 context_.context().messages().Annex(std::move(hitBuffer));
4733 }
4734 return result;
4735}
4736
4737MaybeExpr ArgumentAnalyzer::TryBoundOp(const Symbol &symbol, int passIndex) {
4738 ActualArguments localActuals{actuals_};
4739 const Symbol *proc{GetBindingResolution(GetType(passIndex), symbol)};
4740 if (!proc) {
4741 proc = &symbol;
4742 localActuals.at(passIndex).value().set_isPassedObject();
4743 }
4744 CheckConformance();
4745 return context_.MakeFunctionRef(
4746 source_, ProcedureDesignator{*proc}, std::move(localActuals));
4747}
4748
4749std::optional<ProcedureRef> ArgumentAnalyzer::TryDefinedAssignment() {
4750 using semantics::Tristate;
4751 const Expr<SomeType> &lhs{GetExpr(0)};
4752 const Expr<SomeType> &rhs{GetExpr(1)};
4753 std::optional<DynamicType> lhsType{lhs.GetType()};
4754 std::optional<DynamicType> rhsType{rhs.GetType()};
4755 int lhsRank{lhs.Rank()};
4756 int rhsRank{rhs.Rank()};
4757 Tristate isDefined{
4758 semantics::IsDefinedAssignment(lhsType, lhsRank, rhsType, rhsRank)};
4759 if (isDefined == Tristate::No) {
4760 // Make implicit conversion explicit, unless it is an assignment to a whole
4761 // allocatable (the explicit conversion would prevent the propagation of the
4762 // right hand side if it is a variable). Lowering will deal with the
4763 // conversion in this case.
4764 if (lhsType) {
4765 if (rhsType) {
4766 if (!IsAllocatableDesignator(lhs) || context_.inWhereBody()) {
4767 AddAssignmentConversion(*lhsType, *rhsType);
4768 }
4769 } else if (IsBOZLiteral(i: 1)) {
4770 ConvertBOZAssignmentRHS(*lhsType);
4771 if (IsBOZLiteral(i: 1)) {
4772 context_.Say(
4773 "Right-hand side of this assignment may not be BOZ"_err_en_US);
4774 fatalErrors_ = true;
4775 }
4776 }
4777 }
4778 if (!fatalErrors_) {
4779 CheckAssignmentConformance();
4780 }
4781 return std::nullopt; // user-defined assignment not allowed for these args
4782 }
4783 auto restorer{context_.GetContextualMessages().SetLocation(source_)};
4784 if (std::optional<ProcedureRef> procRef{GetDefinedAssignmentProc()}) {
4785 if (context_.inWhereBody() && !procRef->proc().IsElemental()) { // C1032
4786 context_.Say(
4787 "Defined assignment in WHERE must be elemental, but '%s' is not"_err_en_US,
4788 DEREF(procRef->proc().GetSymbol()).name());
4789 }
4790 context_.CheckCall(source_, procRef->proc(), procRef->arguments());
4791 return std::move(*procRef);
4792 }
4793 if (isDefined == Tristate::Yes) {
4794 if (!lhsType || !rhsType || (lhsRank != rhsRank && rhsRank != 0) ||
4795 !OkLogicalIntegerAssignment(lhsType->category(), rhsType->category())) {
4796 SayNoMatch("ASSIGNMENT(=)", isAssignment: true);
4797 }
4798 } else if (!fatalErrors_) {
4799 CheckAssignmentConformance();
4800 }
4801 return std::nullopt;
4802}
4803
4804bool ArgumentAnalyzer::OkLogicalIntegerAssignment(
4805 TypeCategory lhs, TypeCategory rhs) {
4806 if (!context_.context().languageFeatures().IsEnabled(
4807 common::LanguageFeature::LogicalIntegerAssignment)) {
4808 return false;
4809 }
4810 std::optional<parser::MessageFixedText> msg;
4811 if (lhs == TypeCategory::Integer && rhs == TypeCategory::Logical) {
4812 // allow assignment to LOGICAL from INTEGER as a legacy extension
4813 msg = "assignment of LOGICAL to INTEGER"_port_en_US;
4814 } else if (lhs == TypeCategory::Logical && rhs == TypeCategory::Integer) {
4815 // ... and assignment to LOGICAL from INTEGER
4816 msg = "assignment of INTEGER to LOGICAL"_port_en_US;
4817 } else {
4818 return false;
4819 }
4820 context_.Warn(
4821 common::LanguageFeature::LogicalIntegerAssignment, std::move(*msg));
4822 return true;
4823}
4824
4825std::optional<ProcedureRef> ArgumentAnalyzer::GetDefinedAssignmentProc() {
4826 const Symbol *proc{nullptr};
4827 bool isProcElemental{false};
4828 std::optional<int> passedObjectIndex;
4829 std::string oprNameString{"assignment(=)"};
4830 parser::CharBlock oprName{oprNameString};
4831 const auto &scope{context_.context().FindScope(source_)};
4832 {
4833 auto restorer{context_.GetContextualMessages().DiscardMessages()};
4834 if (const Symbol *symbol{scope.FindSymbol(oprName)}) {
4835 ExpressionAnalyzer::AdjustActuals noAdjustment;
4836 proc =
4837 context_.ResolveGeneric(*symbol, actuals_, noAdjustment, true).first;
4838 if (proc) {
4839 isProcElemental = IsElementalProcedure(*proc);
4840 }
4841 }
4842 for (std::size_t i{0}; (!proc || isProcElemental) && i < actuals_.size();
4843 ++i) {
4844 const Symbol *generic{nullptr};
4845 if (const Symbol *
4846 binding{FindBoundOp(oprName, i, generic, /*isSubroutine=*/true)}) {
4847 // ignore inaccessible type-bound ASSIGNMENT(=) generic
4848 if (!CheckAccessibleSymbol(scope, DEREF(generic))) {
4849 const Symbol *resolution{GetBindingResolution(GetType(i), *binding)};
4850 const Symbol &newProc{*(resolution ? resolution : binding)};
4851 bool isElemental{IsElementalProcedure(newProc)};
4852 if (!proc || !isElemental) {
4853 // Non-elemental resolution overrides elemental
4854 proc = &newProc;
4855 isProcElemental = isElemental;
4856 if (resolution) {
4857 passedObjectIndex.reset();
4858 } else {
4859 passedObjectIndex = i;
4860 }
4861 }
4862 }
4863 }
4864 }
4865 }
4866 if (!proc) {
4867 return std::nullopt;
4868 }
4869 ActualArguments actualsCopy{actuals_};
4870 // Ensure that the RHS argument is not passed as a variable unless
4871 // the dummy argument has the VALUE attribute.
4872 if (evaluate::IsVariable(actualsCopy.at(1).value().UnwrapExpr())) {
4873 auto chars{evaluate::characteristics::Procedure::Characterize(
4874 *proc, context_.GetFoldingContext())};
4875 const auto *rhsDummy{chars && chars->dummyArguments.size() == 2
4876 ? std::get_if<evaluate::characteristics::DummyDataObject>(
4877 &chars->dummyArguments.at(1).u)
4878 : nullptr};
4879 if (!rhsDummy ||
4880 !rhsDummy->attrs.test(
4881 evaluate::characteristics::DummyDataObject::Attr::Value)) {
4882 actualsCopy.at(1).value().Parenthesize();
4883 }
4884 }
4885 if (passedObjectIndex) {
4886 actualsCopy[*passedObjectIndex]->set_isPassedObject();
4887 }
4888 return ProcedureRef{ProcedureDesignator{*proc}, std::move(actualsCopy)};
4889}
4890
4891void ArgumentAnalyzer::Dump(llvm::raw_ostream &os) {
4892 os << "source_: " << source_.ToString() << " fatalErrors_ = " << fatalErrors_
4893 << '\n';
4894 for (const auto &actual : actuals_) {
4895 if (!actual.has_value()) {
4896 os << "- error\n";
4897 } else if (const Symbol *symbol{actual->GetAssumedTypeDummy()}) {
4898 os << "- assumed type: " << symbol->name().ToString() << '\n';
4899 } else if (const Expr<SomeType> *expr{actual->UnwrapExpr()}) {
4900 expr->AsFortran(os << "- expr: ") << '\n';
4901 } else {
4902 DIE("bad ActualArgument");
4903 }
4904 }
4905}
4906
4907std::optional<ActualArgument> ArgumentAnalyzer::AnalyzeExpr(
4908 const parser::Expr &expr) {
4909 source_.ExtendToCover(expr.source);
4910 if (const Symbol *assumedTypeDummy{AssumedTypeDummy(expr)}) {
4911 ResetExpr(expr);
4912 if (isProcedureCall_) {
4913 ActualArgument arg{ActualArgument::AssumedType{*assumedTypeDummy}};
4914 SetArgSourceLocation(arg, expr.source);
4915 return std::move(arg);
4916 }
4917 context_.SayAt(expr.source,
4918 "TYPE(*) dummy argument may only be used as an actual argument"_err_en_US);
4919 } else if (MaybeExpr argExpr{AnalyzeExprOrWholeAssumedSizeArray(expr)}) {
4920 if (isProcedureCall_ || !IsProcedureDesignator(*argExpr)) {
4921 // Pad Hollerith actual argument with spaces up to a multiple of 8
4922 // bytes, in case the data are interpreted as double precision
4923 // (or a smaller numeric type) by legacy code.
4924 if (auto hollerith{UnwrapExpr<Constant<Ascii>>(*argExpr)};
4925 hollerith && hollerith->wasHollerith()) {
4926 std::string bytes{hollerith->values()};
4927 while ((bytes.size() % 8) != 0) {
4928 bytes += ' ';
4929 }
4930 Constant<Ascii> c{std::move(bytes)};
4931 c.set_wasHollerith(true);
4932 argExpr = AsGenericExpr(std::move(c));
4933 }
4934 ActualArgument arg{std::move(*argExpr)};
4935 SetArgSourceLocation(arg, expr.source);
4936 return std::move(arg);
4937 }
4938 context_.SayAt(expr.source,
4939 IsFunctionDesignator(*argExpr)
4940 ? "Function call must have argument list"_err_en_US
4941 : "Subroutine name is not allowed here"_err_en_US);
4942 }
4943 return std::nullopt;
4944}
4945
4946MaybeExpr ArgumentAnalyzer::AnalyzeExprOrWholeAssumedSizeArray(
4947 const parser::Expr &expr) {
4948 // If an expression's parse tree is a whole assumed-size array:
4949 // Expr -> Designator -> DataRef -> Name
4950 // treat it as a special case for argument passing and bypass
4951 // the C1002/C1014 constraint checking in expression semantics.
4952 if (const auto *name{parser::Unwrap<parser::Name>(expr)}) {
4953 if (name->symbol && semantics::IsAssumedSizeArray(*name->symbol)) {
4954 auto restorer{context_.AllowWholeAssumedSizeArray()};
4955 return context_.Analyze(expr);
4956 }
4957 }
4958 auto restorer{context_.AllowNullPointer()};
4959 return context_.Analyze(expr);
4960}
4961
4962bool ArgumentAnalyzer::AreConformable() const {
4963 CHECK(actuals_.size() == 2);
4964 return actuals_[0] && actuals_[1] &&
4965 evaluate::AreConformable(*actuals_[0], *actuals_[1]);
4966}
4967
4968// Look for a type-bound operator in the type of arg number passIndex.
4969const Symbol *ArgumentAnalyzer::FindBoundOp(parser::CharBlock oprName,
4970 int passIndex, const Symbol *&generic, bool isSubroutine) {
4971 const auto *type{GetDerivedTypeSpec(GetType(passIndex))};
4972 const semantics::Scope *scope{type ? type->scope() : nullptr};
4973 if (scope) {
4974 // Use the original type definition's scope, since PDT
4975 // instantiations don't have redundant copies of bindings or
4976 // generics.
4977 scope = DEREF(scope->derivedTypeSpec()).typeSymbol().scope();
4978 }
4979 generic = scope ? scope->FindComponent(oprName) : nullptr;
4980 if (generic) {
4981 ExpressionAnalyzer::AdjustActuals adjustment{
4982 [&](const Symbol &proc, ActualArguments &) {
4983 return passIndex == GetPassIndex(proc).value_or(-1);
4984 }};
4985 auto pair{
4986 context_.ResolveGeneric(*generic, actuals_, adjustment, isSubroutine)};
4987 if (const Symbol *binding{pair.first}) {
4988 CHECK(binding->has<semantics::ProcBindingDetails>());
4989 // Use the most recent override of the binding, if any
4990 return scope->FindComponent(binding->name());
4991 } else {
4992 context_.EmitGenericResolutionError(*generic, pair.second, isSubroutine);
4993 }
4994 }
4995 return nullptr;
4996}
4997
4998// If there is an implicit conversion between intrinsic types, make it explicit
4999void ArgumentAnalyzer::AddAssignmentConversion(
5000 const DynamicType &lhsType, const DynamicType &rhsType) {
5001 if (lhsType.category() == rhsType.category() &&
5002 (lhsType.category() == TypeCategory::Derived ||
5003 lhsType.kind() == rhsType.kind())) {
5004 // no conversion necessary
5005 } else if (auto rhsExpr{evaluate::Fold(context_.GetFoldingContext(),
5006 evaluate::ConvertToType(lhsType, MoveExpr(1)))}) {
5007 std::optional<parser::CharBlock> source;
5008 if (actuals_[1]) {
5009 source = actuals_[1]->sourceLocation();
5010 }
5011 actuals_[1] = ActualArgument{*rhsExpr};
5012 SetArgSourceLocation(actuals_[1], source);
5013 } else {
5014 actuals_[1] = std::nullopt;
5015 }
5016}
5017
5018std::optional<DynamicType> ArgumentAnalyzer::GetType(std::size_t i) const {
5019 return i < actuals_.size() ? actuals_[i].value().GetType() : std::nullopt;
5020}
5021int ArgumentAnalyzer::GetRank(std::size_t i) const {
5022 return i < actuals_.size() ? actuals_[i].value().Rank() : 0;
5023}
5024
5025// If the argument at index i is a BOZ literal, convert its type to match the
5026// otherType. If it's REAL, convert to REAL; if it's UNSIGNED, convert to
5027// UNSIGNED; otherwise, convert to INTEGER.
5028// Note that IBM supports comparing BOZ literals to CHARACTER operands. That
5029// is not currently supported.
5030void ArgumentAnalyzer::ConvertBOZOperand(std::optional<DynamicType> *thisType,
5031 std::size_t i, std::optional<DynamicType> otherType) {
5032 if (IsBOZLiteral(i)) {
5033 Expr<SomeType> &&argExpr{MoveExpr(i)};
5034 auto *boz{std::get_if<BOZLiteralConstant>(&argExpr.u)};
5035 if (otherType && otherType->category() == TypeCategory::Real) {
5036 int kind{context_.context().GetDefaultKind(TypeCategory::Real)};
5037 MaybeExpr realExpr{
5038 ConvertToKind<TypeCategory::Real>(kind, std::move(*boz))};
5039 actuals_[i] = std::move(realExpr.value());
5040 if (thisType) {
5041 thisType->emplace(TypeCategory::Real, kind);
5042 }
5043 } else if (otherType && otherType->category() == TypeCategory::Unsigned) {
5044 int kind{context_.context().GetDefaultKind(TypeCategory::Unsigned)};
5045 MaybeExpr unsignedExpr{
5046 ConvertToKind<TypeCategory::Unsigned>(kind, std::move(*boz))};
5047 actuals_[i] = std::move(unsignedExpr.value());
5048 if (thisType) {
5049 thisType->emplace(TypeCategory::Unsigned, kind);
5050 }
5051 } else {
5052 int kind{context_.context().GetDefaultKind(TypeCategory::Integer)};
5053 MaybeExpr intExpr{
5054 ConvertToKind<TypeCategory::Integer>(kind, std::move(*boz))};
5055 actuals_[i] = std::move(*intExpr);
5056 if (thisType) {
5057 thisType->emplace(TypeCategory::Integer, kind);
5058 }
5059 }
5060 }
5061}
5062
5063void ArgumentAnalyzer::ConvertBOZAssignmentRHS(const DynamicType &lhsType) {
5064 if (lhsType.category() == TypeCategory::Integer ||
5065 lhsType.category() == TypeCategory::Unsigned ||
5066 lhsType.category() == TypeCategory::Real) {
5067 Expr<SomeType> rhs{MoveExpr(1)};
5068 if (MaybeExpr converted{ConvertToType(lhsType, std::move(rhs))}) {
5069 actuals_[1] = std::move(*converted);
5070 }
5071 }
5072}
5073
5074// Report error resolving opr when there is a user-defined one available
5075void ArgumentAnalyzer::SayNoMatch(const std::string &opr, bool isAssignment) {
5076 std::string type0{TypeAsFortran(0)};
5077 auto rank0{actuals_[0]->Rank()};
5078 if (actuals_.size() == 1) {
5079 if (rank0 > 0) {
5080 context_.Say("No intrinsic or user-defined %s matches "
5081 "rank %d array of %s"_err_en_US,
5082 opr, rank0, type0);
5083 } else {
5084 context_.Say("No intrinsic or user-defined %s matches "
5085 "operand type %s"_err_en_US,
5086 opr, type0);
5087 }
5088 } else {
5089 std::string type1{TypeAsFortran(1)};
5090 auto rank1{actuals_[1]->Rank()};
5091 if (rank0 > 0 && rank1 > 0 && rank0 != rank1) {
5092 context_.Say("No intrinsic or user-defined %s matches "
5093 "rank %d array of %s and rank %d array of %s"_err_en_US,
5094 opr, rank0, type0, rank1, type1);
5095 } else if (isAssignment && rank0 != rank1) {
5096 if (rank0 == 0) {
5097 context_.Say("No intrinsic or user-defined %s matches "
5098 "scalar %s and rank %d array of %s"_err_en_US,
5099 opr, type0, rank1, type1);
5100 } else {
5101 context_.Say("No intrinsic or user-defined %s matches "
5102 "rank %d array of %s and scalar %s"_err_en_US,
5103 opr, rank0, type0, type1);
5104 }
5105 } else {
5106 context_.Say("No intrinsic or user-defined %s matches "
5107 "operand types %s and %s"_err_en_US,
5108 opr, type0, type1);
5109 }
5110 }
5111}
5112
5113std::string ArgumentAnalyzer::TypeAsFortran(std::size_t i) {
5114 if (i >= actuals_.size() || !actuals_[i]) {
5115 return "missing argument";
5116 } else if (std::optional<DynamicType> type{GetType(i)}) {
5117 return type->IsAssumedType() ? "TYPE(*)"s
5118 : type->IsUnlimitedPolymorphic() ? "CLASS(*)"s
5119 : type->IsPolymorphic() ? type->AsFortran()
5120 : type->category() == TypeCategory::Derived
5121 ? "TYPE("s + type->AsFortran() + ')'
5122 : type->category() == TypeCategory::Character
5123 ? "CHARACTER(KIND="s + std::to_string(type->kind()) + ')'
5124 : ToUpperCase(type->AsFortran());
5125 } else {
5126 return "untyped";
5127 }
5128}
5129
5130bool ArgumentAnalyzer::AnyUntypedOrMissingOperand() {
5131 for (const auto &actual : actuals_) {
5132 if (!actual ||
5133 (!actual->GetType() && !IsBareNullPointer(actual->UnwrapExpr()))) {
5134 return true;
5135 }
5136 }
5137 return false;
5138}
5139} // namespace Fortran::evaluate
5140
5141namespace Fortran::semantics {
5142evaluate::Expr<evaluate::SubscriptInteger> AnalyzeKindSelector(
5143 SemanticsContext &context, common::TypeCategory category,
5144 const std::optional<parser::KindSelector> &selector) {
5145 evaluate::ExpressionAnalyzer analyzer{context};
5146 CHECK(context.location().has_value());
5147 auto restorer{
5148 analyzer.GetContextualMessages().SetLocation(*context.location())};
5149 return analyzer.AnalyzeKindSelector(category, selector);
5150}
5151
5152ExprChecker::ExprChecker(SemanticsContext &context) : context_{context} {}
5153
5154bool ExprChecker::Pre(const parser::DataStmtObject &obj) {
5155 exprAnalyzer_.set_inDataStmtObject(true);
5156 return true;
5157}
5158
5159void ExprChecker::Post(const parser::DataStmtObject &obj) {
5160 exprAnalyzer_.set_inDataStmtObject(false);
5161}
5162
5163bool ExprChecker::Pre(const parser::DataImpliedDo &ido) {
5164 parser::Walk(std::get<parser::DataImpliedDo::Bounds>(ido.t), *this);
5165 const auto &bounds{std::get<parser::DataImpliedDo::Bounds>(ido.t)};
5166 auto name{bounds.name.thing.thing};
5167 int kind{evaluate::ResultType<evaluate::ImpliedDoIndex>::kind};
5168 if (const auto dynamicType{evaluate::DynamicType::From(*name.symbol)}) {
5169 if (dynamicType->category() == TypeCategory::Integer) {
5170 kind = dynamicType->kind();
5171 }
5172 }
5173 exprAnalyzer_.AddImpliedDo(name.source, kind);
5174 parser::Walk(std::get<std::list<parser::DataIDoObject>>(ido.t), *this);
5175 exprAnalyzer_.RemoveImpliedDo(name.source);
5176 return false;
5177}
5178
5179bool ExprChecker::Walk(const parser::Program &program) {
5180 parser::Walk(program, *this);
5181 return !context_.AnyFatalError();
5182}
5183} // namespace Fortran::semantics
5184

Provided by KDAB

Privacy Policy
Update your C++ knowledge – Modern C++11/14/17 Training
Find out more

source code of flang/lib/Semantics/expression.cpp