Warning: This file is not a C or C++ file. It does not have highlighting.

1//===-- Common header for fmod implementations ------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#ifndef LLVM_LIBC_SRC___SUPPORT_FPUTIL_GENERIC_FMOD_H
10#define LLVM_LIBC_SRC___SUPPORT_FPUTIL_GENERIC_FMOD_H
11
12#include "src/__support/CPP/bit.h"
13#include "src/__support/CPP/limits.h"
14#include "src/__support/CPP/type_traits.h"
15#include "src/__support/FPUtil/FEnvImpl.h"
16#include "src/__support/FPUtil/FPBits.h"
17#include "src/__support/macros/config.h"
18#include "src/__support/macros/optimization.h" // LIBC_UNLIKELY
19
20namespace LIBC_NAMESPACE_DECL {
21namespace fputil {
22namespace generic {
23
24// Objective:
25// The algorithm uses integer arithmetic (max uint64_t) for general case.
26// Some common cases, like abs(x) < abs(y) or abs(x) < 1000 * abs(y) are
27// treated specially to increase performance. The part of checking special
28// cases, numbers NaN, INF etc. treated separately.
29//
30// Objective:
31// 1) FMod definition (https://cplusplus.com/reference/cmath/fmod/):
32// fmod = numer - tquot * denom, where tquot is the truncated
33// (i.e., rounded towards zero) result of: numer/denom.
34// 2) FMod with negative x and/or y can be trivially converted to fmod for
35// positive x and y. Therefore the algorithm below works only with
36// positive numbers.
37// 3) All positive floating point numbers can be represented as m * 2^e,
38// where "m" is positive integer and "e" is signed.
39// 4) FMod function can be calculated in integer numbers (x > y):
40// fmod = m_x * 2^e_x - tquot * m_y * 2^e_y
41// = 2^e_y * (m_x * 2^(e_x - e^y) - tquot * m_y).
42// All variables in parentheses are unsigned integers.
43//
44// Mathematical background:
45// Input x,y in the algorithm is represented (mathematically) like m_x*2^e_x
46// and m_y*2^e_y. This is an ambiguous number representation. For example:
47// m * 2^e = (2 * m) * 2^(e-1)
48// The algorithm uses the facts that
49// r = a % b = (a % (N * b)) % b,
50// (a * c) % (b * c) = (a % b) * c
51// where N is positive integer number. a, b and c - positive. Let's adopt
52// the formula for representation above.
53// a = m_x * 2^e_x, b = m_y * 2^e_y, N = 2^k
54// r(k) = a % b = (m_x * 2^e_x) % (2^k * m_y * 2^e_y)
55// = 2^(e_y + k) * (m_x * 2^(e_x - e_y - k) % m_y)
56// r(k) = m_r * 2^e_r = (m_x % m_y) * 2^(m_y + k)
57// = (2^p * (m_x % m_y) * 2^(e_y + k - p))
58// m_r = 2^p * (m_x % m_y), e_r = m_y + k - p
59//
60// Algorithm description:
61// First, let write x = m_x * 2^e_x and y = m_y * 2^e_y with m_x, m_y, e_x, e_y
62// are integers (m_x amd m_y positive).
63// Then the naive implementation of the fmod function with a simple
64// for/while loop:
65// while (e_x > e_y) {
66// m_x *= 2; --e_x; // m_x * 2^e_x == 2 * m_x * 2^(e_x - 1)
67// m_x %= m_y;
68// }
69// On the other hand, the algorithm exploits the fact that m_x, m_y are the
70// mantissas of floating point numbers, which use less bits than the storage
71// integers: 24 / 32 for floats and 53 / 64 for doubles, so if in each step of
72// the iteration, we can left shift m_x as many bits as the storage integer
73// type can hold, the exponent reduction per step will be at least 32 - 24 = 8
74// for floats and 64 - 53 = 11 for doubles (double example below):
75// while (e_x > e_y) {
76// m_x <<= 11; e_x -= 11; // m_x * 2^e_x == 2^11 * m_x * 2^(e_x - 11)
77// m_x %= m_y;
78// }
79// Some extra improvements are done:
80// 1) Shift m_y maximum to the right, which can significantly improve
81// performance for small integer numbers (y = 3 for example).
82// The m_x shift in the loop can be 62 instead of 11 for double.
83// 2) For some architectures with very slow division, it can be better to
84// calculate inverse value ones, and after do multiplication in the loop.
85// 3) "likely" special cases are treated specially to improve performance.
86//
87// Simple example:
88// The examples below use byte for simplicity.
89// 1) Shift hy maximum to right without losing bits and increase iy value
90// m_y = 0b00101100 e_y = 20 after shift m_y = 0b00001011 e_y = 22.
91// 2) m_x = m_x % m_y.
92// 3) Move m_x maximum to left. Note that after (m_x = m_x % m_y) CLZ in m_x
93// is not lower than CLZ in m_y. m_x=0b00001001 e_x = 100, m_x=0b10010000,
94// e_x = 100-4 = 96.
95// 4) Repeat (2) until e_x == e_y.
96//
97// Complexity analysis (double):
98// Converting x,y to (m_x,e_x),(m_y, e_y): CTZ/shift/AND/OR/if. Loop count:
99// (m_x - m_y) / (64 - "length of m_y").
100// max("length of m_y") = 53,
101// max(e_x - e_y) = 2048
102// Maximum operation is 186. For rare "unrealistic" cases.
103//
104// Special cases (double):
105// Supposing that case where |y| > 1e-292 and |x/y|<2000 is very common
106// special processing is implemented. No m_y alignment, no loop:
107// result = (m_x * 2^(e_x - e_y)) % m_y.
108// When x and y are both subnormal (rare case but...) the
109// result = m_x % m_y.
110// Simplified conversion back to double.
111
112// Exceptional cases handler according to cppreference.com
113// https://en.cppreference.com/w/cpp/numeric/math/fmod
114// and POSIX standard described in Linux man
115// https://man7.org/linux/man-pages/man3/fmod.3p.html
116// C standard for the function is not full, so not by default (although it can
117// be implemented in another handler.
118// Signaling NaN converted to quiet NaN with FE_INVALID exception.
119// https://www.open-std.org/JTC1/SC22/WG14/www/docs/n1011.htm
120template <typename T> struct FModDivisionSimpleHelper {
121 LIBC_INLINE constexpr static T execute(int exp_diff, int sides_zeroes_count,
122 T m_x, T m_y) {
123 while (exp_diff > sides_zeroes_count) {
124 exp_diff -= sides_zeroes_count;
125 m_x <<= sides_zeroes_count;
126 m_x %= m_y;
127 }
128 m_x <<= exp_diff;
129 m_x %= m_y;
130 return m_x;
131 }
132};
133
134template <typename T> struct FModDivisionInvMultHelper {
135 LIBC_INLINE constexpr static T execute(int exp_diff, int sides_zeroes_count,
136 T m_x, T m_y) {
137 constexpr int LENGTH = sizeof(T) * CHAR_BIT;
138 if (exp_diff > sides_zeroes_count) {
139 T inv_hy = (cpp::numeric_limits<T>::max() / m_y);
140 while (exp_diff > sides_zeroes_count) {
141 exp_diff -= sides_zeroes_count;
142 T hd = (m_x * inv_hy) >> (LENGTH - sides_zeroes_count);
143 m_x <<= sides_zeroes_count;
144 m_x -= hd * m_y;
145 while (LIBC_UNLIKELY(m_x > m_y))
146 m_x -= m_y;
147 }
148 T hd = (m_x * inv_hy) >> (LENGTH - exp_diff);
149 m_x <<= exp_diff;
150 m_x -= hd * m_y;
151 while (LIBC_UNLIKELY(m_x > m_y))
152 m_x -= m_y;
153 } else {
154 m_x <<= exp_diff;
155 m_x %= m_y;
156 }
157 return m_x;
158 }
159};
160
161template <typename T, typename U = typename FPBits<T>::StorageType,
162 typename DivisionHelper = FModDivisionSimpleHelper<U>>
163class FMod {
164 static_assert(cpp::is_floating_point_v<T> &&
165 is_unsigned_integral_or_big_int_v<U> &&
166 (sizeof(U) * CHAR_BIT > FPBits<T>::FRACTION_LEN),
167 "FMod instantiated with invalid type.");
168
169private:
170 using FPB = FPBits<T>;
171 using StorageType = typename FPB::StorageType;
172
173 LIBC_INLINE static bool pre_check(T x, T y, T &out) {
174 using FPB = fputil::FPBits<T>;
175 const T quiet_nan = FPB::quiet_nan().get_val();
176 FPB sx(x), sy(y);
177 if (LIBC_LIKELY(!sy.is_zero() && !sy.is_inf_or_nan() &&
178 !sx.is_inf_or_nan()))
179 return false;
180
181 if (sx.is_nan() || sy.is_nan()) {
182 if (sx.is_signaling_nan() || sy.is_signaling_nan())
183 fputil::raise_except_if_required(FE_INVALID);
184 out = quiet_nan;
185 return true;
186 }
187
188 if (sx.is_inf() || sy.is_zero()) {
189 fputil::raise_except_if_required(FE_INVALID);
190 fputil::set_errno_if_required(EDOM);
191 out = quiet_nan;
192 return true;
193 }
194
195 out = x;
196 return true;
197 }
198
199 LIBC_INLINE static constexpr FPB eval_internal(FPB sx, FPB sy) {
200
201 if (LIBC_LIKELY(sx.uintval() <= sy.uintval())) {
202 if (sx.uintval() < sy.uintval())
203 return sx; // |x|<|y| return x
204 return FPB::zero(); // |x|=|y| return 0.0
205 }
206
207 int e_x = sx.get_biased_exponent();
208 int e_y = sy.get_biased_exponent();
209
210 // Most common case where |y| is "very normal" and |x/y| < 2^EXP_LEN
211 if (LIBC_LIKELY(e_y > int(FPB::FRACTION_LEN) &&
212 e_x - e_y <= int(FPB::EXP_LEN))) {
213 StorageType m_x = sx.get_explicit_mantissa();
214 StorageType m_y = sy.get_explicit_mantissa();
215 StorageType d = (e_x == e_y)
216 ? (m_x - m_y)
217 : static_cast<StorageType>(m_x << (e_x - e_y)) % m_y;
218 if (d == 0)
219 return FPB::zero();
220 // iy - 1 because of "zero power" for number with power 1
221 return FPB::make_value(d, e_y - 1);
222 }
223 // Both subnormal special case.
224 if (LIBC_UNLIKELY(e_x == 0 && e_y == 0)) {
225 FPB d;
226 d.set_mantissa(sx.uintval() % sy.uintval());
227 return d;
228 }
229
230 // Note that hx is not subnormal by conditions above.
231 U m_x = static_cast<U>(sx.get_explicit_mantissa());
232 e_x--;
233
234 U m_y = static_cast<U>(sy.get_explicit_mantissa());
235 constexpr int DEFAULT_LEAD_ZEROS =
236 sizeof(U) * CHAR_BIT - FPB::FRACTION_LEN - 1;
237 int lead_zeros_m_y = DEFAULT_LEAD_ZEROS;
238 if (LIBC_LIKELY(e_y > 0)) {
239 e_y--;
240 } else {
241 m_y = static_cast<U>(sy.get_mantissa());
242 lead_zeros_m_y = cpp::countl_zero(m_y);
243 }
244
245 // Assume hy != 0
246 int tail_zeros_m_y = cpp::countr_zero(m_y);
247 int sides_zeroes_count = lead_zeros_m_y + tail_zeros_m_y;
248 // n > 0 by conditions above
249 int exp_diff = e_x - e_y;
250 {
251 // Shift hy right until the end or n = 0
252 int right_shift = exp_diff < tail_zeros_m_y ? exp_diff : tail_zeros_m_y;
253 m_y >>= right_shift;
254 exp_diff -= right_shift;
255 e_y += right_shift;
256 }
257
258 {
259 // Shift hx left until the end or n = 0
260 int left_shift =
261 exp_diff < DEFAULT_LEAD_ZEROS ? exp_diff : DEFAULT_LEAD_ZEROS;
262 m_x <<= left_shift;
263 exp_diff -= left_shift;
264 }
265
266 m_x %= m_y;
267 if (LIBC_UNLIKELY(m_x == 0))
268 return FPB::zero();
269
270 if (exp_diff == 0)
271 return FPB::make_value(static_cast<StorageType>(m_x), e_y);
272
273 // hx next can't be 0, because hx < hy, hy % 2 == 1 hx * 2^i % hy != 0
274 m_x = DivisionHelper::execute(exp_diff, sides_zeroes_count, m_x, m_y);
275 return FPB::make_value(static_cast<StorageType>(m_x), e_y);
276 }
277
278public:
279 LIBC_INLINE static T eval(T x, T y) {
280 if (T out; LIBC_UNLIKELY(pre_check(x, y, out)))
281 return out;
282 FPB sx(x), sy(y);
283 Sign sign = sx.sign();
284 sx.set_sign(Sign::POS);
285 sy.set_sign(Sign::POS);
286 FPB result = eval_internal(sx, sy);
287 result.set_sign(sign);
288 return result.get_val();
289 }
290};
291
292} // namespace generic
293} // namespace fputil
294} // namespace LIBC_NAMESPACE_DECL
295
296#endif // LLVM_LIBC_SRC___SUPPORT_FPUTIL_GENERIC_FMOD_H
297

Warning: This file is not a C or C++ file. It does not have highlighting.

Provided by KDAB

Privacy Policy
Learn to use CMake with our Intro Training
Find out more

source code of libc/src/__support/FPUtil/generic/FMod.h