Warning: This file is not a C or C++ file. It does not have highlighting.
| 1 | //===-- A class to store high precision floating point numbers --*- C++ -*-===// |
|---|---|
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #ifndef LLVM_LIBC_SRC___SUPPORT_FPUTIL_DYADIC_FLOAT_H |
| 10 | #define LLVM_LIBC_SRC___SUPPORT_FPUTIL_DYADIC_FLOAT_H |
| 11 | |
| 12 | #include "FEnvImpl.h" |
| 13 | #include "FPBits.h" |
| 14 | #include "hdr/errno_macros.h" |
| 15 | #include "hdr/fenv_macros.h" |
| 16 | #include "multiply_add.h" |
| 17 | #include "rounding_mode.h" |
| 18 | #include "src/__support/CPP/type_traits.h" |
| 19 | #include "src/__support/big_int.h" |
| 20 | #include "src/__support/macros/config.h" |
| 21 | #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY |
| 22 | #include "src/__support/macros/properties/types.h" |
| 23 | |
| 24 | #include <stddef.h> |
| 25 | |
| 26 | namespace LIBC_NAMESPACE_DECL { |
| 27 | namespace fputil { |
| 28 | |
| 29 | // Decide whether to round a UInt up, down or not at all at a given bit |
| 30 | // position, based on the current rounding mode. The assumption is that the |
| 31 | // caller is going to make the integer `value >> rshift`, and then might need |
| 32 | // to round it up by 1 depending on the value of the bits shifted off the |
| 33 | // bottom. |
| 34 | // |
| 35 | // `logical_sign` causes the behavior of FE_DOWNWARD and FE_UPWARD to |
| 36 | // be reversed, which is what you'd want if this is the mantissa of a |
| 37 | // negative floating-point number. |
| 38 | // |
| 39 | // Return value is +1 if the value should be rounded up; -1 if it should be |
| 40 | // rounded down; 0 if it's exact and needs no rounding. |
| 41 | template <size_t Bits> |
| 42 | LIBC_INLINE constexpr int |
| 43 | rounding_direction(const LIBC_NAMESPACE::UInt<Bits> &value, size_t rshift, |
| 44 | Sign logical_sign) { |
| 45 | if (rshift == 0 || (rshift < Bits && (value << (Bits - rshift)) == 0) || |
| 46 | (rshift >= Bits && value == 0)) |
| 47 | return 0; // exact |
| 48 | |
| 49 | switch (quick_get_round()) { |
| 50 | case FE_TONEAREST: |
| 51 | if (rshift > 0 && rshift <= Bits && value.get_bit(rshift - 1)) { |
| 52 | // We round up, unless the value is an exact halfway case and |
| 53 | // the bit that will end up in the units place is 0, in which |
| 54 | // case tie-break-to-even says round down. |
| 55 | bool round_bit = rshift < Bits ? value.get_bit(rshift) : 0; |
| 56 | return round_bit != 0 || (value << (Bits - rshift + 1)) != 0 ? +1 : -1; |
| 57 | } else { |
| 58 | return -1; |
| 59 | } |
| 60 | case FE_TOWARDZERO: |
| 61 | return -1; |
| 62 | case FE_DOWNWARD: |
| 63 | return logical_sign.is_neg() && |
| 64 | (rshift < Bits && (value << (Bits - rshift)) != 0) |
| 65 | ? +1 |
| 66 | : -1; |
| 67 | case FE_UPWARD: |
| 68 | return logical_sign.is_pos() && |
| 69 | (rshift < Bits && (value << (Bits - rshift)) != 0) |
| 70 | ? +1 |
| 71 | : -1; |
| 72 | default: |
| 73 | __builtin_unreachable(); |
| 74 | } |
| 75 | } |
| 76 | |
| 77 | // A generic class to perform computations of high precision floating points. |
| 78 | // We store the value in dyadic format, including 3 fields: |
| 79 | // sign : boolean value - false means positive, true means negative |
| 80 | // exponent: the exponent value of the least significant bit of the mantissa. |
| 81 | // mantissa: unsigned integer of length `Bits`. |
| 82 | // So the real value that is stored is: |
| 83 | // real value = (-1)^sign * 2^exponent * (mantissa as unsigned integer) |
| 84 | // The stored data is normal if for non-zero mantissa, the leading bit is 1. |
| 85 | // The outputs of the constructors and most functions will be normalized. |
| 86 | // To simplify and improve the efficiency, many functions will assume that the |
| 87 | // inputs are normal. |
| 88 | template <size_t Bits> struct DyadicFloat { |
| 89 | using MantissaType = LIBC_NAMESPACE::UInt<Bits>; |
| 90 | |
| 91 | Sign sign = Sign::POS; |
| 92 | int exponent = 0; |
| 93 | MantissaType mantissa = MantissaType(0); |
| 94 | |
| 95 | LIBC_INLINE constexpr DyadicFloat() = default; |
| 96 | |
| 97 | template <typename T, cpp::enable_if_t<cpp::is_floating_point_v<T>, int> = 0> |
| 98 | LIBC_INLINE constexpr DyadicFloat(T x) { |
| 99 | static_assert(FPBits<T>::FRACTION_LEN < Bits); |
| 100 | FPBits<T> x_bits(x); |
| 101 | sign = x_bits.sign(); |
| 102 | exponent = x_bits.get_explicit_exponent() - FPBits<T>::FRACTION_LEN; |
| 103 | mantissa = MantissaType(x_bits.get_explicit_mantissa()); |
| 104 | normalize(); |
| 105 | } |
| 106 | |
| 107 | LIBC_INLINE constexpr DyadicFloat(Sign s, int e, const MantissaType &m) |
| 108 | : sign(s), exponent(e), mantissa(m) { |
| 109 | normalize(); |
| 110 | } |
| 111 | |
| 112 | // Normalizing the mantissa, bringing the leading 1 bit to the most |
| 113 | // significant bit. |
| 114 | LIBC_INLINE constexpr DyadicFloat &normalize() { |
| 115 | if (!mantissa.is_zero()) { |
| 116 | int shift_length = cpp::countl_zero(mantissa); |
| 117 | exponent -= shift_length; |
| 118 | mantissa <<= static_cast<size_t>(shift_length); |
| 119 | } |
| 120 | return *this; |
| 121 | } |
| 122 | |
| 123 | // Used for aligning exponents. Output might not be normalized. |
| 124 | LIBC_INLINE constexpr DyadicFloat &shift_left(unsigned shift_length) { |
| 125 | if (shift_length < Bits) { |
| 126 | exponent -= static_cast<int>(shift_length); |
| 127 | mantissa <<= shift_length; |
| 128 | } else { |
| 129 | exponent = 0; |
| 130 | mantissa = MantissaType(0); |
| 131 | } |
| 132 | return *this; |
| 133 | } |
| 134 | |
| 135 | // Used for aligning exponents. Output might not be normalized. |
| 136 | LIBC_INLINE constexpr DyadicFloat &shift_right(unsigned shift_length) { |
| 137 | if (shift_length < Bits) { |
| 138 | exponent += static_cast<int>(shift_length); |
| 139 | mantissa >>= shift_length; |
| 140 | } else { |
| 141 | exponent = 0; |
| 142 | mantissa = MantissaType(0); |
| 143 | } |
| 144 | return *this; |
| 145 | } |
| 146 | |
| 147 | // Assume that it is already normalized. Output the unbiased exponent. |
| 148 | LIBC_INLINE constexpr int get_unbiased_exponent() const { |
| 149 | return exponent + (Bits - 1); |
| 150 | } |
| 151 | |
| 152 | // Produce a correctly rounded DyadicFloat from a too-large mantissa, |
| 153 | // by shifting it down and rounding if necessary. |
| 154 | template <size_t MantissaBits> |
| 155 | LIBC_INLINE constexpr static DyadicFloat<Bits> |
| 156 | round(Sign result_sign, int result_exponent, |
| 157 | const LIBC_NAMESPACE::UInt<MantissaBits> &input_mantissa, |
| 158 | size_t rshift) { |
| 159 | MantissaType result_mantissa(input_mantissa >> rshift); |
| 160 | if (rounding_direction(input_mantissa, rshift, result_sign) > 0) { |
| 161 | ++result_mantissa; |
| 162 | if (result_mantissa == 0) { |
| 163 | // Rounding up made the mantissa integer wrap round to 0, |
| 164 | // carrying a bit off the top. So we've rounded up to the next |
| 165 | // exponent. |
| 166 | result_mantissa.set_bit(Bits - 1); |
| 167 | ++result_exponent; |
| 168 | } |
| 169 | } |
| 170 | return DyadicFloat(result_sign, result_exponent, result_mantissa); |
| 171 | } |
| 172 | |
| 173 | #ifdef LIBC_TYPES_HAS_FLOAT16 |
| 174 | template <typename T, bool ShouldSignalExceptions> |
| 175 | LIBC_INLINE constexpr cpp::enable_if_t< |
| 176 | cpp::is_floating_point_v<T> && (FPBits<T>::FRACTION_LEN < Bits), T> |
| 177 | generic_as() const { |
| 178 | using FPBits = FPBits<T>; |
| 179 | using StorageType = typename FPBits::StorageType; |
| 180 | |
| 181 | constexpr int EXTRA_FRACTION_LEN = Bits - 1 - FPBits::FRACTION_LEN; |
| 182 | |
| 183 | if (mantissa == 0) |
| 184 | return FPBits::zero(sign).get_val(); |
| 185 | |
| 186 | int unbiased_exp = get_unbiased_exponent(); |
| 187 | |
| 188 | if (unbiased_exp + FPBits::EXP_BIAS >= FPBits::MAX_BIASED_EXPONENT) { |
| 189 | if constexpr (ShouldSignalExceptions) { |
| 190 | set_errno_if_required(ERANGE); |
| 191 | raise_except_if_required(FE_OVERFLOW | FE_INEXACT); |
| 192 | } |
| 193 | |
| 194 | switch (quick_get_round()) { |
| 195 | case FE_TONEAREST: |
| 196 | return FPBits::inf(sign).get_val(); |
| 197 | case FE_TOWARDZERO: |
| 198 | return FPBits::max_normal(sign).get_val(); |
| 199 | case FE_DOWNWARD: |
| 200 | if (sign.is_pos()) |
| 201 | return FPBits::max_normal(Sign::POS).get_val(); |
| 202 | return FPBits::inf(Sign::NEG).get_val(); |
| 203 | case FE_UPWARD: |
| 204 | if (sign.is_neg()) |
| 205 | return FPBits::max_normal(Sign::NEG).get_val(); |
| 206 | return FPBits::inf(Sign::POS).get_val(); |
| 207 | default: |
| 208 | __builtin_unreachable(); |
| 209 | } |
| 210 | } |
| 211 | |
| 212 | StorageType out_biased_exp = 0; |
| 213 | StorageType out_mantissa = 0; |
| 214 | bool round = false; |
| 215 | bool sticky = false; |
| 216 | bool underflow = false; |
| 217 | |
| 218 | if (unbiased_exp < -FPBits::EXP_BIAS - FPBits::FRACTION_LEN) { |
| 219 | sticky = true; |
| 220 | underflow = true; |
| 221 | } else if (unbiased_exp == -FPBits::EXP_BIAS - FPBits::FRACTION_LEN) { |
| 222 | round = true; |
| 223 | MantissaType sticky_mask = (MantissaType(1) << (Bits - 1)) - 1; |
| 224 | sticky = (mantissa & sticky_mask) != 0; |
| 225 | } else { |
| 226 | int extra_fraction_len = EXTRA_FRACTION_LEN; |
| 227 | |
| 228 | if (unbiased_exp < 1 - FPBits::EXP_BIAS) { |
| 229 | underflow = true; |
| 230 | extra_fraction_len += 1 - FPBits::EXP_BIAS - unbiased_exp; |
| 231 | } else { |
| 232 | out_biased_exp = |
| 233 | static_cast<StorageType>(unbiased_exp + FPBits::EXP_BIAS); |
| 234 | } |
| 235 | |
| 236 | MantissaType round_mask = MantissaType(1) << (extra_fraction_len - 1); |
| 237 | round = (mantissa & round_mask) != 0; |
| 238 | MantissaType sticky_mask = round_mask - 1; |
| 239 | sticky = (mantissa & sticky_mask) != 0; |
| 240 | |
| 241 | out_mantissa = static_cast<StorageType>(mantissa >> extra_fraction_len); |
| 242 | } |
| 243 | |
| 244 | bool lsb = (out_mantissa & 1) != 0; |
| 245 | |
| 246 | StorageType result = |
| 247 | FPBits::create_value(sign, out_biased_exp, out_mantissa).uintval(); |
| 248 | |
| 249 | switch (quick_get_round()) { |
| 250 | case FE_TONEAREST: |
| 251 | if (round && (lsb || sticky)) |
| 252 | ++result; |
| 253 | break; |
| 254 | case FE_DOWNWARD: |
| 255 | if (sign.is_neg() && (round || sticky)) |
| 256 | ++result; |
| 257 | break; |
| 258 | case FE_UPWARD: |
| 259 | if (sign.is_pos() && (round || sticky)) |
| 260 | ++result; |
| 261 | break; |
| 262 | default: |
| 263 | break; |
| 264 | } |
| 265 | |
| 266 | if (ShouldSignalExceptions && (round || sticky)) { |
| 267 | int excepts = FE_INEXACT; |
| 268 | if (FPBits(result).is_inf()) { |
| 269 | set_errno_if_required(ERANGE); |
| 270 | excepts |= FE_OVERFLOW; |
| 271 | } else if (underflow) { |
| 272 | set_errno_if_required(ERANGE); |
| 273 | excepts |= FE_UNDERFLOW; |
| 274 | } |
| 275 | raise_except_if_required(excepts); |
| 276 | } |
| 277 | |
| 278 | return FPBits(result).get_val(); |
| 279 | } |
| 280 | #endif // LIBC_TYPES_HAS_FLOAT16 |
| 281 | |
| 282 | template <typename T, bool ShouldSignalExceptions, |
| 283 | typename = cpp::enable_if_t<cpp::is_floating_point_v<T> && |
| 284 | (FPBits<T>::FRACTION_LEN < Bits), |
| 285 | void>> |
| 286 | LIBC_INLINE constexpr T fast_as() const { |
| 287 | if (LIBC_UNLIKELY(mantissa.is_zero())) |
| 288 | return FPBits<T>::zero(sign).get_val(); |
| 289 | |
| 290 | // Assume that it is normalized, and output is also normal. |
| 291 | constexpr uint32_t PRECISION = FPBits<T>::FRACTION_LEN + 1; |
| 292 | using output_bits_t = typename FPBits<T>::StorageType; |
| 293 | constexpr output_bits_t IMPLICIT_MASK = |
| 294 | FPBits<T>::SIG_MASK - FPBits<T>::FRACTION_MASK; |
| 295 | |
| 296 | int exp_hi = exponent + static_cast<int>((Bits - 1) + FPBits<T>::EXP_BIAS); |
| 297 | |
| 298 | if (LIBC_UNLIKELY(exp_hi > 2 * FPBits<T>::EXP_BIAS)) { |
| 299 | // Results overflow. |
| 300 | T d_hi = |
| 301 | FPBits<T>::create_value(sign, 2 * FPBits<T>::EXP_BIAS, IMPLICIT_MASK) |
| 302 | .get_val(); |
| 303 | // volatile prevents constant propagation that would result in infinity |
| 304 | // always being returned no matter the current rounding mode. |
| 305 | volatile T two = static_cast<T>(2.0); |
| 306 | T r = two * d_hi; |
| 307 | |
| 308 | // TODO: Whether rounding down the absolute value to max_normal should |
| 309 | // also raise FE_OVERFLOW and set ERANGE is debatable. |
| 310 | if (ShouldSignalExceptions && FPBits<T>(r).is_inf()) |
| 311 | set_errno_if_required(ERANGE); |
| 312 | |
| 313 | return r; |
| 314 | } |
| 315 | |
| 316 | bool denorm = false; |
| 317 | uint32_t shift = Bits - PRECISION; |
| 318 | if (LIBC_UNLIKELY(exp_hi <= 0)) { |
| 319 | // Output is denormal. |
| 320 | denorm = true; |
| 321 | shift = (Bits - PRECISION) + static_cast<uint32_t>(1 - exp_hi); |
| 322 | |
| 323 | exp_hi = FPBits<T>::EXP_BIAS; |
| 324 | } |
| 325 | |
| 326 | int exp_lo = exp_hi - static_cast<int>(PRECISION) - 1; |
| 327 | |
| 328 | MantissaType m_hi = |
| 329 | shift >= MantissaType::BITS ? MantissaType(0) : mantissa >> shift; |
| 330 | |
| 331 | T d_hi = FPBits<T>::create_value( |
| 332 | sign, static_cast<output_bits_t>(exp_hi), |
| 333 | (static_cast<output_bits_t>(m_hi) & FPBits<T>::SIG_MASK) | |
| 334 | IMPLICIT_MASK) |
| 335 | .get_val(); |
| 336 | |
| 337 | MantissaType round_mask = |
| 338 | shift - 1 >= MantissaType::BITS ? 0 : MantissaType(1) << (shift - 1); |
| 339 | MantissaType sticky_mask = round_mask - MantissaType(1); |
| 340 | |
| 341 | bool round_bit = !(mantissa & round_mask).is_zero(); |
| 342 | bool sticky_bit = !(mantissa & sticky_mask).is_zero(); |
| 343 | int round_and_sticky = int(round_bit) * 2 + int(sticky_bit); |
| 344 | |
| 345 | T d_lo; |
| 346 | |
| 347 | if (LIBC_UNLIKELY(exp_lo <= 0)) { |
| 348 | // d_lo is denormal, but the output is normal. |
| 349 | int scale_up_exponent = 1 - exp_lo; |
| 350 | T scale_up_factor = |
| 351 | FPBits<T>::create_value(Sign::POS, |
| 352 | static_cast<output_bits_t>( |
| 353 | FPBits<T>::EXP_BIAS + scale_up_exponent), |
| 354 | IMPLICIT_MASK) |
| 355 | .get_val(); |
| 356 | T scale_down_factor = |
| 357 | FPBits<T>::create_value(Sign::POS, |
| 358 | static_cast<output_bits_t>( |
| 359 | FPBits<T>::EXP_BIAS - scale_up_exponent), |
| 360 | IMPLICIT_MASK) |
| 361 | .get_val(); |
| 362 | |
| 363 | d_lo = FPBits<T>::create_value( |
| 364 | sign, static_cast<output_bits_t>(exp_lo + scale_up_exponent), |
| 365 | IMPLICIT_MASK) |
| 366 | .get_val(); |
| 367 | |
| 368 | return multiply_add(d_lo, T(round_and_sticky), d_hi * scale_up_factor) * |
| 369 | scale_down_factor; |
| 370 | } |
| 371 | |
| 372 | d_lo = FPBits<T>::create_value(sign, static_cast<output_bits_t>(exp_lo), |
| 373 | IMPLICIT_MASK) |
| 374 | .get_val(); |
| 375 | |
| 376 | // Still correct without FMA instructions if `d_lo` is not underflow. |
| 377 | T r = multiply_add(d_lo, T(round_and_sticky), d_hi); |
| 378 | |
| 379 | if (LIBC_UNLIKELY(denorm)) { |
| 380 | // Exponent before rounding is in denormal range, simply clear the |
| 381 | // exponent field. |
| 382 | output_bits_t clear_exp = static_cast<output_bits_t>( |
| 383 | output_bits_t(exp_hi) << FPBits<T>::SIG_LEN); |
| 384 | output_bits_t r_bits = FPBits<T>(r).uintval() - clear_exp; |
| 385 | |
| 386 | if (!(r_bits & FPBits<T>::EXP_MASK)) { |
| 387 | // Output is denormal after rounding, clear the implicit bit for 80-bit |
| 388 | // long double. |
| 389 | r_bits -= IMPLICIT_MASK; |
| 390 | |
| 391 | // TODO: IEEE Std 754-2019 lets implementers choose whether to check for |
| 392 | // "tininess" before or after rounding for base-2 formats, as long as |
| 393 | // the same choice is made for all operations. Our choice to check after |
| 394 | // rounding might not be the same as the hardware's. |
| 395 | if (ShouldSignalExceptions && round_and_sticky) { |
| 396 | set_errno_if_required(ERANGE); |
| 397 | raise_except_if_required(FE_UNDERFLOW); |
| 398 | } |
| 399 | } |
| 400 | |
| 401 | return FPBits<T>(r_bits).get_val(); |
| 402 | } |
| 403 | |
| 404 | return r; |
| 405 | } |
| 406 | |
| 407 | // Assume that it is already normalized. |
| 408 | // Output is rounded correctly with respect to the current rounding mode. |
| 409 | template <typename T, bool ShouldSignalExceptions, |
| 410 | typename = cpp::enable_if_t<cpp::is_floating_point_v<T> && |
| 411 | (FPBits<T>::FRACTION_LEN < Bits), |
| 412 | void>> |
| 413 | LIBC_INLINE constexpr T as() const { |
| 414 | #if defined(LIBC_TYPES_HAS_FLOAT16) && !defined(__LIBC_USE_FLOAT16_CONVERSION) |
| 415 | if constexpr (cpp::is_same_v<T, float16>) |
| 416 | return generic_as<T, ShouldSignalExceptions>(); |
| 417 | #endif |
| 418 | return fast_as<T, ShouldSignalExceptions>(); |
| 419 | } |
| 420 | |
| 421 | template <typename T, |
| 422 | typename = cpp::enable_if_t<cpp::is_floating_point_v<T> && |
| 423 | (FPBits<T>::FRACTION_LEN < Bits), |
| 424 | void>> |
| 425 | LIBC_INLINE explicit constexpr operator T() const { |
| 426 | return as<T, /*ShouldSignalExceptions=*/false>(); |
| 427 | } |
| 428 | |
| 429 | LIBC_INLINE constexpr MantissaType as_mantissa_type() const { |
| 430 | if (mantissa.is_zero()) |
| 431 | return 0; |
| 432 | |
| 433 | MantissaType new_mant = mantissa; |
| 434 | if (exponent > 0) { |
| 435 | new_mant <<= exponent; |
| 436 | } else { |
| 437 | // Cast the exponent to size_t before negating it, rather than after, |
| 438 | // to avoid undefined behavior negating INT_MIN as an integer (although |
| 439 | // exponents coming in to this function _shouldn't_ be that large). The |
| 440 | // result should always end up as a positive size_t. |
| 441 | size_t shift = -static_cast<size_t>(exponent); |
| 442 | new_mant >>= shift; |
| 443 | } |
| 444 | |
| 445 | if (sign.is_neg()) { |
| 446 | new_mant = (~new_mant) + 1; |
| 447 | } |
| 448 | |
| 449 | return new_mant; |
| 450 | } |
| 451 | |
| 452 | LIBC_INLINE constexpr MantissaType |
| 453 | as_mantissa_type_rounded(int *round_dir_out = nullptr) const { |
| 454 | int round_dir = 0; |
| 455 | MantissaType new_mant; |
| 456 | if (mantissa.is_zero()) { |
| 457 | new_mant = 0; |
| 458 | } else { |
| 459 | new_mant = mantissa; |
| 460 | if (exponent > 0) { |
| 461 | new_mant <<= exponent; |
| 462 | } else if (exponent < 0) { |
| 463 | // Cast the exponent to size_t before negating it, rather than after, |
| 464 | // to avoid undefined behavior negating INT_MIN as an integer (although |
| 465 | // exponents coming in to this function _shouldn't_ be that large). The |
| 466 | // result should always end up as a positive size_t. |
| 467 | size_t shift = -static_cast<size_t>(exponent); |
| 468 | new_mant >>= shift; |
| 469 | round_dir = rounding_direction(mantissa, shift, sign); |
| 470 | if (round_dir > 0) |
| 471 | ++new_mant; |
| 472 | } |
| 473 | |
| 474 | if (sign.is_neg()) { |
| 475 | new_mant = (~new_mant) + 1; |
| 476 | } |
| 477 | } |
| 478 | |
| 479 | if (round_dir_out) |
| 480 | *round_dir_out = round_dir; |
| 481 | |
| 482 | return new_mant; |
| 483 | } |
| 484 | |
| 485 | LIBC_INLINE constexpr DyadicFloat operator-() const { |
| 486 | return DyadicFloat(sign.negate(), exponent, mantissa); |
| 487 | } |
| 488 | }; |
| 489 | |
| 490 | // Quick add - Add 2 dyadic floats with rounding toward 0 and then normalize the |
| 491 | // output: |
| 492 | // - Align the exponents so that: |
| 493 | // new a.exponent = new b.exponent = max(a.exponent, b.exponent) |
| 494 | // - Add or subtract the mantissas depending on the signs. |
| 495 | // - Normalize the result. |
| 496 | // The absolute errors compared to the mathematical sum is bounded by: |
| 497 | // | quick_add(a, b) - (a + b) | < MSB(a + b) * 2^(-Bits + 2), |
| 498 | // i.e., errors are up to 2 ULPs. |
| 499 | // Assume inputs are normalized (by constructors or other functions) so that we |
| 500 | // don't need to normalize the inputs again in this function. If the inputs are |
| 501 | // not normalized, the results might lose precision significantly. |
| 502 | template <size_t Bits> |
| 503 | LIBC_INLINE constexpr DyadicFloat<Bits> quick_add(DyadicFloat<Bits> a, |
| 504 | DyadicFloat<Bits> b) { |
| 505 | if (LIBC_UNLIKELY(a.mantissa.is_zero())) |
| 506 | return b; |
| 507 | if (LIBC_UNLIKELY(b.mantissa.is_zero())) |
| 508 | return a; |
| 509 | |
| 510 | // Align exponents |
| 511 | if (a.exponent > b.exponent) |
| 512 | b.shift_right(static_cast<unsigned>(a.exponent - b.exponent)); |
| 513 | else if (b.exponent > a.exponent) |
| 514 | a.shift_right(static_cast<unsigned>(b.exponent - a.exponent)); |
| 515 | |
| 516 | DyadicFloat<Bits> result; |
| 517 | |
| 518 | if (a.sign == b.sign) { |
| 519 | // Addition |
| 520 | result.sign = a.sign; |
| 521 | result.exponent = a.exponent; |
| 522 | result.mantissa = a.mantissa; |
| 523 | if (result.mantissa.add_overflow(b.mantissa)) { |
| 524 | // Mantissa addition overflow. |
| 525 | result.shift_right(1); |
| 526 | result.mantissa.val[DyadicFloat<Bits>::MantissaType::WORD_COUNT - 1] |= |
| 527 | (uint64_t(1) << 63); |
| 528 | } |
| 529 | // Result is already normalized. |
| 530 | return result; |
| 531 | } |
| 532 | |
| 533 | // Subtraction |
| 534 | if (a.mantissa >= b.mantissa) { |
| 535 | result.sign = a.sign; |
| 536 | result.exponent = a.exponent; |
| 537 | result.mantissa = a.mantissa - b.mantissa; |
| 538 | } else { |
| 539 | result.sign = b.sign; |
| 540 | result.exponent = b.exponent; |
| 541 | result.mantissa = b.mantissa - a.mantissa; |
| 542 | } |
| 543 | |
| 544 | return result.normalize(); |
| 545 | } |
| 546 | |
| 547 | template <size_t Bits> |
| 548 | LIBC_INLINE constexpr DyadicFloat<Bits> quick_sub(DyadicFloat<Bits> a, |
| 549 | DyadicFloat<Bits> b) { |
| 550 | return quick_add(a, -b); |
| 551 | } |
| 552 | |
| 553 | // Quick Mul - Slightly less accurate but efficient multiplication of 2 dyadic |
| 554 | // floats with rounding toward 0 and then normalize the output: |
| 555 | // result.exponent = a.exponent + b.exponent + Bits, |
| 556 | // result.mantissa = quick_mul_hi(a.mantissa + b.mantissa) |
| 557 | // ~ (full product a.mantissa * b.mantissa) >> Bits. |
| 558 | // The errors compared to the mathematical product is bounded by: |
| 559 | // 2 * errors of quick_mul_hi = 2 * (UInt<Bits>::WORD_COUNT - 1) in ULPs. |
| 560 | // Assume inputs are normalized (by constructors or other functions) so that we |
| 561 | // don't need to normalize the inputs again in this function. If the inputs are |
| 562 | // not normalized, the results might lose precision significantly. |
| 563 | template <size_t Bits> |
| 564 | LIBC_INLINE constexpr DyadicFloat<Bits> quick_mul(const DyadicFloat<Bits> &a, |
| 565 | const DyadicFloat<Bits> &b) { |
| 566 | DyadicFloat<Bits> result; |
| 567 | result.sign = (a.sign != b.sign) ? Sign::NEG : Sign::POS; |
| 568 | result.exponent = a.exponent + b.exponent + static_cast<int>(Bits); |
| 569 | |
| 570 | if (!(a.mantissa.is_zero() || b.mantissa.is_zero())) { |
| 571 | result.mantissa = a.mantissa.quick_mul_hi(b.mantissa); |
| 572 | // Check the leading bit directly, should be faster than using clz in |
| 573 | // normalize(). |
| 574 | if (result.mantissa.val[DyadicFloat<Bits>::MantissaType::WORD_COUNT - 1] >> |
| 575 | 63 == |
| 576 | 0) |
| 577 | result.shift_left(1); |
| 578 | } else { |
| 579 | result.mantissa = (typename DyadicFloat<Bits>::MantissaType)(0); |
| 580 | } |
| 581 | return result; |
| 582 | } |
| 583 | |
| 584 | // Correctly rounded multiplication of 2 dyadic floats, assuming the |
| 585 | // exponent remains within range. |
| 586 | template <size_t Bits> |
| 587 | LIBC_INLINE constexpr DyadicFloat<Bits> |
| 588 | rounded_mul(const DyadicFloat<Bits> &a, const DyadicFloat<Bits> &b) { |
| 589 | using DblMant = LIBC_NAMESPACE::UInt<(2 * Bits)>; |
| 590 | Sign result_sign = (a.sign != b.sign) ? Sign::NEG : Sign::POS; |
| 591 | int result_exponent = a.exponent + b.exponent + static_cast<int>(Bits); |
| 592 | auto product = DblMant(a.mantissa) * DblMant(b.mantissa); |
| 593 | // As in quick_mul(), renormalize by 1 bit manually rather than countl_zero |
| 594 | if (product.get_bit(2 * Bits - 1) == 0) { |
| 595 | product <<= 1; |
| 596 | result_exponent -= 1; |
| 597 | } |
| 598 | |
| 599 | return DyadicFloat<Bits>::round(result_sign, result_exponent, product, Bits); |
| 600 | } |
| 601 | |
| 602 | // Approximate reciprocal - given a nonzero a, make a good approximation to 1/a. |
| 603 | // The method is Newton-Raphson iteration, based on quick_mul. |
| 604 | template <size_t Bits, typename = cpp::enable_if_t<(Bits >= 32)>> |
| 605 | LIBC_INLINE constexpr DyadicFloat<Bits> |
| 606 | approx_reciprocal(const DyadicFloat<Bits> &a) { |
| 607 | // Given an approximation x to 1/a, a better one is x' = x(2-ax). |
| 608 | // |
| 609 | // You can derive this by using the Newton-Raphson formula with the function |
| 610 | // f(x) = 1/x - a. But another way to see that it works is to say: suppose |
| 611 | // that ax = 1-e for some small error e. Then ax' = ax(2-ax) = (1-e)(1+e) = |
| 612 | // 1-e^2. So the error in x' is the square of the error in x, i.e. the number |
| 613 | // of correct bits in x' is double the number in x. |
| 614 | |
| 615 | // An initial approximation to the reciprocal |
| 616 | DyadicFloat<Bits> x(Sign::POS, -32 - a.exponent - int(Bits), |
| 617 | uint64_t(0xFFFFFFFFFFFFFFFF) / |
| 618 | static_cast<uint64_t>(a.mantissa >> (Bits - 32))); |
| 619 | |
| 620 | // The constant 2, which we'll need in every iteration |
| 621 | DyadicFloat<Bits> two(Sign::POS, 1, 1); |
| 622 | |
| 623 | // We expect at least 31 correct bits from our 32-bit starting approximation |
| 624 | size_t ok_bits = 31; |
| 625 | |
| 626 | // The number of good bits doubles in each iteration, except that rounding |
| 627 | // errors introduce a little extra each time. Subtract a bit from our |
| 628 | // accuracy assessment to account for that. |
| 629 | while (ok_bits < Bits) { |
| 630 | x = quick_mul(x, quick_sub(two, quick_mul(a, x))); |
| 631 | ok_bits = 2 * ok_bits - 1; |
| 632 | } |
| 633 | |
| 634 | return x; |
| 635 | } |
| 636 | |
| 637 | // Correctly rounded division of 2 dyadic floats, assuming the |
| 638 | // exponent remains within range. |
| 639 | template <size_t Bits> |
| 640 | LIBC_INLINE constexpr DyadicFloat<Bits> |
| 641 | rounded_div(const DyadicFloat<Bits> &af, const DyadicFloat<Bits> &bf) { |
| 642 | using DblMant = LIBC_NAMESPACE::UInt<(Bits * 2 + 64)>; |
| 643 | |
| 644 | // Make an approximation to the quotient as a * (1/b). Both the |
| 645 | // multiplication and the reciprocal are a bit sloppy, which doesn't |
| 646 | // matter, because we're going to correct for that below. |
| 647 | auto qf = fputil::quick_mul(af, fputil::approx_reciprocal(bf)); |
| 648 | |
| 649 | // Switch to BigInt and stop using quick_add and quick_mul: now |
| 650 | // we're working in exact integers so as to get the true remainder. |
| 651 | DblMant a = af.mantissa, b = bf.mantissa, q = qf.mantissa; |
| 652 | q <<= 2; // leave room for a round bit, even if exponent decreases |
| 653 | a <<= af.exponent - bf.exponent - qf.exponent + 2; |
| 654 | DblMant qb = q * b; |
| 655 | if (qb < a) { |
| 656 | DblMant too_small = a - b; |
| 657 | while (qb <= too_small) { |
| 658 | qb += b; |
| 659 | ++q; |
| 660 | } |
| 661 | } else { |
| 662 | while (qb > a) { |
| 663 | qb -= b; |
| 664 | --q; |
| 665 | } |
| 666 | } |
| 667 | |
| 668 | DyadicFloat<(Bits * 2)> qbig(qf.sign, qf.exponent - 2, q); |
| 669 | return DyadicFloat<Bits>::round(qbig.sign, qbig.exponent + Bits, |
| 670 | qbig.mantissa, Bits); |
| 671 | } |
| 672 | |
| 673 | // Simple polynomial approximation. |
| 674 | template <size_t Bits> |
| 675 | LIBC_INLINE constexpr DyadicFloat<Bits> |
| 676 | multiply_add(const DyadicFloat<Bits> &a, const DyadicFloat<Bits> &b, |
| 677 | const DyadicFloat<Bits> &c) { |
| 678 | return quick_add(c, quick_mul(a, b)); |
| 679 | } |
| 680 | |
| 681 | // Simple exponentiation implementation for printf. Only handles positive |
| 682 | // exponents, since division isn't implemented. |
| 683 | template <size_t Bits> |
| 684 | LIBC_INLINE constexpr DyadicFloat<Bits> pow_n(const DyadicFloat<Bits> &a, |
| 685 | uint32_t power) { |
| 686 | DyadicFloat<Bits> result = 1.0; |
| 687 | DyadicFloat<Bits> cur_power = a; |
| 688 | |
| 689 | while (power > 0) { |
| 690 | if ((power % 2) > 0) { |
| 691 | result = quick_mul(result, cur_power); |
| 692 | } |
| 693 | power = power >> 1; |
| 694 | cur_power = quick_mul(cur_power, cur_power); |
| 695 | } |
| 696 | return result; |
| 697 | } |
| 698 | |
| 699 | template <size_t Bits> |
| 700 | LIBC_INLINE constexpr DyadicFloat<Bits> mul_pow_2(const DyadicFloat<Bits> &a, |
| 701 | int32_t pow_2) { |
| 702 | DyadicFloat<Bits> result = a; |
| 703 | result.exponent += pow_2; |
| 704 | return result; |
| 705 | } |
| 706 | |
| 707 | } // namespace fputil |
| 708 | } // namespace LIBC_NAMESPACE_DECL |
| 709 | |
| 710 | #endif // LLVM_LIBC_SRC___SUPPORT_FPUTIL_DYADIC_FLOAT_H |
| 711 |
Warning: This file is not a C or C++ file. It does not have highlighting.
