Warning: This file is not a C or C++ file. It does not have highlighting.
| 1 | //===-- Square root of x86 long double numbers ------------------*- C++ -*-===// |
|---|---|
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #ifndef LLVM_LIBC_SRC___SUPPORT_FPUTIL_GENERIC_SQRT_80_BIT_LONG_DOUBLE_H |
| 10 | #define LLVM_LIBC_SRC___SUPPORT_FPUTIL_GENERIC_SQRT_80_BIT_LONG_DOUBLE_H |
| 11 | |
| 12 | #include "src/__support/CPP/bit.h" |
| 13 | #include "src/__support/FPUtil/FEnvImpl.h" |
| 14 | #include "src/__support/FPUtil/FPBits.h" |
| 15 | #include "src/__support/FPUtil/rounding_mode.h" |
| 16 | #include "src/__support/common.h" |
| 17 | #include "src/__support/macros/config.h" |
| 18 | #include "src/__support/uint128.h" |
| 19 | |
| 20 | namespace LIBC_NAMESPACE_DECL { |
| 21 | namespace fputil { |
| 22 | namespace x86 { |
| 23 | |
| 24 | LIBC_INLINE void normalize(int &exponent, |
| 25 | FPBits<long double>::StorageType &mantissa) { |
| 26 | const unsigned int shift = static_cast<unsigned int>( |
| 27 | static_cast<size_t>(cpp::countl_zero(static_cast<uint64_t>(mantissa))) - |
| 28 | (8 * sizeof(uint64_t) - 1 - FPBits<long double>::FRACTION_LEN)); |
| 29 | exponent -= shift; |
| 30 | mantissa <<= shift; |
| 31 | } |
| 32 | |
| 33 | // if constexpr statement in sqrt.h still requires x86::sqrt to be declared |
| 34 | // even when it's not used. |
| 35 | LIBC_INLINE long double sqrt(long double x); |
| 36 | |
| 37 | // Correctly rounded SQRT for all rounding modes. |
| 38 | // Shift-and-add algorithm. |
| 39 | #if defined(LIBC_TYPES_LONG_DOUBLE_IS_X86_FLOAT80) |
| 40 | LIBC_INLINE long double sqrt(long double x) { |
| 41 | using LDBits = FPBits<long double>; |
| 42 | using StorageType = typename LDBits::StorageType; |
| 43 | constexpr StorageType ONE = StorageType(1) << int(LDBits::FRACTION_LEN); |
| 44 | constexpr auto LDNAN = LDBits::quiet_nan().get_val(); |
| 45 | |
| 46 | LDBits bits(x); |
| 47 | |
| 48 | if (bits == LDBits::inf(Sign::POS) || bits.is_zero() || bits.is_nan()) { |
| 49 | // sqrt(+Inf) = +Inf |
| 50 | // sqrt(+0) = +0 |
| 51 | // sqrt(-0) = -0 |
| 52 | // sqrt(NaN) = NaN |
| 53 | // sqrt(-NaN) = -NaN |
| 54 | return x; |
| 55 | } else if (bits.is_neg()) { |
| 56 | // sqrt(-Inf) = NaN |
| 57 | // sqrt(-x) = NaN |
| 58 | return LDNAN; |
| 59 | } else { |
| 60 | int x_exp = bits.get_explicit_exponent(); |
| 61 | StorageType x_mant = bits.get_mantissa(); |
| 62 | |
| 63 | // Step 1a: Normalize denormal input |
| 64 | if (bits.get_implicit_bit()) { |
| 65 | x_mant |= ONE; |
| 66 | } else if (bits.is_subnormal()) { |
| 67 | normalize(x_exp, x_mant); |
| 68 | } |
| 69 | |
| 70 | // Step 1b: Make sure the exponent is even. |
| 71 | if (x_exp & 1) { |
| 72 | --x_exp; |
| 73 | x_mant <<= 1; |
| 74 | } |
| 75 | |
| 76 | // After step 1b, x = 2^(x_exp) * x_mant, where x_exp is even, and |
| 77 | // 1 <= x_mant < 4. So sqrt(x) = 2^(x_exp / 2) * y, with 1 <= y < 2. |
| 78 | // Notice that the output of sqrt is always in the normal range. |
| 79 | // To perform shift-and-add algorithm to find y, let denote: |
| 80 | // y(n) = 1.y_1 y_2 ... y_n, we can define the nth residue to be: |
| 81 | // r(n) = 2^n ( x_mant - y(n)^2 ). |
| 82 | // That leads to the following recurrence formula: |
| 83 | // r(n) = 2*r(n-1) - y_n*[ 2*y(n-1) + 2^(-n-1) ] |
| 84 | // with the initial conditions: y(0) = 1, and r(0) = x - 1. |
| 85 | // So the nth digit y_n of the mantissa of sqrt(x) can be found by: |
| 86 | // y_n = 1 if 2*r(n-1) >= 2*y(n - 1) + 2^(-n-1) |
| 87 | // 0 otherwise. |
| 88 | StorageType y = ONE; |
| 89 | StorageType r = x_mant - ONE; |
| 90 | |
| 91 | for (StorageType current_bit = ONE >> 1; current_bit; current_bit >>= 1) { |
| 92 | r <<= 1; |
| 93 | StorageType tmp = (y << 1) + current_bit; // 2*y(n - 1) + 2^(-n-1) |
| 94 | if (r >= tmp) { |
| 95 | r -= tmp; |
| 96 | y += current_bit; |
| 97 | } |
| 98 | } |
| 99 | |
| 100 | // We compute one more iteration in order to round correctly. |
| 101 | bool lsb = static_cast<bool>(y & 1); // Least significant bit |
| 102 | bool rb = false; // Round bit |
| 103 | r <<= 2; |
| 104 | StorageType tmp = (y << 2) + 1; |
| 105 | if (r >= tmp) { |
| 106 | r -= tmp; |
| 107 | rb = true; |
| 108 | } |
| 109 | |
| 110 | // Append the exponent field. |
| 111 | x_exp = ((x_exp >> 1) + LDBits::EXP_BIAS); |
| 112 | y |= (static_cast<StorageType>(x_exp) << (LDBits::FRACTION_LEN + 1)); |
| 113 | |
| 114 | switch (quick_get_round()) { |
| 115 | case FE_TONEAREST: |
| 116 | // Round to nearest, ties to even |
| 117 | if (rb && (lsb || (r != 0))) |
| 118 | ++y; |
| 119 | break; |
| 120 | case FE_UPWARD: |
| 121 | if (rb || (r != 0)) |
| 122 | ++y; |
| 123 | break; |
| 124 | } |
| 125 | |
| 126 | // Extract output |
| 127 | FPBits<long double> out(0.0L); |
| 128 | out.set_biased_exponent(x_exp); |
| 129 | out.set_implicit_bit(1); |
| 130 | out.set_mantissa((y & (ONE - 1))); |
| 131 | |
| 132 | return out.get_val(); |
| 133 | } |
| 134 | } |
| 135 | #endif // LIBC_TYPES_LONG_DOUBLE_IS_X86_FLOAT80 |
| 136 | |
| 137 | } // namespace x86 |
| 138 | } // namespace fputil |
| 139 | } // namespace LIBC_NAMESPACE_DECL |
| 140 | |
| 141 | #endif // LLVM_LIBC_SRC___SUPPORT_FPUTIL_GENERIC_SQRT_80_BIT_LONG_DOUBLE_H |
| 142 |
Warning: This file is not a C or C++ file. It does not have highlighting.
