1 | //===- TransformationalTest.cpp -- Transformational intrinsic generation --===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "flang/Optimizer/Builder/Runtime/Transformational.h" |
10 | #include "RuntimeCallTestBase.h" |
11 | #include "gtest/gtest.h" |
12 | |
13 | void testGenBesselJn( |
14 | fir::FirOpBuilder &builder, mlir::Type realTy, llvm::StringRef fctName) { |
15 | mlir::Location loc = builder.getUnknownLoc(); |
16 | mlir::Type i32Ty = builder.getIntegerType(32); |
17 | mlir::Type seqTy = |
18 | fir::SequenceType::get(fir::SequenceType::Shape(1, 10), realTy); |
19 | mlir::Value result = builder.create<fir::UndefOp>(loc, seqTy); |
20 | mlir::Value n1 = builder.create<fir::UndefOp>(loc, i32Ty); |
21 | mlir::Value n2 = builder.create<fir::UndefOp>(loc, i32Ty); |
22 | mlir::Value x = builder.create<fir::UndefOp>(loc, realTy); |
23 | mlir::Value bn1 = builder.create<fir::UndefOp>(loc, realTy); |
24 | mlir::Value bn2 = builder.create<fir::UndefOp>(loc, realTy); |
25 | fir::runtime::genBesselJn(builder, loc, result, n1, n2, x, bn1, bn2); |
26 | checkCallOpFromResultBox(result, fctName, 6); |
27 | } |
28 | |
29 | TEST_F(RuntimeCallTest, genBesselJnTest) { |
30 | testGenBesselJn(*firBuilder, f32Ty, "_FortranABesselJn_4" ); |
31 | testGenBesselJn(*firBuilder, f64Ty, "_FortranABesselJn_8" ); |
32 | testGenBesselJn(*firBuilder, f80Ty, "_FortranABesselJn_10" ); |
33 | testGenBesselJn(*firBuilder, f128Ty, "_FortranABesselJn_16" ); |
34 | } |
35 | |
36 | void testGenBesselJnX0( |
37 | fir::FirOpBuilder &builder, mlir::Type realTy, llvm::StringRef fctName) { |
38 | mlir::Location loc = builder.getUnknownLoc(); |
39 | mlir::Type i32Ty = builder.getIntegerType(32); |
40 | mlir::Type seqTy = |
41 | fir::SequenceType::get(fir::SequenceType::Shape(1, 10), realTy); |
42 | mlir::Value result = builder.create<fir::UndefOp>(loc, seqTy); |
43 | mlir::Value n1 = builder.create<fir::UndefOp>(loc, i32Ty); |
44 | mlir::Value n2 = builder.create<fir::UndefOp>(loc, i32Ty); |
45 | fir::runtime::genBesselJnX0(builder, loc, realTy, result, n1, n2); |
46 | checkCallOpFromResultBox(result, fctName, 3); |
47 | } |
48 | |
49 | TEST_F(RuntimeCallTest, genBesselJnX0Test) { |
50 | testGenBesselJnX0(*firBuilder, f32Ty, "_FortranABesselJnX0_4" ); |
51 | testGenBesselJnX0(*firBuilder, f64Ty, "_FortranABesselJnX0_8" ); |
52 | testGenBesselJnX0(*firBuilder, f80Ty, "_FortranABesselJnX0_10" ); |
53 | testGenBesselJnX0(*firBuilder, f128Ty, "_FortranABesselJnX0_16" ); |
54 | } |
55 | |
56 | void testGenBesselYn( |
57 | fir::FirOpBuilder &builder, mlir::Type realTy, llvm::StringRef fctName) { |
58 | mlir::Location loc = builder.getUnknownLoc(); |
59 | mlir::Type i32Ty = builder.getIntegerType(32); |
60 | mlir::Type seqTy = |
61 | fir::SequenceType::get(fir::SequenceType::Shape(1, 10), realTy); |
62 | mlir::Value result = builder.create<fir::UndefOp>(loc, seqTy); |
63 | mlir::Value n1 = builder.create<fir::UndefOp>(loc, i32Ty); |
64 | mlir::Value n2 = builder.create<fir::UndefOp>(loc, i32Ty); |
65 | mlir::Value x = builder.create<fir::UndefOp>(loc, realTy); |
66 | mlir::Value bn1 = builder.create<fir::UndefOp>(loc, realTy); |
67 | mlir::Value bn2 = builder.create<fir::UndefOp>(loc, realTy); |
68 | fir::runtime::genBesselYn(builder, loc, result, n1, n2, x, bn1, bn2); |
69 | checkCallOpFromResultBox(result, fctName, 6); |
70 | } |
71 | |
72 | TEST_F(RuntimeCallTest, genBesselYnTest) { |
73 | testGenBesselYn(*firBuilder, f32Ty, "_FortranABesselYn_4" ); |
74 | testGenBesselYn(*firBuilder, f64Ty, "_FortranABesselYn_8" ); |
75 | testGenBesselYn(*firBuilder, f80Ty, "_FortranABesselYn_10" ); |
76 | testGenBesselYn(*firBuilder, f128Ty, "_FortranABesselYn_16" ); |
77 | } |
78 | |
79 | void testGenBesselYnX0( |
80 | fir::FirOpBuilder &builder, mlir::Type realTy, llvm::StringRef fctName) { |
81 | mlir::Location loc = builder.getUnknownLoc(); |
82 | mlir::Type i32Ty = builder.getIntegerType(32); |
83 | mlir::Type seqTy = |
84 | fir::SequenceType::get(fir::SequenceType::Shape(1, 10), realTy); |
85 | mlir::Value result = builder.create<fir::UndefOp>(loc, seqTy); |
86 | mlir::Value n1 = builder.create<fir::UndefOp>(loc, i32Ty); |
87 | mlir::Value n2 = builder.create<fir::UndefOp>(loc, i32Ty); |
88 | fir::runtime::genBesselYnX0(builder, loc, realTy, result, n1, n2); |
89 | checkCallOpFromResultBox(result, fctName, 3); |
90 | } |
91 | |
92 | TEST_F(RuntimeCallTest, genBesselYnX0Test) { |
93 | testGenBesselYnX0(*firBuilder, f32Ty, "_FortranABesselYnX0_4" ); |
94 | testGenBesselYnX0(*firBuilder, f64Ty, "_FortranABesselYnX0_8" ); |
95 | testGenBesselYnX0(*firBuilder, f80Ty, "_FortranABesselYnX0_10" ); |
96 | testGenBesselYnX0(*firBuilder, f128Ty, "_FortranABesselYnX0_16" ); |
97 | } |
98 | |
99 | TEST_F(RuntimeCallTest, genCshiftTest) { |
100 | auto loc = firBuilder->getUnknownLoc(); |
101 | mlir::Type seqTy = |
102 | fir::SequenceType::get(fir::SequenceType::Shape(1, 10), i32Ty); |
103 | mlir::Value result = firBuilder->create<fir::UndefOp>(loc, seqTy); |
104 | mlir::Value array = firBuilder->create<fir::UndefOp>(loc, seqTy); |
105 | mlir::Value shift = firBuilder->create<fir::UndefOp>(loc, seqTy); |
106 | mlir::Value dim = firBuilder->create<fir::UndefOp>(loc, seqTy); |
107 | fir::runtime::genCshift(*firBuilder, loc, result, array, shift, dim); |
108 | checkCallOpFromResultBox(result, "_FortranACshift" , 4); |
109 | } |
110 | |
111 | TEST_F(RuntimeCallTest, genCshiftVectorTest) { |
112 | auto loc = firBuilder->getUnknownLoc(); |
113 | mlir::Type seqTy = |
114 | fir::SequenceType::get(fir::SequenceType::Shape(1, 10), i32Ty); |
115 | mlir::Value result = firBuilder->create<fir::UndefOp>(loc, seqTy); |
116 | mlir::Value array = firBuilder->create<fir::UndefOp>(loc, seqTy); |
117 | mlir::Value shift = firBuilder->create<fir::UndefOp>(loc, seqTy); |
118 | fir::runtime::genCshiftVector(*firBuilder, loc, result, array, shift); |
119 | checkCallOpFromResultBox(result, "_FortranACshiftVector" , 3); |
120 | } |
121 | |
122 | TEST_F(RuntimeCallTest, genEoshiftTest) { |
123 | auto loc = firBuilder->getUnknownLoc(); |
124 | mlir::Type seqTy = |
125 | fir::SequenceType::get(fir::SequenceType::Shape(1, 10), i32Ty); |
126 | mlir::Value result = firBuilder->create<fir::UndefOp>(loc, seqTy); |
127 | mlir::Value array = firBuilder->create<fir::UndefOp>(loc, seqTy); |
128 | mlir::Value shift = firBuilder->create<fir::UndefOp>(loc, seqTy); |
129 | mlir::Value bound = firBuilder->create<fir::UndefOp>(loc, seqTy); |
130 | mlir::Value dim = firBuilder->create<fir::UndefOp>(loc, seqTy); |
131 | fir::runtime::genEoshift(*firBuilder, loc, result, array, shift, bound, dim); |
132 | checkCallOpFromResultBox(result, "_FortranAEoshift" , 5); |
133 | } |
134 | |
135 | TEST_F(RuntimeCallTest, genEoshiftVectorTest) { |
136 | auto loc = firBuilder->getUnknownLoc(); |
137 | mlir::Type seqTy = |
138 | fir::SequenceType::get(fir::SequenceType::Shape(1, 10), i32Ty); |
139 | mlir::Value result = firBuilder->create<fir::UndefOp>(loc, seqTy); |
140 | mlir::Value array = firBuilder->create<fir::UndefOp>(loc, seqTy); |
141 | mlir::Value shift = firBuilder->create<fir::UndefOp>(loc, seqTy); |
142 | mlir::Value bound = firBuilder->create<fir::UndefOp>(loc, seqTy); |
143 | fir::runtime::genEoshiftVector(*firBuilder, loc, result, array, shift, bound); |
144 | checkCallOpFromResultBox(result, "_FortranAEoshiftVector" , 4); |
145 | } |
146 | |
147 | void testGenMatmul(fir::FirOpBuilder &builder, mlir::Type eleTy1, |
148 | mlir::Type eleTy2, llvm::StringRef funcName) { |
149 | auto loc = builder.getUnknownLoc(); |
150 | mlir::Type resultTy = |
151 | fir::ReferenceType::get(fir::BoxType::get(builder.getNoneType())); |
152 | mlir::Type seqTy1 = |
153 | fir::SequenceType::get(fir::SequenceType::Shape(2, 10), eleTy1); |
154 | mlir::Type seqTy2 = |
155 | fir::SequenceType::get(fir::SequenceType::Shape(2, 10), eleTy2); |
156 | mlir::Type boxTy1 = fir::BoxType::get(seqTy1); |
157 | mlir::Type boxTy2 = fir::BoxType::get(seqTy2); |
158 | mlir::Value result = builder.create<fir::UndefOp>(loc, resultTy); |
159 | mlir::Value matrixA = builder.create<fir::UndefOp>(loc, boxTy1); |
160 | mlir::Value matrixB = builder.create<fir::UndefOp>(loc, boxTy2); |
161 | fir::runtime::genMatmul(builder, loc, result, matrixA, matrixB); |
162 | checkCallOpFromResultBox(result, funcName, 3); |
163 | } |
164 | |
165 | TEST_F(RuntimeCallTest, genMatmulTest) { |
166 | testGenMatmul(*firBuilder, i32Ty, i16Ty, "_FortranAMatmulInteger4Integer2" ); |
167 | testGenMatmul(*firBuilder, i32Ty, f64Ty, "_FortranAMatmulInteger4Real8" ); |
168 | testGenMatmul(*firBuilder, i32Ty, c8Ty, "_FortranAMatmulInteger4Complex8" ); |
169 | testGenMatmul(*firBuilder, f32Ty, i16Ty, "_FortranAMatmulReal4Integer2" ); |
170 | testGenMatmul(*firBuilder, f32Ty, f64Ty, "_FortranAMatmulReal4Real8" ); |
171 | testGenMatmul(*firBuilder, f32Ty, c8Ty, "_FortranAMatmulReal4Complex8" ); |
172 | testGenMatmul(*firBuilder, c4Ty, i16Ty, "_FortranAMatmulComplex4Integer2" ); |
173 | testGenMatmul(*firBuilder, c4Ty, f64Ty, "_FortranAMatmulComplex4Real8" ); |
174 | testGenMatmul(*firBuilder, c4Ty, c8Ty, "_FortranAMatmulComplex4Complex8" ); |
175 | testGenMatmul(*firBuilder, f80Ty, f128Ty, "_FortranAMatmulReal10Real16" ); |
176 | testGenMatmul(*firBuilder, f80Ty, i128Ty, "_FortranAMatmulReal10Integer16" ); |
177 | testGenMatmul(*firBuilder, f128Ty, i128Ty, "_FortranAMatmulReal16Integer16" ); |
178 | testGenMatmul( |
179 | *firBuilder, logical1Ty, logical2Ty, "_FortranAMatmulLogical1Logical2" ); |
180 | testGenMatmul( |
181 | *firBuilder, logical4Ty, logical8Ty, "_FortranAMatmulLogical4Logical8" ); |
182 | } |
183 | |
184 | TEST_F(RuntimeCallTest, genPackTest) { |
185 | auto loc = firBuilder->getUnknownLoc(); |
186 | mlir::Type seqTy = |
187 | fir::SequenceType::get(fir::SequenceType::Shape(1, 10), i32Ty); |
188 | mlir::Value result = firBuilder->create<fir::UndefOp>(loc, seqTy); |
189 | mlir::Value array = firBuilder->create<fir::UndefOp>(loc, seqTy); |
190 | mlir::Value mask = firBuilder->create<fir::UndefOp>(loc, seqTy); |
191 | mlir::Value vector = firBuilder->create<fir::UndefOp>(loc, seqTy); |
192 | fir::runtime::genPack(*firBuilder, loc, result, array, mask, vector); |
193 | checkCallOpFromResultBox(result, "_FortranAPack" , 4); |
194 | } |
195 | |
196 | TEST_F(RuntimeCallTest, genReshapeTest) { |
197 | auto loc = firBuilder->getUnknownLoc(); |
198 | mlir::Type seqTy = |
199 | fir::SequenceType::get(fir::SequenceType::Shape(1, 10), i32Ty); |
200 | mlir::Value result = firBuilder->create<fir::UndefOp>(loc, seqTy); |
201 | mlir::Value source = firBuilder->create<fir::UndefOp>(loc, seqTy); |
202 | mlir::Value shape = firBuilder->create<fir::UndefOp>(loc, seqTy); |
203 | mlir::Value pad = firBuilder->create<fir::UndefOp>(loc, seqTy); |
204 | mlir::Value order = firBuilder->create<fir::UndefOp>(loc, seqTy); |
205 | fir::runtime::genReshape(*firBuilder, loc, result, source, shape, pad, order); |
206 | checkCallOpFromResultBox(result, "_FortranAReshape" , 5); |
207 | } |
208 | |
209 | TEST_F(RuntimeCallTest, genSpreadTest) { |
210 | auto loc = firBuilder->getUnknownLoc(); |
211 | mlir::Type seqTy = |
212 | fir::SequenceType::get(fir::SequenceType::Shape(1, 10), i32Ty); |
213 | mlir::Value result = firBuilder->create<fir::UndefOp>(loc, seqTy); |
214 | mlir::Value source = firBuilder->create<fir::UndefOp>(loc, seqTy); |
215 | mlir::Value dim = firBuilder->create<fir::UndefOp>(loc, seqTy); |
216 | mlir::Value ncopies = firBuilder->create<fir::UndefOp>(loc, seqTy); |
217 | fir::runtime::genSpread(*firBuilder, loc, result, source, dim, ncopies); |
218 | checkCallOpFromResultBox(result, "_FortranASpread" , 4); |
219 | } |
220 | |
221 | TEST_F(RuntimeCallTest, genTransposeTest) { |
222 | auto loc = firBuilder->getUnknownLoc(); |
223 | mlir::Type seqTy = |
224 | fir::SequenceType::get(fir::SequenceType::Shape(1, 10), i32Ty); |
225 | mlir::Value result = firBuilder->create<fir::UndefOp>(loc, seqTy); |
226 | mlir::Value source = firBuilder->create<fir::UndefOp>(loc, seqTy); |
227 | fir::runtime::genTranspose(*firBuilder, loc, result, source); |
228 | checkCallOpFromResultBox(result, "_FortranATranspose" , 2); |
229 | } |
230 | |
231 | TEST_F(RuntimeCallTest, genUnpack) { |
232 | auto loc = firBuilder->getUnknownLoc(); |
233 | mlir::Type seqTy = |
234 | fir::SequenceType::get(fir::SequenceType::Shape(1, 10), i32Ty); |
235 | mlir::Value result = firBuilder->create<fir::UndefOp>(loc, seqTy); |
236 | mlir::Value vector = firBuilder->create<fir::UndefOp>(loc, seqTy); |
237 | mlir::Value mask = firBuilder->create<fir::UndefOp>(loc, seqTy); |
238 | mlir::Value field = firBuilder->create<fir::UndefOp>(loc, seqTy); |
239 | fir::runtime::genUnpack(*firBuilder, loc, result, vector, mask, field); |
240 | checkCallOpFromResultBox(result, "_FortranAUnpack" , 4); |
241 | } |
242 | |