Warning: This file is not a C or C++ file. It does not have highlighting.
1 | //===-- Implementation of hypotf function ---------------------------------===// |
---|---|
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #ifndef LLVM_LIBC_SRC___SUPPORT_FPUTIL_HYPOT_H |
10 | #define LLVM_LIBC_SRC___SUPPORT_FPUTIL_HYPOT_H |
11 | |
12 | #include "BasicOperations.h" |
13 | #include "FEnvImpl.h" |
14 | #include "FPBits.h" |
15 | #include "rounding_mode.h" |
16 | #include "src/__support/CPP/bit.h" |
17 | #include "src/__support/CPP/type_traits.h" |
18 | #include "src/__support/common.h" |
19 | #include "src/__support/macros/config.h" |
20 | #include "src/__support/uint128.h" |
21 | |
22 | namespace LIBC_NAMESPACE_DECL { |
23 | namespace fputil { |
24 | |
25 | namespace internal { |
26 | |
27 | template <typename T> |
28 | LIBC_INLINE T find_leading_one(T mant, int &shift_length) { |
29 | shift_length = 0; |
30 | if (mant > 0) { |
31 | shift_length = (sizeof(mant) * 8) - 1 - cpp::countl_zero(mant); |
32 | } |
33 | return static_cast<T>((T(1) << shift_length)); |
34 | } |
35 | |
36 | } // namespace internal |
37 | |
38 | template <typename T> struct DoubleLength; |
39 | |
40 | template <> struct DoubleLength<uint16_t> { |
41 | using Type = uint32_t; |
42 | }; |
43 | |
44 | template <> struct DoubleLength<uint32_t> { |
45 | using Type = uint64_t; |
46 | }; |
47 | |
48 | template <> struct DoubleLength<uint64_t> { |
49 | using Type = UInt128; |
50 | }; |
51 | |
52 | // Correctly rounded IEEE 754 HYPOT(x, y) with round to nearest, ties to even. |
53 | // |
54 | // Algorithm: |
55 | // - Let a = max(|x|, |y|), b = min(|x|, |y|), then we have that: |
56 | // a <= sqrt(a^2 + b^2) <= min(a + b, a*sqrt(2)) |
57 | // 1. So if b < eps(a)/2, then HYPOT(x, y) = a. |
58 | // |
59 | // - Moreover, the exponent part of HYPOT(x, y) is either the same or 1 more |
60 | // than the exponent part of a. |
61 | // |
62 | // 2. For the remaining cases, we will use the digit-by-digit (shift-and-add) |
63 | // algorithm to compute SQRT(Z): |
64 | // |
65 | // - For Y = y0.y1...yn... = SQRT(Z), |
66 | // let Y(n) = y0.y1...yn be the first n fractional digits of Y. |
67 | // |
68 | // - The nth scaled residual R(n) is defined to be: |
69 | // R(n) = 2^n * (Z - Y(n)^2) |
70 | // |
71 | // - Since Y(n) = Y(n - 1) + yn * 2^(-n), the scaled residual |
72 | // satisfies the following recurrence formula: |
73 | // R(n) = 2*R(n - 1) - yn*(2*Y(n - 1) + 2^(-n)), |
74 | // with the initial conditions: |
75 | // Y(0) = y0, and R(0) = Z - y0. |
76 | // |
77 | // - So the nth fractional digit of Y = SQRT(Z) can be decided by: |
78 | // yn = 1 if 2*R(n - 1) >= 2*Y(n - 1) + 2^(-n), |
79 | // 0 otherwise. |
80 | // |
81 | // 3. Precision analysis: |
82 | // |
83 | // - Notice that in the decision function: |
84 | // 2*R(n - 1) >= 2*Y(n - 1) + 2^(-n), |
85 | // the right hand side only uses up to the 2^(-n)-bit, and both sides are |
86 | // non-negative, so R(n - 1) can be truncated at the 2^(-(n + 1))-bit, so |
87 | // that 2*R(n - 1) is corrected up to the 2^(-n)-bit. |
88 | // |
89 | // - Thus, in order to round SQRT(a^2 + b^2) correctly up to n-fractional |
90 | // bits, we need to perform the summation (a^2 + b^2) correctly up to (2n + |
91 | // 2)-fractional bits, and the remaining bits are sticky bits (i.e. we only |
92 | // care if they are 0 or > 0), and the comparisons, additions/subtractions |
93 | // can be done in n-fractional bits precision. |
94 | // |
95 | // - For single precision (float), we can use uint64_t to store the sum a^2 + |
96 | // b^2 exact up to (2n + 2)-fractional bits. |
97 | // |
98 | // - Then we can feed this sum into the digit-by-digit algorithm for SQRT(Z) |
99 | // described above. |
100 | // |
101 | // |
102 | // Special cases: |
103 | // - HYPOT(x, y) is +Inf if x or y is +Inf or -Inf; else |
104 | // - HYPOT(x, y) is NaN if x or y is NaN. |
105 | // |
106 | template <typename T, cpp::enable_if_t<cpp::is_floating_point_v<T>, int> = 0> |
107 | LIBC_INLINE T hypot(T x, T y) { |
108 | using FPBits_t = FPBits<T>; |
109 | using StorageType = typename FPBits<T>::StorageType; |
110 | using DStorageType = typename DoubleLength<StorageType>::Type; |
111 | |
112 | FPBits_t x_abs = FPBits_t(x).abs(); |
113 | FPBits_t y_abs = FPBits_t(y).abs(); |
114 | |
115 | bool x_abs_larger = x_abs.uintval() >= y_abs.uintval(); |
116 | |
117 | FPBits_t a_bits = x_abs_larger ? x_abs : y_abs; |
118 | FPBits_t b_bits = x_abs_larger ? y_abs : x_abs; |
119 | |
120 | if (LIBC_UNLIKELY(a_bits.is_inf_or_nan())) { |
121 | if (x_abs.is_signaling_nan() || y_abs.is_signaling_nan()) { |
122 | fputil::raise_except_if_required(FE_INVALID); |
123 | return FPBits_t::quiet_nan().get_val(); |
124 | } |
125 | if (x_abs.is_inf() || y_abs.is_inf()) |
126 | return FPBits_t::inf().get_val(); |
127 | if (x_abs.is_nan()) |
128 | return x; |
129 | // y is nan |
130 | return y; |
131 | } |
132 | |
133 | uint16_t a_exp = a_bits.get_biased_exponent(); |
134 | uint16_t b_exp = b_bits.get_biased_exponent(); |
135 | |
136 | if ((a_exp - b_exp >= FPBits_t::FRACTION_LEN + 2) || (x == 0) || (y == 0)) |
137 | return x_abs.get_val() + y_abs.get_val(); |
138 | |
139 | uint64_t out_exp = a_exp; |
140 | StorageType a_mant = a_bits.get_mantissa(); |
141 | StorageType b_mant = b_bits.get_mantissa(); |
142 | DStorageType a_mant_sq, b_mant_sq; |
143 | bool sticky_bits; |
144 | |
145 | // Add an extra bit to simplify the final rounding bit computation. |
146 | constexpr StorageType ONE = StorageType(1) << (FPBits_t::FRACTION_LEN + 1); |
147 | |
148 | a_mant <<= 1; |
149 | b_mant <<= 1; |
150 | |
151 | StorageType leading_one; |
152 | int y_mant_width; |
153 | if (a_exp != 0) { |
154 | leading_one = ONE; |
155 | a_mant |= ONE; |
156 | y_mant_width = FPBits_t::FRACTION_LEN + 1; |
157 | } else { |
158 | leading_one = internal::find_leading_one(a_mant, y_mant_width); |
159 | a_exp = 1; |
160 | } |
161 | |
162 | if (b_exp != 0) |
163 | b_mant |= ONE; |
164 | else |
165 | b_exp = 1; |
166 | |
167 | a_mant_sq = static_cast<DStorageType>(a_mant) * a_mant; |
168 | b_mant_sq = static_cast<DStorageType>(b_mant) * b_mant; |
169 | |
170 | // At this point, a_exp >= b_exp > a_exp - 25, so in order to line up aSqMant |
171 | // and bSqMant, we need to shift bSqMant to the right by (a_exp - b_exp) bits. |
172 | // But before that, remember to store the losing bits to sticky. |
173 | // The shift length is for a^2 and b^2, so it's double of the exponent |
174 | // difference between a and b. |
175 | uint16_t shift_length = static_cast<uint16_t>(2 * (a_exp - b_exp)); |
176 | sticky_bits = |
177 | ((b_mant_sq & ((DStorageType(1) << shift_length) - DStorageType(1))) != |
178 | DStorageType(0)); |
179 | b_mant_sq >>= shift_length; |
180 | |
181 | DStorageType sum = a_mant_sq + b_mant_sq; |
182 | if (sum >= (DStorageType(1) << (2 * y_mant_width + 2))) { |
183 | // a^2 + b^2 >= 4* leading_one^2, so we will need an extra bit to the left. |
184 | if (leading_one == ONE) { |
185 | // For normal result, we discard the last 2 bits of the sum and increase |
186 | // the exponent. |
187 | sticky_bits = sticky_bits || ((sum & 0x3U) != 0); |
188 | sum >>= 2; |
189 | ++out_exp; |
190 | if (out_exp >= FPBits_t::MAX_BIASED_EXPONENT) { |
191 | if (int round_mode = quick_get_round(); |
192 | round_mode == FE_TONEAREST || round_mode == FE_UPWARD) |
193 | return FPBits_t::inf().get_val(); |
194 | return FPBits_t::max_normal().get_val(); |
195 | } |
196 | } else { |
197 | // For denormal result, we simply move the leading bit of the result to |
198 | // the left by 1. |
199 | leading_one <<= 1; |
200 | ++y_mant_width; |
201 | } |
202 | } |
203 | |
204 | StorageType y_new = leading_one; |
205 | StorageType r = static_cast<StorageType>(sum >> y_mant_width) - leading_one; |
206 | StorageType tail_bits = static_cast<StorageType>(sum) & (leading_one - 1); |
207 | |
208 | for (StorageType current_bit = leading_one >> 1; current_bit; |
209 | current_bit >>= 1) { |
210 | r = static_cast<StorageType>((r << 1)) + |
211 | ((tail_bits & current_bit) ? 1 : 0); |
212 | StorageType tmp = static_cast<StorageType>((y_new << 1)) + |
213 | current_bit; // 2*y_new(n - 1) + 2^(-n) |
214 | if (r >= tmp) { |
215 | r -= tmp; |
216 | y_new += current_bit; |
217 | } |
218 | } |
219 | |
220 | bool round_bit = y_new & StorageType(1); |
221 | bool lsb = y_new & StorageType(2); |
222 | |
223 | if (y_new >= ONE) { |
224 | y_new -= ONE; |
225 | |
226 | if (out_exp == 0) { |
227 | out_exp = 1; |
228 | } |
229 | } |
230 | |
231 | y_new >>= 1; |
232 | |
233 | // Round to the nearest, tie to even. |
234 | int round_mode = quick_get_round(); |
235 | switch (round_mode) { |
236 | case FE_TONEAREST: |
237 | // Round to nearest, ties to even |
238 | if (round_bit && (lsb || sticky_bits || (r != 0))) |
239 | ++y_new; |
240 | break; |
241 | case FE_UPWARD: |
242 | if (round_bit || sticky_bits || (r != 0)) |
243 | ++y_new; |
244 | break; |
245 | } |
246 | |
247 | if (y_new >= (ONE >> 1)) { |
248 | y_new -= ONE >> 1; |
249 | ++out_exp; |
250 | if (out_exp >= FPBits_t::MAX_BIASED_EXPONENT) { |
251 | if (round_mode == FE_TONEAREST || round_mode == FE_UPWARD) |
252 | return FPBits_t::inf().get_val(); |
253 | return FPBits_t::max_normal().get_val(); |
254 | } |
255 | } |
256 | |
257 | y_new |= static_cast<StorageType>(out_exp) << FPBits_t::FRACTION_LEN; |
258 | |
259 | if (!(round_bit || sticky_bits || (r != 0))) |
260 | fputil::clear_except_if_required(FE_INEXACT); |
261 | |
262 | return cpp::bit_cast<T>(y_new); |
263 | } |
264 | |
265 | } // namespace fputil |
266 | } // namespace LIBC_NAMESPACE_DECL |
267 | |
268 | #endif // LLVM_LIBC_SRC___SUPPORT_FPUTIL_HYPOT_H |
269 |
Warning: This file is not a C or C++ file. It does not have highlighting.