| 1 | /* |
| 2 | * Configuration for math routines. |
| 3 | * |
| 4 | * Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 5 | * See https://llvm.org/LICENSE.txt for license information. |
| 6 | * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 7 | */ |
| 8 | |
| 9 | #ifndef _MATH_CONFIG_H |
| 10 | #define _MATH_CONFIG_H |
| 11 | |
| 12 | #include <math.h> |
| 13 | #include <stdint.h> |
| 14 | |
| 15 | #ifndef WANT_ROUNDING |
| 16 | /* If defined to 1, return correct results for special cases in non-nearest |
| 17 | rounding modes (logf (1.0f) returns 0.0f with FE_DOWNWARD rather than -0.0f). |
| 18 | This may be set to 0 if there is no fenv support or if math functions only |
| 19 | get called in round to nearest mode. */ |
| 20 | # define WANT_ROUNDING 1 |
| 21 | #endif |
| 22 | #ifndef WANT_ERRNO |
| 23 | /* If defined to 1, set errno in math functions according to ISO C. Many math |
| 24 | libraries do not set errno, so this is 0 by default. It may need to be |
| 25 | set to 1 if math.h has (math_errhandling & MATH_ERRNO) != 0. */ |
| 26 | # define WANT_ERRNO 0 |
| 27 | #endif |
| 28 | #ifndef WANT_ERRNO_UFLOW |
| 29 | /* Set errno to ERANGE if result underflows to 0 (in all rounding modes). */ |
| 30 | # define WANT_ERRNO_UFLOW (WANT_ROUNDING && WANT_ERRNO) |
| 31 | #endif |
| 32 | |
| 33 | /* Compiler can inline round as a single instruction. */ |
| 34 | #ifndef HAVE_FAST_ROUND |
| 35 | # if __aarch64__ |
| 36 | # define HAVE_FAST_ROUND 1 |
| 37 | # else |
| 38 | # define HAVE_FAST_ROUND 0 |
| 39 | # endif |
| 40 | #endif |
| 41 | |
| 42 | /* Compiler can inline lround, but not (long)round(x). */ |
| 43 | #ifndef HAVE_FAST_LROUND |
| 44 | # if __aarch64__ && (100*__GNUC__ + __GNUC_MINOR__) >= 408 && __NO_MATH_ERRNO__ |
| 45 | # define HAVE_FAST_LROUND 1 |
| 46 | # else |
| 47 | # define HAVE_FAST_LROUND 0 |
| 48 | # endif |
| 49 | #endif |
| 50 | |
| 51 | /* Compiler can inline fma as a single instruction. */ |
| 52 | #ifndef HAVE_FAST_FMA |
| 53 | # if defined FP_FAST_FMA || __aarch64__ |
| 54 | # define HAVE_FAST_FMA 1 |
| 55 | # else |
| 56 | # define HAVE_FAST_FMA 0 |
| 57 | # endif |
| 58 | #endif |
| 59 | |
| 60 | /* Provide *_finite symbols and some of the glibc hidden symbols |
| 61 | so libmathlib can be used with binaries compiled against glibc |
| 62 | to interpose math functions with both static and dynamic linking. */ |
| 63 | #ifndef USE_GLIBC_ABI |
| 64 | # if __GNUC__ |
| 65 | # define USE_GLIBC_ABI 1 |
| 66 | # else |
| 67 | # define USE_GLIBC_ABI 0 |
| 68 | # endif |
| 69 | #endif |
| 70 | |
| 71 | /* Optionally used extensions. */ |
| 72 | #ifdef __GNUC__ |
| 73 | # define HIDDEN __attribute__ ((__visibility__ ("hidden"))) |
| 74 | # define NOINLINE __attribute__ ((noinline)) |
| 75 | # define UNUSED __attribute__ ((unused)) |
| 76 | # define likely(x) __builtin_expect (!!(x), 1) |
| 77 | # define unlikely(x) __builtin_expect (x, 0) |
| 78 | # if __GNUC__ >= 9 |
| 79 | # define attribute_copy(f) __attribute__ ((copy (f))) |
| 80 | # else |
| 81 | # define attribute_copy(f) |
| 82 | # endif |
| 83 | # define strong_alias(f, a) \ |
| 84 | extern __typeof (f) a __attribute__ ((alias (#f))) attribute_copy (f); |
| 85 | # define hidden_alias(f, a) \ |
| 86 | extern __typeof (f) a __attribute__ ((alias (#f), visibility ("hidden"))) \ |
| 87 | attribute_copy (f); |
| 88 | #else |
| 89 | # define HIDDEN |
| 90 | # define NOINLINE |
| 91 | # define UNUSED |
| 92 | # define likely(x) (x) |
| 93 | # define unlikely(x) (x) |
| 94 | #endif |
| 95 | |
| 96 | #if HAVE_FAST_ROUND |
| 97 | /* When set, the roundtoint and converttoint functions are provided with |
| 98 | the semantics documented below. */ |
| 99 | # define TOINT_INTRINSICS 1 |
| 100 | |
| 101 | /* Round x to nearest int in all rounding modes, ties have to be rounded |
| 102 | consistently with converttoint so the results match. If the result |
| 103 | would be outside of [-2^31, 2^31-1] then the semantics is unspecified. */ |
| 104 | static inline double_t |
| 105 | roundtoint (double_t x) |
| 106 | { |
| 107 | return round (x); |
| 108 | } |
| 109 | |
| 110 | /* Convert x to nearest int in all rounding modes, ties have to be rounded |
| 111 | consistently with roundtoint. If the result is not representable in an |
| 112 | int32_t then the semantics is unspecified. */ |
| 113 | static inline int32_t |
| 114 | converttoint (double_t x) |
| 115 | { |
| 116 | # if HAVE_FAST_LROUND |
| 117 | return lround (x); |
| 118 | # else |
| 119 | return (long) round (x); |
| 120 | # endif |
| 121 | } |
| 122 | #endif |
| 123 | |
| 124 | static inline uint32_t |
| 125 | asuint (float f) |
| 126 | { |
| 127 | union |
| 128 | { |
| 129 | float f; |
| 130 | uint32_t i; |
| 131 | } u = {.f: f}; |
| 132 | return u.i; |
| 133 | } |
| 134 | |
| 135 | static inline float |
| 136 | asfloat (uint32_t i) |
| 137 | { |
| 138 | union |
| 139 | { |
| 140 | uint32_t i; |
| 141 | float f; |
| 142 | } u = {.i: i}; |
| 143 | return u.f; |
| 144 | } |
| 145 | |
| 146 | static inline uint64_t |
| 147 | asuint64 (double f) |
| 148 | { |
| 149 | union |
| 150 | { |
| 151 | double f; |
| 152 | uint64_t i; |
| 153 | } u = {.f: f}; |
| 154 | return u.i; |
| 155 | } |
| 156 | |
| 157 | static inline double |
| 158 | asdouble (uint64_t i) |
| 159 | { |
| 160 | union |
| 161 | { |
| 162 | uint64_t i; |
| 163 | double f; |
| 164 | } u = {.i: i}; |
| 165 | return u.f; |
| 166 | } |
| 167 | |
| 168 | #ifndef IEEE_754_2008_SNAN |
| 169 | # define IEEE_754_2008_SNAN 1 |
| 170 | #endif |
| 171 | static inline int |
| 172 | issignalingf_inline (float x) |
| 173 | { |
| 174 | uint32_t ix = asuint (f: x); |
| 175 | if (!IEEE_754_2008_SNAN) |
| 176 | return (ix & 0x7fc00000) == 0x7fc00000; |
| 177 | return 2 * (ix ^ 0x00400000) > 2u * 0x7fc00000; |
| 178 | } |
| 179 | |
| 180 | static inline int |
| 181 | issignaling_inline (double x) |
| 182 | { |
| 183 | uint64_t ix = asuint64 (f: x); |
| 184 | if (!IEEE_754_2008_SNAN) |
| 185 | return (ix & 0x7ff8000000000000) == 0x7ff8000000000000; |
| 186 | return 2 * (ix ^ 0x0008000000000000) > 2 * 0x7ff8000000000000ULL; |
| 187 | } |
| 188 | |
| 189 | #if __aarch64__ && __GNUC__ |
| 190 | /* Prevent the optimization of a floating-point expression. */ |
| 191 | static inline float |
| 192 | opt_barrier_float (float x) |
| 193 | { |
| 194 | __asm__ __volatile__ ("" : "+w" (x)); |
| 195 | return x; |
| 196 | } |
| 197 | static inline double |
| 198 | opt_barrier_double (double x) |
| 199 | { |
| 200 | __asm__ __volatile__ ("" : "+w" (x)); |
| 201 | return x; |
| 202 | } |
| 203 | /* Force the evaluation of a floating-point expression for its side-effect. */ |
| 204 | static inline void |
| 205 | force_eval_float (float x) |
| 206 | { |
| 207 | __asm__ __volatile__ ("" : "+w" (x)); |
| 208 | } |
| 209 | static inline void |
| 210 | force_eval_double (double x) |
| 211 | { |
| 212 | __asm__ __volatile__ ("" : "+w" (x)); |
| 213 | } |
| 214 | #else |
| 215 | static inline float |
| 216 | opt_barrier_float (float x) |
| 217 | { |
| 218 | volatile float y = x; |
| 219 | return y; |
| 220 | } |
| 221 | static inline double |
| 222 | opt_barrier_double (double x) |
| 223 | { |
| 224 | volatile double y = x; |
| 225 | return y; |
| 226 | } |
| 227 | static inline void |
| 228 | force_eval_float (float x) |
| 229 | { |
| 230 | volatile float y UNUSED = x; |
| 231 | } |
| 232 | static inline void |
| 233 | force_eval_double (double x) |
| 234 | { |
| 235 | volatile double y UNUSED = x; |
| 236 | } |
| 237 | #endif |
| 238 | |
| 239 | /* Evaluate an expression as the specified type, normally a type |
| 240 | cast should be enough, but compilers implement non-standard |
| 241 | excess-precision handling, so when FLT_EVAL_METHOD != 0 then |
| 242 | these functions may need to be customized. */ |
| 243 | static inline float |
| 244 | eval_as_float (float x) |
| 245 | { |
| 246 | return x; |
| 247 | } |
| 248 | static inline double |
| 249 | eval_as_double (double x) |
| 250 | { |
| 251 | return x; |
| 252 | } |
| 253 | |
| 254 | /* Error handling tail calls for special cases, with a sign argument. |
| 255 | The sign of the return value is set if the argument is non-zero. */ |
| 256 | |
| 257 | /* The result overflows. */ |
| 258 | HIDDEN float __math_oflowf (uint32_t); |
| 259 | /* The result underflows to 0 in nearest rounding mode. */ |
| 260 | HIDDEN float __math_uflowf (uint32_t); |
| 261 | /* The result underflows to 0 in some directed rounding mode only. */ |
| 262 | HIDDEN float __math_may_uflowf (uint32_t); |
| 263 | /* Division by zero. */ |
| 264 | HIDDEN float __math_divzerof (uint32_t); |
| 265 | /* The result overflows. */ |
| 266 | HIDDEN double __math_oflow (uint32_t); |
| 267 | /* The result underflows to 0 in nearest rounding mode. */ |
| 268 | HIDDEN double __math_uflow (uint32_t); |
| 269 | /* The result underflows to 0 in some directed rounding mode only. */ |
| 270 | HIDDEN double __math_may_uflow (uint32_t); |
| 271 | /* Division by zero. */ |
| 272 | HIDDEN double __math_divzero (uint32_t); |
| 273 | |
| 274 | /* Error handling using input checking. */ |
| 275 | |
| 276 | /* Invalid input unless it is a quiet NaN. */ |
| 277 | HIDDEN float __math_invalidf (float); |
| 278 | /* Invalid input unless it is a quiet NaN. */ |
| 279 | HIDDEN double __math_invalid (double); |
| 280 | |
| 281 | /* Error handling using output checking, only for errno setting. */ |
| 282 | |
| 283 | /* Check if the result overflowed to infinity. */ |
| 284 | HIDDEN double __math_check_oflow (double); |
| 285 | /* Check if the result underflowed to 0. */ |
| 286 | HIDDEN double __math_check_uflow (double); |
| 287 | |
| 288 | /* Check if the result overflowed to infinity. */ |
| 289 | static inline double |
| 290 | check_oflow (double x) |
| 291 | { |
| 292 | return WANT_ERRNO ? __math_check_oflow (x) : x; |
| 293 | } |
| 294 | |
| 295 | /* Check if the result underflowed to 0. */ |
| 296 | static inline double |
| 297 | check_uflow (double x) |
| 298 | { |
| 299 | return WANT_ERRNO ? __math_check_uflow (x) : x; |
| 300 | } |
| 301 | |
| 302 | |
| 303 | /* Shared between expf, exp2f and powf. */ |
| 304 | #define EXP2F_TABLE_BITS 5 |
| 305 | #define EXP2F_POLY_ORDER 3 |
| 306 | extern const struct exp2f_data |
| 307 | { |
| 308 | uint64_t tab[1 << EXP2F_TABLE_BITS]; |
| 309 | double shift_scaled; |
| 310 | double poly[EXP2F_POLY_ORDER]; |
| 311 | double shift; |
| 312 | double invln2_scaled; |
| 313 | double poly_scaled[EXP2F_POLY_ORDER]; |
| 314 | } __exp2f_data HIDDEN; |
| 315 | |
| 316 | #define LOGF_TABLE_BITS 4 |
| 317 | #define LOGF_POLY_ORDER 4 |
| 318 | extern const struct logf_data |
| 319 | { |
| 320 | struct |
| 321 | { |
| 322 | double invc, logc; |
| 323 | } tab[1 << LOGF_TABLE_BITS]; |
| 324 | double ln2; |
| 325 | double poly[LOGF_POLY_ORDER - 1]; /* First order coefficient is 1. */ |
| 326 | } __logf_data HIDDEN; |
| 327 | |
| 328 | #define LOG2F_TABLE_BITS 4 |
| 329 | #define LOG2F_POLY_ORDER 4 |
| 330 | extern const struct log2f_data |
| 331 | { |
| 332 | struct |
| 333 | { |
| 334 | double invc, logc; |
| 335 | } tab[1 << LOG2F_TABLE_BITS]; |
| 336 | double poly[LOG2F_POLY_ORDER]; |
| 337 | } __log2f_data HIDDEN; |
| 338 | |
| 339 | #define POWF_LOG2_TABLE_BITS 4 |
| 340 | #define POWF_LOG2_POLY_ORDER 5 |
| 341 | #if TOINT_INTRINSICS |
| 342 | # define POWF_SCALE_BITS EXP2F_TABLE_BITS |
| 343 | #else |
| 344 | # define POWF_SCALE_BITS 0 |
| 345 | #endif |
| 346 | #define POWF_SCALE ((double) (1 << POWF_SCALE_BITS)) |
| 347 | extern const struct powf_log2_data |
| 348 | { |
| 349 | struct |
| 350 | { |
| 351 | double invc, logc; |
| 352 | } tab[1 << POWF_LOG2_TABLE_BITS]; |
| 353 | double poly[POWF_LOG2_POLY_ORDER]; |
| 354 | } __powf_log2_data HIDDEN; |
| 355 | |
| 356 | |
| 357 | #define EXP_TABLE_BITS 7 |
| 358 | #define EXP_POLY_ORDER 5 |
| 359 | /* Use polynomial that is optimized for a wider input range. This may be |
| 360 | needed for good precision in non-nearest rounding and !TOINT_INTRINSICS. */ |
| 361 | #define EXP_POLY_WIDE 0 |
| 362 | /* Use close to nearest rounding toint when !TOINT_INTRINSICS. This may be |
| 363 | needed for good precision in non-nearest rounding and !EXP_POLY_WIDE. */ |
| 364 | #define EXP_USE_TOINT_NARROW 0 |
| 365 | #define EXP2_POLY_ORDER 5 |
| 366 | #define EXP2_POLY_WIDE 0 |
| 367 | extern const struct exp_data |
| 368 | { |
| 369 | double invln2N; |
| 370 | double shift; |
| 371 | double negln2hiN; |
| 372 | double negln2loN; |
| 373 | double poly[4]; /* Last four coefficients. */ |
| 374 | double exp2_shift; |
| 375 | double exp2_poly[EXP2_POLY_ORDER]; |
| 376 | uint64_t tab[2*(1 << EXP_TABLE_BITS)]; |
| 377 | } __exp_data HIDDEN; |
| 378 | |
| 379 | #define LOG_TABLE_BITS 7 |
| 380 | #define LOG_POLY_ORDER 6 |
| 381 | #define LOG_POLY1_ORDER 12 |
| 382 | extern const struct log_data |
| 383 | { |
| 384 | double ln2hi; |
| 385 | double ln2lo; |
| 386 | double poly[LOG_POLY_ORDER - 1]; /* First coefficient is 1. */ |
| 387 | double poly1[LOG_POLY1_ORDER - 1]; |
| 388 | struct {double invc, logc;} tab[1 << LOG_TABLE_BITS]; |
| 389 | #if !HAVE_FAST_FMA |
| 390 | struct {double chi, clo;} tab2[1 << LOG_TABLE_BITS]; |
| 391 | #endif |
| 392 | } __log_data HIDDEN; |
| 393 | |
| 394 | #define LOG2_TABLE_BITS 6 |
| 395 | #define LOG2_POLY_ORDER 7 |
| 396 | #define LOG2_POLY1_ORDER 11 |
| 397 | extern const struct log2_data |
| 398 | { |
| 399 | double invln2hi; |
| 400 | double invln2lo; |
| 401 | double poly[LOG2_POLY_ORDER - 1]; |
| 402 | double poly1[LOG2_POLY1_ORDER - 1]; |
| 403 | struct {double invc, logc;} tab[1 << LOG2_TABLE_BITS]; |
| 404 | #if !HAVE_FAST_FMA |
| 405 | struct {double chi, clo;} tab2[1 << LOG2_TABLE_BITS]; |
| 406 | #endif |
| 407 | } __log2_data HIDDEN; |
| 408 | |
| 409 | #define POW_LOG_TABLE_BITS 7 |
| 410 | #define POW_LOG_POLY_ORDER 8 |
| 411 | extern const struct pow_log_data |
| 412 | { |
| 413 | double ln2hi; |
| 414 | double ln2lo; |
| 415 | double poly[POW_LOG_POLY_ORDER - 1]; /* First coefficient is 1. */ |
| 416 | /* Note: the pad field is unused, but allows slightly faster indexing. */ |
| 417 | struct {double invc, pad, logc, logctail;} tab[1 << POW_LOG_TABLE_BITS]; |
| 418 | } __pow_log_data HIDDEN; |
| 419 | |
| 420 | #endif |
| 421 | |