1 | /* |
2 | * strcpy/stpcpy - copy a string returning pointer to start/end. |
3 | * |
4 | * Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
5 | * See https://llvm.org/LICENSE.txt for license information. |
6 | * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
7 | */ |
8 | |
9 | /* Assumptions: |
10 | * |
11 | * ARMv8-a, AArch64, unaligned accesses, min page size 4k. |
12 | */ |
13 | |
14 | #include "../asmdefs.h" |
15 | |
16 | /* To build as stpcpy, define BUILD_STPCPY before compiling this file. |
17 | |
18 | To test the page crossing code path more thoroughly, compile with |
19 | -DSTRCPY_TEST_PAGE_CROSS - this will force all copies through the slower |
20 | entry path. This option is not intended for production use. */ |
21 | |
22 | /* Arguments and results. */ |
23 | #define dstin x0 |
24 | #define srcin x1 |
25 | |
26 | /* Locals and temporaries. */ |
27 | #define src x2 |
28 | #define dst x3 |
29 | #define data1 x4 |
30 | #define data1w w4 |
31 | #define data2 x5 |
32 | #define data2w w5 |
33 | #define has_nul1 x6 |
34 | #define has_nul2 x7 |
35 | #define tmp1 x8 |
36 | #define tmp2 x9 |
37 | #define tmp3 x10 |
38 | #define tmp4 x11 |
39 | #define zeroones x12 |
40 | #define data1a x13 |
41 | #define data2a x14 |
42 | #define pos x15 |
43 | #define len x16 |
44 | #define to_align x17 |
45 | |
46 | #ifdef BUILD_STPCPY |
47 | #define STRCPY __stpcpy_aarch64 |
48 | #else |
49 | #define STRCPY __strcpy_aarch64 |
50 | #endif |
51 | |
52 | /* NUL detection works on the principle that (X - 1) & (~X) & 0x80 |
53 | (=> (X - 1) & ~(X | 0x7f)) is non-zero iff a byte is zero, and |
54 | can be done in parallel across the entire word. */ |
55 | |
56 | #define REP8_01 0x0101010101010101 |
57 | #define REP8_7f 0x7f7f7f7f7f7f7f7f |
58 | #define REP8_80 0x8080808080808080 |
59 | |
60 | /* AArch64 systems have a minimum page size of 4k. We can do a quick |
61 | page size check for crossing this boundary on entry and if we |
62 | do not, then we can short-circuit much of the entry code. We |
63 | expect early page-crossing strings to be rare (probability of |
64 | 16/MIN_PAGE_SIZE ~= 0.4%), so the branch should be quite |
65 | predictable, even with random strings. |
66 | |
67 | We don't bother checking for larger page sizes, the cost of setting |
68 | up the correct page size is just not worth the extra gain from |
69 | a small reduction in the cases taking the slow path. Note that |
70 | we only care about whether the first fetch, which may be |
71 | misaligned, crosses a page boundary - after that we move to aligned |
72 | fetches for the remainder of the string. */ |
73 | |
74 | #ifdef STRCPY_TEST_PAGE_CROSS |
75 | /* Make everything that isn't Qword aligned look like a page cross. */ |
76 | #define MIN_PAGE_P2 4 |
77 | #else |
78 | #define MIN_PAGE_P2 12 |
79 | #endif |
80 | |
81 | #define MIN_PAGE_SIZE (1 << MIN_PAGE_P2) |
82 | |
83 | ENTRY (STRCPY) |
84 | /* For moderately short strings, the fastest way to do the copy is to |
85 | calculate the length of the string in the same way as strlen, then |
86 | essentially do a memcpy of the result. This avoids the need for |
87 | multiple byte copies and further means that by the time we |
88 | reach the bulk copy loop we know we can always use DWord |
89 | accesses. We expect __strcpy_aarch64 to rarely be called repeatedly |
90 | with the same source string, so branch prediction is likely to |
91 | always be difficult - we mitigate against this by preferring |
92 | conditional select operations over branches whenever this is |
93 | feasible. */ |
94 | and tmp2, srcin, #(MIN_PAGE_SIZE - 1) |
95 | mov zeroones, #REP8_01 |
96 | and to_align, srcin, #15 |
97 | cmp tmp2, #(MIN_PAGE_SIZE - 16) |
98 | neg tmp1, to_align |
99 | /* The first fetch will straddle a (possible) page boundary iff |
100 | srcin + 15 causes bit[MIN_PAGE_P2] to change value. A 16-byte |
101 | aligned string will never fail the page align check, so will |
102 | always take the fast path. */ |
103 | b.gt L(page_cross) |
104 | |
105 | L(page_cross_ok): |
106 | ldp data1, data2, [srcin] |
107 | #ifdef __AARCH64EB__ |
108 | /* Because we expect the end to be found within 16 characters |
109 | (profiling shows this is the most common case), it's worth |
110 | swapping the bytes now to save having to recalculate the |
111 | termination syndrome later. We preserve data1 and data2 |
112 | so that we can re-use the values later on. */ |
113 | rev tmp2, data1 |
114 | sub tmp1, tmp2, zeroones |
115 | orr tmp2, tmp2, #REP8_7f |
116 | bics has_nul1, tmp1, tmp2 |
117 | b.ne L(fp_le8) |
118 | rev tmp4, data2 |
119 | sub tmp3, tmp4, zeroones |
120 | orr tmp4, tmp4, #REP8_7f |
121 | #else |
122 | sub tmp1, data1, zeroones |
123 | orr tmp2, data1, #REP8_7f |
124 | bics has_nul1, tmp1, tmp2 |
125 | b.ne L(fp_le8) |
126 | sub tmp3, data2, zeroones |
127 | orr tmp4, data2, #REP8_7f |
128 | #endif |
129 | bics has_nul2, tmp3, tmp4 |
130 | b.eq L(bulk_entry) |
131 | |
132 | /* The string is short (<=16 bytes). We don't know exactly how |
133 | short though, yet. Work out the exact length so that we can |
134 | quickly select the optimal copy strategy. */ |
135 | L(fp_gt8): |
136 | rev has_nul2, has_nul2 |
137 | clz pos, has_nul2 |
138 | mov tmp2, #56 |
139 | add dst, dstin, pos, lsr #3 /* Bits to bytes. */ |
140 | sub pos, tmp2, pos |
141 | #ifdef __AARCH64EB__ |
142 | lsr data2, data2, pos |
143 | #else |
144 | lsl data2, data2, pos |
145 | #endif |
146 | str data2, [dst, #1] |
147 | str data1, [dstin] |
148 | #ifdef BUILD_STPCPY |
149 | add dstin, dst, #8 |
150 | #endif |
151 | ret |
152 | |
153 | L(fp_le8): |
154 | rev has_nul1, has_nul1 |
155 | clz pos, has_nul1 |
156 | add dst, dstin, pos, lsr #3 /* Bits to bytes. */ |
157 | subs tmp2, pos, #24 /* Pos in bits. */ |
158 | b.lt L(fp_lt4) |
159 | #ifdef __AARCH64EB__ |
160 | mov tmp2, #56 |
161 | sub pos, tmp2, pos |
162 | lsr data2, data1, pos |
163 | lsr data1, data1, #32 |
164 | #else |
165 | lsr data2, data1, tmp2 |
166 | #endif |
167 | /* 4->7 bytes to copy. */ |
168 | str data2w, [dst, #-3] |
169 | str data1w, [dstin] |
170 | #ifdef BUILD_STPCPY |
171 | mov dstin, dst |
172 | #endif |
173 | ret |
174 | L(fp_lt4): |
175 | cbz pos, L(fp_lt2) |
176 | /* 2->3 bytes to copy. */ |
177 | #ifdef __AARCH64EB__ |
178 | lsr data1, data1, #48 |
179 | #endif |
180 | strh data1w, [dstin] |
181 | /* Fall-through, one byte (max) to go. */ |
182 | L(fp_lt2): |
183 | /* Null-terminated string. Last character must be zero! */ |
184 | strb wzr, [dst] |
185 | #ifdef BUILD_STPCPY |
186 | mov dstin, dst |
187 | #endif |
188 | ret |
189 | |
190 | .p2align 6 |
191 | /* Aligning here ensures that the entry code and main loop all lies |
192 | within one 64-byte cache line. */ |
193 | L(bulk_entry): |
194 | sub to_align, to_align, #16 |
195 | stp data1, data2, [dstin] |
196 | sub src, srcin, to_align |
197 | sub dst, dstin, to_align |
198 | b L(entry_no_page_cross) |
199 | |
200 | /* The inner loop deals with two Dwords at a time. This has a |
201 | slightly higher start-up cost, but we should win quite quickly, |
202 | especially on cores with a high number of issue slots per |
203 | cycle, as we get much better parallelism out of the operations. */ |
204 | L(main_loop): |
205 | stp data1, data2, [dst], #16 |
206 | L(entry_no_page_cross): |
207 | ldp data1, data2, [src], #16 |
208 | sub tmp1, data1, zeroones |
209 | orr tmp2, data1, #REP8_7f |
210 | sub tmp3, data2, zeroones |
211 | orr tmp4, data2, #REP8_7f |
212 | bic has_nul1, tmp1, tmp2 |
213 | bics has_nul2, tmp3, tmp4 |
214 | ccmp has_nul1, #0, #0, eq /* NZCV = 0000 */ |
215 | b.eq L(main_loop) |
216 | |
217 | /* Since we know we are copying at least 16 bytes, the fastest way |
218 | to deal with the tail is to determine the location of the |
219 | trailing NUL, then (re)copy the 16 bytes leading up to that. */ |
220 | cmp has_nul1, #0 |
221 | #ifdef __AARCH64EB__ |
222 | /* For big-endian, carry propagation (if the final byte in the |
223 | string is 0x01) means we cannot use has_nul directly. The |
224 | easiest way to get the correct byte is to byte-swap the data |
225 | and calculate the syndrome a second time. */ |
226 | csel data1, data1, data2, ne |
227 | rev data1, data1 |
228 | sub tmp1, data1, zeroones |
229 | orr tmp2, data1, #REP8_7f |
230 | bic has_nul1, tmp1, tmp2 |
231 | #else |
232 | csel has_nul1, has_nul1, has_nul2, ne |
233 | #endif |
234 | rev has_nul1, has_nul1 |
235 | clz pos, has_nul1 |
236 | add tmp1, pos, #72 |
237 | add pos, pos, #8 |
238 | csel pos, pos, tmp1, ne |
239 | add src, src, pos, lsr #3 |
240 | add dst, dst, pos, lsr #3 |
241 | ldp data1, data2, [src, #-32] |
242 | stp data1, data2, [dst, #-16] |
243 | #ifdef BUILD_STPCPY |
244 | sub dstin, dst, #1 |
245 | #endif |
246 | ret |
247 | |
248 | L(page_cross): |
249 | bic src, srcin, #15 |
250 | /* Start by loading two words at [srcin & ~15], then forcing the |
251 | bytes that precede srcin to 0xff. This means they never look |
252 | like termination bytes. */ |
253 | ldp data1, data2, [src] |
254 | lsl tmp1, tmp1, #3 /* Bytes beyond alignment -> bits. */ |
255 | tst to_align, #7 |
256 | csetm tmp2, ne |
257 | #ifdef __AARCH64EB__ |
258 | lsl tmp2, tmp2, tmp1 /* Shift (tmp1 & 63). */ |
259 | #else |
260 | lsr tmp2, tmp2, tmp1 /* Shift (tmp1 & 63). */ |
261 | #endif |
262 | orr data1, data1, tmp2 |
263 | orr data2a, data2, tmp2 |
264 | cmp to_align, #8 |
265 | csinv data1, data1, xzr, lt |
266 | csel data2, data2, data2a, lt |
267 | sub tmp1, data1, zeroones |
268 | orr tmp2, data1, #REP8_7f |
269 | sub tmp3, data2, zeroones |
270 | orr tmp4, data2, #REP8_7f |
271 | bic has_nul1, tmp1, tmp2 |
272 | bics has_nul2, tmp3, tmp4 |
273 | ccmp has_nul1, #0, #0, eq /* NZCV = 0000 */ |
274 | b.eq L(page_cross_ok) |
275 | /* We now need to make data1 and data2 look like they've been |
276 | loaded directly from srcin. Do a rotate on the 128-bit value. */ |
277 | lsl tmp1, to_align, #3 /* Bytes->bits. */ |
278 | neg tmp2, to_align, lsl #3 |
279 | #ifdef __AARCH64EB__ |
280 | lsl data1a, data1, tmp1 |
281 | lsr tmp4, data2, tmp2 |
282 | lsl data2, data2, tmp1 |
283 | orr tmp4, tmp4, data1a |
284 | cmp to_align, #8 |
285 | csel data1, tmp4, data2, lt |
286 | rev tmp2, data1 |
287 | rev tmp4, data2 |
288 | sub tmp1, tmp2, zeroones |
289 | orr tmp2, tmp2, #REP8_7f |
290 | sub tmp3, tmp4, zeroones |
291 | orr tmp4, tmp4, #REP8_7f |
292 | #else |
293 | lsr data1a, data1, tmp1 |
294 | lsl tmp4, data2, tmp2 |
295 | lsr data2, data2, tmp1 |
296 | orr tmp4, tmp4, data1a |
297 | cmp to_align, #8 |
298 | csel data1, tmp4, data2, lt |
299 | sub tmp1, data1, zeroones |
300 | orr tmp2, data1, #REP8_7f |
301 | sub tmp3, data2, zeroones |
302 | orr tmp4, data2, #REP8_7f |
303 | #endif |
304 | bic has_nul1, tmp1, tmp2 |
305 | cbnz has_nul1, L(fp_le8) |
306 | bic has_nul2, tmp3, tmp4 |
307 | b L(fp_gt8) |
308 | |
309 | END (STRCPY) |
310 | |