1 | //===--- Implementation of a platform independent file data structure -----===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "file.h" |
10 | |
11 | #include "hdr/func/realloc.h" |
12 | #include "hdr/stdio_macros.h" |
13 | #include "hdr/types/off_t.h" |
14 | #include "src/__support/CPP/new.h" |
15 | #include "src/__support/CPP/span.h" |
16 | #include "src/__support/libc_errno.h" // For error macros |
17 | #include "src/__support/macros/config.h" |
18 | |
19 | namespace LIBC_NAMESPACE_DECL { |
20 | |
21 | FileIOResult File::write_unlocked(const void *data, size_t len) { |
22 | if (!write_allowed()) { |
23 | err = true; |
24 | return {0, EBADF}; |
25 | } |
26 | |
27 | prev_op = FileOp::WRITE; |
28 | |
29 | if (bufmode == _IONBF) { // unbuffered. |
30 | size_t ret_val = |
31 | write_unlocked_nbf(data: static_cast<const uint8_t *>(data), len); |
32 | flush_unlocked(); |
33 | return ret_val; |
34 | } else if (bufmode == _IOFBF) { // fully buffered |
35 | return write_unlocked_fbf(data: static_cast<const uint8_t *>(data), len); |
36 | } else /*if (bufmode == _IOLBF) */ { // line buffered |
37 | return write_unlocked_lbf(data: static_cast<const uint8_t *>(data), len); |
38 | } |
39 | } |
40 | |
41 | FileIOResult File::write_unlocked_nbf(const uint8_t *data, size_t len) { |
42 | if (pos > 0) { // If the buffer is not empty |
43 | // Flush the buffer |
44 | const size_t write_size = pos; |
45 | FileIOResult write_result = platform_write(this, buf, write_size); |
46 | pos = 0; // Buffer is now empty so reset pos to the beginning. |
47 | // If less bytes were written than expected, then an error occurred. |
48 | if (write_result < write_size) { |
49 | err = true; |
50 | // No bytes from data were written, so return 0. |
51 | return {0, write_result.error}; |
52 | } |
53 | } |
54 | |
55 | FileIOResult write_result = platform_write(this, data, len); |
56 | if (write_result < len) |
57 | err = true; |
58 | return write_result; |
59 | } |
60 | |
61 | FileIOResult File::write_unlocked_fbf(const uint8_t *data, size_t len) { |
62 | const size_t init_pos = pos; |
63 | const size_t bufspace = bufsize - pos; |
64 | |
65 | // If data is too large to be buffered at all, then just write it unbuffered. |
66 | if (len > bufspace + bufsize) |
67 | return write_unlocked_nbf(data, len); |
68 | |
69 | // we split |data| (conceptually) using the split point. Then we handle the |
70 | // two pieces separately. |
71 | const size_t split_point = len < bufspace ? len : bufspace; |
72 | |
73 | // The primary piece is the piece of |data| we want to write to the buffer |
74 | // before flushing. It will always fit into the buffer, since the split point |
75 | // is defined as being min(len, bufspace), and it will always exist if len is |
76 | // non-zero. |
77 | cpp::span<const uint8_t> primary(data, split_point); |
78 | |
79 | // The second piece is the remainder of |data|. It is written to the buffer if |
80 | // it fits, or written directly to the output if it doesn't. If the primary |
81 | // piece fits entirely in the buffer, the remainder may be nothing. |
82 | cpp::span<const uint8_t> remainder( |
83 | static_cast<const uint8_t *>(data) + split_point, len - split_point); |
84 | |
85 | cpp::span<uint8_t> bufref(static_cast<uint8_t *>(buf), bufsize); |
86 | |
87 | // Copy the first piece into the buffer. |
88 | // TODO: Replace the for loop below with a call to internal memcpy. |
89 | for (size_t i = 0; i < primary.size(); ++i) |
90 | bufref[pos + i] = primary[i]; |
91 | pos += primary.size(); |
92 | |
93 | // If there is no remainder, we can return early, since the first piece has |
94 | // fit completely into the buffer. |
95 | if (remainder.size() == 0) |
96 | return len; |
97 | |
98 | // We need to flush the buffer now, since there is still data and the buffer |
99 | // is full. |
100 | const size_t write_size = pos; |
101 | |
102 | FileIOResult buf_result = platform_write(this, buf, write_size); |
103 | size_t bytes_written = buf_result.value; |
104 | |
105 | pos = 0; // Buffer is now empty so reset pos to the beginning. |
106 | // If less bytes were written than expected, then an error occurred. Return |
107 | // the number of bytes that have been written from |data|. |
108 | if (buf_result.has_error() || bytes_written < write_size) { |
109 | err = true; |
110 | return {bytes_written <= init_pos ? 0 : bytes_written - init_pos, |
111 | buf_result.error}; |
112 | } |
113 | |
114 | // The second piece is handled basically the same as the first, although we |
115 | // know that if the second piece has data in it then the buffer has been |
116 | // flushed, meaning that pos is always 0. |
117 | if (remainder.size() < bufsize) { |
118 | // TODO: Replace the for loop below with a call to internal memcpy. |
119 | for (size_t i = 0; i < remainder.size(); ++i) |
120 | bufref[i] = remainder[i]; |
121 | pos = remainder.size(); |
122 | } else { |
123 | |
124 | FileIOResult result = |
125 | platform_write(this, remainder.data(), remainder.size()); |
126 | size_t bytes_written = buf_result.value; |
127 | |
128 | // If less bytes were written than expected, then an error occurred. Return |
129 | // the number of bytes that have been written from |data|. |
130 | if (result.has_error() || bytes_written < remainder.size()) { |
131 | err = true; |
132 | return {primary.size() + bytes_written, result.error}; |
133 | } |
134 | } |
135 | |
136 | return len; |
137 | } |
138 | |
139 | FileIOResult File::write_unlocked_lbf(const uint8_t *data, size_t len) { |
140 | constexpr uint8_t NEWLINE_CHAR = '\n'; |
141 | size_t last_newline = len; |
142 | for (size_t i = len; i >= 1; --i) { |
143 | if (data[i - 1] == NEWLINE_CHAR) { |
144 | last_newline = i - 1; |
145 | break; |
146 | } |
147 | } |
148 | |
149 | // If there is no newline, treat this as fully buffered. |
150 | if (last_newline == len) { |
151 | return write_unlocked_fbf(data, len); |
152 | } |
153 | |
154 | // we split |data| (conceptually) using the split point. Then we handle the |
155 | // two pieces separately. |
156 | const size_t split_point = last_newline + 1; |
157 | |
158 | // The primary piece is everything in |data| up to the newline. It's written |
159 | // unbuffered to the output. |
160 | cpp::span<const uint8_t> primary(data, split_point); |
161 | |
162 | // The second piece is the remainder of |data|. It is written fully buffered, |
163 | // meaning it may stay in the buffer if it fits. |
164 | cpp::span<const uint8_t> remainder( |
165 | static_cast<const uint8_t *>(data) + split_point, len - split_point); |
166 | |
167 | size_t written = 0; |
168 | |
169 | written = write_unlocked_nbf(data: primary.data(), len: primary.size()); |
170 | if (written < primary.size()) { |
171 | err = true; |
172 | return written; |
173 | } |
174 | |
175 | flush_unlocked(); |
176 | |
177 | written += write_unlocked_fbf(data: remainder.data(), len: remainder.size()); |
178 | if (written < len) { |
179 | err = true; |
180 | return written; |
181 | } |
182 | |
183 | return len; |
184 | } |
185 | |
186 | FileIOResult File::read_unlocked(void *data, size_t len) { |
187 | if (!read_allowed()) { |
188 | err = true; |
189 | return {0, EBADF}; |
190 | } |
191 | |
192 | prev_op = FileOp::READ; |
193 | |
194 | if (bufmode == _IONBF) { // unbuffered. |
195 | return read_unlocked_nbf(data: static_cast<uint8_t *>(data), len); |
196 | } else if (bufmode == _IOFBF) { // fully buffered |
197 | return read_unlocked_fbf(data: static_cast<uint8_t *>(data), len); |
198 | } else /*if (bufmode == _IOLBF) */ { // line buffered |
199 | // There is no line buffered mode for read. Use fully buffered instead. |
200 | return read_unlocked_fbf(data: static_cast<uint8_t *>(data), len); |
201 | } |
202 | } |
203 | |
204 | size_t File::copy_data_from_buf(uint8_t *data, size_t len) { |
205 | cpp::span<uint8_t> bufref(static_cast<uint8_t *>(buf), bufsize); |
206 | cpp::span<uint8_t> dataref(static_cast<uint8_t *>(data), len); |
207 | |
208 | // Because read_limit is always greater than equal to pos, |
209 | // available_data is never a wrapped around value. |
210 | size_t available_data = read_limit - pos; |
211 | if (len <= available_data) { |
212 | // TODO: Replace the for loop below with a call to internal memcpy. |
213 | for (size_t i = 0; i < len; ++i) |
214 | dataref[i] = bufref[i + pos]; |
215 | pos += len; |
216 | return len; |
217 | } |
218 | |
219 | // Copy all of the available data. |
220 | // TODO: Replace the for loop with a call to internal memcpy. |
221 | for (size_t i = 0; i < available_data; ++i) |
222 | dataref[i] = bufref[i + pos]; |
223 | read_limit = pos = 0; // Reset the pointers. |
224 | |
225 | return available_data; |
226 | } |
227 | |
228 | FileIOResult File::read_unlocked_fbf(uint8_t *data, size_t len) { |
229 | // Read data from the buffer first. |
230 | size_t available_data = copy_data_from_buf(data, len); |
231 | if (available_data == len) |
232 | return available_data; |
233 | |
234 | // Update the dataref to reflect that fact that we have already |
235 | // copied |available_data| into |data|. |
236 | size_t to_fetch = len - available_data; |
237 | cpp::span<uint8_t> dataref(static_cast<uint8_t *>(data) + available_data, |
238 | to_fetch); |
239 | |
240 | if (to_fetch > bufsize) { |
241 | FileIOResult result = platform_read(this, dataref.data(), to_fetch); |
242 | size_t fetched_size = result.value; |
243 | if (result.has_error() || fetched_size < to_fetch) { |
244 | if (!result.has_error()) |
245 | eof = true; |
246 | else |
247 | err = true; |
248 | return {available_data + fetched_size, result.error}; |
249 | } |
250 | return len; |
251 | } |
252 | |
253 | // Fetch and buffer another buffer worth of data. |
254 | FileIOResult result = platform_read(this, buf, bufsize); |
255 | size_t fetched_size = result.value; |
256 | read_limit += fetched_size; |
257 | size_t transfer_size = fetched_size >= to_fetch ? to_fetch : fetched_size; |
258 | for (size_t i = 0; i < transfer_size; ++i) |
259 | dataref[i] = buf[i]; |
260 | pos += transfer_size; |
261 | if (result.has_error() || fetched_size < to_fetch) { |
262 | if (!result.has_error()) |
263 | eof = true; |
264 | else |
265 | err = true; |
266 | } |
267 | return {transfer_size + available_data, result.error}; |
268 | } |
269 | |
270 | FileIOResult File::read_unlocked_nbf(uint8_t *data, size_t len) { |
271 | // Check whether there is a character in the ungetc buffer. |
272 | size_t available_data = copy_data_from_buf(data, len); |
273 | if (available_data == len) |
274 | return available_data; |
275 | |
276 | // Directly copy the data into |data|. |
277 | cpp::span<uint8_t> dataref(static_cast<uint8_t *>(data) + available_data, |
278 | len - available_data); |
279 | FileIOResult result = platform_read(this, dataref.data(), dataref.size()); |
280 | |
281 | if (result.has_error() || result < dataref.size()) { |
282 | if (!result.has_error()) |
283 | eof = true; |
284 | else |
285 | err = true; |
286 | } |
287 | return {result + available_data, result.error}; |
288 | } |
289 | |
290 | int File::ungetc_unlocked(int c) { |
291 | // There is no meaning to unget if: |
292 | // 1. You are trying to push back EOF. |
293 | // 2. Read operations are not allowed on this file. |
294 | // 3. The previous operation was a write operation. |
295 | if (c == EOF || !read_allowed() || (prev_op == FileOp::WRITE)) |
296 | return EOF; |
297 | |
298 | cpp::span<uint8_t> bufref(static_cast<uint8_t *>(buf), bufsize); |
299 | if (read_limit == 0) { |
300 | // If |read_limit| is zero, it can mean three things: |
301 | // a. This file was just created. |
302 | // b. The previous operation was a seek operation. |
303 | // c. The previous operation was a read operation which emptied |
304 | // the buffer. |
305 | // For all the above cases, we simply write |c| at the beginning |
306 | // of the buffer and bump |read_limit|. Note that |pos| will also |
307 | // be zero in this case, so we don't need to adjust it. |
308 | bufref[0] = static_cast<unsigned char>(c); |
309 | ++read_limit; |
310 | } else { |
311 | // If |read_limit| is non-zero, it means that there is data in the buffer |
312 | // from a previous read operation. Which would also mean that |pos| is not |
313 | // zero. So, we decrement |pos| and write |c| in to the buffer at the new |
314 | // |pos|. If too many ungetc operations are performed without reads, it |
315 | // can lead to (pos == 0 but read_limit != 0). We will just error out in |
316 | // such a case. |
317 | if (pos == 0) |
318 | return EOF; |
319 | --pos; |
320 | bufref[pos] = static_cast<unsigned char>(c); |
321 | } |
322 | |
323 | eof = false; // There is atleast one character that can be read now. |
324 | err = false; // This operation was a success. |
325 | return c; |
326 | } |
327 | |
328 | ErrorOr<int> File::seek(off_t offset, int whence) { |
329 | FileLock lock(this); |
330 | if (prev_op == FileOp::WRITE && pos > 0) { |
331 | |
332 | FileIOResult buf_result = platform_write(this, buf, pos); |
333 | if (buf_result.has_error() || buf_result.value < pos) { |
334 | err = true; |
335 | return Error(buf_result.error); |
336 | } |
337 | } else if (prev_op == FileOp::READ && whence == SEEK_CUR) { |
338 | // More data could have been read out from the platform file than was |
339 | // required. So, we have to adjust the offset we pass to platform seek |
340 | // function. Note that read_limit >= pos is always true. |
341 | offset -= (read_limit - pos); |
342 | } |
343 | pos = read_limit = 0; |
344 | prev_op = FileOp::SEEK; |
345 | // Reset the eof flag as a seek might move the file positon to some place |
346 | // readable. |
347 | eof = false; |
348 | auto result = platform_seek(this, offset, whence); |
349 | if (!result.has_value()) |
350 | return Error(result.error()); |
351 | return 0; |
352 | } |
353 | |
354 | ErrorOr<off_t> File::tell() { |
355 | FileLock lock(this); |
356 | auto seek_target = eof ? SEEK_END : SEEK_CUR; |
357 | auto result = platform_seek(this, 0, seek_target); |
358 | if (!result.has_value() || result.value() < 0) |
359 | return Error(result.error()); |
360 | off_t platform_offset = result.value(); |
361 | if (prev_op == FileOp::READ) |
362 | return platform_offset - (read_limit - pos); |
363 | if (prev_op == FileOp::WRITE) |
364 | return platform_offset + pos; |
365 | return platform_offset; |
366 | } |
367 | |
368 | int File::flush_unlocked() { |
369 | if (prev_op == FileOp::WRITE && pos > 0) { |
370 | FileIOResult buf_result = platform_write(this, buf, pos); |
371 | if (buf_result.has_error() || buf_result.value < pos) { |
372 | err = true; |
373 | return buf_result.error; |
374 | } |
375 | pos = 0; |
376 | } |
377 | // TODO: Add POSIX behavior for input streams. |
378 | return 0; |
379 | } |
380 | |
381 | int File::set_buffer(void *buffer, size_t size, int buffer_mode) { |
382 | // We do not need to lock the file as this method should be called before |
383 | // other operations are performed on the file. |
384 | if (buffer != nullptr && size == 0) |
385 | return EINVAL; |
386 | |
387 | switch (buffer_mode) { |
388 | case _IOFBF: |
389 | case _IOLBF: |
390 | case _IONBF: |
391 | break; |
392 | default: |
393 | return EINVAL; |
394 | } |
395 | |
396 | if (buffer == nullptr && size != 0 && buffer_mode != _IONBF) { |
397 | // We exclude the case of buffer_mode == _IONBF in this branch |
398 | // because we don't need to allocate buffer in such a case. |
399 | if (own_buf) { |
400 | // This is one of the places where use a C allocation functon |
401 | // as C++ does not have an equivalent of realloc. |
402 | buf = reinterpret_cast<uint8_t *>(realloc(buf, size)); |
403 | if (buf == nullptr) |
404 | return ENOMEM; |
405 | } else { |
406 | AllocChecker ac; |
407 | buf = new (ac) uint8_t[size]; |
408 | if (!ac) |
409 | return ENOMEM; |
410 | own_buf = true; |
411 | } |
412 | bufsize = size; |
413 | // TODO: Handle allocation failures. |
414 | } else { |
415 | if (own_buf) |
416 | delete buf; |
417 | if (buffer_mode != _IONBF) { |
418 | buf = static_cast<uint8_t *>(buffer); |
419 | bufsize = size; |
420 | } else { |
421 | // We don't need any buffer. |
422 | buf = nullptr; |
423 | bufsize = 0; |
424 | } |
425 | own_buf = false; |
426 | } |
427 | bufmode = buffer_mode; |
428 | adjust_buf(); |
429 | return 0; |
430 | } |
431 | |
432 | File::ModeFlags File::mode_flags(const char *mode) { |
433 | // First character in |mode| should be 'a', 'r' or 'w'. |
434 | if (*mode != 'a' && *mode != 'r' && *mode != 'w') |
435 | return 0; |
436 | |
437 | // There should be exaclty one main mode ('a', 'r' or 'w') character. |
438 | // If there are more than one main mode characters listed, then |
439 | // we will consider |mode| as incorrect and return 0; |
440 | int main_mode_count = 0; |
441 | |
442 | ModeFlags flags = 0; |
443 | for (; *mode != '\0'; ++mode) { |
444 | switch (*mode) { |
445 | case 'r': |
446 | flags |= static_cast<ModeFlags>(OpenMode::READ); |
447 | ++main_mode_count; |
448 | break; |
449 | case 'w': |
450 | flags |= static_cast<ModeFlags>(OpenMode::WRITE); |
451 | ++main_mode_count; |
452 | break; |
453 | case '+': |
454 | flags |= static_cast<ModeFlags>(OpenMode::PLUS); |
455 | break; |
456 | case 'b': |
457 | flags |= static_cast<ModeFlags>(ContentType::BINARY); |
458 | break; |
459 | case 'a': |
460 | flags |= static_cast<ModeFlags>(OpenMode::APPEND); |
461 | ++main_mode_count; |
462 | break; |
463 | case 'x': |
464 | flags |= static_cast<ModeFlags>(CreateType::EXCLUSIVE); |
465 | break; |
466 | default: |
467 | return 0; |
468 | } |
469 | } |
470 | |
471 | if (main_mode_count != 1) |
472 | return 0; |
473 | |
474 | return flags; |
475 | } |
476 | |
477 | } // namespace LIBC_NAMESPACE_DECL |
478 | |