Warning: This file is not a C or C++ file. It does not have highlighting.
| 1 | //===-- A class to store a normalized floating point number -----*- C++ -*-===// |
|---|---|
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #ifndef LLVM_LIBC_SRC___SUPPORT_FPUTIL_NORMALFLOAT_H |
| 10 | #define LLVM_LIBC_SRC___SUPPORT_FPUTIL_NORMALFLOAT_H |
| 11 | |
| 12 | #include "FPBits.h" |
| 13 | |
| 14 | #include "src/__support/CPP/type_traits.h" |
| 15 | #include "src/__support/common.h" |
| 16 | #include "src/__support/macros/config.h" |
| 17 | |
| 18 | #include <stdint.h> |
| 19 | |
| 20 | namespace LIBC_NAMESPACE_DECL { |
| 21 | namespace fputil { |
| 22 | |
| 23 | // A class which stores the normalized form of a floating point value. |
| 24 | // The special IEEE-754 bits patterns of Zero, infinity and NaNs are |
| 25 | // are not handled by this class. |
| 26 | // |
| 27 | // A normalized floating point number is of this form: |
| 28 | // (-1)*sign * 2^exponent * <mantissa> |
| 29 | // where <mantissa> is of the form 1.<...>. |
| 30 | template <typename T> struct NormalFloat { |
| 31 | static_assert( |
| 32 | cpp::is_floating_point_v<T>, |
| 33 | "NormalFloat template parameter has to be a floating point type."); |
| 34 | |
| 35 | using StorageType = typename FPBits<T>::StorageType; |
| 36 | static constexpr StorageType ONE = |
| 37 | (StorageType(1) << FPBits<T>::FRACTION_LEN); |
| 38 | |
| 39 | // Unbiased exponent value. |
| 40 | int32_t exponent; |
| 41 | |
| 42 | StorageType mantissa; |
| 43 | // We want |StorageType| to have atleast one bit more than the actual mantissa |
| 44 | // bit width to accommodate the implicit 1 value. |
| 45 | static_assert(sizeof(StorageType) * 8 >= FPBits<T>::FRACTION_LEN + 1, |
| 46 | "Bad type for mantissa in NormalFloat."); |
| 47 | |
| 48 | Sign sign = Sign::POS; |
| 49 | |
| 50 | LIBC_INLINE NormalFloat(Sign s, int32_t e, StorageType m) |
| 51 | : exponent(e), mantissa(m), sign(s) { |
| 52 | if (mantissa >= ONE) |
| 53 | return; |
| 54 | |
| 55 | unsigned normalization_shift = evaluate_normalization_shift(mantissa); |
| 56 | mantissa <<= normalization_shift; |
| 57 | exponent -= normalization_shift; |
| 58 | } |
| 59 | |
| 60 | LIBC_INLINE explicit NormalFloat(T x) { init_from_bits(FPBits<T>(x)); } |
| 61 | |
| 62 | LIBC_INLINE explicit NormalFloat(FPBits<T> bits) { init_from_bits(bits); } |
| 63 | |
| 64 | // Compares this normalized number with another normalized number. |
| 65 | // Returns -1 is this number is less than |other|, 0 if this number is equal |
| 66 | // to |other|, and 1 if this number is greater than |other|. |
| 67 | LIBC_INLINE int cmp(const NormalFloat<T> &other) const { |
| 68 | const int result = sign.is_neg() ? -1 : 1; |
| 69 | if (sign != other.sign) |
| 70 | return result; |
| 71 | |
| 72 | if (exponent > other.exponent) { |
| 73 | return result; |
| 74 | } else if (exponent == other.exponent) { |
| 75 | if (mantissa > other.mantissa) |
| 76 | return result; |
| 77 | else if (mantissa == other.mantissa) |
| 78 | return 0; |
| 79 | else |
| 80 | return -result; |
| 81 | } else { |
| 82 | return -result; |
| 83 | } |
| 84 | } |
| 85 | |
| 86 | // Returns a new normalized floating point number which is equal in value |
| 87 | // to this number multiplied by 2^e. That is: |
| 88 | // new = this * 2^e |
| 89 | LIBC_INLINE NormalFloat<T> mul2(int e) const { |
| 90 | NormalFloat<T> result = *this; |
| 91 | result.exponent += e; |
| 92 | return result; |
| 93 | } |
| 94 | |
| 95 | LIBC_INLINE operator T() const { |
| 96 | int biased_exponent = exponent + FPBits<T>::EXP_BIAS; |
| 97 | // Max exponent is of the form 0xFF...E. That is why -2 and not -1. |
| 98 | constexpr int MAX_EXPONENT_VALUE = (1 << FPBits<T>::EXP_LEN) - 2; |
| 99 | if (biased_exponent > MAX_EXPONENT_VALUE) { |
| 100 | return FPBits<T>::inf(sign).get_val(); |
| 101 | } |
| 102 | |
| 103 | FPBits<T> result(T(0.0)); |
| 104 | result.set_sign(sign); |
| 105 | |
| 106 | constexpr int SUBNORMAL_EXPONENT = -FPBits<T>::EXP_BIAS + 1; |
| 107 | if (exponent < SUBNORMAL_EXPONENT) { |
| 108 | unsigned shift = static_cast<unsigned>(SUBNORMAL_EXPONENT - exponent); |
| 109 | // Since exponent > subnormalExponent, shift is strictly greater than |
| 110 | // zero. |
| 111 | if (shift <= FPBits<T>::FRACTION_LEN + 1) { |
| 112 | // Generate a subnormal number. Might lead to loss of precision. |
| 113 | // We round to nearest and round halfway cases to even. |
| 114 | const StorageType shift_out_mask = |
| 115 | static_cast<StorageType>(StorageType(1) << shift) - 1; |
| 116 | const StorageType shift_out_value = mantissa & shift_out_mask; |
| 117 | const StorageType halfway_value = |
| 118 | static_cast<StorageType>(StorageType(1) << (shift - 1)); |
| 119 | result.set_biased_exponent(0); |
| 120 | result.set_mantissa(mantissa >> shift); |
| 121 | StorageType new_mantissa = result.get_mantissa(); |
| 122 | if (shift_out_value > halfway_value) { |
| 123 | new_mantissa += 1; |
| 124 | } else if (shift_out_value == halfway_value) { |
| 125 | // Round to even. |
| 126 | if (result.get_mantissa() & 0x1) |
| 127 | new_mantissa += 1; |
| 128 | } |
| 129 | result.set_mantissa(new_mantissa); |
| 130 | // Adding 1 to mantissa can lead to overflow. This can only happen if |
| 131 | // mantissa was all ones (0b111..11). For such a case, we will carry |
| 132 | // the overflow into the exponent. |
| 133 | if (new_mantissa == ONE) |
| 134 | result.set_biased_exponent(1); |
| 135 | return result.get_val(); |
| 136 | } else { |
| 137 | return result.get_val(); |
| 138 | } |
| 139 | } |
| 140 | |
| 141 | result.set_biased_exponent( |
| 142 | static_cast<StorageType>(exponent + FPBits<T>::EXP_BIAS)); |
| 143 | result.set_mantissa(mantissa); |
| 144 | return result.get_val(); |
| 145 | } |
| 146 | |
| 147 | private: |
| 148 | LIBC_INLINE void init_from_bits(FPBits<T> bits) { |
| 149 | sign = bits.sign(); |
| 150 | |
| 151 | if (bits.is_inf_or_nan() || bits.is_zero()) { |
| 152 | // Ignore special bit patterns. Implementations deal with them separately |
| 153 | // anyway so this should not be a problem. |
| 154 | exponent = 0; |
| 155 | mantissa = 0; |
| 156 | return; |
| 157 | } |
| 158 | |
| 159 | // Normalize subnormal numbers. |
| 160 | if (bits.is_subnormal()) { |
| 161 | unsigned shift = evaluate_normalization_shift(bits.get_mantissa()); |
| 162 | mantissa = static_cast<StorageType>(bits.get_mantissa() << shift); |
| 163 | exponent = 1 - FPBits<T>::EXP_BIAS - static_cast<int32_t>(shift); |
| 164 | } else { |
| 165 | exponent = bits.get_biased_exponent() - FPBits<T>::EXP_BIAS; |
| 166 | mantissa = ONE | bits.get_mantissa(); |
| 167 | } |
| 168 | } |
| 169 | |
| 170 | LIBC_INLINE unsigned evaluate_normalization_shift(StorageType m) { |
| 171 | unsigned shift = 0; |
| 172 | for (; (ONE & m) == 0 && (shift < FPBits<T>::FRACTION_LEN); |
| 173 | m <<= 1, ++shift) |
| 174 | ; |
| 175 | return shift; |
| 176 | } |
| 177 | }; |
| 178 | |
| 179 | #ifdef LIBC_TYPES_LONG_DOUBLE_IS_X86_FLOAT80 |
| 180 | template <> |
| 181 | LIBC_INLINE void |
| 182 | NormalFloat<long double>::init_from_bits(FPBits<long double> bits) { |
| 183 | sign = bits.sign(); |
| 184 | |
| 185 | if (bits.is_inf_or_nan() || bits.is_zero()) { |
| 186 | // Ignore special bit patterns. Implementations deal with them separately |
| 187 | // anyway so this should not be a problem. |
| 188 | exponent = 0; |
| 189 | mantissa = 0; |
| 190 | return; |
| 191 | } |
| 192 | |
| 193 | if (bits.is_subnormal()) { |
| 194 | if (bits.get_implicit_bit() == 0) { |
| 195 | // Since we ignore zero value, the mantissa in this case is non-zero. |
| 196 | int normalization_shift = |
| 197 | evaluate_normalization_shift(bits.get_mantissa()); |
| 198 | exponent = -16382 - normalization_shift; |
| 199 | mantissa = (bits.get_mantissa() << normalization_shift); |
| 200 | } else { |
| 201 | exponent = -16382; |
| 202 | mantissa = ONE | bits.get_mantissa(); |
| 203 | } |
| 204 | } else { |
| 205 | if (bits.get_implicit_bit() == 0) { |
| 206 | // Invalid number so just store 0 similar to a NaN. |
| 207 | exponent = 0; |
| 208 | mantissa = 0; |
| 209 | } else { |
| 210 | exponent = bits.get_biased_exponent() - 16383; |
| 211 | mantissa = ONE | bits.get_mantissa(); |
| 212 | } |
| 213 | } |
| 214 | } |
| 215 | |
| 216 | template <> LIBC_INLINE NormalFloat<long double>::operator long double() const { |
| 217 | using LDBits = FPBits<long double>; |
| 218 | int biased_exponent = exponent + LDBits::EXP_BIAS; |
| 219 | // Max exponent is of the form 0xFF...E. That is why -2 and not -1. |
| 220 | constexpr int MAX_EXPONENT_VALUE = (1 << LDBits::EXP_LEN) - 2; |
| 221 | if (biased_exponent > MAX_EXPONENT_VALUE) { |
| 222 | return LDBits::inf(sign).get_val(); |
| 223 | } |
| 224 | |
| 225 | FPBits<long double> result(0.0l); |
| 226 | result.set_sign(sign); |
| 227 | |
| 228 | constexpr int SUBNORMAL_EXPONENT = -LDBits::EXP_BIAS + 1; |
| 229 | if (exponent < SUBNORMAL_EXPONENT) { |
| 230 | unsigned shift = SUBNORMAL_EXPONENT - exponent; |
| 231 | if (shift <= LDBits::FRACTION_LEN + 1) { |
| 232 | // Generate a subnormal number. Might lead to loss of precision. |
| 233 | // We round to nearest and round halfway cases to even. |
| 234 | const StorageType shift_out_mask = (StorageType(1) << shift) - 1; |
| 235 | const StorageType shift_out_value = mantissa & shift_out_mask; |
| 236 | const StorageType halfway_value = StorageType(1) << (shift - 1); |
| 237 | result.set_biased_exponent(0); |
| 238 | result.set_mantissa(mantissa >> shift); |
| 239 | StorageType new_mantissa = result.get_mantissa(); |
| 240 | if (shift_out_value > halfway_value) { |
| 241 | new_mantissa += 1; |
| 242 | } else if (shift_out_value == halfway_value) { |
| 243 | // Round to even. |
| 244 | if (result.get_mantissa() & 0x1) |
| 245 | new_mantissa += 1; |
| 246 | } |
| 247 | result.set_mantissa(new_mantissa); |
| 248 | // Adding 1 to mantissa can lead to overflow. This can only happen if |
| 249 | // mantissa was all ones (0b111..11). For such a case, we will carry |
| 250 | // the overflow into the exponent and set the implicit bit to 1. |
| 251 | if (new_mantissa == ONE) { |
| 252 | result.set_biased_exponent(1); |
| 253 | result.set_implicit_bit(1); |
| 254 | } else { |
| 255 | result.set_implicit_bit(0); |
| 256 | } |
| 257 | return result.get_val(); |
| 258 | } else { |
| 259 | return result.get_val(); |
| 260 | } |
| 261 | } |
| 262 | |
| 263 | result.set_biased_exponent(biased_exponent); |
| 264 | result.set_mantissa(mantissa); |
| 265 | result.set_implicit_bit(1); |
| 266 | return result.get_val(); |
| 267 | } |
| 268 | #endif // LIBC_TYPES_LONG_DOUBLE_IS_X86_FLOAT80 |
| 269 | |
| 270 | } // namespace fputil |
| 271 | } // namespace LIBC_NAMESPACE_DECL |
| 272 | |
| 273 | #endif // LLVM_LIBC_SRC___SUPPORT_FPUTIL_NORMALFLOAT_H |
| 274 |
Warning: This file is not a C or C++ file. It does not have highlighting.
