1 | /* |
2 | * dotest.c - actually generate mathlib test cases |
3 | * |
4 | * Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
5 | * See https://llvm.org/LICENSE.txt for license information. |
6 | * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
7 | */ |
8 | |
9 | #include <stdio.h> |
10 | #include <string.h> |
11 | #include <stdlib.h> |
12 | #include <stdint.h> |
13 | #include <assert.h> |
14 | #include <limits.h> |
15 | |
16 | #include "semi.h" |
17 | #include "intern.h" |
18 | #include "random.h" |
19 | |
20 | #define MPFR_PREC 96 /* good enough for float or double + a few extra bits */ |
21 | |
22 | extern int lib_fo, lib_no_arith, ntests; |
23 | |
24 | /* |
25 | * Prototypes. |
26 | */ |
27 | static void cases_biased(uint32 *, uint32, uint32); |
28 | static void cases_biased_positive(uint32 *, uint32, uint32); |
29 | static void cases_biased_float(uint32 *, uint32, uint32); |
30 | static void cases_uniform(uint32 *, uint32, uint32); |
31 | static void cases_uniform_positive(uint32 *, uint32, uint32); |
32 | static void cases_uniform_float(uint32 *, uint32, uint32); |
33 | static void cases_uniform_float_positive(uint32 *, uint32, uint32); |
34 | static void log_cases(uint32 *, uint32, uint32); |
35 | static void log_cases_float(uint32 *, uint32, uint32); |
36 | static void log1p_cases(uint32 *, uint32, uint32); |
37 | static void log1p_cases_float(uint32 *, uint32, uint32); |
38 | static void minmax_cases(uint32 *, uint32, uint32); |
39 | static void minmax_cases_float(uint32 *, uint32, uint32); |
40 | static void atan2_cases(uint32 *, uint32, uint32); |
41 | static void atan2_cases_float(uint32 *, uint32, uint32); |
42 | static void pow_cases(uint32 *, uint32, uint32); |
43 | static void pow_cases_float(uint32 *, uint32, uint32); |
44 | static void rred_cases(uint32 *, uint32, uint32); |
45 | static void rred_cases_float(uint32 *, uint32, uint32); |
46 | static void cases_semi1(uint32 *, uint32, uint32); |
47 | static void cases_semi1_float(uint32 *, uint32, uint32); |
48 | static void cases_semi2(uint32 *, uint32, uint32); |
49 | static void cases_semi2_float(uint32 *, uint32, uint32); |
50 | static void cases_ldexp(uint32 *, uint32, uint32); |
51 | static void cases_ldexp_float(uint32 *, uint32, uint32); |
52 | |
53 | static void complex_cases_uniform(uint32 *, uint32, uint32); |
54 | static void complex_cases_uniform_float(uint32 *, uint32, uint32); |
55 | static void complex_cases_biased(uint32 *, uint32, uint32); |
56 | static void complex_cases_biased_float(uint32 *, uint32, uint32); |
57 | static void complex_log_cases(uint32 *, uint32, uint32); |
58 | static void complex_log_cases_float(uint32 *, uint32, uint32); |
59 | static void complex_pow_cases(uint32 *, uint32, uint32); |
60 | static void complex_pow_cases_float(uint32 *, uint32, uint32); |
61 | static void complex_arithmetic_cases(uint32 *, uint32, uint32); |
62 | static void complex_arithmetic_cases_float(uint32 *, uint32, uint32); |
63 | |
64 | static uint32 doubletop(int x, int scale); |
65 | static uint32 floatval(int x, int scale); |
66 | |
67 | /* |
68 | * Convert back and forth between IEEE bit patterns and the |
69 | * mpfr_t/mpc_t types. |
70 | */ |
71 | static void set_mpfr_d(mpfr_t x, uint32 h, uint32 l) |
72 | { |
73 | uint64_t hl = ((uint64_t)h << 32) | l; |
74 | uint32 exp = (hl >> 52) & 0x7ff; |
75 | int64_t mantissa = hl & (((uint64_t)1 << 52) - 1); |
76 | int sign = (hl >> 63) ? -1 : +1; |
77 | if (exp == 0x7ff) { |
78 | if (mantissa == 0) |
79 | mpfr_set_inf(x, sign); |
80 | else |
81 | mpfr_set_nan(x); |
82 | } else if (exp == 0 && mantissa == 0) { |
83 | mpfr_set_ui(x, 0, GMP_RNDN); |
84 | mpfr_setsign(x, x, sign < 0, GMP_RNDN); |
85 | } else { |
86 | if (exp != 0) |
87 | mantissa |= ((uint64_t)1 << 52); |
88 | else |
89 | exp++; |
90 | mpfr_set_sj_2exp(x, mantissa * sign, (int)exp - 0x3ff - 52, GMP_RNDN); |
91 | } |
92 | } |
93 | static void set_mpfr_f(mpfr_t x, uint32 f) |
94 | { |
95 | uint32 exp = (f >> 23) & 0xff; |
96 | int32 mantissa = f & ((1 << 23) - 1); |
97 | int sign = (f >> 31) ? -1 : +1; |
98 | if (exp == 0xff) { |
99 | if (mantissa == 0) |
100 | mpfr_set_inf(x, sign); |
101 | else |
102 | mpfr_set_nan(x); |
103 | } else if (exp == 0 && mantissa == 0) { |
104 | mpfr_set_ui(x, 0, GMP_RNDN); |
105 | mpfr_setsign(x, x, sign < 0, GMP_RNDN); |
106 | } else { |
107 | if (exp != 0) |
108 | mantissa |= (1 << 23); |
109 | else |
110 | exp++; |
111 | mpfr_set_sj_2exp(x, mantissa * sign, (int)exp - 0x7f - 23, GMP_RNDN); |
112 | } |
113 | } |
114 | static void set_mpc_d(mpc_t z, uint32 rh, uint32 rl, uint32 ih, uint32 il) |
115 | { |
116 | mpfr_t x, y; |
117 | mpfr_init2(x, MPFR_PREC); |
118 | mpfr_init2(y, MPFR_PREC); |
119 | set_mpfr_d(x, h: rh, l: rl); |
120 | set_mpfr_d(x: y, h: ih, l: il); |
121 | mpc_set_fr_fr(z, x, y, MPC_RNDNN); |
122 | mpfr_clear(x); |
123 | mpfr_clear(y); |
124 | } |
125 | static void set_mpc_f(mpc_t z, uint32 r, uint32 i) |
126 | { |
127 | mpfr_t x, y; |
128 | mpfr_init2(x, MPFR_PREC); |
129 | mpfr_init2(y, MPFR_PREC); |
130 | set_mpfr_f(x, f: r); |
131 | set_mpfr_f(x: y, f: i); |
132 | mpc_set_fr_fr(z, x, y, MPC_RNDNN); |
133 | mpfr_clear(x); |
134 | mpfr_clear(y); |
135 | } |
136 | static void get_mpfr_d(const mpfr_t x, uint32 *h, uint32 *l, uint32 *) |
137 | { |
138 | uint32_t sign, expfield, mantfield; |
139 | mpfr_t significand; |
140 | int exp; |
141 | |
142 | if (mpfr_nan_p(x)) { |
143 | *h = 0x7ff80000; |
144 | *l = 0; |
145 | *extra = 0; |
146 | return; |
147 | } |
148 | |
149 | sign = mpfr_signbit(x) ? 0x80000000U : 0; |
150 | |
151 | if (mpfr_inf_p(x)) { |
152 | *h = 0x7ff00000 | sign; |
153 | *l = 0; |
154 | *extra = 0; |
155 | return; |
156 | } |
157 | |
158 | if (mpfr_zero_p(x)) { |
159 | *h = 0x00000000 | sign; |
160 | *l = 0; |
161 | *extra = 0; |
162 | return; |
163 | } |
164 | |
165 | mpfr_init2(significand, MPFR_PREC); |
166 | mpfr_set(significand, x, GMP_RNDN); |
167 | exp = mpfr_get_exp(significand); |
168 | mpfr_set_exp(significand, 0); |
169 | |
170 | /* Now significand is in [1/2,1), and significand * 2^exp == x. |
171 | * So the IEEE exponent corresponding to exp==0 is 0x3fe. */ |
172 | if (exp > 0x400) { |
173 | /* overflow to infinity anyway */ |
174 | *h = 0x7ff00000 | sign; |
175 | *l = 0; |
176 | *extra = 0; |
177 | mpfr_clear(significand); |
178 | return; |
179 | } |
180 | |
181 | if (exp <= -0x3fe || mpfr_zero_p(x)) |
182 | exp = -0x3fd; /* denormalise */ |
183 | expfield = exp + 0x3fd; /* offset to cancel leading mantissa bit */ |
184 | |
185 | mpfr_div_2si(significand, x, exp - 21, GMP_RNDN); |
186 | mpfr_abs(significand, significand, GMP_RNDN); |
187 | mantfield = mpfr_get_ui(significand, GMP_RNDZ); |
188 | *h = sign + ((uint64_t)expfield << 20) + mantfield; |
189 | mpfr_sub_ui(significand, significand, mantfield, GMP_RNDN); |
190 | mpfr_mul_2ui(significand, significand, 32, GMP_RNDN); |
191 | mantfield = mpfr_get_ui(significand, GMP_RNDZ); |
192 | *l = mantfield; |
193 | mpfr_sub_ui(significand, significand, mantfield, GMP_RNDN); |
194 | mpfr_mul_2ui(significand, significand, 32, GMP_RNDN); |
195 | mantfield = mpfr_get_ui(significand, GMP_RNDZ); |
196 | *extra = mantfield; |
197 | |
198 | mpfr_clear(significand); |
199 | } |
200 | static void get_mpfr_f(const mpfr_t x, uint32 *f, uint32 *) |
201 | { |
202 | uint32_t sign, expfield, mantfield; |
203 | mpfr_t significand; |
204 | int exp; |
205 | |
206 | if (mpfr_nan_p(x)) { |
207 | *f = 0x7fc00000; |
208 | *extra = 0; |
209 | return; |
210 | } |
211 | |
212 | sign = mpfr_signbit(x) ? 0x80000000U : 0; |
213 | |
214 | if (mpfr_inf_p(x)) { |
215 | *f = 0x7f800000 | sign; |
216 | *extra = 0; |
217 | return; |
218 | } |
219 | |
220 | if (mpfr_zero_p(x)) { |
221 | *f = 0x00000000 | sign; |
222 | *extra = 0; |
223 | return; |
224 | } |
225 | |
226 | mpfr_init2(significand, MPFR_PREC); |
227 | mpfr_set(significand, x, GMP_RNDN); |
228 | exp = mpfr_get_exp(significand); |
229 | mpfr_set_exp(significand, 0); |
230 | |
231 | /* Now significand is in [1/2,1), and significand * 2^exp == x. |
232 | * So the IEEE exponent corresponding to exp==0 is 0x7e. */ |
233 | if (exp > 0x80) { |
234 | /* overflow to infinity anyway */ |
235 | *f = 0x7f800000 | sign; |
236 | *extra = 0; |
237 | mpfr_clear(significand); |
238 | return; |
239 | } |
240 | |
241 | if (exp <= -0x7e || mpfr_zero_p(x)) |
242 | exp = -0x7d; /* denormalise */ |
243 | expfield = exp + 0x7d; /* offset to cancel leading mantissa bit */ |
244 | |
245 | mpfr_div_2si(significand, x, exp - 24, GMP_RNDN); |
246 | mpfr_abs(significand, significand, GMP_RNDN); |
247 | mantfield = mpfr_get_ui(significand, GMP_RNDZ); |
248 | *f = sign + ((uint64_t)expfield << 23) + mantfield; |
249 | mpfr_sub_ui(significand, significand, mantfield, GMP_RNDN); |
250 | mpfr_mul_2ui(significand, significand, 32, GMP_RNDN); |
251 | mantfield = mpfr_get_ui(significand, GMP_RNDZ); |
252 | *extra = mantfield; |
253 | |
254 | mpfr_clear(significand); |
255 | } |
256 | static void get_mpc_d(const mpc_t z, |
257 | uint32 *rh, uint32 *rl, uint32 *, |
258 | uint32 *ih, uint32 *il, uint32 *) |
259 | { |
260 | mpfr_t x, y; |
261 | mpfr_init2(x, MPFR_PREC); |
262 | mpfr_init2(y, MPFR_PREC); |
263 | mpc_real(x, z, GMP_RNDN); |
264 | mpc_imag(y, z, GMP_RNDN); |
265 | get_mpfr_d(x, h: rh, l: rl, extra: rextra); |
266 | get_mpfr_d(x: y, h: ih, l: il, extra: iextra); |
267 | mpfr_clear(x); |
268 | mpfr_clear(y); |
269 | } |
270 | static void get_mpc_f(const mpc_t z, |
271 | uint32 *r, uint32 *, |
272 | uint32 *i, uint32 *) |
273 | { |
274 | mpfr_t x, y; |
275 | mpfr_init2(x, MPFR_PREC); |
276 | mpfr_init2(y, MPFR_PREC); |
277 | mpc_real(x, z, GMP_RNDN); |
278 | mpc_imag(y, z, GMP_RNDN); |
279 | get_mpfr_f(x, f: r, extra: rextra); |
280 | get_mpfr_f(x: y, f: i, extra: iextra); |
281 | mpfr_clear(x); |
282 | mpfr_clear(y); |
283 | } |
284 | |
285 | /* |
286 | * Implementation of mathlib functions that aren't trivially |
287 | * implementable using an existing mpfr or mpc function. |
288 | */ |
289 | int test_rred(mpfr_t ret, const mpfr_t x, int *quadrant) |
290 | { |
291 | mpfr_t halfpi; |
292 | long quo; |
293 | int status; |
294 | |
295 | /* |
296 | * In the worst case of range reduction, we get an input of size |
297 | * around 2^1024, and must find its remainder mod pi, which means |
298 | * we need 1024 bits of pi at least. Plus, the remainder might |
299 | * happen to come out very very small if we're unlucky. How |
300 | * unlucky can we be? Well, conveniently, I once went through and |
301 | * actually worked that out using Paxson's modular minimisation |
302 | * algorithm, and it turns out that the smallest exponent you can |
303 | * get out of a nontrivial[1] double precision range reduction is |
304 | * 0x3c2, i.e. of the order of 2^-61. So we need 1024 bits of pi |
305 | * to get us down to the units digit, another 61 or so bits (say |
306 | * 64) to get down to the highest set bit of the output, and then |
307 | * some bits to make the actual mantissa big enough. |
308 | * |
309 | * [1] of course the output of range reduction can have an |
310 | * arbitrarily small exponent in the trivial case, where the |
311 | * input is so small that it's the identity function. That |
312 | * doesn't count. |
313 | */ |
314 | mpfr_init2(halfpi, MPFR_PREC + 1024 + 64); |
315 | mpfr_const_pi(halfpi, GMP_RNDN); |
316 | mpfr_div_ui(halfpi, halfpi, 2, GMP_RNDN); |
317 | |
318 | status = mpfr_remquo(ret, &quo, x, halfpi, GMP_RNDN); |
319 | *quadrant = quo & 3; |
320 | |
321 | mpfr_clear(halfpi); |
322 | |
323 | return status; |
324 | } |
325 | int test_lgamma(mpfr_t ret, const mpfr_t x, mpfr_rnd_t rnd) |
326 | { |
327 | /* |
328 | * mpfr_lgamma takes an extra int * parameter to hold the output |
329 | * sign. We don't bother testing that, so this wrapper throws away |
330 | * the sign and hence fits into the same function prototype as all |
331 | * the other real->real mpfr functions. |
332 | * |
333 | * There is also mpfr_lngamma which has no sign output and hence |
334 | * has the right prototype already, but unfortunately it returns |
335 | * NaN in cases where gamma(x) < 0, so it's no use to us. |
336 | */ |
337 | int sign; |
338 | return mpfr_lgamma(ret, &sign, x, rnd); |
339 | } |
340 | int test_cpow(mpc_t ret, const mpc_t x, const mpc_t y, mpc_rnd_t rnd) |
341 | { |
342 | /* |
343 | * For complex pow, we must bump up the precision by a huge amount |
344 | * if we want it to get the really difficult cases right. (Not |
345 | * that we expect the library under test to be getting those cases |
346 | * right itself, but we'd at least like the test suite to report |
347 | * them as wrong for the _right reason_.) |
348 | * |
349 | * This works around a bug in mpc_pow(), fixed by r1455 in the MPC |
350 | * svn repository (2014-10-14) and expected to be in any MPC |
351 | * release after 1.0.2 (which was the latest release already made |
352 | * at the time of the fix). So as and when we update to an MPC |
353 | * with the fix in it, we could remove this workaround. |
354 | * |
355 | * For the reasons for choosing this amount of extra precision, |
356 | * see analysis in complex/cpownotes.txt for the rationale for the |
357 | * amount. |
358 | */ |
359 | mpc_t xbig, ybig, retbig; |
360 | int status; |
361 | |
362 | mpc_init2(xbig, 1034 + 53 + 60 + MPFR_PREC); |
363 | mpc_init2(ybig, 1034 + 53 + 60 + MPFR_PREC); |
364 | mpc_init2(retbig, 1034 + 53 + 60 + MPFR_PREC); |
365 | |
366 | mpc_set(xbig, x, MPC_RNDNN); |
367 | mpc_set(ybig, y, MPC_RNDNN); |
368 | status = mpc_pow(retbig, xbig, ybig, rnd); |
369 | mpc_set(ret, retbig, rnd); |
370 | |
371 | mpc_clear(xbig); |
372 | mpc_clear(ybig); |
373 | mpc_clear(retbig); |
374 | |
375 | return status; |
376 | } |
377 | |
378 | /* |
379 | * Identify 'hard' values (NaN, Inf, nonzero denormal) for deciding |
380 | * whether microlib will decline to run a test. |
381 | */ |
382 | #define is_shard(in) ( \ |
383 | (((in)[0] & 0x7F800000) == 0x7F800000 || \ |
384 | (((in)[0] & 0x7F800000) == 0 && ((in)[0]&0x7FFFFFFF) != 0))) |
385 | |
386 | #define is_dhard(in) ( \ |
387 | (((in)[0] & 0x7FF00000) == 0x7FF00000 || \ |
388 | (((in)[0] & 0x7FF00000) == 0 && (((in)[0] & 0xFFFFF) | (in)[1]) != 0))) |
389 | |
390 | /* |
391 | * Identify integers. |
392 | */ |
393 | int is_dinteger(uint32 *in) |
394 | { |
395 | uint32 out[3]; |
396 | if ((0x7FF00000 & ~in[0]) == 0) |
397 | return 0; /* not finite, hence not integer */ |
398 | test_ceil(in, out); |
399 | return in[0] == out[0] && in[1] == out[1]; |
400 | } |
401 | int is_sinteger(uint32 *in) |
402 | { |
403 | uint32 out[3]; |
404 | if ((0x7F800000 & ~in[0]) == 0) |
405 | return 0; /* not finite, hence not integer */ |
406 | test_ceilf(in, out); |
407 | return in[0] == out[0]; |
408 | } |
409 | |
410 | /* |
411 | * Identify signalling NaNs. |
412 | */ |
413 | int is_dsnan(const uint32 *in) |
414 | { |
415 | if ((in[0] & 0x7FF00000) != 0x7FF00000) |
416 | return 0; /* not the inf/nan exponent */ |
417 | if ((in[0] << 12) == 0 && in[1] == 0) |
418 | return 0; /* inf */ |
419 | if (in[0] & 0x00080000) |
420 | return 0; /* qnan */ |
421 | return 1; |
422 | } |
423 | int is_ssnan(const uint32 *in) |
424 | { |
425 | if ((in[0] & 0x7F800000) != 0x7F800000) |
426 | return 0; /* not the inf/nan exponent */ |
427 | if ((in[0] << 9) == 0) |
428 | return 0; /* inf */ |
429 | if (in[0] & 0x00400000) |
430 | return 0; /* qnan */ |
431 | return 1; |
432 | } |
433 | int is_snan(const uint32 *in, int size) |
434 | { |
435 | return size == 2 ? is_dsnan(in) : is_ssnan(in); |
436 | } |
437 | |
438 | /* |
439 | * Wrapper functions called to fix up unusual results after the main |
440 | * test function has run. |
441 | */ |
442 | void universal_wrapper(wrapperctx *ctx) |
443 | { |
444 | /* |
445 | * Any SNaN input gives rise to a QNaN output. |
446 | */ |
447 | int op; |
448 | for (op = 0; op < wrapper_get_nops(ctx); op++) { |
449 | int size = wrapper_get_size(ctx, op); |
450 | |
451 | if (!wrapper_is_complex(ctx, op) && |
452 | is_snan(in: wrapper_get_ieee(ctx, op), size)) { |
453 | wrapper_set_nan(ctx); |
454 | } |
455 | } |
456 | } |
457 | |
458 | Testable functions[] = { |
459 | /* |
460 | * Trig functions: sin, cos, tan. We test the core function |
461 | * between -16 and +16: we assume that range reduction exists |
462 | * and will be used for larger arguments, and we'll test that |
463 | * separately. Also we only go down to 2^-27 in magnitude, |
464 | * because below that sin(x)=tan(x)=x and cos(x)=1 as far as |
465 | * double precision can tell, which is boring. |
466 | */ |
467 | {"sin" , (funcptr)mpfr_sin, args1, {NULL}, |
468 | cases_uniform, 0x3e400000, 0x40300000}, |
469 | {"sinf" , (funcptr)mpfr_sin, args1f, {NULL}, |
470 | cases_uniform_float, 0x39800000, 0x41800000}, |
471 | {"cos" , (funcptr)mpfr_cos, args1, {NULL}, |
472 | cases_uniform, 0x3e400000, 0x40300000}, |
473 | {"cosf" , (funcptr)mpfr_cos, args1f, {NULL}, |
474 | cases_uniform_float, 0x39800000, 0x41800000}, |
475 | {"tan" , (funcptr)mpfr_tan, args1, {NULL}, |
476 | cases_uniform, 0x3e400000, 0x40300000}, |
477 | {"tanf" , (funcptr)mpfr_tan, args1f, {NULL}, |
478 | cases_uniform_float, 0x39800000, 0x41800000}, |
479 | {"sincosf_sinf" , (funcptr)mpfr_sin, args1f, {NULL}, |
480 | cases_uniform_float, 0x39800000, 0x41800000}, |
481 | {"sincosf_cosf" , (funcptr)mpfr_cos, args1f, {NULL}, |
482 | cases_uniform_float, 0x39800000, 0x41800000}, |
483 | /* |
484 | * Inverse trig: asin, acos. Between 1 and -1, of course. acos |
485 | * goes down to 2^-54, asin to 2^-27. |
486 | */ |
487 | {"asin" , (funcptr)mpfr_asin, args1, {NULL}, |
488 | cases_uniform, 0x3e400000, 0x3fefffff}, |
489 | {"asinf" , (funcptr)mpfr_asin, args1f, {NULL}, |
490 | cases_uniform_float, 0x39800000, 0x3f7fffff}, |
491 | {"acos" , (funcptr)mpfr_acos, args1, {NULL}, |
492 | cases_uniform, 0x3c900000, 0x3fefffff}, |
493 | {"acosf" , (funcptr)mpfr_acos, args1f, {NULL}, |
494 | cases_uniform_float, 0x33800000, 0x3f7fffff}, |
495 | /* |
496 | * Inverse trig: atan. atan is stable (in double prec) with |
497 | * argument magnitude past 2^53, so we'll test up to there. |
498 | * atan(x) is boringly just x below 2^-27. |
499 | */ |
500 | {"atan" , (funcptr)mpfr_atan, args1, {NULL}, |
501 | cases_uniform, 0x3e400000, 0x43400000}, |
502 | {"atanf" , (funcptr)mpfr_atan, args1f, {NULL}, |
503 | cases_uniform_float, 0x39800000, 0x4b800000}, |
504 | /* |
505 | * atan2. Interesting cases arise when the exponents of the |
506 | * arguments differ by at most about 50. |
507 | */ |
508 | {"atan2" , (funcptr)mpfr_atan2, args2, {NULL}, |
509 | atan2_cases, 0}, |
510 | {"atan2f" , (funcptr)mpfr_atan2, args2f, {NULL}, |
511 | atan2_cases_float, 0}, |
512 | /* |
513 | * The exponentials: exp, sinh, cosh. They overflow at around |
514 | * 710. exp and sinh are boring below 2^-54, cosh below 2^-27. |
515 | */ |
516 | {"exp" , (funcptr)mpfr_exp, args1, {NULL}, |
517 | cases_uniform, 0x3c900000, 0x40878000}, |
518 | {"expf" , (funcptr)mpfr_exp, args1f, {NULL}, |
519 | cases_uniform_float, 0x33800000, 0x42dc0000}, |
520 | {"sinh" , (funcptr)mpfr_sinh, args1, {NULL}, |
521 | cases_uniform, 0x3c900000, 0x40878000}, |
522 | {"sinhf" , (funcptr)mpfr_sinh, args1f, {NULL}, |
523 | cases_uniform_float, 0x33800000, 0x42dc0000}, |
524 | {"cosh" , (funcptr)mpfr_cosh, args1, {NULL}, |
525 | cases_uniform, 0x3e400000, 0x40878000}, |
526 | {"coshf" , (funcptr)mpfr_cosh, args1f, {NULL}, |
527 | cases_uniform_float, 0x39800000, 0x42dc0000}, |
528 | /* |
529 | * tanh is stable past around 20. It's boring below 2^-27. |
530 | */ |
531 | {"tanh" , (funcptr)mpfr_tanh, args1, {NULL}, |
532 | cases_uniform, 0x3e400000, 0x40340000}, |
533 | {"tanhf" , (funcptr)mpfr_tanh, args1f, {NULL}, |
534 | cases_uniform, 0x39800000, 0x41100000}, |
535 | /* |
536 | * log must be tested only on positive numbers, but can cover |
537 | * the whole range of positive nonzero finite numbers. It never |
538 | * gets boring. |
539 | */ |
540 | {"log" , (funcptr)mpfr_log, args1, {NULL}, log_cases, 0}, |
541 | {"logf" , (funcptr)mpfr_log, args1f, {NULL}, log_cases_float, 0}, |
542 | {"log10" , (funcptr)mpfr_log10, args1, {NULL}, log_cases, 0}, |
543 | {"log10f" , (funcptr)mpfr_log10, args1f, {NULL}, log_cases_float, 0}, |
544 | /* |
545 | * pow. |
546 | */ |
547 | {"pow" , (funcptr)mpfr_pow, args2, {NULL}, pow_cases, 0}, |
548 | {"powf" , (funcptr)mpfr_pow, args2f, {NULL}, pow_cases_float, 0}, |
549 | /* |
550 | * Trig range reduction. We are able to test this for all |
551 | * finite values, but will only bother for things between 2^-3 |
552 | * and 2^+52. |
553 | */ |
554 | {"rred" , (funcptr)test_rred, rred, {NULL}, rred_cases, 0}, |
555 | {"rredf" , (funcptr)test_rred, rredf, {NULL}, rred_cases_float, 0}, |
556 | /* |
557 | * Square and cube root. |
558 | */ |
559 | {"sqrt" , (funcptr)mpfr_sqrt, args1, {NULL}, log_cases, 0}, |
560 | {"sqrtf" , (funcptr)mpfr_sqrt, args1f, {NULL}, log_cases_float, 0}, |
561 | {"cbrt" , (funcptr)mpfr_cbrt, args1, {NULL}, log_cases, 0}, |
562 | {"cbrtf" , (funcptr)mpfr_cbrt, args1f, {NULL}, log_cases_float, 0}, |
563 | {"hypot" , (funcptr)mpfr_hypot, args2, {NULL}, atan2_cases, 0}, |
564 | {"hypotf" , (funcptr)mpfr_hypot, args2f, {NULL}, atan2_cases_float, 0}, |
565 | /* |
566 | * Seminumerical functions. |
567 | */ |
568 | {"ceil" , (funcptr)test_ceil, semi1, {NULL}, cases_semi1}, |
569 | {"ceilf" , (funcptr)test_ceilf, semi1f, {NULL}, cases_semi1_float}, |
570 | {"floor" , (funcptr)test_floor, semi1, {NULL}, cases_semi1}, |
571 | {"floorf" , (funcptr)test_floorf, semi1f, {NULL}, cases_semi1_float}, |
572 | {"fmod" , (funcptr)test_fmod, semi2, {NULL}, cases_semi2}, |
573 | {"fmodf" , (funcptr)test_fmodf, semi2f, {NULL}, cases_semi2_float}, |
574 | {"ldexp" , (funcptr)test_ldexp, t_ldexp, {NULL}, cases_ldexp}, |
575 | {"ldexpf" , (funcptr)test_ldexpf, t_ldexpf, {NULL}, cases_ldexp_float}, |
576 | {"frexp" , (funcptr)test_frexp, t_frexp, {NULL}, cases_semi1}, |
577 | {"frexpf" , (funcptr)test_frexpf, t_frexpf, {NULL}, cases_semi1_float}, |
578 | {"modf" , (funcptr)test_modf, t_modf, {NULL}, cases_semi1}, |
579 | {"modff" , (funcptr)test_modff, t_modff, {NULL}, cases_semi1_float}, |
580 | |
581 | /* |
582 | * Classification and more semi-numericals |
583 | */ |
584 | {"copysign" , (funcptr)test_copysign, semi2, {NULL}, cases_semi2}, |
585 | {"copysignf" , (funcptr)test_copysignf, semi2f, {NULL}, cases_semi2_float}, |
586 | {"isfinite" , (funcptr)test_isfinite, classify, {NULL}, cases_uniform, 0, 0x7fffffff}, |
587 | {"isfinitef" , (funcptr)test_isfinitef, classifyf, {NULL}, cases_uniform_float, 0, 0x7fffffff}, |
588 | {"isinf" , (funcptr)test_isinf, classify, {NULL}, cases_uniform, 0, 0x7fffffff}, |
589 | {"isinff" , (funcptr)test_isinff, classifyf, {NULL}, cases_uniform_float, 0, 0x7fffffff}, |
590 | {"isnan" , (funcptr)test_isnan, classify, {NULL}, cases_uniform, 0, 0x7fffffff}, |
591 | {"isnanf" , (funcptr)test_isnanf, classifyf, {NULL}, cases_uniform_float, 0, 0x7fffffff}, |
592 | {"isnormal" , (funcptr)test_isnormal, classify, {NULL}, cases_uniform, 0, 0x7fffffff}, |
593 | {"isnormalf" , (funcptr)test_isnormalf, classifyf, {NULL}, cases_uniform_float, 0, 0x7fffffff}, |
594 | {"signbit" , (funcptr)test_signbit, classify, {NULL}, cases_uniform, 0, 0x7fffffff}, |
595 | {"signbitf" , (funcptr)test_signbitf, classifyf, {NULL}, cases_uniform_float, 0, 0x7fffffff}, |
596 | {"fpclassify" , (funcptr)test_fpclassify, classify, {NULL}, cases_uniform, 0, 0x7fffffff}, |
597 | {"fpclassifyf" , (funcptr)test_fpclassifyf, classifyf, {NULL}, cases_uniform_float, 0, 0x7fffffff}, |
598 | /* |
599 | * Comparisons |
600 | */ |
601 | {"isgreater" , (funcptr)test_isgreater, compare, {NULL}, cases_uniform, 0, 0x7fffffff}, |
602 | {"isgreaterequal" , (funcptr)test_isgreaterequal, compare, {NULL}, cases_uniform, 0, 0x7fffffff}, |
603 | {"isless" , (funcptr)test_isless, compare, {NULL}, cases_uniform, 0, 0x7fffffff}, |
604 | {"islessequal" , (funcptr)test_islessequal, compare, {NULL}, cases_uniform, 0, 0x7fffffff}, |
605 | {"islessgreater" , (funcptr)test_islessgreater, compare, {NULL}, cases_uniform, 0, 0x7fffffff}, |
606 | {"isunordered" , (funcptr)test_isunordered, compare, {NULL}, cases_uniform, 0, 0x7fffffff}, |
607 | |
608 | {"isgreaterf" , (funcptr)test_isgreaterf, comparef, {NULL}, cases_uniform_float, 0, 0x7fffffff}, |
609 | {"isgreaterequalf" , (funcptr)test_isgreaterequalf, comparef, {NULL}, cases_uniform_float, 0, 0x7fffffff}, |
610 | {"islessf" , (funcptr)test_islessf, comparef, {NULL}, cases_uniform_float, 0, 0x7fffffff}, |
611 | {"islessequalf" , (funcptr)test_islessequalf, comparef, {NULL}, cases_uniform_float, 0, 0x7fffffff}, |
612 | {"islessgreaterf" , (funcptr)test_islessgreaterf, comparef, {NULL}, cases_uniform_float, 0, 0x7fffffff}, |
613 | {"isunorderedf" , (funcptr)test_isunorderedf, comparef, {NULL}, cases_uniform_float, 0, 0x7fffffff}, |
614 | |
615 | /* |
616 | * Inverse Hyperbolic functions |
617 | */ |
618 | {"atanh" , (funcptr)mpfr_atanh, args1, {NULL}, cases_uniform, 0x3e400000, 0x3fefffff}, |
619 | {"asinh" , (funcptr)mpfr_asinh, args1, {NULL}, cases_uniform, 0x3e400000, 0x3fefffff}, |
620 | {"acosh" , (funcptr)mpfr_acosh, args1, {NULL}, cases_uniform_positive, 0x3ff00000, 0x7fefffff}, |
621 | |
622 | {"atanhf" , (funcptr)mpfr_atanh, args1f, {NULL}, cases_uniform_float, 0x32000000, 0x3f7fffff}, |
623 | {"asinhf" , (funcptr)mpfr_asinh, args1f, {NULL}, cases_uniform_float, 0x32000000, 0x3f7fffff}, |
624 | {"acoshf" , (funcptr)mpfr_acosh, args1f, {NULL}, cases_uniform_float_positive, 0x3f800000, 0x7f800000}, |
625 | |
626 | /* |
627 | * Everything else (sitting in a section down here at the bottom |
628 | * because historically they were not tested because we didn't |
629 | * have reference implementations for them) |
630 | */ |
631 | {"csin" , (funcptr)mpc_sin, args1c, {NULL}, complex_cases_uniform, 0x3f000000, 0x40300000}, |
632 | {"csinf" , (funcptr)mpc_sin, args1fc, {NULL}, complex_cases_uniform_float, 0x38000000, 0x41800000}, |
633 | {"ccos" , (funcptr)mpc_cos, args1c, {NULL}, complex_cases_uniform, 0x3f000000, 0x40300000}, |
634 | {"ccosf" , (funcptr)mpc_cos, args1fc, {NULL}, complex_cases_uniform_float, 0x38000000, 0x41800000}, |
635 | {"ctan" , (funcptr)mpc_tan, args1c, {NULL}, complex_cases_uniform, 0x3f000000, 0x40300000}, |
636 | {"ctanf" , (funcptr)mpc_tan, args1fc, {NULL}, complex_cases_uniform_float, 0x38000000, 0x41800000}, |
637 | |
638 | {"casin" , (funcptr)mpc_asin, args1c, {NULL}, complex_cases_uniform, 0x3f000000, 0x40300000}, |
639 | {"casinf" , (funcptr)mpc_asin, args1fc, {NULL}, complex_cases_uniform_float, 0x38000000, 0x41800000}, |
640 | {"cacos" , (funcptr)mpc_acos, args1c, {NULL}, complex_cases_uniform, 0x3f000000, 0x40300000}, |
641 | {"cacosf" , (funcptr)mpc_acos, args1fc, {NULL}, complex_cases_uniform_float, 0x38000000, 0x41800000}, |
642 | {"catan" , (funcptr)mpc_atan, args1c, {NULL}, complex_cases_uniform, 0x3f000000, 0x40300000}, |
643 | {"catanf" , (funcptr)mpc_atan, args1fc, {NULL}, complex_cases_uniform_float, 0x38000000, 0x41800000}, |
644 | |
645 | {"csinh" , (funcptr)mpc_sinh, args1c, {NULL}, complex_cases_uniform, 0x3f000000, 0x40300000}, |
646 | {"csinhf" , (funcptr)mpc_sinh, args1fc, {NULL}, complex_cases_uniform_float, 0x38000000, 0x41800000}, |
647 | {"ccosh" , (funcptr)mpc_cosh, args1c, {NULL}, complex_cases_uniform, 0x3f000000, 0x40300000}, |
648 | {"ccoshf" , (funcptr)mpc_cosh, args1fc, {NULL}, complex_cases_uniform_float, 0x38000000, 0x41800000}, |
649 | {"ctanh" , (funcptr)mpc_tanh, args1c, {NULL}, complex_cases_uniform, 0x3f000000, 0x40300000}, |
650 | {"ctanhf" , (funcptr)mpc_tanh, args1fc, {NULL}, complex_cases_uniform_float, 0x38000000, 0x41800000}, |
651 | |
652 | {"casinh" , (funcptr)mpc_asinh, args1c, {NULL}, complex_cases_uniform, 0x3f000000, 0x40300000}, |
653 | {"casinhf" , (funcptr)mpc_asinh, args1fc, {NULL}, complex_cases_uniform_float, 0x38000000, 0x41800000}, |
654 | {"cacosh" , (funcptr)mpc_acosh, args1c, {NULL}, complex_cases_uniform, 0x3f000000, 0x40300000}, |
655 | {"cacoshf" , (funcptr)mpc_acosh, args1fc, {NULL}, complex_cases_uniform_float, 0x38000000, 0x41800000}, |
656 | {"catanh" , (funcptr)mpc_atanh, args1c, {NULL}, complex_cases_uniform, 0x3f000000, 0x40300000}, |
657 | {"catanhf" , (funcptr)mpc_atanh, args1fc, {NULL}, complex_cases_uniform_float, 0x38000000, 0x41800000}, |
658 | |
659 | {"cexp" , (funcptr)mpc_exp, args1c, {NULL}, complex_cases_uniform, 0x3c900000, 0x40862000}, |
660 | {"cpow" , (funcptr)test_cpow, args2c, {NULL}, complex_pow_cases, 0x3fc00000, 0x40000000}, |
661 | {"clog" , (funcptr)mpc_log, args1c, {NULL}, complex_log_cases, 0, 0}, |
662 | {"csqrt" , (funcptr)mpc_sqrt, args1c, {NULL}, complex_log_cases, 0, 0}, |
663 | |
664 | {"cexpf" , (funcptr)mpc_exp, args1fc, {NULL}, complex_cases_uniform_float, 0x24800000, 0x42b00000}, |
665 | {"cpowf" , (funcptr)test_cpow, args2fc, {NULL}, complex_pow_cases_float, 0x3e000000, 0x41000000}, |
666 | {"clogf" , (funcptr)mpc_log, args1fc, {NULL}, complex_log_cases_float, 0, 0}, |
667 | {"csqrtf" , (funcptr)mpc_sqrt, args1fc, {NULL}, complex_log_cases_float, 0, 0}, |
668 | |
669 | {"cdiv" , (funcptr)mpc_div, args2c, {NULL}, complex_arithmetic_cases, 0, 0}, |
670 | {"cmul" , (funcptr)mpc_mul, args2c, {NULL}, complex_arithmetic_cases, 0, 0}, |
671 | {"cadd" , (funcptr)mpc_add, args2c, {NULL}, complex_arithmetic_cases, 0, 0}, |
672 | {"csub" , (funcptr)mpc_sub, args2c, {NULL}, complex_arithmetic_cases, 0, 0}, |
673 | |
674 | {"cdivf" , (funcptr)mpc_div, args2fc, {NULL}, complex_arithmetic_cases_float, 0, 0}, |
675 | {"cmulf" , (funcptr)mpc_mul, args2fc, {NULL}, complex_arithmetic_cases_float, 0, 0}, |
676 | {"caddf" , (funcptr)mpc_add, args2fc, {NULL}, complex_arithmetic_cases_float, 0, 0}, |
677 | {"csubf" , (funcptr)mpc_sub, args2fc, {NULL}, complex_arithmetic_cases_float, 0, 0}, |
678 | |
679 | {"cabsf" , (funcptr)mpc_abs, args1fcr, {NULL}, complex_arithmetic_cases_float, 0, 0}, |
680 | {"cabs" , (funcptr)mpc_abs, args1cr, {NULL}, complex_arithmetic_cases, 0, 0}, |
681 | {"cargf" , (funcptr)mpc_arg, args1fcr, {NULL}, complex_arithmetic_cases_float, 0, 0}, |
682 | {"carg" , (funcptr)mpc_arg, args1cr, {NULL}, complex_arithmetic_cases, 0, 0}, |
683 | {"cimagf" , (funcptr)mpc_imag, args1fcr, {NULL}, complex_arithmetic_cases_float, 0, 0}, |
684 | {"cimag" , (funcptr)mpc_imag, args1cr, {NULL}, complex_arithmetic_cases, 0, 0}, |
685 | {"conjf" , (funcptr)mpc_conj, args1fc, {NULL}, complex_arithmetic_cases_float, 0, 0}, |
686 | {"conj" , (funcptr)mpc_conj, args1c, {NULL}, complex_arithmetic_cases, 0, 0}, |
687 | {"cprojf" , (funcptr)mpc_proj, args1fc, {NULL}, complex_arithmetic_cases_float, 0, 0}, |
688 | {"cproj" , (funcptr)mpc_proj, args1c, {NULL}, complex_arithmetic_cases, 0, 0}, |
689 | {"crealf" , (funcptr)mpc_real, args1fcr, {NULL}, complex_arithmetic_cases_float, 0, 0}, |
690 | {"creal" , (funcptr)mpc_real, args1cr, {NULL}, complex_arithmetic_cases, 0, 0}, |
691 | {"erfcf" , (funcptr)mpfr_erfc, args1f, {NULL}, cases_biased_float, 0x1e800000, 0x41000000}, |
692 | {"erfc" , (funcptr)mpfr_erfc, args1, {NULL}, cases_biased, 0x3bd00000, 0x403c0000}, |
693 | {"erff" , (funcptr)mpfr_erf, args1f, {NULL}, cases_biased_float, 0x03800000, 0x40700000}, |
694 | {"erf" , (funcptr)mpfr_erf, args1, {NULL}, cases_biased, 0x00800000, 0x40200000}, |
695 | {"exp2f" , (funcptr)mpfr_exp2, args1f, {NULL}, cases_uniform_float, 0x33800000, 0x43c00000}, |
696 | {"exp2" , (funcptr)mpfr_exp2, args1, {NULL}, cases_uniform, 0x3ca00000, 0x40a00000}, |
697 | {"expm1f" , (funcptr)mpfr_expm1, args1f, {NULL}, cases_uniform_float, 0x33000000, 0x43800000}, |
698 | {"expm1" , (funcptr)mpfr_expm1, args1, {NULL}, cases_uniform, 0x3c900000, 0x409c0000}, |
699 | {"fmaxf" , (funcptr)mpfr_max, args2f, {NULL}, minmax_cases_float, 0, 0x7f7fffff}, |
700 | {"fmax" , (funcptr)mpfr_max, args2, {NULL}, minmax_cases, 0, 0x7fefffff}, |
701 | {"fminf" , (funcptr)mpfr_min, args2f, {NULL}, minmax_cases_float, 0, 0x7f7fffff}, |
702 | {"fmin" , (funcptr)mpfr_min, args2, {NULL}, minmax_cases, 0, 0x7fefffff}, |
703 | {"lgammaf" , (funcptr)test_lgamma, args1f, {NULL}, cases_uniform_float, 0x01800000, 0x7f800000}, |
704 | {"lgamma" , (funcptr)test_lgamma, args1, {NULL}, cases_uniform, 0x00100000, 0x7ff00000}, |
705 | {"log1pf" , (funcptr)mpfr_log1p, args1f, {NULL}, log1p_cases_float, 0, 0}, |
706 | {"log1p" , (funcptr)mpfr_log1p, args1, {NULL}, log1p_cases, 0, 0}, |
707 | {"log2f" , (funcptr)mpfr_log2, args1f, {NULL}, log_cases_float, 0, 0}, |
708 | {"log2" , (funcptr)mpfr_log2, args1, {NULL}, log_cases, 0, 0}, |
709 | {"tgammaf" , (funcptr)mpfr_gamma, args1f, {NULL}, cases_uniform_float, 0x2f800000, 0x43000000}, |
710 | {"tgamma" , (funcptr)mpfr_gamma, args1, {NULL}, cases_uniform, 0x3c000000, 0x40800000}, |
711 | }; |
712 | |
713 | const int nfunctions = ( sizeof(functions)/sizeof(*functions) ); |
714 | |
715 | #define random_sign ( random_upto(1) ? 0x80000000 : 0 ) |
716 | |
717 | static int iszero(uint32 *x) { |
718 | return !((x[0] & 0x7FFFFFFF) || x[1]); |
719 | } |
720 | |
721 | |
722 | static void complex_log_cases(uint32 *out, uint32 param1, |
723 | uint32 param2) { |
724 | cases_uniform(out,0x00100000,0x7fefffff); |
725 | cases_uniform(out+2,0x00100000,0x7fefffff); |
726 | } |
727 | |
728 | |
729 | static void complex_log_cases_float(uint32 *out, uint32 param1, |
730 | uint32 param2) { |
731 | cases_uniform_float(out,0x00800000,0x7f7fffff); |
732 | cases_uniform_float(out+2,0x00800000,0x7f7fffff); |
733 | } |
734 | |
735 | static void complex_cases_biased(uint32 *out, uint32 lowbound, |
736 | uint32 highbound) { |
737 | cases_biased(out,lowbound,highbound); |
738 | cases_biased(out+2,lowbound,highbound); |
739 | } |
740 | |
741 | static void complex_cases_biased_float(uint32 *out, uint32 lowbound, |
742 | uint32 highbound) { |
743 | cases_biased_float(out,lowbound,highbound); |
744 | cases_biased_float(out+2,lowbound,highbound); |
745 | } |
746 | |
747 | static void complex_cases_uniform(uint32 *out, uint32 lowbound, |
748 | uint32 highbound) { |
749 | cases_uniform(out,lowbound,highbound); |
750 | cases_uniform(out+2,lowbound,highbound); |
751 | } |
752 | |
753 | static void complex_cases_uniform_float(uint32 *out, uint32 lowbound, |
754 | uint32 highbound) { |
755 | cases_uniform_float(out,lowbound,highbound); |
756 | cases_uniform(out+2,lowbound,highbound); |
757 | } |
758 | |
759 | static void complex_pow_cases(uint32 *out, uint32 lowbound, |
760 | uint32 highbound) { |
761 | /* |
762 | * Generating non-overflowing cases for complex pow: |
763 | * |
764 | * Our base has both parts within the range [1/2,2], and hence |
765 | * its magnitude is within [1/2,2*sqrt(2)]. The magnitude of its |
766 | * logarithm in base 2 is therefore at most the magnitude of |
767 | * (log2(2*sqrt(2)) + i*pi/log(2)), or in other words |
768 | * hypot(3/2,pi/log(2)) = 4.77. So the magnitude of the exponent |
769 | * input must be at most our output magnitude limit (as a power |
770 | * of two) divided by that. |
771 | * |
772 | * I also set the output magnitude limit a bit low, because we |
773 | * don't guarantee (and neither does glibc) to prevent internal |
774 | * overflow in cases where the output _magnitude_ overflows but |
775 | * scaling it back down by cos and sin of the argument brings it |
776 | * back in range. |
777 | */ |
778 | cases_uniform(out,0x3fe00000, 0x40000000); |
779 | cases_uniform(out+2,0x3fe00000, 0x40000000); |
780 | cases_uniform(out+4,0x3f800000, 0x40600000); |
781 | cases_uniform(out+6,0x3f800000, 0x40600000); |
782 | } |
783 | |
784 | static void complex_pow_cases_float(uint32 *out, uint32 lowbound, |
785 | uint32 highbound) { |
786 | /* |
787 | * Reasoning as above, though of course the detailed numbers are |
788 | * all different. |
789 | */ |
790 | cases_uniform_float(out,0x3f000000, 0x40000000); |
791 | cases_uniform_float(out+2,0x3f000000, 0x40000000); |
792 | cases_uniform_float(out+4,0x3d600000, 0x41900000); |
793 | cases_uniform_float(out+6,0x3d600000, 0x41900000); |
794 | } |
795 | |
796 | static void complex_arithmetic_cases(uint32 *out, uint32 lowbound, |
797 | uint32 highbound) { |
798 | cases_uniform(out,0,0x7fefffff); |
799 | cases_uniform(out+2,0,0x7fefffff); |
800 | cases_uniform(out+4,0,0x7fefffff); |
801 | cases_uniform(out+6,0,0x7fefffff); |
802 | } |
803 | |
804 | static void complex_arithmetic_cases_float(uint32 *out, uint32 lowbound, |
805 | uint32 highbound) { |
806 | cases_uniform_float(out,0,0x7f7fffff); |
807 | cases_uniform_float(out+2,0,0x7f7fffff); |
808 | cases_uniform_float(out+4,0,0x7f7fffff); |
809 | cases_uniform_float(out+6,0,0x7f7fffff); |
810 | } |
811 | |
812 | /* |
813 | * Included from fplib test suite, in a compact self-contained |
814 | * form. |
815 | */ |
816 | |
817 | void float32_case(uint32 *ret) { |
818 | int n, bits; |
819 | uint32 f; |
820 | static int premax, preptr; |
821 | static uint32 *specifics = NULL; |
822 | |
823 | if (!ret) { |
824 | if (specifics) |
825 | free(ptr: specifics); |
826 | specifics = NULL; |
827 | premax = preptr = 0; |
828 | return; |
829 | } |
830 | |
831 | if (!specifics) { |
832 | int exps[] = { |
833 | -127, -126, -125, -24, -4, -3, -2, -1, 0, 1, 2, 3, 4, |
834 | 24, 29, 30, 31, 32, 61, 62, 63, 64, 126, 127, 128 |
835 | }; |
836 | int sign, eptr; |
837 | uint32 se, j; |
838 | /* |
839 | * We want a cross product of: |
840 | * - each of two sign bits (2) |
841 | * - each of the above (unbiased) exponents (25) |
842 | * - the following list of fraction parts: |
843 | * * zero (1) |
844 | * * all bits (1) |
845 | * * one-bit-set (23) |
846 | * * one-bit-clear (23) |
847 | * * one-bit-and-above (20: 3 are duplicates) |
848 | * * one-bit-and-below (20: 3 are duplicates) |
849 | * (total 88) |
850 | * (total 4400) |
851 | */ |
852 | specifics = malloc(size: 4400 * sizeof(*specifics)); |
853 | preptr = 0; |
854 | for (sign = 0; sign <= 1; sign++) { |
855 | for (eptr = 0; eptr < sizeof(exps)/sizeof(*exps); eptr++) { |
856 | se = (sign ? 0x80000000 : 0) | ((exps[eptr]+127) << 23); |
857 | /* |
858 | * Zero. |
859 | */ |
860 | specifics[preptr++] = se | 0; |
861 | /* |
862 | * All bits. |
863 | */ |
864 | specifics[preptr++] = se | 0x7FFFFF; |
865 | /* |
866 | * One-bit-set. |
867 | */ |
868 | for (j = 1; j && j <= 0x400000; j <<= 1) |
869 | specifics[preptr++] = se | j; |
870 | /* |
871 | * One-bit-clear. |
872 | */ |
873 | for (j = 1; j && j <= 0x400000; j <<= 1) |
874 | specifics[preptr++] = se | (0x7FFFFF ^ j); |
875 | /* |
876 | * One-bit-and-everything-below. |
877 | */ |
878 | for (j = 2; j && j <= 0x100000; j <<= 1) |
879 | specifics[preptr++] = se | (2*j-1); |
880 | /* |
881 | * One-bit-and-everything-above. |
882 | */ |
883 | for (j = 4; j && j <= 0x200000; j <<= 1) |
884 | specifics[preptr++] = se | (0x7FFFFF ^ (j-1)); |
885 | /* |
886 | * Done. |
887 | */ |
888 | } |
889 | } |
890 | assert(preptr == 4400); |
891 | premax = preptr; |
892 | } |
893 | |
894 | /* |
895 | * Decide whether to return a pre or a random case. |
896 | */ |
897 | n = random32() % (premax+1); |
898 | if (n < preptr) { |
899 | /* |
900 | * Return pre[n]. |
901 | */ |
902 | uint32 t; |
903 | t = specifics[n]; |
904 | specifics[n] = specifics[preptr-1]; |
905 | specifics[preptr-1] = t; /* (not really needed) */ |
906 | preptr--; |
907 | *ret = t; |
908 | } else { |
909 | /* |
910 | * Random case. |
911 | * Sign and exponent: |
912 | * - FIXME |
913 | * Significand: |
914 | * - with prob 1/5, a totally random bit pattern |
915 | * - with prob 1/5, all 1s down to some point and then random |
916 | * - with prob 1/5, all 1s up to some point and then random |
917 | * - with prob 1/5, all 0s down to some point and then random |
918 | * - with prob 1/5, all 0s up to some point and then random |
919 | */ |
920 | n = random32() % 5; |
921 | f = random32(); /* some random bits */ |
922 | bits = random32() % 22 + 1; /* 1-22 */ |
923 | switch (n) { |
924 | case 0: |
925 | break; /* leave f alone */ |
926 | case 1: |
927 | f |= (1<<bits)-1; |
928 | break; |
929 | case 2: |
930 | f &= ~((1<<bits)-1); |
931 | break; |
932 | case 3: |
933 | f |= ~((1<<bits)-1); |
934 | break; |
935 | case 4: |
936 | f &= (1<<bits)-1; |
937 | break; |
938 | } |
939 | f &= 0x7FFFFF; |
940 | f |= (random32() & 0xFF800000);/* FIXME - do better */ |
941 | *ret = f; |
942 | } |
943 | } |
944 | static void float64_case(uint32 *ret) { |
945 | int n, bits; |
946 | uint32 f, g; |
947 | static int premax, preptr; |
948 | static uint32 (*specifics)[2] = NULL; |
949 | |
950 | if (!ret) { |
951 | if (specifics) |
952 | free(ptr: specifics); |
953 | specifics = NULL; |
954 | premax = preptr = 0; |
955 | return; |
956 | } |
957 | |
958 | if (!specifics) { |
959 | int exps[] = { |
960 | -1023, -1022, -1021, -129, -128, -127, -126, -53, -4, -3, -2, |
961 | -1, 0, 1, 2, 3, 4, 29, 30, 31, 32, 53, 61, 62, 63, 64, 127, |
962 | 128, 129, 1022, 1023, 1024 |
963 | }; |
964 | int sign, eptr; |
965 | uint32 se, j; |
966 | /* |
967 | * We want a cross product of: |
968 | * - each of two sign bits (2) |
969 | * - each of the above (unbiased) exponents (32) |
970 | * - the following list of fraction parts: |
971 | * * zero (1) |
972 | * * all bits (1) |
973 | * * one-bit-set (52) |
974 | * * one-bit-clear (52) |
975 | * * one-bit-and-above (49: 3 are duplicates) |
976 | * * one-bit-and-below (49: 3 are duplicates) |
977 | * (total 204) |
978 | * (total 13056) |
979 | */ |
980 | specifics = malloc(size: 13056 * sizeof(*specifics)); |
981 | preptr = 0; |
982 | for (sign = 0; sign <= 1; sign++) { |
983 | for (eptr = 0; eptr < sizeof(exps)/sizeof(*exps); eptr++) { |
984 | se = (sign ? 0x80000000 : 0) | ((exps[eptr]+1023) << 20); |
985 | /* |
986 | * Zero. |
987 | */ |
988 | specifics[preptr][0] = 0; |
989 | specifics[preptr][1] = 0; |
990 | specifics[preptr++][0] |= se; |
991 | /* |
992 | * All bits. |
993 | */ |
994 | specifics[preptr][0] = 0xFFFFF; |
995 | specifics[preptr][1] = ~0; |
996 | specifics[preptr++][0] |= se; |
997 | /* |
998 | * One-bit-set. |
999 | */ |
1000 | for (j = 1; j && j <= 0x80000000; j <<= 1) { |
1001 | specifics[preptr][0] = 0; |
1002 | specifics[preptr][1] = j; |
1003 | specifics[preptr++][0] |= se; |
1004 | if (j & 0xFFFFF) { |
1005 | specifics[preptr][0] = j; |
1006 | specifics[preptr][1] = 0; |
1007 | specifics[preptr++][0] |= se; |
1008 | } |
1009 | } |
1010 | /* |
1011 | * One-bit-clear. |
1012 | */ |
1013 | for (j = 1; j && j <= 0x80000000; j <<= 1) { |
1014 | specifics[preptr][0] = 0xFFFFF; |
1015 | specifics[preptr][1] = ~j; |
1016 | specifics[preptr++][0] |= se; |
1017 | if (j & 0xFFFFF) { |
1018 | specifics[preptr][0] = 0xFFFFF ^ j; |
1019 | specifics[preptr][1] = ~0; |
1020 | specifics[preptr++][0] |= se; |
1021 | } |
1022 | } |
1023 | /* |
1024 | * One-bit-and-everything-below. |
1025 | */ |
1026 | for (j = 2; j && j <= 0x80000000; j <<= 1) { |
1027 | specifics[preptr][0] = 0; |
1028 | specifics[preptr][1] = 2*j-1; |
1029 | specifics[preptr++][0] |= se; |
1030 | } |
1031 | for (j = 1; j && j <= 0x20000; j <<= 1) { |
1032 | specifics[preptr][0] = 2*j-1; |
1033 | specifics[preptr][1] = ~0; |
1034 | specifics[preptr++][0] |= se; |
1035 | } |
1036 | /* |
1037 | * One-bit-and-everything-above. |
1038 | */ |
1039 | for (j = 4; j && j <= 0x80000000; j <<= 1) { |
1040 | specifics[preptr][0] = 0xFFFFF; |
1041 | specifics[preptr][1] = ~(j-1); |
1042 | specifics[preptr++][0] |= se; |
1043 | } |
1044 | for (j = 1; j && j <= 0x40000; j <<= 1) { |
1045 | specifics[preptr][0] = 0xFFFFF ^ (j-1); |
1046 | specifics[preptr][1] = 0; |
1047 | specifics[preptr++][0] |= se; |
1048 | } |
1049 | /* |
1050 | * Done. |
1051 | */ |
1052 | } |
1053 | } |
1054 | assert(preptr == 13056); |
1055 | premax = preptr; |
1056 | } |
1057 | |
1058 | /* |
1059 | * Decide whether to return a pre or a random case. |
1060 | */ |
1061 | n = (uint32) random32() % (uint32) (premax+1); |
1062 | if (n < preptr) { |
1063 | /* |
1064 | * Return pre[n]. |
1065 | */ |
1066 | uint32 t; |
1067 | t = specifics[n][0]; |
1068 | specifics[n][0] = specifics[preptr-1][0]; |
1069 | specifics[preptr-1][0] = t; /* (not really needed) */ |
1070 | ret[0] = t; |
1071 | t = specifics[n][1]; |
1072 | specifics[n][1] = specifics[preptr-1][1]; |
1073 | specifics[preptr-1][1] = t; /* (not really needed) */ |
1074 | ret[1] = t; |
1075 | preptr--; |
1076 | } else { |
1077 | /* |
1078 | * Random case. |
1079 | * Sign and exponent: |
1080 | * - FIXME |
1081 | * Significand: |
1082 | * - with prob 1/5, a totally random bit pattern |
1083 | * - with prob 1/5, all 1s down to some point and then random |
1084 | * - with prob 1/5, all 1s up to some point and then random |
1085 | * - with prob 1/5, all 0s down to some point and then random |
1086 | * - with prob 1/5, all 0s up to some point and then random |
1087 | */ |
1088 | n = random32() % 5; |
1089 | f = random32(); /* some random bits */ |
1090 | g = random32(); /* some random bits */ |
1091 | bits = random32() % 51 + 1; /* 1-51 */ |
1092 | switch (n) { |
1093 | case 0: |
1094 | break; /* leave f alone */ |
1095 | case 1: |
1096 | if (bits <= 32) |
1097 | f |= (1<<bits)-1; |
1098 | else { |
1099 | bits -= 32; |
1100 | g |= (1<<bits)-1; |
1101 | f = ~0; |
1102 | } |
1103 | break; |
1104 | case 2: |
1105 | if (bits <= 32) |
1106 | f &= ~((1<<bits)-1); |
1107 | else { |
1108 | bits -= 32; |
1109 | g &= ~((1<<bits)-1); |
1110 | f = 0; |
1111 | } |
1112 | break; |
1113 | case 3: |
1114 | if (bits <= 32) |
1115 | g &= (1<<bits)-1; |
1116 | else { |
1117 | bits -= 32; |
1118 | f &= (1<<bits)-1; |
1119 | g = 0; |
1120 | } |
1121 | break; |
1122 | case 4: |
1123 | if (bits <= 32) |
1124 | g |= ~((1<<bits)-1); |
1125 | else { |
1126 | bits -= 32; |
1127 | f |= ~((1<<bits)-1); |
1128 | g = ~0; |
1129 | } |
1130 | break; |
1131 | } |
1132 | g &= 0xFFFFF; |
1133 | g |= (random32() & 0xFFF00000);/* FIXME - do better */ |
1134 | ret[0] = g; |
1135 | ret[1] = f; |
1136 | } |
1137 | } |
1138 | |
1139 | static void cases_biased(uint32 *out, uint32 lowbound, |
1140 | uint32 highbound) { |
1141 | do { |
1142 | out[0] = highbound - random_upto_biased(limit: highbound-lowbound, bias: 8); |
1143 | out[1] = random_upto(limit: 0xFFFFFFFF); |
1144 | out[0] |= random_sign; |
1145 | } while (iszero(x: out)); /* rule out zero */ |
1146 | } |
1147 | |
1148 | static void cases_biased_positive(uint32 *out, uint32 lowbound, |
1149 | uint32 highbound) { |
1150 | do { |
1151 | out[0] = highbound - random_upto_biased(limit: highbound-lowbound, bias: 8); |
1152 | out[1] = random_upto(limit: 0xFFFFFFFF); |
1153 | } while (iszero(x: out)); /* rule out zero */ |
1154 | } |
1155 | |
1156 | static void cases_biased_float(uint32 *out, uint32 lowbound, |
1157 | uint32 highbound) { |
1158 | do { |
1159 | out[0] = highbound - random_upto_biased(limit: highbound-lowbound, bias: 8); |
1160 | out[1] = 0; |
1161 | out[0] |= random_sign; |
1162 | } while (iszero(x: out)); /* rule out zero */ |
1163 | } |
1164 | |
1165 | static void cases_semi1(uint32 *out, uint32 param1, |
1166 | uint32 param2) { |
1167 | float64_case(ret: out); |
1168 | } |
1169 | |
1170 | static void cases_semi1_float(uint32 *out, uint32 param1, |
1171 | uint32 param2) { |
1172 | float32_case(ret: out); |
1173 | } |
1174 | |
1175 | static void cases_semi2(uint32 *out, uint32 param1, |
1176 | uint32 param2) { |
1177 | float64_case(ret: out); |
1178 | float64_case(ret: out+2); |
1179 | } |
1180 | |
1181 | static void cases_semi2_float(uint32 *out, uint32 param1, |
1182 | uint32 param2) { |
1183 | float32_case(ret: out); |
1184 | float32_case(ret: out+2); |
1185 | } |
1186 | |
1187 | static void cases_ldexp(uint32 *out, uint32 param1, |
1188 | uint32 param2) { |
1189 | float64_case(ret: out); |
1190 | out[2] = random_upto(limit: 2048)-1024; |
1191 | } |
1192 | |
1193 | static void cases_ldexp_float(uint32 *out, uint32 param1, |
1194 | uint32 param2) { |
1195 | float32_case(ret: out); |
1196 | out[2] = random_upto(limit: 256)-128; |
1197 | } |
1198 | |
1199 | static void cases_uniform(uint32 *out, uint32 lowbound, |
1200 | uint32 highbound) { |
1201 | do { |
1202 | out[0] = highbound - random_upto(limit: highbound-lowbound); |
1203 | out[1] = random_upto(limit: 0xFFFFFFFF); |
1204 | out[0] |= random_sign; |
1205 | } while (iszero(x: out)); /* rule out zero */ |
1206 | } |
1207 | static void cases_uniform_float(uint32 *out, uint32 lowbound, |
1208 | uint32 highbound) { |
1209 | do { |
1210 | out[0] = highbound - random_upto(limit: highbound-lowbound); |
1211 | out[1] = 0; |
1212 | out[0] |= random_sign; |
1213 | } while (iszero(x: out)); /* rule out zero */ |
1214 | } |
1215 | |
1216 | static void cases_uniform_positive(uint32 *out, uint32 lowbound, |
1217 | uint32 highbound) { |
1218 | do { |
1219 | out[0] = highbound - random_upto(limit: highbound-lowbound); |
1220 | out[1] = random_upto(limit: 0xFFFFFFFF); |
1221 | } while (iszero(x: out)); /* rule out zero */ |
1222 | } |
1223 | static void cases_uniform_float_positive(uint32 *out, uint32 lowbound, |
1224 | uint32 highbound) { |
1225 | do { |
1226 | out[0] = highbound - random_upto(limit: highbound-lowbound); |
1227 | out[1] = 0; |
1228 | } while (iszero(x: out)); /* rule out zero */ |
1229 | } |
1230 | |
1231 | |
1232 | static void log_cases(uint32 *out, uint32 param1, |
1233 | uint32 param2) { |
1234 | do { |
1235 | out[0] = random_upto(limit: 0x7FEFFFFF); |
1236 | out[1] = random_upto(limit: 0xFFFFFFFF); |
1237 | } while (iszero(x: out)); /* rule out zero */ |
1238 | } |
1239 | |
1240 | static void log_cases_float(uint32 *out, uint32 param1, |
1241 | uint32 param2) { |
1242 | do { |
1243 | out[0] = random_upto(limit: 0x7F7FFFFF); |
1244 | out[1] = 0; |
1245 | } while (iszero(x: out)); /* rule out zero */ |
1246 | } |
1247 | |
1248 | static void log1p_cases(uint32 *out, uint32 param1, uint32 param2) |
1249 | { |
1250 | uint32 sign = random_sign; |
1251 | if (sign == 0) { |
1252 | cases_uniform_positive(out, lowbound: 0x3c700000, highbound: 0x43400000); |
1253 | } else { |
1254 | cases_uniform_positive(out, lowbound: 0x3c000000, highbound: 0x3ff00000); |
1255 | } |
1256 | out[0] |= sign; |
1257 | } |
1258 | |
1259 | static void log1p_cases_float(uint32 *out, uint32 param1, uint32 param2) |
1260 | { |
1261 | uint32 sign = random_sign; |
1262 | if (sign == 0) { |
1263 | cases_uniform_float_positive(out, lowbound: 0x32000000, highbound: 0x4c000000); |
1264 | } else { |
1265 | cases_uniform_float_positive(out, lowbound: 0x30000000, highbound: 0x3f800000); |
1266 | } |
1267 | out[0] |= sign; |
1268 | } |
1269 | |
1270 | static void minmax_cases(uint32 *out, uint32 param1, uint32 param2) |
1271 | { |
1272 | do { |
1273 | out[0] = random_upto(limit: 0x7FEFFFFF); |
1274 | out[1] = random_upto(limit: 0xFFFFFFFF); |
1275 | out[0] |= random_sign; |
1276 | out[2] = random_upto(limit: 0x7FEFFFFF); |
1277 | out[3] = random_upto(limit: 0xFFFFFFFF); |
1278 | out[2] |= random_sign; |
1279 | } while (iszero(x: out)); /* rule out zero */ |
1280 | } |
1281 | |
1282 | static void minmax_cases_float(uint32 *out, uint32 param1, uint32 param2) |
1283 | { |
1284 | do { |
1285 | out[0] = random_upto(limit: 0x7F7FFFFF); |
1286 | out[1] = 0; |
1287 | out[0] |= random_sign; |
1288 | out[2] = random_upto(limit: 0x7F7FFFFF); |
1289 | out[3] = 0; |
1290 | out[2] |= random_sign; |
1291 | } while (iszero(x: out)); /* rule out zero */ |
1292 | } |
1293 | |
1294 | static void rred_cases(uint32 *out, uint32 param1, |
1295 | uint32 param2) { |
1296 | do { |
1297 | out[0] = ((0x3fc00000 + random_upto(limit: 0x036fffff)) | |
1298 | (random_upto(limit: 1) << 31)); |
1299 | out[1] = random_upto(limit: 0xFFFFFFFF); |
1300 | } while (iszero(x: out)); /* rule out zero */ |
1301 | } |
1302 | |
1303 | static void rred_cases_float(uint32 *out, uint32 param1, |
1304 | uint32 param2) { |
1305 | do { |
1306 | out[0] = ((0x3e000000 + random_upto(limit: 0x0cffffff)) | |
1307 | (random_upto(limit: 1) << 31)); |
1308 | out[1] = 0; /* for iszero */ |
1309 | } while (iszero(x: out)); /* rule out zero */ |
1310 | } |
1311 | |
1312 | static void atan2_cases(uint32 *out, uint32 param1, |
1313 | uint32 param2) { |
1314 | do { |
1315 | int expdiff = random_upto(limit: 101)-51; |
1316 | int swap; |
1317 | if (expdiff < 0) { |
1318 | expdiff = -expdiff; |
1319 | swap = 2; |
1320 | } else |
1321 | swap = 0; |
1322 | out[swap ^ 0] = random_upto(limit: 0x7FEFFFFF-((expdiff+1)<<20)); |
1323 | out[swap ^ 2] = random_upto(limit: ((expdiff+1)<<20)-1) + out[swap ^ 0]; |
1324 | out[1] = random_upto(limit: 0xFFFFFFFF); |
1325 | out[3] = random_upto(limit: 0xFFFFFFFF); |
1326 | out[0] |= random_sign; |
1327 | out[2] |= random_sign; |
1328 | } while (iszero(x: out) || iszero(x: out+2));/* rule out zero */ |
1329 | } |
1330 | |
1331 | static void atan2_cases_float(uint32 *out, uint32 param1, |
1332 | uint32 param2) { |
1333 | do { |
1334 | int expdiff = random_upto(limit: 44)-22; |
1335 | int swap; |
1336 | if (expdiff < 0) { |
1337 | expdiff = -expdiff; |
1338 | swap = 2; |
1339 | } else |
1340 | swap = 0; |
1341 | out[swap ^ 0] = random_upto(limit: 0x7F7FFFFF-((expdiff+1)<<23)); |
1342 | out[swap ^ 2] = random_upto(limit: ((expdiff+1)<<23)-1) + out[swap ^ 0]; |
1343 | out[0] |= random_sign; |
1344 | out[2] |= random_sign; |
1345 | out[1] = out[3] = 0; /* for iszero */ |
1346 | } while (iszero(x: out) || iszero(x: out+2));/* rule out zero */ |
1347 | } |
1348 | |
1349 | static void pow_cases(uint32 *out, uint32 param1, |
1350 | uint32 param2) { |
1351 | /* |
1352 | * Pick an exponent e (-0x33 to +0x7FE) for x, and here's the |
1353 | * range of numbers we can use as y: |
1354 | * |
1355 | * For e < 0x3FE, the range is [-0x400/(0x3FE-e),+0x432/(0x3FE-e)] |
1356 | * For e > 0x3FF, the range is [-0x432/(e-0x3FF),+0x400/(e-0x3FF)] |
1357 | * |
1358 | * For e == 0x3FE or e == 0x3FF, the range gets infinite at one |
1359 | * end or the other, so we have to be cleverer: pick a number n |
1360 | * of useful bits in the mantissa (1 thru 52, so 1 must imply |
1361 | * 0x3ff00000.00000001 whereas 52 is anything at least as big |
1362 | * as 0x3ff80000.00000000; for e == 0x3fe, 1 necessarily means |
1363 | * 0x3fefffff.ffffffff and 52 is anything at most as big as |
1364 | * 0x3fe80000.00000000). Then, as it happens, a sensible |
1365 | * maximum power is 2^(63-n) for e == 0x3fe, and 2^(62-n) for |
1366 | * e == 0x3ff. |
1367 | * |
1368 | * We inevitably get some overflows in approximating the log |
1369 | * curves by these nasty step functions, but that's all right - |
1370 | * we do want _some_ overflows to be tested. |
1371 | * |
1372 | * Having got that, then, it's just a matter of inventing a |
1373 | * probability distribution for all of this. |
1374 | */ |
1375 | int e, n; |
1376 | uint32 dmin, dmax; |
1377 | const uint32 pmin = 0x3e100000; |
1378 | |
1379 | /* |
1380 | * Generate exponents in a slightly biased fashion. |
1381 | */ |
1382 | e = (random_upto(limit: 1) ? /* is exponent small or big? */ |
1383 | 0x3FE - random_upto_biased(limit: 0x431,bias: 2) : /* small */ |
1384 | 0x3FF + random_upto_biased(limit: 0x3FF,bias: 2)); /* big */ |
1385 | |
1386 | /* |
1387 | * Now split into cases. |
1388 | */ |
1389 | if (e < 0x3FE || e > 0x3FF) { |
1390 | uint32 imin, imax; |
1391 | if (e < 0x3FE) |
1392 | imin = 0x40000 / (0x3FE - e), imax = 0x43200 / (0x3FE - e); |
1393 | else |
1394 | imin = 0x43200 / (e - 0x3FF), imax = 0x40000 / (e - 0x3FF); |
1395 | /* Power range runs from -imin to imax. Now convert to doubles */ |
1396 | dmin = doubletop(x: imin, scale: -8); |
1397 | dmax = doubletop(x: imax, scale: -8); |
1398 | /* Compute the number of mantissa bits. */ |
1399 | n = (e > 0 ? 53 : 52+e); |
1400 | } else { |
1401 | /* Critical exponents. Generate a top bit index. */ |
1402 | n = 52 - random_upto_biased(limit: 51, bias: 4); |
1403 | if (e == 0x3FE) |
1404 | dmax = 63 - n; |
1405 | else |
1406 | dmax = 62 - n; |
1407 | dmax = (dmax << 20) + 0x3FF00000; |
1408 | dmin = dmax; |
1409 | } |
1410 | /* Generate a mantissa. */ |
1411 | if (n <= 32) { |
1412 | out[0] = 0; |
1413 | out[1] = random_upto(limit: (1 << (n-1)) - 1) + (1 << (n-1)); |
1414 | } else if (n == 33) { |
1415 | out[0] = 1; |
1416 | out[1] = random_upto(limit: 0xFFFFFFFF); |
1417 | } else if (n > 33) { |
1418 | out[0] = random_upto(limit: (1 << (n-33)) - 1) + (1 << (n-33)); |
1419 | out[1] = random_upto(limit: 0xFFFFFFFF); |
1420 | } |
1421 | /* Negate the mantissa if e == 0x3FE. */ |
1422 | if (e == 0x3FE) { |
1423 | out[1] = -out[1]; |
1424 | out[0] = -out[0]; |
1425 | if (out[1]) out[0]--; |
1426 | } |
1427 | /* Put the exponent on. */ |
1428 | out[0] &= 0xFFFFF; |
1429 | out[0] |= ((e > 0 ? e : 0) << 20); |
1430 | /* Generate a power. Powers don't go below 2^-30. */ |
1431 | if (random_upto(limit: 1)) { |
1432 | /* Positive power */ |
1433 | out[2] = dmax - random_upto_biased(limit: dmax-pmin, bias: 10); |
1434 | } else { |
1435 | /* Negative power */ |
1436 | out[2] = (dmin - random_upto_biased(limit: dmin-pmin, bias: 10)) | 0x80000000; |
1437 | } |
1438 | out[3] = random_upto(limit: 0xFFFFFFFF); |
1439 | } |
1440 | static void pow_cases_float(uint32 *out, uint32 param1, |
1441 | uint32 param2) { |
1442 | /* |
1443 | * Pick an exponent e (-0x16 to +0xFE) for x, and here's the |
1444 | * range of numbers we can use as y: |
1445 | * |
1446 | * For e < 0x7E, the range is [-0x80/(0x7E-e),+0x95/(0x7E-e)] |
1447 | * For e > 0x7F, the range is [-0x95/(e-0x7F),+0x80/(e-0x7F)] |
1448 | * |
1449 | * For e == 0x7E or e == 0x7F, the range gets infinite at one |
1450 | * end or the other, so we have to be cleverer: pick a number n |
1451 | * of useful bits in the mantissa (1 thru 23, so 1 must imply |
1452 | * 0x3f800001 whereas 23 is anything at least as big as |
1453 | * 0x3fc00000; for e == 0x7e, 1 necessarily means 0x3f7fffff |
1454 | * and 23 is anything at most as big as 0x3f400000). Then, as |
1455 | * it happens, a sensible maximum power is 2^(31-n) for e == |
1456 | * 0x7e, and 2^(30-n) for e == 0x7f. |
1457 | * |
1458 | * We inevitably get some overflows in approximating the log |
1459 | * curves by these nasty step functions, but that's all right - |
1460 | * we do want _some_ overflows to be tested. |
1461 | * |
1462 | * Having got that, then, it's just a matter of inventing a |
1463 | * probability distribution for all of this. |
1464 | */ |
1465 | int e, n; |
1466 | uint32 dmin, dmax; |
1467 | const uint32 pmin = 0x38000000; |
1468 | |
1469 | /* |
1470 | * Generate exponents in a slightly biased fashion. |
1471 | */ |
1472 | e = (random_upto(limit: 1) ? /* is exponent small or big? */ |
1473 | 0x7E - random_upto_biased(limit: 0x94,bias: 2) : /* small */ |
1474 | 0x7F + random_upto_biased(limit: 0x7f,bias: 2)); /* big */ |
1475 | |
1476 | /* |
1477 | * Now split into cases. |
1478 | */ |
1479 | if (e < 0x7E || e > 0x7F) { |
1480 | uint32 imin, imax; |
1481 | if (e < 0x7E) |
1482 | imin = 0x8000 / (0x7e - e), imax = 0x9500 / (0x7e - e); |
1483 | else |
1484 | imin = 0x9500 / (e - 0x7f), imax = 0x8000 / (e - 0x7f); |
1485 | /* Power range runs from -imin to imax. Now convert to doubles */ |
1486 | dmin = floatval(x: imin, scale: -8); |
1487 | dmax = floatval(x: imax, scale: -8); |
1488 | /* Compute the number of mantissa bits. */ |
1489 | n = (e > 0 ? 24 : 23+e); |
1490 | } else { |
1491 | /* Critical exponents. Generate a top bit index. */ |
1492 | n = 23 - random_upto_biased(limit: 22, bias: 4); |
1493 | if (e == 0x7E) |
1494 | dmax = 31 - n; |
1495 | else |
1496 | dmax = 30 - n; |
1497 | dmax = (dmax << 23) + 0x3F800000; |
1498 | dmin = dmax; |
1499 | } |
1500 | /* Generate a mantissa. */ |
1501 | out[0] = random_upto(limit: (1 << (n-1)) - 1) + (1 << (n-1)); |
1502 | out[1] = 0; |
1503 | /* Negate the mantissa if e == 0x7E. */ |
1504 | if (e == 0x7E) { |
1505 | out[0] = -out[0]; |
1506 | } |
1507 | /* Put the exponent on. */ |
1508 | out[0] &= 0x7FFFFF; |
1509 | out[0] |= ((e > 0 ? e : 0) << 23); |
1510 | /* Generate a power. Powers don't go below 2^-15. */ |
1511 | if (random_upto(limit: 1)) { |
1512 | /* Positive power */ |
1513 | out[2] = dmax - random_upto_biased(limit: dmax-pmin, bias: 10); |
1514 | } else { |
1515 | /* Negative power */ |
1516 | out[2] = (dmin - random_upto_biased(limit: dmin-pmin, bias: 10)) | 0x80000000; |
1517 | } |
1518 | out[3] = 0; |
1519 | } |
1520 | |
1521 | void vet_for_decline(Testable *fn, uint32 *args, uint32 *result, int got_errno_in) { |
1522 | int declined = 0; |
1523 | |
1524 | switch (fn->type) { |
1525 | case args1: |
1526 | case rred: |
1527 | case semi1: |
1528 | case t_frexp: |
1529 | case t_modf: |
1530 | case classify: |
1531 | case t_ldexp: |
1532 | declined |= lib_fo && is_dhard(args+0); |
1533 | break; |
1534 | case args1f: |
1535 | case rredf: |
1536 | case semi1f: |
1537 | case t_frexpf: |
1538 | case t_modff: |
1539 | case classifyf: |
1540 | declined |= lib_fo && is_shard(args+0); |
1541 | break; |
1542 | case args2: |
1543 | case semi2: |
1544 | case args1c: |
1545 | case args1cr: |
1546 | case compare: |
1547 | declined |= lib_fo && is_dhard(args+0); |
1548 | declined |= lib_fo && is_dhard(args+2); |
1549 | break; |
1550 | case args2f: |
1551 | case semi2f: |
1552 | case t_ldexpf: |
1553 | case comparef: |
1554 | case args1fc: |
1555 | case args1fcr: |
1556 | declined |= lib_fo && is_shard(args+0); |
1557 | declined |= lib_fo && is_shard(args+2); |
1558 | break; |
1559 | case args2c: |
1560 | declined |= lib_fo && is_dhard(args+0); |
1561 | declined |= lib_fo && is_dhard(args+2); |
1562 | declined |= lib_fo && is_dhard(args+4); |
1563 | declined |= lib_fo && is_dhard(args+6); |
1564 | break; |
1565 | case args2fc: |
1566 | declined |= lib_fo && is_shard(args+0); |
1567 | declined |= lib_fo && is_shard(args+2); |
1568 | declined |= lib_fo && is_shard(args+4); |
1569 | declined |= lib_fo && is_shard(args+6); |
1570 | break; |
1571 | } |
1572 | |
1573 | switch (fn->type) { |
1574 | case args1: /* return an extra-precise result */ |
1575 | case args2: |
1576 | case rred: |
1577 | case semi1: /* return a double result */ |
1578 | case semi2: |
1579 | case t_ldexp: |
1580 | case t_frexp: /* return double * int */ |
1581 | case args1cr: |
1582 | declined |= lib_fo && is_dhard(result); |
1583 | break; |
1584 | case args1f: |
1585 | case args2f: |
1586 | case rredf: |
1587 | case semi1f: |
1588 | case semi2f: |
1589 | case t_ldexpf: |
1590 | case args1fcr: |
1591 | declined |= lib_fo && is_shard(result); |
1592 | break; |
1593 | case t_modf: /* return double * double */ |
1594 | declined |= lib_fo && is_dhard(result+0); |
1595 | declined |= lib_fo && is_dhard(result+2); |
1596 | break; |
1597 | case t_modff: /* return float * float */ |
1598 | declined |= lib_fo && is_shard(result+2); |
1599 | /* fall through */ |
1600 | case t_frexpf: /* return float * int */ |
1601 | declined |= lib_fo && is_shard(result+0); |
1602 | break; |
1603 | case args1c: |
1604 | case args2c: |
1605 | declined |= lib_fo && is_dhard(result+0); |
1606 | declined |= lib_fo && is_dhard(result+4); |
1607 | break; |
1608 | case args1fc: |
1609 | case args2fc: |
1610 | declined |= lib_fo && is_shard(result+0); |
1611 | declined |= lib_fo && is_shard(result+4); |
1612 | break; |
1613 | } |
1614 | |
1615 | /* Expect basic arithmetic tests to be declined if the command |
1616 | * line said that would happen */ |
1617 | declined |= (lib_no_arith && (fn->func == (funcptr)mpc_add || |
1618 | fn->func == (funcptr)mpc_sub || |
1619 | fn->func == (funcptr)mpc_mul || |
1620 | fn->func == (funcptr)mpc_div)); |
1621 | |
1622 | if (!declined) { |
1623 | if (got_errno_in) |
1624 | ntests++; |
1625 | else |
1626 | ntests += 3; |
1627 | } |
1628 | } |
1629 | |
1630 | void docase(Testable *fn, uint32 *args) { |
1631 | uint32 result[8]; /* real part in first 4, imaginary part in last 4 */ |
1632 | char *errstr = NULL; |
1633 | mpfr_t a, b, r; |
1634 | mpc_t ac, bc, rc; |
1635 | int rejected, ; |
1636 | wrapperctx ctx; |
1637 | |
1638 | mpfr_init2(a, MPFR_PREC); |
1639 | mpfr_init2(b, MPFR_PREC); |
1640 | mpfr_init2(r, MPFR_PREC); |
1641 | mpc_init2(ac, MPFR_PREC); |
1642 | mpc_init2(bc, MPFR_PREC); |
1643 | mpc_init2(rc, MPFR_PREC); |
1644 | |
1645 | printf(format: "func=%s" , fn->name); |
1646 | |
1647 | rejected = 0; /* FIXME */ |
1648 | |
1649 | switch (fn->type) { |
1650 | case args1: |
1651 | case rred: |
1652 | case semi1: |
1653 | case t_frexp: |
1654 | case t_modf: |
1655 | case classify: |
1656 | printf(format: " op1=%08x.%08x" , args[0], args[1]); |
1657 | break; |
1658 | case args1f: |
1659 | case rredf: |
1660 | case semi1f: |
1661 | case t_frexpf: |
1662 | case t_modff: |
1663 | case classifyf: |
1664 | printf(format: " op1=%08x" , args[0]); |
1665 | break; |
1666 | case args2: |
1667 | case semi2: |
1668 | case compare: |
1669 | printf(format: " op1=%08x.%08x" , args[0], args[1]); |
1670 | printf(format: " op2=%08x.%08x" , args[2], args[3]); |
1671 | break; |
1672 | case args2f: |
1673 | case semi2f: |
1674 | case t_ldexpf: |
1675 | case comparef: |
1676 | printf(format: " op1=%08x" , args[0]); |
1677 | printf(format: " op2=%08x" , args[2]); |
1678 | break; |
1679 | case t_ldexp: |
1680 | printf(format: " op1=%08x.%08x" , args[0], args[1]); |
1681 | printf(format: " op2=%08x" , args[2]); |
1682 | break; |
1683 | case args1c: |
1684 | case args1cr: |
1685 | printf(format: " op1r=%08x.%08x" , args[0], args[1]); |
1686 | printf(format: " op1i=%08x.%08x" , args[2], args[3]); |
1687 | break; |
1688 | case args2c: |
1689 | printf(format: " op1r=%08x.%08x" , args[0], args[1]); |
1690 | printf(format: " op1i=%08x.%08x" , args[2], args[3]); |
1691 | printf(format: " op2r=%08x.%08x" , args[4], args[5]); |
1692 | printf(format: " op2i=%08x.%08x" , args[6], args[7]); |
1693 | break; |
1694 | case args1fc: |
1695 | case args1fcr: |
1696 | printf(format: " op1r=%08x" , args[0]); |
1697 | printf(format: " op1i=%08x" , args[2]); |
1698 | break; |
1699 | case args2fc: |
1700 | printf(format: " op1r=%08x" , args[0]); |
1701 | printf(format: " op1i=%08x" , args[2]); |
1702 | printf(format: " op2r=%08x" , args[4]); |
1703 | printf(format: " op2i=%08x" , args[6]); |
1704 | break; |
1705 | default: |
1706 | fprintf(stderr, format: "internal inconsistency?!\n" ); |
1707 | abort(); |
1708 | } |
1709 | |
1710 | if (rejected == 2) { |
1711 | printf(format: " - test case rejected\n" ); |
1712 | goto cleanup; |
1713 | } |
1714 | |
1715 | wrapper_init(ctx: &ctx); |
1716 | |
1717 | if (rejected == 0) { |
1718 | switch (fn->type) { |
1719 | case args1: |
1720 | set_mpfr_d(x: a, h: args[0], l: args[1]); |
1721 | wrapper_op_real(ctx: &ctx, r: a, size: 2, ieee: args); |
1722 | ((testfunc1)(fn->func))(r, a, GMP_RNDN); |
1723 | get_mpfr_d(x: r, h: &result[0], l: &result[1], extra: &result[2]); |
1724 | wrapper_result_real(ctx: &ctx, r, size: 2, ieee: result); |
1725 | if (wrapper_run(ctx: &ctx, wrappers: fn->wrappers)) |
1726 | get_mpfr_d(x: r, h: &result[0], l: &result[1], extra: &result[2]); |
1727 | break; |
1728 | case args1cr: |
1729 | set_mpc_d(z: ac, rh: args[0], rl: args[1], ih: args[2], il: args[3]); |
1730 | wrapper_op_complex(ctx: &ctx, c: ac, size: 2, ieee: args); |
1731 | ((testfunc1cr)(fn->func))(r, ac, GMP_RNDN); |
1732 | get_mpfr_d(x: r, h: &result[0], l: &result[1], extra: &result[2]); |
1733 | wrapper_result_real(ctx: &ctx, r, size: 2, ieee: result); |
1734 | if (wrapper_run(ctx: &ctx, wrappers: fn->wrappers)) |
1735 | get_mpfr_d(x: r, h: &result[0], l: &result[1], extra: &result[2]); |
1736 | break; |
1737 | case args1f: |
1738 | set_mpfr_f(x: a, f: args[0]); |
1739 | wrapper_op_real(ctx: &ctx, r: a, size: 1, ieee: args); |
1740 | ((testfunc1)(fn->func))(r, a, GMP_RNDN); |
1741 | get_mpfr_f(x: r, f: &result[0], extra: &result[1]); |
1742 | wrapper_result_real(ctx: &ctx, r, size: 1, ieee: result); |
1743 | if (wrapper_run(ctx: &ctx, wrappers: fn->wrappers)) |
1744 | get_mpfr_f(x: r, f: &result[0], extra: &result[1]); |
1745 | break; |
1746 | case args1fcr: |
1747 | set_mpc_f(z: ac, r: args[0], i: args[2]); |
1748 | wrapper_op_complex(ctx: &ctx, c: ac, size: 1, ieee: args); |
1749 | ((testfunc1cr)(fn->func))(r, ac, GMP_RNDN); |
1750 | get_mpfr_f(x: r, f: &result[0], extra: &result[1]); |
1751 | wrapper_result_real(ctx: &ctx, r, size: 1, ieee: result); |
1752 | if (wrapper_run(ctx: &ctx, wrappers: fn->wrappers)) |
1753 | get_mpfr_f(x: r, f: &result[0], extra: &result[1]); |
1754 | break; |
1755 | case args2: |
1756 | set_mpfr_d(x: a, h: args[0], l: args[1]); |
1757 | wrapper_op_real(ctx: &ctx, r: a, size: 2, ieee: args); |
1758 | set_mpfr_d(x: b, h: args[2], l: args[3]); |
1759 | wrapper_op_real(ctx: &ctx, r: b, size: 2, ieee: args+2); |
1760 | ((testfunc2)(fn->func))(r, a, b, GMP_RNDN); |
1761 | get_mpfr_d(x: r, h: &result[0], l: &result[1], extra: &result[2]); |
1762 | wrapper_result_real(ctx: &ctx, r, size: 2, ieee: result); |
1763 | if (wrapper_run(ctx: &ctx, wrappers: fn->wrappers)) |
1764 | get_mpfr_d(x: r, h: &result[0], l: &result[1], extra: &result[2]); |
1765 | break; |
1766 | case args2f: |
1767 | set_mpfr_f(x: a, f: args[0]); |
1768 | wrapper_op_real(ctx: &ctx, r: a, size: 1, ieee: args); |
1769 | set_mpfr_f(x: b, f: args[2]); |
1770 | wrapper_op_real(ctx: &ctx, r: b, size: 1, ieee: args+2); |
1771 | ((testfunc2)(fn->func))(r, a, b, GMP_RNDN); |
1772 | get_mpfr_f(x: r, f: &result[0], extra: &result[1]); |
1773 | wrapper_result_real(ctx: &ctx, r, size: 1, ieee: result); |
1774 | if (wrapper_run(ctx: &ctx, wrappers: fn->wrappers)) |
1775 | get_mpfr_f(x: r, f: &result[0], extra: &result[1]); |
1776 | break; |
1777 | case rred: |
1778 | set_mpfr_d(x: a, h: args[0], l: args[1]); |
1779 | wrapper_op_real(ctx: &ctx, r: a, size: 2, ieee: args); |
1780 | ((testrred)(fn->func))(r, a, (int *)&result[3]); |
1781 | get_mpfr_d(x: r, h: &result[0], l: &result[1], extra: &result[2]); |
1782 | wrapper_result_real(ctx: &ctx, r, size: 2, ieee: result); |
1783 | /* We never need to mess about with the integer auxiliary |
1784 | * output. */ |
1785 | if (wrapper_run(ctx: &ctx, wrappers: fn->wrappers)) |
1786 | get_mpfr_d(x: r, h: &result[0], l: &result[1], extra: &result[2]); |
1787 | break; |
1788 | case rredf: |
1789 | set_mpfr_f(x: a, f: args[0]); |
1790 | wrapper_op_real(ctx: &ctx, r: a, size: 1, ieee: args); |
1791 | ((testrred)(fn->func))(r, a, (int *)&result[3]); |
1792 | get_mpfr_f(x: r, f: &result[0], extra: &result[1]); |
1793 | wrapper_result_real(ctx: &ctx, r, size: 1, ieee: result); |
1794 | /* We never need to mess about with the integer auxiliary |
1795 | * output. */ |
1796 | if (wrapper_run(ctx: &ctx, wrappers: fn->wrappers)) |
1797 | get_mpfr_f(x: r, f: &result[0], extra: &result[1]); |
1798 | break; |
1799 | case semi1: |
1800 | case semi1f: |
1801 | errstr = ((testsemi1)(fn->func))(args, result); |
1802 | break; |
1803 | case semi2: |
1804 | case compare: |
1805 | errstr = ((testsemi2)(fn->func))(args, args+2, result); |
1806 | break; |
1807 | case semi2f: |
1808 | case comparef: |
1809 | case t_ldexpf: |
1810 | errstr = ((testsemi2f)(fn->func))(args, args+2, result); |
1811 | break; |
1812 | case t_ldexp: |
1813 | errstr = ((testldexp)(fn->func))(args, args+2, result); |
1814 | break; |
1815 | case t_frexp: |
1816 | errstr = ((testfrexp)(fn->func))(args, result, result+2); |
1817 | break; |
1818 | case t_frexpf: |
1819 | errstr = ((testfrexp)(fn->func))(args, result, result+2); |
1820 | break; |
1821 | case t_modf: |
1822 | errstr = ((testmodf)(fn->func))(args, result, result+2); |
1823 | break; |
1824 | case t_modff: |
1825 | errstr = ((testmodf)(fn->func))(args, result, result+2); |
1826 | break; |
1827 | case classify: |
1828 | errstr = ((testclassify)(fn->func))(args, &result[0]); |
1829 | break; |
1830 | case classifyf: |
1831 | errstr = ((testclassifyf)(fn->func))(args, &result[0]); |
1832 | break; |
1833 | case args1c: |
1834 | set_mpc_d(z: ac, rh: args[0], rl: args[1], ih: args[2], il: args[3]); |
1835 | wrapper_op_complex(ctx: &ctx, c: ac, size: 2, ieee: args); |
1836 | ((testfunc1c)(fn->func))(rc, ac, MPC_RNDNN); |
1837 | get_mpc_d(z: rc, rh: &result[0], rl: &result[1], rextra: &result[2], ih: &result[4], il: &result[5], iextra: &result[6]); |
1838 | wrapper_result_complex(ctx: &ctx, c: rc, size: 2, ieee: result); |
1839 | if (wrapper_run(ctx: &ctx, wrappers: fn->wrappers)) |
1840 | get_mpc_d(z: rc, rh: &result[0], rl: &result[1], rextra: &result[2], ih: &result[4], il: &result[5], iextra: &result[6]); |
1841 | break; |
1842 | case args2c: |
1843 | set_mpc_d(z: ac, rh: args[0], rl: args[1], ih: args[2], il: args[3]); |
1844 | wrapper_op_complex(ctx: &ctx, c: ac, size: 2, ieee: args); |
1845 | set_mpc_d(z: bc, rh: args[4], rl: args[5], ih: args[6], il: args[7]); |
1846 | wrapper_op_complex(ctx: &ctx, c: bc, size: 2, ieee: args+4); |
1847 | ((testfunc2c)(fn->func))(rc, ac, bc, MPC_RNDNN); |
1848 | get_mpc_d(z: rc, rh: &result[0], rl: &result[1], rextra: &result[2], ih: &result[4], il: &result[5], iextra: &result[6]); |
1849 | wrapper_result_complex(ctx: &ctx, c: rc, size: 2, ieee: result); |
1850 | if (wrapper_run(ctx: &ctx, wrappers: fn->wrappers)) |
1851 | get_mpc_d(z: rc, rh: &result[0], rl: &result[1], rextra: &result[2], ih: &result[4], il: &result[5], iextra: &result[6]); |
1852 | break; |
1853 | case args1fc: |
1854 | set_mpc_f(z: ac, r: args[0], i: args[2]); |
1855 | wrapper_op_complex(ctx: &ctx, c: ac, size: 1, ieee: args); |
1856 | ((testfunc1c)(fn->func))(rc, ac, MPC_RNDNN); |
1857 | get_mpc_f(z: rc, r: &result[0], rextra: &result[1], i: &result[4], iextra: &result[5]); |
1858 | wrapper_result_complex(ctx: &ctx, c: rc, size: 1, ieee: result); |
1859 | if (wrapper_run(ctx: &ctx, wrappers: fn->wrappers)) |
1860 | get_mpc_f(z: rc, r: &result[0], rextra: &result[1], i: &result[4], iextra: &result[5]); |
1861 | break; |
1862 | case args2fc: |
1863 | set_mpc_f(z: ac, r: args[0], i: args[2]); |
1864 | wrapper_op_complex(ctx: &ctx, c: ac, size: 1, ieee: args); |
1865 | set_mpc_f(z: bc, r: args[4], i: args[6]); |
1866 | wrapper_op_complex(ctx: &ctx, c: bc, size: 1, ieee: args+4); |
1867 | ((testfunc2c)(fn->func))(rc, ac, bc, MPC_RNDNN); |
1868 | get_mpc_f(z: rc, r: &result[0], rextra: &result[1], i: &result[4], iextra: &result[5]); |
1869 | wrapper_result_complex(ctx: &ctx, c: rc, size: 1, ieee: result); |
1870 | if (wrapper_run(ctx: &ctx, wrappers: fn->wrappers)) |
1871 | get_mpc_f(z: rc, r: &result[0], rextra: &result[1], i: &result[4], iextra: &result[5]); |
1872 | break; |
1873 | default: |
1874 | fprintf(stderr, format: "internal inconsistency?!\n" ); |
1875 | abort(); |
1876 | } |
1877 | } |
1878 | |
1879 | switch (fn->type) { |
1880 | case args1: /* return an extra-precise result */ |
1881 | case args2: |
1882 | case args1cr: |
1883 | case rred: |
1884 | printextra = 1; |
1885 | if (rejected == 0) { |
1886 | errstr = NULL; |
1887 | if (!mpfr_zero_p(a)) { |
1888 | if ((result[0] & 0x7FFFFFFF) == 0 && result[1] == 0) { |
1889 | /* |
1890 | * If the output is +0 or -0 apart from the extra |
1891 | * precision in result[2], then there's a tricky |
1892 | * judgment call about what we require in the |
1893 | * output. If we output the extra bits and set |
1894 | * errstr="?underflow" then mathtest will tolerate |
1895 | * the function under test rounding down to zero |
1896 | * _or_ up to the minimum denormal; whereas if we |
1897 | * suppress the extra bits and set |
1898 | * errstr="underflow", then mathtest will enforce |
1899 | * that the function really does underflow to zero. |
1900 | * |
1901 | * But where to draw the line? It seems clear to |
1902 | * me that numbers along the lines of |
1903 | * 00000000.00000000.7ff should be treated |
1904 | * similarly to 00000000.00000000.801, but on the |
1905 | * other hand, we must surely be prepared to |
1906 | * enforce a genuine underflow-to-zero in _some_ |
1907 | * case where the true mathematical output is |
1908 | * nonzero but absurdly tiny. |
1909 | * |
1910 | * I think a reasonable place to draw the |
1911 | * distinction is at 00000000.00000000.400, i.e. |
1912 | * one quarter of the minimum positive denormal. |
1913 | * If a value less than that rounds up to the |
1914 | * minimum denormal, that must mean the function |
1915 | * under test has managed to make an error of an |
1916 | * entire factor of two, and that's something we |
1917 | * should fix. Above that, you can misround within |
1918 | * the limits of your accuracy bound if you have |
1919 | * to. |
1920 | */ |
1921 | if (result[2] < 0x40000000) { |
1922 | /* Total underflow (ERANGE + UFL) is required, |
1923 | * and we suppress the extra bits to make |
1924 | * mathtest enforce that the output is really |
1925 | * zero. */ |
1926 | errstr = "underflow" ; |
1927 | printextra = 0; |
1928 | } else { |
1929 | /* Total underflow is not required, but if the |
1930 | * function rounds down to zero anyway, then |
1931 | * we should be prepared to tolerate it. */ |
1932 | errstr = "?underflow" ; |
1933 | } |
1934 | } else if (!(result[0] & 0x7ff00000)) { |
1935 | /* |
1936 | * If the output is denormal, we usually expect a |
1937 | * UFL exception, warning the user of partial |
1938 | * underflow. The exception is if the denormal |
1939 | * being returned is just one of the input values, |
1940 | * unchanged even in principle. I bodgily handle |
1941 | * this by just special-casing the functions in |
1942 | * question below. |
1943 | */ |
1944 | if (!strcmp(s1: fn->name, s2: "fmax" ) || |
1945 | !strcmp(s1: fn->name, s2: "fmin" ) || |
1946 | !strcmp(s1: fn->name, s2: "creal" ) || |
1947 | !strcmp(s1: fn->name, s2: "cimag" )) { |
1948 | /* no error expected */ |
1949 | } else { |
1950 | errstr = "u" ; |
1951 | } |
1952 | } else if ((result[0] & 0x7FFFFFFF) > 0x7FEFFFFF) { |
1953 | /* |
1954 | * Infinite results are usually due to overflow, |
1955 | * but one exception is lgamma of a negative |
1956 | * integer. |
1957 | */ |
1958 | if (!strcmp(s1: fn->name, s2: "lgamma" ) && |
1959 | (args[0] & 0x80000000) != 0 && /* negative */ |
1960 | is_dinteger(in: args)) { |
1961 | errstr = "ERANGE status=z" ; |
1962 | } else { |
1963 | errstr = "overflow" ; |
1964 | } |
1965 | printextra = 0; |
1966 | } |
1967 | } else { |
1968 | /* lgamma(0) is also a pole. */ |
1969 | if (!strcmp(s1: fn->name, s2: "lgamma" )) { |
1970 | errstr = "ERANGE status=z" ; |
1971 | printextra = 0; |
1972 | } |
1973 | } |
1974 | } |
1975 | |
1976 | if (!printextra || (rejected && !(rejected==1 && result[2]!=0))) { |
1977 | printf(format: " result=%08x.%08x" , |
1978 | result[0], result[1]); |
1979 | } else { |
1980 | printf(format: " result=%08x.%08x.%03x" , |
1981 | result[0], result[1], (result[2] >> 20) & 0xFFF); |
1982 | } |
1983 | if (fn->type == rred) { |
1984 | printf(format: " res2=%08x" , result[3]); |
1985 | } |
1986 | break; |
1987 | case args1f: |
1988 | case args2f: |
1989 | case args1fcr: |
1990 | case rredf: |
1991 | printextra = 1; |
1992 | if (rejected == 0) { |
1993 | errstr = NULL; |
1994 | if (!mpfr_zero_p(a)) { |
1995 | if ((result[0] & 0x7FFFFFFF) == 0) { |
1996 | /* |
1997 | * Decide whether to print the extra bits based on |
1998 | * just how close to zero the number is. See the |
1999 | * big comment in the double-precision case for |
2000 | * discussion. |
2001 | */ |
2002 | if (result[1] < 0x40000000) { |
2003 | errstr = "underflow" ; |
2004 | printextra = 0; |
2005 | } else { |
2006 | errstr = "?underflow" ; |
2007 | } |
2008 | } else if (!(result[0] & 0x7f800000)) { |
2009 | /* |
2010 | * Functions which do not report partial overflow |
2011 | * are listed here as special cases. (See the |
2012 | * corresponding double case above for a fuller |
2013 | * comment.) |
2014 | */ |
2015 | if (!strcmp(s1: fn->name, s2: "fmaxf" ) || |
2016 | !strcmp(s1: fn->name, s2: "fminf" ) || |
2017 | !strcmp(s1: fn->name, s2: "crealf" ) || |
2018 | !strcmp(s1: fn->name, s2: "cimagf" )) { |
2019 | /* no error expected */ |
2020 | } else { |
2021 | errstr = "u" ; |
2022 | } |
2023 | } else if ((result[0] & 0x7FFFFFFF) > 0x7F7FFFFF) { |
2024 | /* |
2025 | * Infinite results are usually due to overflow, |
2026 | * but one exception is lgamma of a negative |
2027 | * integer. |
2028 | */ |
2029 | if (!strcmp(s1: fn->name, s2: "lgammaf" ) && |
2030 | (args[0] & 0x80000000) != 0 && /* negative */ |
2031 | is_sinteger(in: args)) { |
2032 | errstr = "ERANGE status=z" ; |
2033 | } else { |
2034 | errstr = "overflow" ; |
2035 | } |
2036 | printextra = 0; |
2037 | } |
2038 | } else { |
2039 | /* lgamma(0) is also a pole. */ |
2040 | if (!strcmp(s1: fn->name, s2: "lgammaf" )) { |
2041 | errstr = "ERANGE status=z" ; |
2042 | printextra = 0; |
2043 | } |
2044 | } |
2045 | } |
2046 | |
2047 | if (!printextra || (rejected && !(rejected==1 && result[1]!=0))) { |
2048 | printf(format: " result=%08x" , |
2049 | result[0]); |
2050 | } else { |
2051 | printf(format: " result=%08x.%03x" , |
2052 | result[0], (result[1] >> 20) & 0xFFF); |
2053 | } |
2054 | if (fn->type == rredf) { |
2055 | printf(format: " res2=%08x" , result[3]); |
2056 | } |
2057 | break; |
2058 | case semi1: /* return a double result */ |
2059 | case semi2: |
2060 | case t_ldexp: |
2061 | printf(format: " result=%08x.%08x" , result[0], result[1]); |
2062 | break; |
2063 | case semi1f: |
2064 | case semi2f: |
2065 | case t_ldexpf: |
2066 | printf(format: " result=%08x" , result[0]); |
2067 | break; |
2068 | case t_frexp: /* return double * int */ |
2069 | printf(format: " result=%08x.%08x res2=%08x" , result[0], result[1], |
2070 | result[2]); |
2071 | break; |
2072 | case t_modf: /* return double * double */ |
2073 | printf(format: " result=%08x.%08x res2=%08x.%08x" , |
2074 | result[0], result[1], result[2], result[3]); |
2075 | break; |
2076 | case t_modff: /* return float * float */ |
2077 | /* fall through */ |
2078 | case t_frexpf: /* return float * int */ |
2079 | printf(format: " result=%08x res2=%08x" , result[0], result[2]); |
2080 | break; |
2081 | case classify: |
2082 | case classifyf: |
2083 | case compare: |
2084 | case comparef: |
2085 | printf(format: " result=%x" , result[0]); |
2086 | break; |
2087 | case args1c: |
2088 | case args2c: |
2089 | if (0/* errstr */) { |
2090 | printf(format: " resultr=%08x.%08x" , result[0], result[1]); |
2091 | printf(format: " resulti=%08x.%08x" , result[4], result[5]); |
2092 | } else { |
2093 | printf(format: " resultr=%08x.%08x.%03x" , |
2094 | result[0], result[1], (result[2] >> 20) & 0xFFF); |
2095 | printf(format: " resulti=%08x.%08x.%03x" , |
2096 | result[4], result[5], (result[6] >> 20) & 0xFFF); |
2097 | } |
2098 | /* Underflow behaviour doesn't seem to be specified for complex arithmetic */ |
2099 | errstr = "?underflow" ; |
2100 | break; |
2101 | case args1fc: |
2102 | case args2fc: |
2103 | if (0/* errstr */) { |
2104 | printf(format: " resultr=%08x" , result[0]); |
2105 | printf(format: " resulti=%08x" , result[4]); |
2106 | } else { |
2107 | printf(format: " resultr=%08x.%03x" , |
2108 | result[0], (result[1] >> 20) & 0xFFF); |
2109 | printf(format: " resulti=%08x.%03x" , |
2110 | result[4], (result[5] >> 20) & 0xFFF); |
2111 | } |
2112 | /* Underflow behaviour doesn't seem to be specified for complex arithmetic */ |
2113 | errstr = "?underflow" ; |
2114 | break; |
2115 | } |
2116 | |
2117 | if (errstr && *(errstr+1) == '\0') { |
2118 | printf(format: " errno=0 status=%c" ,*errstr); |
2119 | } else if (errstr && *errstr == '?') { |
2120 | printf(format: " maybeerror=%s" , errstr+1); |
2121 | } else if (errstr && errstr[0] == 'E') { |
2122 | printf(format: " errno=%s" , errstr); |
2123 | } else { |
2124 | printf(format: " error=%s" , errstr && *errstr ? errstr : "0" ); |
2125 | } |
2126 | |
2127 | printf(format: "\n" ); |
2128 | |
2129 | vet_for_decline(fn, args, result, got_errno_in: 0); |
2130 | |
2131 | cleanup: |
2132 | mpfr_clear(a); |
2133 | mpfr_clear(b); |
2134 | mpfr_clear(r); |
2135 | mpc_clear(ac); |
2136 | mpc_clear(bc); |
2137 | mpc_clear(rc); |
2138 | } |
2139 | |
2140 | void gencases(Testable *fn, int number) { |
2141 | int i; |
2142 | uint32 args[8]; |
2143 | |
2144 | float32_case(NULL); |
2145 | float64_case(NULL); |
2146 | |
2147 | printf(format: "random=on\n" ); /* signal to runtests.pl that the following tests are randomly generated */ |
2148 | for (i = 0; i < number; i++) { |
2149 | /* generate test point */ |
2150 | fn->cases(args, fn->caseparam1, fn->caseparam2); |
2151 | docase(fn, args); |
2152 | } |
2153 | printf(format: "random=off\n" ); |
2154 | } |
2155 | |
2156 | static uint32 doubletop(int x, int scale) { |
2157 | int e = 0x412 + scale; |
2158 | while (!(x & 0x100000)) |
2159 | x <<= 1, e--; |
2160 | return (e << 20) + x; |
2161 | } |
2162 | |
2163 | static uint32 floatval(int x, int scale) { |
2164 | int e = 0x95 + scale; |
2165 | while (!(x & 0x800000)) |
2166 | x <<= 1, e--; |
2167 | return (e << 23) + x; |
2168 | } |
2169 | |