Warning: This file is not a C or C++ file. It does not have highlighting.
| 1 | //===-- x86_64 floating point env manipulation functions --------*- C++ -*-===// |
|---|---|
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #ifndef LLVM_LIBC_SRC___SUPPORT_FPUTIL_X86_64_FENVIMPL_H |
| 10 | #define LLVM_LIBC_SRC___SUPPORT_FPUTIL_X86_64_FENVIMPL_H |
| 11 | |
| 12 | #include "src/__support/macros/attributes.h" // LIBC_INLINE |
| 13 | #include "src/__support/macros/config.h" |
| 14 | #include "src/__support/macros/properties/architectures.h" |
| 15 | |
| 16 | #if !defined(LIBC_TARGET_ARCH_IS_X86) |
| 17 | #error "Invalid include" |
| 18 | #endif |
| 19 | |
| 20 | #include <stdint.h> |
| 21 | |
| 22 | #include "hdr/types/fenv_t.h" |
| 23 | #include "src/__support/macros/sanitizer.h" |
| 24 | |
| 25 | namespace LIBC_NAMESPACE_DECL { |
| 26 | namespace fputil { |
| 27 | |
| 28 | namespace internal { |
| 29 | |
| 30 | // Normally, one should be able to define FE_* macros to the exact rounding mode |
| 31 | // encodings. However, since we want LLVM libc to be compiled against headers |
| 32 | // from other libcs, we cannot assume that FE_* macros are always defined in |
| 33 | // such a manner. So, we will define enums corresponding to the x86_64 bit |
| 34 | // encodings. The implementations can map from FE_* to the corresponding enum |
| 35 | // values. |
| 36 | |
| 37 | // The rounding control values in the x87 control register and the MXCSR |
| 38 | // register have the same 2-bit enoding but have different bit positions. |
| 39 | // See below for the bit positions. |
| 40 | struct RoundingControlValue { |
| 41 | static constexpr uint16_t TO_NEAREST = 0x0; |
| 42 | static constexpr uint16_t DOWNWARD = 0x1; |
| 43 | static constexpr uint16_t UPWARD = 0x2; |
| 44 | static constexpr uint16_t TOWARD_ZERO = 0x3; |
| 45 | }; |
| 46 | |
| 47 | static constexpr uint16_t X87_ROUNDING_CONTROL_BIT_POSITION = 10; |
| 48 | static constexpr uint16_t MXCSR_ROUNDING_CONTROL_BIT_POSITION = 13; |
| 49 | |
| 50 | // The exception flags in the x87 status register and the MXCSR have the same |
| 51 | // encoding as well as the same bit positions. |
| 52 | struct ExceptionFlags { |
| 53 | static constexpr uint16_t INVALID_F = 0x1; |
| 54 | // Some libcs define __FE_DENORM corresponding to the denormal input |
| 55 | // exception and include it in FE_ALL_EXCEPTS. We define and use it to |
| 56 | // support compiling against headers provided by such libcs. |
| 57 | static constexpr uint16_t DENORMAL_F = 0x2; |
| 58 | static constexpr uint16_t DIV_BY_ZERO_F = 0x4; |
| 59 | static constexpr uint16_t OVERFLOW_F = 0x8; |
| 60 | static constexpr uint16_t UNDERFLOW_F = 0x10; |
| 61 | static constexpr uint16_t INEXACT_F = 0x20; |
| 62 | }; |
| 63 | |
| 64 | // The exception control bits occupy six bits, one bit for each exception. |
| 65 | // In the x87 control word, they occupy the first 6 bits. In the MXCSR |
| 66 | // register, they occupy bits 7 to 12. |
| 67 | static constexpr uint16_t X87_EXCEPTION_CONTROL_BIT_POSITION = 0; |
| 68 | static constexpr uint16_t X87_EXCEPTION_CONTROL_BIT_POSITION_HIGH = 24; |
| 69 | static constexpr uint16_t MXCSR_EXCEPTION_CONTOL_BIT_POISTION = 7; |
| 70 | |
| 71 | // Exception flags are individual bits in the corresponding registers. |
| 72 | // So, we just OR the bit values to get the full set of exceptions. |
| 73 | LIBC_INLINE uint16_t get_status_value_for_except(int excepts) { |
| 74 | // We will make use of the fact that exception control bits are single |
| 75 | // bit flags in the control registers. |
| 76 | return ((excepts & FE_INVALID) ? ExceptionFlags::INVALID_F : 0) | |
| 77 | #ifdef __FE_DENORM |
| 78 | ((excepts & __FE_DENORM) ? ExceptionFlags::DENORMAL_F : 0) | |
| 79 | #endif // __FE_DENORM |
| 80 | ((excepts & FE_DIVBYZERO) ? ExceptionFlags::DIV_BY_ZERO_F : 0) | |
| 81 | ((excepts & FE_OVERFLOW) ? ExceptionFlags::OVERFLOW_F : 0) | |
| 82 | ((excepts & FE_UNDERFLOW) ? ExceptionFlags::UNDERFLOW_F : 0) | |
| 83 | ((excepts & FE_INEXACT) ? ExceptionFlags::INEXACT_F : 0); |
| 84 | } |
| 85 | |
| 86 | LIBC_INLINE int exception_status_to_macro(uint16_t status) { |
| 87 | return ((status & ExceptionFlags::INVALID_F) ? FE_INVALID : 0) | |
| 88 | #ifdef __FE_DENORM |
| 89 | ((status & ExceptionFlags::DENORMAL_F) ? __FE_DENORM : 0) | |
| 90 | #endif // __FE_DENORM |
| 91 | ((status & ExceptionFlags::DIV_BY_ZERO_F) ? FE_DIVBYZERO : 0) | |
| 92 | ((status & ExceptionFlags::OVERFLOW_F) ? FE_OVERFLOW : 0) | |
| 93 | ((status & ExceptionFlags::UNDERFLOW_F) ? FE_UNDERFLOW : 0) | |
| 94 | ((status & ExceptionFlags::INEXACT_F) ? FE_INEXACT : 0); |
| 95 | } |
| 96 | |
| 97 | struct X87StateDescriptor { |
| 98 | uint16_t control_word; |
| 99 | uint16_t unused1; |
| 100 | uint16_t status_word; |
| 101 | uint16_t unused2; |
| 102 | // TODO: Elaborate the remaining 20 bytes as required. |
| 103 | uint32_t _[5]; |
| 104 | }; |
| 105 | |
| 106 | LIBC_INLINE uint16_t get_x87_control_word() { |
| 107 | uint16_t w; |
| 108 | __asm__ __volatile__("fnstcw %0" : "=m"(w)::); |
| 109 | MSAN_UNPOISON(&w, sizeof(w)); |
| 110 | return w; |
| 111 | } |
| 112 | |
| 113 | LIBC_INLINE void write_x87_control_word(uint16_t w) { |
| 114 | __asm__ __volatile__("fldcw %0" : : "m"(w) :); |
| 115 | } |
| 116 | |
| 117 | LIBC_INLINE uint16_t get_x87_status_word() { |
| 118 | uint16_t w; |
| 119 | __asm__ __volatile__("fnstsw %0" : "=m"(w)::); |
| 120 | MSAN_UNPOISON(&w, sizeof(w)); |
| 121 | return w; |
| 122 | } |
| 123 | |
| 124 | LIBC_INLINE void clear_x87_exceptions() { |
| 125 | __asm__ __volatile__("fnclex" : : :); |
| 126 | } |
| 127 | |
| 128 | LIBC_INLINE uint32_t get_mxcsr() { |
| 129 | uint32_t w; |
| 130 | __asm__ __volatile__("stmxcsr %0" : "=m"(w)::); |
| 131 | MSAN_UNPOISON(&w, sizeof(w)); |
| 132 | return w; |
| 133 | } |
| 134 | |
| 135 | LIBC_INLINE void write_mxcsr(uint32_t w) { |
| 136 | __asm__ __volatile__("ldmxcsr %0" : : "m"(w) :); |
| 137 | } |
| 138 | |
| 139 | LIBC_INLINE void get_x87_state_descriptor(X87StateDescriptor &s) { |
| 140 | __asm__ __volatile__("fnstenv %0" : "=m"(s)); |
| 141 | MSAN_UNPOISON(&s, sizeof(s)); |
| 142 | } |
| 143 | |
| 144 | LIBC_INLINE void write_x87_state_descriptor(const X87StateDescriptor &s) { |
| 145 | __asm__ __volatile__("fldenv %0" : : "m"(s) :); |
| 146 | } |
| 147 | |
| 148 | LIBC_INLINE void fwait() { __asm__ __volatile__("fwait"); } |
| 149 | |
| 150 | } // namespace internal |
| 151 | |
| 152 | LIBC_INLINE int enable_except(int excepts) { |
| 153 | // In the x87 control word and in MXCSR, an exception is blocked |
| 154 | // if the corresponding bit is set. That is the reason for all the |
| 155 | // bit-flip operations below as we need to turn the bits to zero |
| 156 | // to enable them. |
| 157 | |
| 158 | uint16_t bit_mask = internal::get_status_value_for_except(excepts); |
| 159 | |
| 160 | uint16_t x87_cw = internal::get_x87_control_word(); |
| 161 | uint16_t old_excepts = ~x87_cw & 0x3F; // Save previously enabled exceptions. |
| 162 | x87_cw &= ~bit_mask; |
| 163 | internal::write_x87_control_word(x87_cw); |
| 164 | |
| 165 | // Enabling SSE exceptions via MXCSR is a nice thing to do but |
| 166 | // might not be of much use practically as SSE exceptions and the x87 |
| 167 | // exceptions are independent of each other. |
| 168 | uint32_t mxcsr = internal::get_mxcsr(); |
| 169 | mxcsr &= ~(bit_mask << internal::MXCSR_EXCEPTION_CONTOL_BIT_POISTION); |
| 170 | internal::write_mxcsr(mxcsr); |
| 171 | |
| 172 | // Since the x87 exceptions and SSE exceptions are independent of each, |
| 173 | // it doesn't make much sence to report both in the return value. Most |
| 174 | // often, the standard floating point functions deal with FPU operations |
| 175 | // so we will retrun only the old x87 exceptions. |
| 176 | return internal::exception_status_to_macro(old_excepts); |
| 177 | } |
| 178 | |
| 179 | LIBC_INLINE int disable_except(int excepts) { |
| 180 | // In the x87 control word and in MXCSR, an exception is blocked |
| 181 | // if the corresponding bit is set. |
| 182 | |
| 183 | uint16_t bit_mask = internal::get_status_value_for_except(excepts); |
| 184 | |
| 185 | uint16_t x87_cw = internal::get_x87_control_word(); |
| 186 | uint16_t old_excepts = ~x87_cw & 0x3F; // Save previously enabled exceptions. |
| 187 | x87_cw |= bit_mask; |
| 188 | internal::write_x87_control_word(x87_cw); |
| 189 | |
| 190 | // Just like in enable_except, it is not clear if disabling SSE exceptions |
| 191 | // is required. But, we will still do it only as a "nice thing to do". |
| 192 | uint32_t mxcsr = internal::get_mxcsr(); |
| 193 | mxcsr |= (bit_mask << internal::MXCSR_EXCEPTION_CONTOL_BIT_POISTION); |
| 194 | internal::write_mxcsr(mxcsr); |
| 195 | |
| 196 | return internal::exception_status_to_macro(old_excepts); |
| 197 | } |
| 198 | |
| 199 | LIBC_INLINE int get_except() { |
| 200 | uint16_t mxcsr = static_cast<uint16_t>(internal::get_mxcsr()); |
| 201 | uint16_t enabled_excepts = ~(mxcsr >> 7) & 0x3F; |
| 202 | return internal::exception_status_to_macro(enabled_excepts); |
| 203 | } |
| 204 | |
| 205 | LIBC_INLINE int clear_except(int excepts) { |
| 206 | internal::X87StateDescriptor state; |
| 207 | internal::get_x87_state_descriptor(state); |
| 208 | state.status_word &= |
| 209 | static_cast<uint16_t>(~internal::get_status_value_for_except(excepts)); |
| 210 | internal::write_x87_state_descriptor(state); |
| 211 | |
| 212 | uint32_t mxcsr = internal::get_mxcsr(); |
| 213 | mxcsr &= ~internal::get_status_value_for_except(excepts); |
| 214 | internal::write_mxcsr(mxcsr); |
| 215 | return 0; |
| 216 | } |
| 217 | |
| 218 | LIBC_INLINE int test_except(int excepts) { |
| 219 | uint16_t status_word = internal::get_x87_status_word(); |
| 220 | uint32_t mxcsr = internal::get_mxcsr(); |
| 221 | // Check both x87 status word and MXCSR. |
| 222 | uint16_t status_value = internal::get_status_value_for_except(excepts); |
| 223 | return internal::exception_status_to_macro( |
| 224 | static_cast<uint16_t>(status_value & (status_word | mxcsr))); |
| 225 | } |
| 226 | |
| 227 | // Sets the exception flags but does not trigger the exception handler. |
| 228 | LIBC_INLINE int set_except(int excepts) { |
| 229 | uint16_t status_value = internal::get_status_value_for_except(excepts); |
| 230 | internal::X87StateDescriptor state; |
| 231 | internal::get_x87_state_descriptor(state); |
| 232 | state.status_word |= status_value; |
| 233 | internal::write_x87_state_descriptor(state); |
| 234 | |
| 235 | uint32_t mxcsr = internal::get_mxcsr(); |
| 236 | mxcsr |= status_value; |
| 237 | internal::write_mxcsr(mxcsr); |
| 238 | |
| 239 | return 0; |
| 240 | } |
| 241 | |
| 242 | LIBC_INLINE int raise_except(int excepts) { |
| 243 | uint16_t status_value = internal::get_status_value_for_except(excepts); |
| 244 | |
| 245 | // We set the status flag for exception one at a time and call the |
| 246 | // fwait instruction to actually get the processor to raise the |
| 247 | // exception by calling the exception handler. This scheme is per |
| 248 | // the description in "8.6 X87 FPU EXCEPTION SYNCHRONIZATION" |
| 249 | // of the "Intel 64 and IA-32 Architectures Software Developer's |
| 250 | // Manual, Vol 1". |
| 251 | |
| 252 | // FPU status word is read for each exception separately as the |
| 253 | // exception handler can potentially write to it (typically to clear |
| 254 | // the corresponding exception flag). By reading it separately, we |
| 255 | // ensure that the writes by the exception handler are maintained |
| 256 | // when raising the next exception. |
| 257 | |
| 258 | auto raise_helper = [](uint16_t singleExceptFlag) { |
| 259 | internal::X87StateDescriptor state; |
| 260 | uint32_t mxcsr = 0; |
| 261 | internal::get_x87_state_descriptor(state); |
| 262 | mxcsr = internal::get_mxcsr(); |
| 263 | state.status_word |= singleExceptFlag; |
| 264 | mxcsr |= singleExceptFlag; |
| 265 | internal::write_x87_state_descriptor(state); |
| 266 | internal::write_mxcsr(mxcsr); |
| 267 | internal::fwait(); |
| 268 | }; |
| 269 | |
| 270 | if (status_value & internal::ExceptionFlags::INVALID_F) |
| 271 | raise_helper(internal::ExceptionFlags::INVALID_F); |
| 272 | if (status_value & internal::ExceptionFlags::DIV_BY_ZERO_F) |
| 273 | raise_helper(internal::ExceptionFlags::DIV_BY_ZERO_F); |
| 274 | if (status_value & internal::ExceptionFlags::OVERFLOW_F) |
| 275 | raise_helper(internal::ExceptionFlags::OVERFLOW_F); |
| 276 | if (status_value & internal::ExceptionFlags::UNDERFLOW_F) |
| 277 | raise_helper(internal::ExceptionFlags::UNDERFLOW_F); |
| 278 | if (status_value & internal::ExceptionFlags::INEXACT_F) |
| 279 | raise_helper(internal::ExceptionFlags::INEXACT_F); |
| 280 | #ifdef __FE_DENORM |
| 281 | if (status_value & internal::ExceptionFlags::DENORMAL_F) { |
| 282 | raise_helper(internal::ExceptionFlags::DENORMAL_F); |
| 283 | } |
| 284 | #endif // __FE_DENORM |
| 285 | |
| 286 | // There is no special synchronization scheme available to |
| 287 | // raise SEE exceptions. So, we will ignore that for now. |
| 288 | // Just plain writing to the MXCSR register does not guarantee |
| 289 | // the exception handler will be called. |
| 290 | |
| 291 | return 0; |
| 292 | } |
| 293 | |
| 294 | LIBC_INLINE int get_round() { |
| 295 | uint16_t bit_value = |
| 296 | (internal::get_mxcsr() >> internal::MXCSR_ROUNDING_CONTROL_BIT_POSITION) & |
| 297 | 0x3; |
| 298 | switch (bit_value) { |
| 299 | case internal::RoundingControlValue::TO_NEAREST: |
| 300 | return FE_TONEAREST; |
| 301 | case internal::RoundingControlValue::DOWNWARD: |
| 302 | return FE_DOWNWARD; |
| 303 | case internal::RoundingControlValue::UPWARD: |
| 304 | return FE_UPWARD; |
| 305 | case internal::RoundingControlValue::TOWARD_ZERO: |
| 306 | return FE_TOWARDZERO; |
| 307 | default: |
| 308 | return -1; // Error value. |
| 309 | } |
| 310 | } |
| 311 | |
| 312 | LIBC_INLINE int set_round(int mode) { |
| 313 | uint16_t bit_value; |
| 314 | switch (mode) { |
| 315 | case FE_TONEAREST: |
| 316 | bit_value = internal::RoundingControlValue::TO_NEAREST; |
| 317 | break; |
| 318 | case FE_DOWNWARD: |
| 319 | bit_value = internal::RoundingControlValue::DOWNWARD; |
| 320 | break; |
| 321 | case FE_UPWARD: |
| 322 | bit_value = internal::RoundingControlValue::UPWARD; |
| 323 | break; |
| 324 | case FE_TOWARDZERO: |
| 325 | bit_value = internal::RoundingControlValue::TOWARD_ZERO; |
| 326 | break; |
| 327 | default: |
| 328 | return 1; // To indicate failure |
| 329 | } |
| 330 | |
| 331 | uint16_t x87_value = static_cast<uint16_t>( |
| 332 | bit_value << internal::X87_ROUNDING_CONTROL_BIT_POSITION); |
| 333 | uint16_t x87_control = internal::get_x87_control_word(); |
| 334 | x87_control = static_cast<uint16_t>( |
| 335 | (x87_control & |
| 336 | ~(uint16_t(0x3) << internal::X87_ROUNDING_CONTROL_BIT_POSITION)) | |
| 337 | x87_value); |
| 338 | internal::write_x87_control_word(x87_control); |
| 339 | |
| 340 | uint32_t mxcsr_value = bit_value |
| 341 | << internal::MXCSR_ROUNDING_CONTROL_BIT_POSITION; |
| 342 | uint32_t mxcsr_control = internal::get_mxcsr(); |
| 343 | mxcsr_control = (mxcsr_control & |
| 344 | ~(0x3 << internal::MXCSR_ROUNDING_CONTROL_BIT_POSITION)) | |
| 345 | mxcsr_value; |
| 346 | internal::write_mxcsr(mxcsr_control); |
| 347 | |
| 348 | return 0; |
| 349 | } |
| 350 | |
| 351 | namespace internal { |
| 352 | |
| 353 | #if defined(_WIN32) |
| 354 | // MSVC fenv.h defines a very simple representation of the floating point state |
| 355 | // which just consists of control and status words of the x87 unit. |
| 356 | struct FPState { |
| 357 | uint32_t control_word; |
| 358 | uint32_t status_word; |
| 359 | }; |
| 360 | #elif defined(__APPLE__) |
| 361 | struct FPState { |
| 362 | uint16_t control_word; |
| 363 | uint16_t status_word; |
| 364 | uint32_t mxcsr; |
| 365 | uint8_t reserved[8]; |
| 366 | }; |
| 367 | #else |
| 368 | struct FPState { |
| 369 | X87StateDescriptor x87_status; |
| 370 | uint32_t mxcsr; |
| 371 | }; |
| 372 | #endif // _WIN32 |
| 373 | |
| 374 | } // namespace internal |
| 375 | |
| 376 | static_assert( |
| 377 | sizeof(fenv_t) == sizeof(internal::FPState), |
| 378 | "Internal floating point state does not match the public fenv_t type."); |
| 379 | |
| 380 | #ifdef _WIN32 |
| 381 | |
| 382 | // The exception flags in the Windows FEnv struct and the MXCSR have almost |
| 383 | // reversed bit positions. |
| 384 | struct WinExceptionFlags { |
| 385 | static constexpr uint32_t INEXACT_WIN = 0x01; |
| 386 | static constexpr uint32_t UNDERFLOW_WIN = 0x02; |
| 387 | static constexpr uint32_t OVERFLOW_WIN = 0x04; |
| 388 | static constexpr uint32_t DIV_BY_ZERO_WIN = 0x08; |
| 389 | static constexpr uint32_t INVALID_WIN = 0x10; |
| 390 | static constexpr uint32_t DENORMAL_WIN = 0x20; |
| 391 | |
| 392 | // The Windows FEnv struct has a second copy of all of these bits in the high |
| 393 | // byte of the 32 bit control word. These are used as the source of truth when |
| 394 | // calling fesetenv. |
| 395 | static constexpr uint32_t HIGH_OFFSET = 24; |
| 396 | |
| 397 | static constexpr uint32_t HIGH_INEXACT = INEXACT_WIN << HIGH_OFFSET; |
| 398 | static constexpr uint32_t HIGH_UNDERFLOW = UNDERFLOW_WIN << HIGH_OFFSET; |
| 399 | static constexpr uint32_t HIGH_OVERFLOW = OVERFLOW_WIN << HIGH_OFFSET; |
| 400 | static constexpr uint32_t HIGH_DIV_BY_ZERO = DIV_BY_ZERO_WIN << HIGH_OFFSET; |
| 401 | static constexpr uint32_t HIGH_INVALID = INVALID_WIN << HIGH_OFFSET; |
| 402 | static constexpr uint32_t HIGH_DENORMAL = DENORMAL_WIN << HIGH_OFFSET; |
| 403 | }; |
| 404 | |
| 405 | /* |
| 406 | fenv_t control word format: |
| 407 | |
| 408 | Windows (at least for x64) uses a 4 byte control fenv control word stored in |
| 409 | a 32 bit integer. The first byte contains just the rounding mode and the |
| 410 | exception masks, while the last two bytes contain that same information as |
| 411 | well as the flush-to-zero and denormals-are-zero flags. The flags are |
| 412 | represented with a truth table: |
| 413 | |
| 414 | 00 - No flags set |
| 415 | 01 - Flush-to-zero and Denormals-are-zero set |
| 416 | 11 - Flush-to-zero set |
| 417 | 10 - Denormals-are-zero set |
| 418 | |
| 419 | U represents unused. |
| 420 | |
| 421 | +-----Rounding Mode-----+ |
| 422 | | | |
| 423 | ++ ++ |
| 424 | || || |
| 425 | RRMMMMMM UUUUUUUU UUUUFFRR UUMMMMMM |
| 426 | | | || | | |
| 427 | +----+ flags---++ +----+ |
| 428 | | | |
| 429 | +------Exception Masks-----+ |
| 430 | |
| 431 | |
| 432 | fenv_t status word format: |
| 433 | |
| 434 | The status word is a lot simpler for this conversion, since only the |
| 435 | exception flags are used in the MXCSR. |
| 436 | |
| 437 | +----+---Exception Flags---+----+ |
| 438 | | | | | |
| 439 | UUEEEEEE UUUUUUUU UUUUUUUU UUEEEEEE |
| 440 | |
| 441 | |
| 442 | |
| 443 | MXCSR Format: |
| 444 | |
| 445 | The MXCSR format is the same information, just organized differently. Since |
| 446 | the fenv_t struct for windows doesn't include the mxcsr bits, they must be |
| 447 | generated from the control word bits. |
| 448 | |
| 449 | Exception Masks---+ +---Exception Flags |
| 450 | | | |
| 451 | Flush-to-zero---+ +----+ +----+ |
| 452 | | | | | | |
| 453 | FRRMMMMMMDEEEEEE |
| 454 | || | |
| 455 | ++ +---Denormals-are-zero |
| 456 | | |
| 457 | +---Rounding Mode |
| 458 | |
| 459 | |
| 460 | The mask and flag order is as follows: |
| 461 | |
| 462 | fenv_t mxcsr |
| 463 | |
| 464 | denormal inexact |
| 465 | invalid underflow |
| 466 | div by 0 overflow |
| 467 | overflow div by 0 |
| 468 | underflow denormal |
| 469 | inexact invalid |
| 470 | |
| 471 | This is almost reverse, except for denormal and invalid which are in the |
| 472 | same order in both. |
| 473 | */ |
| 474 | |
| 475 | LIBC_INLINE int get_env(fenv_t *envp) { |
| 476 | internal::FPState *state = reinterpret_cast<internal::FPState *>(envp); |
| 477 | |
| 478 | uint32_t status_word = 0; |
| 479 | uint32_t control_word = 0; |
| 480 | |
| 481 | uint32_t mxcsr = internal::get_mxcsr(); |
| 482 | |
| 483 | // Set exception flags in the status word |
| 484 | status_word |= (mxcsr & (internal::ExceptionFlags::INVALID_F | |
| 485 | internal::ExceptionFlags::DENORMAL_F)) |
| 486 | << 4; |
| 487 | status_word |= (mxcsr & internal::ExceptionFlags::DIV_BY_ZERO_F) << 1; |
| 488 | status_word |= (mxcsr & internal::ExceptionFlags::OVERFLOW_F) >> 1; |
| 489 | status_word |= (mxcsr & internal::ExceptionFlags::UNDERFLOW_F) >> 3; |
| 490 | status_word |= (mxcsr & internal::ExceptionFlags::INEXACT_F) >> 5; |
| 491 | status_word |= status_word << WinExceptionFlags::HIGH_OFFSET; |
| 492 | |
| 493 | // Set exception masks in bits 0-5 and 24-29 |
| 494 | control_word |= (mxcsr & ((internal::ExceptionFlags::INVALID_F | |
| 495 | internal::ExceptionFlags::DENORMAL_F) |
| 496 | << 7)) >> |
| 497 | 3; |
| 498 | control_word |= (mxcsr & (internal::ExceptionFlags::DIV_BY_ZERO_F << 7)) >> 6; |
| 499 | control_word |= (mxcsr & (internal::ExceptionFlags::OVERFLOW_F << 7)) >> 8; |
| 500 | control_word |= (mxcsr & (internal::ExceptionFlags::UNDERFLOW_F << 7)) >> 10; |
| 501 | control_word |= (mxcsr & (internal::ExceptionFlags::INEXACT_F << 7)) >> 12; |
| 502 | control_word |= control_word << WinExceptionFlags::HIGH_OFFSET; |
| 503 | |
| 504 | // Set rounding in bits 8-9 and 30-31 |
| 505 | control_word |= (mxcsr & 0x6000) >> 5; |
| 506 | control_word |= (mxcsr & 0x6000) << 17; |
| 507 | |
| 508 | // Set flush-to-zero in bit 10 |
| 509 | control_word |= (mxcsr & 0x8000) >> 5; |
| 510 | |
| 511 | // Set denormals-are-zero xor flush-to-zero in bit 11 |
| 512 | control_word |= (((mxcsr & 0x8000) >> 9) ^ (mxcsr & 0x0040)) << 5; |
| 513 | |
| 514 | state->control_word = control_word; |
| 515 | state->status_word = status_word; |
| 516 | return 0; |
| 517 | } |
| 518 | |
| 519 | LIBC_INLINE int set_env(const fenv_t *envp) { |
| 520 | const internal::FPState *state = |
| 521 | reinterpret_cast<const internal::FPState *>(envp); |
| 522 | |
| 523 | uint32_t mxcsr = 0; |
| 524 | |
| 525 | // Set exception flags from the status word |
| 526 | mxcsr |= static_cast<uint16_t>( |
| 527 | (state->status_word & |
| 528 | (WinExceptionFlags::HIGH_DENORMAL | WinExceptionFlags::HIGH_INVALID)) >> |
| 529 | 28); |
| 530 | mxcsr |= static_cast<uint16_t>( |
| 531 | (state->status_word & WinExceptionFlags::HIGH_DIV_BY_ZERO) >> 25); |
| 532 | mxcsr |= static_cast<uint16_t>( |
| 533 | (state->status_word & WinExceptionFlags::HIGH_OVERFLOW) >> 23); |
| 534 | mxcsr |= static_cast<uint16_t>( |
| 535 | (state->status_word & WinExceptionFlags::HIGH_UNDERFLOW) >> 21); |
| 536 | mxcsr |= static_cast<uint16_t>( |
| 537 | (state->status_word & WinExceptionFlags::HIGH_INEXACT) >> 19); |
| 538 | |
| 539 | // Set denormals-are-zero from bit 10 xor bit 11 |
| 540 | mxcsr |= static_cast<uint16_t>( |
| 541 | (((state->control_word & 0x800) >> 1) ^ (state->control_word & 0x400)) >> |
| 542 | 4); |
| 543 | |
| 544 | // Set exception masks from bits 24-29 |
| 545 | mxcsr |= static_cast<uint16_t>( |
| 546 | (state->control_word & |
| 547 | (WinExceptionFlags::HIGH_DENORMAL | WinExceptionFlags::HIGH_INVALID)) >> |
| 548 | 21); |
| 549 | mxcsr |= static_cast<uint16_t>( |
| 550 | (state->control_word & WinExceptionFlags::HIGH_DIV_BY_ZERO) >> 18); |
| 551 | mxcsr |= static_cast<uint16_t>( |
| 552 | (state->control_word & WinExceptionFlags::HIGH_OVERFLOW) >> 16); |
| 553 | mxcsr |= static_cast<uint16_t>( |
| 554 | (state->control_word & WinExceptionFlags::HIGH_UNDERFLOW) >> 14); |
| 555 | mxcsr |= static_cast<uint16_t>( |
| 556 | (state->control_word & WinExceptionFlags::HIGH_INEXACT) >> 12); |
| 557 | |
| 558 | // Set rounding from bits 30-31 |
| 559 | mxcsr |= static_cast<uint16_t>((state->control_word & 0xc0000000) >> 17); |
| 560 | |
| 561 | // Set flush-to-zero from bit 10 |
| 562 | mxcsr |= static_cast<uint16_t>((state->control_word & 0x400) << 5); |
| 563 | |
| 564 | internal::write_mxcsr(mxcsr); |
| 565 | return 0; |
| 566 | } |
| 567 | #else |
| 568 | LIBC_INLINE int get_env(fenv_t *envp) { |
| 569 | internal::FPState *state = reinterpret_cast<internal::FPState *>(envp); |
| 570 | #ifdef __APPLE__ |
| 571 | internal::X87StateDescriptor x87_status; |
| 572 | internal::get_x87_state_descriptor(x87_status); |
| 573 | state->control_word = x87_status.control_word; |
| 574 | state->status_word = x87_status.status_word; |
| 575 | #else |
| 576 | internal::get_x87_state_descriptor(state->x87_status); |
| 577 | #endif // __APPLE__ |
| 578 | state->mxcsr = internal::get_mxcsr(); |
| 579 | return 0; |
| 580 | } |
| 581 | |
| 582 | LIBC_INLINE int set_env(const fenv_t *envp) { |
| 583 | // envp contains everything including pieces like the current |
| 584 | // top of FPU stack. We cannot arbitrarily change them. So, we first |
| 585 | // read the current status and update only those pieces which are |
| 586 | // not disruptive. |
| 587 | internal::X87StateDescriptor x87_status; |
| 588 | internal::get_x87_state_descriptor(x87_status); |
| 589 | |
| 590 | if (envp == FE_DFL_ENV) { |
| 591 | // Reset the exception flags in the status word. |
| 592 | x87_status.status_word &= ~uint16_t(0x3F); |
| 593 | // Reset other non-sensitive parts of the status word. |
| 594 | for (int i = 0; i < 5; i++) |
| 595 | x87_status._[i] = 0; |
| 596 | // In the control word, we do the following: |
| 597 | // 1. Mask all exceptions |
| 598 | // 2. Set rounding mode to round-to-nearest |
| 599 | // 3. Set the internal precision to double extended precision. |
| 600 | x87_status.control_word |= uint16_t(0x3F); // Mask all exceptions. |
| 601 | x87_status.control_word &= ~(uint16_t(0x3) << 10); // Round to nearest. |
| 602 | x87_status.control_word |= (uint16_t(0x3) << 8); // Extended precision. |
| 603 | internal::write_x87_state_descriptor(x87_status); |
| 604 | |
| 605 | // We take the exact same approach MXCSR register as well. |
| 606 | // MXCSR has two additional fields, "flush-to-zero" and |
| 607 | // "denormals-are-zero". We reset those bits. Also, MXCSR does not |
| 608 | // have a field which controls the precision of internal operations. |
| 609 | uint32_t mxcsr = internal::get_mxcsr(); |
| 610 | mxcsr &= ~uint16_t(0x3F); // Clear exception flags. |
| 611 | mxcsr &= ~(uint16_t(0x1) << 6); // Reset denormals-are-zero |
| 612 | mxcsr |= (uint16_t(0x3F) << 7); // Mask exceptions |
| 613 | mxcsr &= ~(uint16_t(0x3) << 13); // Round to nearest. |
| 614 | mxcsr &= ~(uint16_t(0x1) << 15); // Reset flush-to-zero |
| 615 | internal::write_mxcsr(mxcsr); |
| 616 | |
| 617 | return 0; |
| 618 | } |
| 619 | |
| 620 | const internal::FPState *fpstate = |
| 621 | reinterpret_cast<const internal::FPState *>(envp); |
| 622 | |
| 623 | // Copy the exception status flags from envp. |
| 624 | x87_status.status_word &= ~uint16_t(0x3F); |
| 625 | #ifdef __APPLE__ |
| 626 | x87_status.status_word |= (fpstate->status_word & 0x3F); |
| 627 | // We can set the x87 control word as is as there no sensitive bits. |
| 628 | x87_status.control_word = fpstate->control_word; |
| 629 | #else |
| 630 | x87_status.status_word |= (fpstate->x87_status.status_word & 0x3F); |
| 631 | // Copy other non-sensitive parts of the status word. |
| 632 | for (int i = 0; i < 5; i++) |
| 633 | x87_status._[i] = fpstate->x87_status._[i]; |
| 634 | // We can set the x87 control word as is as there no sensitive bits. |
| 635 | x87_status.control_word = fpstate->x87_status.control_word; |
| 636 | #endif // __APPLE__ |
| 637 | internal::write_x87_state_descriptor(x87_status); |
| 638 | |
| 639 | // We can write the MXCSR state as is as there are no sensitive bits. |
| 640 | internal::write_mxcsr(fpstate->mxcsr); |
| 641 | return 0; |
| 642 | } |
| 643 | #endif |
| 644 | |
| 645 | } // namespace fputil |
| 646 | } // namespace LIBC_NAMESPACE_DECL |
| 647 | |
| 648 | #endif // LLVM_LIBC_SRC___SUPPORT_FPUTIL_X86_64_FENVIMPL_H |
| 649 |
Warning: This file is not a C or C++ file. It does not have highlighting.
