Warning: This file is not a C or C++ file. It does not have highlighting.
| 1 | //===-- Floating-point manipulation functions -------------------*- C++ -*-===// |
|---|---|
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #ifndef LLVM_LIBC_SRC___SUPPORT_FPUTIL_MANIPULATIONFUNCTIONS_H |
| 10 | #define LLVM_LIBC_SRC___SUPPORT_FPUTIL_MANIPULATIONFUNCTIONS_H |
| 11 | |
| 12 | #include "FPBits.h" |
| 13 | #include "NearestIntegerOperations.h" |
| 14 | #include "NormalFloat.h" |
| 15 | #include "cast.h" |
| 16 | #include "dyadic_float.h" |
| 17 | #include "rounding_mode.h" |
| 18 | |
| 19 | #include "hdr/math_macros.h" |
| 20 | #include "src/__support/CPP/bit.h" |
| 21 | #include "src/__support/CPP/limits.h" // INT_MAX, INT_MIN |
| 22 | #include "src/__support/CPP/type_traits.h" |
| 23 | #include "src/__support/FPUtil/FEnvImpl.h" |
| 24 | #include "src/__support/macros/attributes.h" |
| 25 | #include "src/__support/macros/config.h" |
| 26 | #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY |
| 27 | |
| 28 | namespace LIBC_NAMESPACE_DECL { |
| 29 | namespace fputil { |
| 30 | |
| 31 | template <typename T, cpp::enable_if_t<cpp::is_floating_point_v<T>, int> = 0> |
| 32 | LIBC_INLINE T frexp(T x, int &exp) { |
| 33 | FPBits<T> bits(x); |
| 34 | if (bits.is_inf_or_nan()) { |
| 35 | #ifdef LIBC_FREXP_INF_NAN_EXPONENT |
| 36 | // The value written back to the second parameter when calling |
| 37 | // frexp/frexpf/frexpl` with `+/-Inf`/`NaN` is unspecified in the standard. |
| 38 | // Set the exp value for Inf/NaN inputs explicitly to |
| 39 | // LIBC_FREXP_INF_NAN_EXPONENT if it is defined. |
| 40 | exp = LIBC_FREXP_INF_NAN_EXPONENT; |
| 41 | #endif // LIBC_FREXP_INF_NAN_EXPONENT |
| 42 | return x; |
| 43 | } |
| 44 | if (bits.is_zero()) { |
| 45 | exp = 0; |
| 46 | return x; |
| 47 | } |
| 48 | |
| 49 | NormalFloat<T> normal(bits); |
| 50 | exp = normal.exponent + 1; |
| 51 | normal.exponent = -1; |
| 52 | return normal; |
| 53 | } |
| 54 | |
| 55 | template <typename T, cpp::enable_if_t<cpp::is_floating_point_v<T>, int> = 0> |
| 56 | LIBC_INLINE T modf(T x, T &iptr) { |
| 57 | FPBits<T> bits(x); |
| 58 | if (bits.is_zero() || bits.is_nan()) { |
| 59 | iptr = x; |
| 60 | return x; |
| 61 | } else if (bits.is_inf()) { |
| 62 | iptr = x; |
| 63 | return FPBits<T>::zero(bits.sign()).get_val(); |
| 64 | } else { |
| 65 | iptr = trunc(x); |
| 66 | if (x == iptr) { |
| 67 | // If x is already an integer value, then return zero with the right |
| 68 | // sign. |
| 69 | return FPBits<T>::zero(bits.sign()).get_val(); |
| 70 | } else { |
| 71 | return x - iptr; |
| 72 | } |
| 73 | } |
| 74 | } |
| 75 | |
| 76 | template <typename T, cpp::enable_if_t<cpp::is_floating_point_v<T>, int> = 0> |
| 77 | LIBC_INLINE T copysign(T x, T y) { |
| 78 | FPBits<T> xbits(x); |
| 79 | xbits.set_sign(FPBits<T>(y).sign()); |
| 80 | return xbits.get_val(); |
| 81 | } |
| 82 | |
| 83 | template <typename T> struct IntLogbConstants; |
| 84 | |
| 85 | template <> struct IntLogbConstants<int> { |
| 86 | LIBC_INLINE_VAR static constexpr int FP_LOGB0 = FP_ILOGB0; |
| 87 | LIBC_INLINE_VAR static constexpr int FP_LOGBNAN = FP_ILOGBNAN; |
| 88 | LIBC_INLINE_VAR static constexpr int T_MAX = INT_MAX; |
| 89 | LIBC_INLINE_VAR static constexpr int T_MIN = INT_MIN; |
| 90 | }; |
| 91 | |
| 92 | template <> struct IntLogbConstants<long> { |
| 93 | LIBC_INLINE_VAR static constexpr long FP_LOGB0 = FP_ILOGB0; |
| 94 | LIBC_INLINE_VAR static constexpr long FP_LOGBNAN = FP_ILOGBNAN; |
| 95 | LIBC_INLINE_VAR static constexpr long T_MAX = LONG_MAX; |
| 96 | LIBC_INLINE_VAR static constexpr long T_MIN = LONG_MIN; |
| 97 | }; |
| 98 | |
| 99 | template <typename T, typename U> |
| 100 | LIBC_INLINE constexpr cpp::enable_if_t<cpp::is_floating_point_v<U>, T> |
| 101 | intlogb(U x) { |
| 102 | FPBits<U> bits(x); |
| 103 | if (LIBC_UNLIKELY(bits.is_zero() || bits.is_inf_or_nan())) { |
| 104 | set_errno_if_required(EDOM); |
| 105 | raise_except_if_required(FE_INVALID); |
| 106 | |
| 107 | if (bits.is_zero()) |
| 108 | return IntLogbConstants<T>::FP_LOGB0; |
| 109 | if (bits.is_nan()) |
| 110 | return IntLogbConstants<T>::FP_LOGBNAN; |
| 111 | // bits is inf. |
| 112 | return IntLogbConstants<T>::T_MAX; |
| 113 | } |
| 114 | |
| 115 | DyadicFloat<FPBits<U>::STORAGE_LEN> normal(bits.get_val()); |
| 116 | int exponent = normal.get_unbiased_exponent(); |
| 117 | // The C standard does not specify the return value when an exponent is |
| 118 | // out of int range. However, XSI conformance required that INT_MAX or |
| 119 | // INT_MIN are returned. |
| 120 | // NOTE: It is highly unlikely that exponent will be out of int range as |
| 121 | // the exponent is only 15 bits wide even for the 128-bit floating point |
| 122 | // format. |
| 123 | if (LIBC_UNLIKELY(exponent > IntLogbConstants<T>::T_MAX || |
| 124 | exponent < IntLogbConstants<T>::T_MIN)) { |
| 125 | set_errno_if_required(ERANGE); |
| 126 | raise_except_if_required(FE_INVALID); |
| 127 | return exponent > 0 ? IntLogbConstants<T>::T_MAX |
| 128 | : IntLogbConstants<T>::T_MIN; |
| 129 | } |
| 130 | |
| 131 | return static_cast<T>(exponent); |
| 132 | } |
| 133 | |
| 134 | template <typename T, cpp::enable_if_t<cpp::is_floating_point_v<T>, int> = 0> |
| 135 | LIBC_INLINE constexpr T logb(T x) { |
| 136 | FPBits<T> bits(x); |
| 137 | if (LIBC_UNLIKELY(bits.is_zero() || bits.is_inf_or_nan())) { |
| 138 | if (bits.is_nan()) |
| 139 | return x; |
| 140 | |
| 141 | raise_except_if_required(FE_DIVBYZERO); |
| 142 | |
| 143 | if (bits.is_zero()) { |
| 144 | set_errno_if_required(ERANGE); |
| 145 | return FPBits<T>::inf(Sign::NEG).get_val(); |
| 146 | } |
| 147 | // bits is inf. |
| 148 | return FPBits<T>::inf().get_val(); |
| 149 | } |
| 150 | |
| 151 | DyadicFloat<FPBits<T>::STORAGE_LEN> normal(bits.get_val()); |
| 152 | return static_cast<T>(normal.get_unbiased_exponent()); |
| 153 | } |
| 154 | |
| 155 | template <typename T, typename U> |
| 156 | LIBC_INLINE constexpr cpp::enable_if_t< |
| 157 | cpp::is_floating_point_v<T> && cpp::is_integral_v<U>, T> |
| 158 | ldexp(T x, U exp) { |
| 159 | FPBits<T> bits(x); |
| 160 | if (LIBC_UNLIKELY((exp == 0) || bits.is_zero() || bits.is_inf_or_nan())) |
| 161 | return x; |
| 162 | |
| 163 | // NormalFloat uses int32_t to store the true exponent value. We should ensure |
| 164 | // that adding |exp| to it does not lead to integer rollover. But, if |exp| |
| 165 | // value is larger the exponent range for type T, then we can return infinity |
| 166 | // early. Because the result of the ldexp operation can be a subnormal number, |
| 167 | // we need to accommodate the (mantissaWidth + 1) worth of shift in |
| 168 | // calculating the limit. |
| 169 | constexpr int EXP_LIMIT = |
| 170 | FPBits<T>::MAX_BIASED_EXPONENT + FPBits<T>::FRACTION_LEN + 1; |
| 171 | // Make sure that we can safely cast exp to int when not returning early. |
| 172 | static_assert(EXP_LIMIT <= INT_MAX && -EXP_LIMIT >= INT_MIN); |
| 173 | if (LIBC_UNLIKELY(exp > EXP_LIMIT)) { |
| 174 | int rounding_mode = quick_get_round(); |
| 175 | Sign sign = bits.sign(); |
| 176 | |
| 177 | if ((sign == Sign::POS && rounding_mode == FE_DOWNWARD) || |
| 178 | (sign == Sign::NEG && rounding_mode == FE_UPWARD) || |
| 179 | (rounding_mode == FE_TOWARDZERO)) |
| 180 | return FPBits<T>::max_normal(sign).get_val(); |
| 181 | |
| 182 | set_errno_if_required(ERANGE); |
| 183 | raise_except_if_required(FE_OVERFLOW); |
| 184 | return FPBits<T>::inf(sign).get_val(); |
| 185 | } |
| 186 | |
| 187 | // Similarly on the negative side we return zero early if |exp| is too small. |
| 188 | if (LIBC_UNLIKELY(exp < -EXP_LIMIT)) { |
| 189 | int rounding_mode = quick_get_round(); |
| 190 | Sign sign = bits.sign(); |
| 191 | |
| 192 | if ((sign == Sign::POS && rounding_mode == FE_UPWARD) || |
| 193 | (sign == Sign::NEG && rounding_mode == FE_DOWNWARD)) |
| 194 | return FPBits<T>::min_subnormal(sign).get_val(); |
| 195 | |
| 196 | set_errno_if_required(ERANGE); |
| 197 | raise_except_if_required(FE_UNDERFLOW); |
| 198 | return FPBits<T>::zero(sign).get_val(); |
| 199 | } |
| 200 | |
| 201 | // For all other values, NormalFloat to T conversion handles it the right way. |
| 202 | DyadicFloat<FPBits<T>::STORAGE_LEN> normal(bits.get_val()); |
| 203 | normal.exponent += static_cast<int>(exp); |
| 204 | // TODO: Add tests for exceptions. |
| 205 | return normal.template as<T, /*ShouldRaiseExceptions=*/true>(); |
| 206 | } |
| 207 | |
| 208 | template <typename T, typename U, |
| 209 | cpp::enable_if_t<cpp::is_floating_point_v<T> && |
| 210 | cpp::is_floating_point_v<U> && |
| 211 | (sizeof(T) <= sizeof(U)), |
| 212 | int> = 0> |
| 213 | LIBC_INLINE T nextafter(T from, U to) { |
| 214 | FPBits<T> from_bits(from); |
| 215 | if (from_bits.is_nan()) |
| 216 | return from; |
| 217 | |
| 218 | FPBits<U> to_bits(to); |
| 219 | if (to_bits.is_nan()) |
| 220 | return cast<T>(to); |
| 221 | |
| 222 | // NOTE: This would work only if `U` has a greater or equal precision than |
| 223 | // `T`. Otherwise `from` could loose its precision and the following statement |
| 224 | // could incorrectly evaluate to `true`. |
| 225 | if (cast<U>(from) == to) |
| 226 | return cast<T>(to); |
| 227 | |
| 228 | using StorageType = typename FPBits<T>::StorageType; |
| 229 | if (from != T(0)) { |
| 230 | if ((cast<U>(from) < to) == (from > T(0))) { |
| 231 | from_bits = FPBits<T>(StorageType(from_bits.uintval() + 1)); |
| 232 | } else { |
| 233 | from_bits = FPBits<T>(StorageType(from_bits.uintval() - 1)); |
| 234 | } |
| 235 | } else { |
| 236 | from_bits = FPBits<T>::min_subnormal(to_bits.sign()); |
| 237 | } |
| 238 | |
| 239 | if (from_bits.is_subnormal()) |
| 240 | raise_except_if_required(FE_UNDERFLOW | FE_INEXACT); |
| 241 | else if (from_bits.is_inf()) |
| 242 | raise_except_if_required(FE_OVERFLOW | FE_INEXACT); |
| 243 | |
| 244 | return from_bits.get_val(); |
| 245 | } |
| 246 | |
| 247 | template <bool IsDown, typename T, |
| 248 | cpp::enable_if_t<cpp::is_floating_point_v<T>, int> = 0> |
| 249 | LIBC_INLINE constexpr T nextupdown(T x) { |
| 250 | constexpr Sign sign = IsDown ? Sign::NEG : Sign::POS; |
| 251 | |
| 252 | FPBits<T> xbits(x); |
| 253 | if (xbits.is_nan() || xbits == FPBits<T>::max_normal(sign) || |
| 254 | xbits == FPBits<T>::inf(sign)) |
| 255 | return x; |
| 256 | |
| 257 | using StorageType = typename FPBits<T>::StorageType; |
| 258 | if (x != T(0)) { |
| 259 | if (xbits.sign() == sign) { |
| 260 | xbits = FPBits<T>(StorageType(xbits.uintval() + 1)); |
| 261 | } else { |
| 262 | xbits = FPBits<T>(StorageType(xbits.uintval() - 1)); |
| 263 | } |
| 264 | } else { |
| 265 | xbits = FPBits<T>::min_subnormal(sign); |
| 266 | } |
| 267 | |
| 268 | return xbits.get_val(); |
| 269 | } |
| 270 | |
| 271 | } // namespace fputil |
| 272 | } // namespace LIBC_NAMESPACE_DECL |
| 273 | |
| 274 | #ifdef LIBC_TYPES_LONG_DOUBLE_IS_X86_FLOAT80 |
| 275 | #include "x86_64/NextAfterLongDouble.h" |
| 276 | #include "x86_64/NextUpDownLongDouble.h" |
| 277 | #endif // LIBC_TYPES_LONG_DOUBLE_IS_X86_FLOAT80 |
| 278 | |
| 279 | #endif // LLVM_LIBC_SRC___SUPPORT_FPUTIL_MANIPULATIONFUNCTIONS_H |
| 280 |
Warning: This file is not a C or C++ file. It does not have highlighting.
