1 | //===-- Benchmark function --------------------------------------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | // This file mainly defines a `Benchmark` function. |
10 | // |
11 | // The benchmarking process is as follows: |
12 | // - We start by measuring the time it takes to run the function |
13 | // `InitialIterations` times. This is called a Sample. From this we can derive |
14 | // the time it took to run a single iteration. |
15 | // |
16 | // - We repeat the previous step with a greater number of iterations to lower |
17 | // the impact of the measurement. We can derive a more precise estimation of the |
18 | // runtime for a single iteration. |
19 | // |
20 | // - Each sample gives a more accurate estimation of the runtime for a single |
21 | // iteration but also takes more time to run. We stop the process when: |
22 | // * The measure stabilize under a certain precision (Epsilon), |
23 | // * The overall benchmarking time is greater than MaxDuration, |
24 | // * The overall sample count is greater than MaxSamples, |
25 | // * The last sample used more than MaxIterations iterations. |
26 | // |
27 | // - We also makes sure that the benchmark doesn't run for a too short period of |
28 | // time by defining MinDuration and MinSamples. |
29 | |
30 | #ifndef LLVM_LIBC_UTILS_BENCHMARK_BENCHMARK_H |
31 | #define LLVM_LIBC_UTILS_BENCHMARK_BENCHMARK_H |
32 | |
33 | #include "benchmark/benchmark.h" |
34 | #include "llvm/ADT/ArrayRef.h" |
35 | #include "llvm/ADT/SmallVector.h" |
36 | #include <array> |
37 | #include <chrono> |
38 | #include <cmath> |
39 | #include <cstdint> |
40 | #include <optional> |
41 | |
42 | namespace llvm { |
43 | namespace libc_benchmarks { |
44 | |
45 | using Duration = std::chrono::duration<double>; |
46 | |
47 | enum class BenchmarkLog { |
48 | None, // Don't keep the internal state of the benchmark. |
49 | Last, // Keep only the last batch. |
50 | Full // Keep all iterations states, useful for testing or debugging. |
51 | }; |
52 | |
53 | // An object to configure the benchmark stopping conditions. |
54 | // See documentation at the beginning of the file for the overall algorithm and |
55 | // meaning of each field. |
56 | struct BenchmarkOptions { |
57 | // The minimum time for which the benchmark is running. |
58 | Duration MinDuration = std::chrono::seconds(0); |
59 | // The maximum time for which the benchmark is running. |
60 | Duration MaxDuration = std::chrono::seconds(10); |
61 | // The number of iterations in the first sample. |
62 | uint32_t InitialIterations = 1; |
63 | // The maximum number of iterations for any given sample. |
64 | uint32_t MaxIterations = 10000000; |
65 | // The minimum number of samples. |
66 | uint32_t MinSamples = 4; |
67 | // The maximum number of samples. |
68 | uint32_t MaxSamples = 1000; |
69 | // The benchmark will stop if the relative difference between the current and |
70 | // the last estimation is less than epsilon. This is 1% by default. |
71 | double Epsilon = 0.01; |
72 | // The number of iterations grows exponentially between each sample. |
73 | // Must be greater or equal to 1. |
74 | double ScalingFactor = 1.4; |
75 | BenchmarkLog Log = BenchmarkLog::None; |
76 | }; |
77 | |
78 | // The state of a benchmark. |
79 | enum class BenchmarkStatus { |
80 | Running, |
81 | MaxDurationReached, |
82 | MaxIterationsReached, |
83 | MaxSamplesReached, |
84 | PrecisionReached, |
85 | }; |
86 | |
87 | // The internal state of the benchmark, useful to debug, test or report |
88 | // statistics. |
89 | struct BenchmarkState { |
90 | size_t LastSampleIterations; |
91 | Duration LastBatchElapsed; |
92 | BenchmarkStatus CurrentStatus; |
93 | Duration CurrentBestGuess; // The time estimation for a single run of `foo`. |
94 | double ChangeRatio; // The change in time estimation between previous and |
95 | // current samples. |
96 | }; |
97 | |
98 | // A lightweight result for a benchmark. |
99 | struct BenchmarkResult { |
100 | BenchmarkStatus TerminationStatus = BenchmarkStatus::Running; |
101 | Duration BestGuess = {}; |
102 | std::optional<llvm::SmallVector<BenchmarkState, 16>> MaybeBenchmarkLog; |
103 | }; |
104 | |
105 | // Stores information about a cache in the host memory system. |
106 | struct CacheInfo { |
107 | std::string Type; // e.g. "Instruction", "Data", "Unified". |
108 | int Level; // 0 is closest to processing unit. |
109 | int Size; // In bytes. |
110 | int NumSharing; // The number of processing units (Hyper-Threading Thread) |
111 | // with which this cache is shared. |
112 | }; |
113 | |
114 | // Stores information about the host. |
115 | struct HostState { |
116 | std::string CpuName; // returns a string compatible with the -march option. |
117 | double CpuFrequency; // in Hertz. |
118 | std::vector<CacheInfo> Caches; |
119 | |
120 | static HostState get(); |
121 | }; |
122 | |
123 | namespace internal { |
124 | |
125 | struct Measurement { |
126 | size_t Iterations = 0; |
127 | Duration Elapsed = {}; |
128 | }; |
129 | |
130 | // Updates the estimation of the elapsed time for a single iteration. |
131 | class RefinableRuntimeEstimation { |
132 | Duration TotalTime = {}; |
133 | size_t TotalIterations = 0; |
134 | |
135 | public: |
136 | Duration update(const Measurement &M) { |
137 | assert(M.Iterations > 0); |
138 | // Duration is encoded as a double (see definition). |
139 | // `TotalTime` and `M.Elapsed` are of the same magnitude so we don't expect |
140 | // loss of precision due to radically different scales. |
141 | TotalTime += M.Elapsed; |
142 | TotalIterations += M.Iterations; |
143 | return TotalTime / TotalIterations; |
144 | } |
145 | }; |
146 | |
147 | // This class tracks the progression of the runtime estimation. |
148 | class RuntimeEstimationProgression { |
149 | RefinableRuntimeEstimation RRE; |
150 | |
151 | public: |
152 | Duration CurrentEstimation = {}; |
153 | |
154 | // Returns the change ratio between our best guess so far and the one from the |
155 | // new measurement. |
156 | double computeImprovement(const Measurement &M) { |
157 | const Duration NewEstimation = RRE.update(M); |
158 | const double Ratio = fabs(x: ((CurrentEstimation / NewEstimation) - 1.0)); |
159 | CurrentEstimation = NewEstimation; |
160 | return Ratio; |
161 | } |
162 | }; |
163 | |
164 | } // namespace internal |
165 | |
166 | // Measures the runtime of `foo` until conditions defined by `Options` are met. |
167 | // |
168 | // To avoid measurement's imprecisions we measure batches of `foo`. |
169 | // The batch size is growing by `ScalingFactor` to minimize the effect of |
170 | // measuring. |
171 | // |
172 | // Note: The benchmark is not responsible for serializing the executions of |
173 | // `foo`. It is not suitable for measuring, very small & side effect free |
174 | // functions, as the processor is free to execute several executions in |
175 | // parallel. |
176 | // |
177 | // - Options: A set of parameters controlling the stopping conditions for the |
178 | // benchmark. |
179 | // - foo: The function under test. It takes one value and returns one value. |
180 | // The input value is used to randomize the execution of `foo` as part of a |
181 | // batch to mitigate the effect of the branch predictor. Signature: |
182 | // `ProductType foo(ParameterProvider::value_type value);` |
183 | // The output value is a product of the execution of `foo` and prevents the |
184 | // compiler from optimizing out foo's body. |
185 | // - ParameterProvider: An object responsible for providing a range of |
186 | // `Iterations` values to use as input for `foo`. The `value_type` of the |
187 | // returned container has to be compatible with `foo` argument. |
188 | // Must implement one of: |
189 | // `Container<ParameterType> generateBatch(size_t Iterations);` |
190 | // `const Container<ParameterType>& generateBatch(size_t Iterations);` |
191 | // - Clock: An object providing the current time. Must implement: |
192 | // `std::chrono::time_point now();` |
193 | template <typename Function, typename ParameterProvider, |
194 | typename BenchmarkClock = const std::chrono::high_resolution_clock> |
195 | BenchmarkResult benchmark(const BenchmarkOptions &Options, |
196 | ParameterProvider &PP, Function foo, |
197 | BenchmarkClock &Clock = BenchmarkClock()) { |
198 | BenchmarkResult Result; |
199 | internal::RuntimeEstimationProgression REP; |
200 | Duration TotalBenchmarkDuration = {}; |
201 | size_t Iterations = std::max(a: Options.InitialIterations, b: uint32_t(1)); |
202 | size_t Samples = 0; |
203 | if (Options.ScalingFactor < 1.0) |
204 | report_fatal_error("ScalingFactor should be >= 1" ); |
205 | if (Options.Log != BenchmarkLog::None) |
206 | Result.MaybeBenchmarkLog.emplace(); |
207 | for (;;) { |
208 | // Request a new Batch of size `Iterations`. |
209 | const auto &Batch = PP.generateBatch(Iterations); |
210 | |
211 | // Measuring this Batch. |
212 | const auto StartTime = Clock.now(); |
213 | for (const auto Parameter : Batch) { |
214 | const auto Production = foo(Parameter); |
215 | benchmark::DoNotOptimize(Production); |
216 | } |
217 | const auto EndTime = Clock.now(); |
218 | const Duration Elapsed = EndTime - StartTime; |
219 | |
220 | // Updating statistics. |
221 | ++Samples; |
222 | TotalBenchmarkDuration += Elapsed; |
223 | const double ChangeRatio = REP.computeImprovement(M: {.Iterations: Iterations, .Elapsed: Elapsed}); |
224 | Result.BestGuess = REP.CurrentEstimation; |
225 | |
226 | // Stopping condition. |
227 | if (TotalBenchmarkDuration >= Options.MinDuration && |
228 | Samples >= Options.MinSamples && ChangeRatio < Options.Epsilon) |
229 | Result.TerminationStatus = BenchmarkStatus::PrecisionReached; |
230 | else if (Samples >= Options.MaxSamples) |
231 | Result.TerminationStatus = BenchmarkStatus::MaxSamplesReached; |
232 | else if (TotalBenchmarkDuration >= Options.MaxDuration) |
233 | Result.TerminationStatus = BenchmarkStatus::MaxDurationReached; |
234 | else if (Iterations >= Options.MaxIterations) |
235 | Result.TerminationStatus = BenchmarkStatus::MaxIterationsReached; |
236 | |
237 | if (Result.MaybeBenchmarkLog) { |
238 | auto &BenchmarkLog = *Result.MaybeBenchmarkLog; |
239 | if (Options.Log == BenchmarkLog::Last && !BenchmarkLog.empty()) |
240 | BenchmarkLog.pop_back(); |
241 | BenchmarkState BS; |
242 | BS.LastSampleIterations = Iterations; |
243 | BS.LastBatchElapsed = Elapsed; |
244 | BS.CurrentStatus = Result.TerminationStatus; |
245 | BS.CurrentBestGuess = Result.BestGuess; |
246 | BS.ChangeRatio = ChangeRatio; |
247 | BenchmarkLog.push_back(BS); |
248 | } |
249 | |
250 | if (Result.TerminationStatus != BenchmarkStatus::Running) |
251 | return Result; |
252 | |
253 | if (Options.ScalingFactor > 1 && |
254 | Iterations * Options.ScalingFactor == Iterations) |
255 | report_fatal_error( |
256 | "`Iterations *= ScalingFactor` is idempotent, increase ScalingFactor " |
257 | "or InitialIterations." ); |
258 | |
259 | Iterations *= Options.ScalingFactor; |
260 | } |
261 | } |
262 | |
263 | // Interprets `Array` as a circular buffer of `Size` elements. |
264 | template <typename T> class CircularArrayRef { |
265 | llvm::ArrayRef<T> Array; |
266 | size_t Size; |
267 | |
268 | public: |
269 | using value_type = T; |
270 | using reference = T &; |
271 | using const_reference = const T &; |
272 | using difference_type = ssize_t; |
273 | using size_type = size_t; |
274 | |
275 | class const_iterator { |
276 | using iterator_category = std::input_iterator_tag; |
277 | llvm::ArrayRef<T> Array; |
278 | size_t Index; |
279 | size_t Offset; |
280 | |
281 | public: |
282 | explicit const_iterator(llvm::ArrayRef<T> Array, size_t Index = 0) |
283 | : Array(Array), Index(Index), Offset(Index % Array.size()) {} |
284 | const_iterator &operator++() { |
285 | ++Index; |
286 | ++Offset; |
287 | if (Offset == Array.size()) |
288 | Offset = 0; |
289 | return *this; |
290 | } |
291 | bool operator==(const_iterator Other) const { return Index == Other.Index; } |
292 | bool operator!=(const_iterator Other) const { return !(*this == Other); } |
293 | const T &operator*() const { return Array[Offset]; } |
294 | }; |
295 | |
296 | CircularArrayRef(llvm::ArrayRef<T> Array, size_t Size) |
297 | : Array(Array), Size(Size) { |
298 | assert(Array.size() > 0); |
299 | } |
300 | |
301 | const_iterator begin() const { return const_iterator(Array); } |
302 | const_iterator end() const { return const_iterator(Array, Size); } |
303 | }; |
304 | |
305 | // A convenient helper to produce a CircularArrayRef from an ArrayRef. |
306 | template <typename T> |
307 | CircularArrayRef<T> cycle(llvm::ArrayRef<T> Array, size_t Size) { |
308 | return {Array, Size}; |
309 | } |
310 | |
311 | // Creates an std::array which storage size is constrained under `Bytes`. |
312 | template <typename T, size_t Bytes> |
313 | using ByteConstrainedArray = std::array<T, Bytes / sizeof(T)>; |
314 | |
315 | // A convenient helper to produce a CircularArrayRef from a |
316 | // ByteConstrainedArray. |
317 | template <typename T, size_t N> |
318 | CircularArrayRef<T> cycle(const std::array<T, N> &Container, size_t Size) { |
319 | return {llvm::ArrayRef<T>(Container.cbegin(), Container.cend()), Size}; |
320 | } |
321 | |
322 | // Makes sure the binary was compiled in release mode and that frequency |
323 | // governor is set on performance. |
324 | void checkRequirements(); |
325 | |
326 | } // namespace libc_benchmarks |
327 | } // namespace llvm |
328 | |
329 | #endif // LLVM_LIBC_UTILS_BENCHMARK_BENCHMARK_H |
330 | |