1 | //===--- Implementation of a platform independent file data structure -----===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "file.h" |
10 | |
11 | #include "src/__support/CPP/new.h" |
12 | #include "src/__support/CPP/span.h" |
13 | #include "src/errno/libc_errno.h" // For error macros |
14 | |
15 | #include <stdio.h> |
16 | #include <stdlib.h> |
17 | |
18 | namespace LIBC_NAMESPACE { |
19 | |
20 | FileIOResult File::write_unlocked(const void *data, size_t len) { |
21 | if (!write_allowed()) { |
22 | err = true; |
23 | return {0, EBADF}; |
24 | } |
25 | |
26 | prev_op = FileOp::WRITE; |
27 | |
28 | if (bufmode == _IONBF) { // unbuffered. |
29 | size_t ret_val = |
30 | write_unlocked_nbf(data: static_cast<const uint8_t *>(data), len); |
31 | flush_unlocked(); |
32 | return ret_val; |
33 | } else if (bufmode == _IOFBF) { // fully buffered |
34 | return write_unlocked_fbf(data: static_cast<const uint8_t *>(data), len); |
35 | } else /*if (bufmode == _IOLBF) */ { // line buffered |
36 | return write_unlocked_lbf(data: static_cast<const uint8_t *>(data), len); |
37 | } |
38 | } |
39 | |
40 | FileIOResult File::write_unlocked_nbf(const uint8_t *data, size_t len) { |
41 | if (pos > 0) { // If the buffer is not empty |
42 | // Flush the buffer |
43 | const size_t write_size = pos; |
44 | auto write_result = platform_write(this, buf, write_size); |
45 | pos = 0; // Buffer is now empty so reset pos to the beginning. |
46 | // If less bytes were written than expected, then an error occurred. |
47 | if (write_result < write_size) { |
48 | err = true; |
49 | // No bytes from data were written, so return 0. |
50 | return {0, write_result.error}; |
51 | } |
52 | } |
53 | |
54 | auto write_result = platform_write(this, data, len); |
55 | if (write_result < len) |
56 | err = true; |
57 | return write_result; |
58 | } |
59 | |
60 | FileIOResult File::write_unlocked_fbf(const uint8_t *data, size_t len) { |
61 | const size_t init_pos = pos; |
62 | const size_t bufspace = bufsize - pos; |
63 | |
64 | // If data is too large to be buffered at all, then just write it unbuffered. |
65 | if (len > bufspace + bufsize) |
66 | return write_unlocked_nbf(data, len); |
67 | |
68 | // we split |data| (conceptually) using the split point. Then we handle the |
69 | // two pieces separately. |
70 | const size_t split_point = len < bufspace ? len : bufspace; |
71 | |
72 | // The primary piece is the piece of |data| we want to write to the buffer |
73 | // before flushing. It will always fit into the buffer, since the split point |
74 | // is defined as being min(len, bufspace), and it will always exist if len is |
75 | // non-zero. |
76 | cpp::span<const uint8_t> primary(data, split_point); |
77 | |
78 | // The second piece is the remainder of |data|. It is written to the buffer if |
79 | // it fits, or written directly to the output if it doesn't. If the primary |
80 | // piece fits entirely in the buffer, the remainder may be nothing. |
81 | cpp::span<const uint8_t> remainder( |
82 | static_cast<const uint8_t *>(data) + split_point, len - split_point); |
83 | |
84 | cpp::span<uint8_t> bufref(static_cast<uint8_t *>(buf), bufsize); |
85 | |
86 | // Copy the first piece into the buffer. |
87 | // TODO: Replace the for loop below with a call to internal memcpy. |
88 | for (size_t i = 0; i < primary.size(); ++i) |
89 | bufref[pos + i] = primary[i]; |
90 | pos += primary.size(); |
91 | |
92 | // If there is no remainder, we can return early, since the first piece has |
93 | // fit completely into the buffer. |
94 | if (remainder.size() == 0) |
95 | return len; |
96 | |
97 | // We need to flush the buffer now, since there is still data and the buffer |
98 | // is full. |
99 | const size_t write_size = pos; |
100 | |
101 | auto buf_result = platform_write(this, buf, write_size); |
102 | size_t bytes_written = buf_result.value; |
103 | |
104 | pos = 0; // Buffer is now empty so reset pos to the beginning. |
105 | // If less bytes were written than expected, then an error occurred. Return |
106 | // the number of bytes that have been written from |data|. |
107 | if (buf_result.has_error() || bytes_written < write_size) { |
108 | err = true; |
109 | return {bytes_written <= init_pos ? 0 : bytes_written - init_pos, |
110 | buf_result.error}; |
111 | } |
112 | |
113 | // The second piece is handled basically the same as the first, although we |
114 | // know that if the second piece has data in it then the buffer has been |
115 | // flushed, meaning that pos is always 0. |
116 | if (remainder.size() < bufsize) { |
117 | // TODO: Replace the for loop below with a call to internal memcpy. |
118 | for (size_t i = 0; i < remainder.size(); ++i) |
119 | bufref[i] = remainder[i]; |
120 | pos = remainder.size(); |
121 | } else { |
122 | |
123 | auto result = platform_write(this, remainder.data(), remainder.size()); |
124 | size_t bytes_written = buf_result.value; |
125 | |
126 | // If less bytes were written than expected, then an error occurred. Return |
127 | // the number of bytes that have been written from |data|. |
128 | if (result.has_error() || bytes_written < remainder.size()) { |
129 | err = true; |
130 | return {primary.size() + bytes_written, result.error}; |
131 | } |
132 | } |
133 | |
134 | return len; |
135 | } |
136 | |
137 | FileIOResult File::write_unlocked_lbf(const uint8_t *data, size_t len) { |
138 | constexpr uint8_t NEWLINE_CHAR = '\n'; |
139 | size_t last_newline = len; |
140 | for (size_t i = len; i >= 1; --i) { |
141 | if (data[i - 1] == NEWLINE_CHAR) { |
142 | last_newline = i - 1; |
143 | break; |
144 | } |
145 | } |
146 | |
147 | // If there is no newline, treat this as fully buffered. |
148 | if (last_newline == len) { |
149 | return write_unlocked_fbf(data, len); |
150 | } |
151 | |
152 | // we split |data| (conceptually) using the split point. Then we handle the |
153 | // two pieces separately. |
154 | const size_t split_point = last_newline + 1; |
155 | |
156 | // The primary piece is everything in |data| up to the newline. It's written |
157 | // unbuffered to the output. |
158 | cpp::span<const uint8_t> primary(data, split_point); |
159 | |
160 | // The second piece is the remainder of |data|. It is written fully buffered, |
161 | // meaning it may stay in the buffer if it fits. |
162 | cpp::span<const uint8_t> remainder( |
163 | static_cast<const uint8_t *>(data) + split_point, len - split_point); |
164 | |
165 | size_t written = 0; |
166 | |
167 | written = write_unlocked_nbf(data: primary.data(), len: primary.size()); |
168 | if (written < primary.size()) { |
169 | err = true; |
170 | return written; |
171 | } |
172 | |
173 | flush_unlocked(); |
174 | |
175 | written += write_unlocked_fbf(data: remainder.data(), len: remainder.size()); |
176 | if (written < len) { |
177 | err = true; |
178 | return written; |
179 | } |
180 | |
181 | return len; |
182 | } |
183 | |
184 | FileIOResult File::read_unlocked(void *data, size_t len) { |
185 | if (!read_allowed()) { |
186 | err = true; |
187 | return {0, EBADF}; |
188 | } |
189 | |
190 | prev_op = FileOp::READ; |
191 | |
192 | cpp::span<uint8_t> bufref(static_cast<uint8_t *>(buf), bufsize); |
193 | cpp::span<uint8_t> dataref(static_cast<uint8_t *>(data), len); |
194 | |
195 | // Because read_limit is always greater than equal to pos, |
196 | // available_data is never a wrapped around value. |
197 | size_t available_data = read_limit - pos; |
198 | if (len <= available_data) { |
199 | // TODO: Replace the for loop below with a call to internal memcpy. |
200 | for (size_t i = 0; i < len; ++i) |
201 | dataref[i] = bufref[i + pos]; |
202 | pos += len; |
203 | return len; |
204 | } |
205 | |
206 | // Copy all of the available data. |
207 | // TODO: Replace the for loop with a call to internal memcpy. |
208 | for (size_t i = 0; i < available_data; ++i) |
209 | dataref[i] = bufref[i + pos]; |
210 | read_limit = pos = 0; // Reset the pointers. |
211 | // Update the dataref to reflect that fact that we have already |
212 | // copied |available_data| into |data|. |
213 | dataref = cpp::span<uint8_t>(dataref.data() + available_data, |
214 | dataref.size() - available_data); |
215 | |
216 | size_t to_fetch = len - available_data; |
217 | if (to_fetch > bufsize) { |
218 | auto result = platform_read(this, dataref.data(), to_fetch); |
219 | size_t fetched_size = result.value; |
220 | if (result.has_error() || fetched_size < to_fetch) { |
221 | if (!result.has_error()) |
222 | eof = true; |
223 | else |
224 | err = true; |
225 | return {available_data + fetched_size, result.has_error()}; |
226 | } |
227 | return len; |
228 | } |
229 | |
230 | // Fetch and buffer another buffer worth of data. |
231 | auto result = platform_read(this, buf, bufsize); |
232 | size_t fetched_size = result.value; |
233 | read_limit += fetched_size; |
234 | size_t transfer_size = fetched_size >= to_fetch ? to_fetch : fetched_size; |
235 | for (size_t i = 0; i < transfer_size; ++i) |
236 | dataref[i] = bufref[i]; |
237 | pos += transfer_size; |
238 | if (result.has_error() || fetched_size < to_fetch) { |
239 | if (!result.has_error()) |
240 | eof = true; |
241 | else |
242 | err = true; |
243 | } |
244 | return {transfer_size + available_data, result.error}; |
245 | } |
246 | |
247 | int File::ungetc_unlocked(int c) { |
248 | // There is no meaning to unget if: |
249 | // 1. You are trying to push back EOF. |
250 | // 2. Read operations are not allowed on this file. |
251 | // 3. The previous operation was a write operation. |
252 | if (c == EOF || !read_allowed() || (prev_op == FileOp::WRITE)) |
253 | return EOF; |
254 | |
255 | cpp::span<uint8_t> bufref(static_cast<uint8_t *>(buf), bufsize); |
256 | if (read_limit == 0) { |
257 | // If |read_limit| is zero, it can mean three things: |
258 | // a. This file was just created. |
259 | // b. The previous operation was a seek operation. |
260 | // c. The previous operation was a read operation which emptied |
261 | // the buffer. |
262 | // For all the above cases, we simply write |c| at the beginning |
263 | // of the buffer and bump |read_limit|. Note that |pos| will also |
264 | // be zero in this case, so we don't need to adjust it. |
265 | bufref[0] = static_cast<unsigned char>(c); |
266 | ++read_limit; |
267 | } else { |
268 | // If |read_limit| is non-zero, it means that there is data in the buffer |
269 | // from a previous read operation. Which would also mean that |pos| is not |
270 | // zero. So, we decrement |pos| and write |c| in to the buffer at the new |
271 | // |pos|. If too many ungetc operations are performed without reads, it |
272 | // can lead to (pos == 0 but read_limit != 0). We will just error out in |
273 | // such a case. |
274 | if (pos == 0) |
275 | return EOF; |
276 | --pos; |
277 | bufref[pos] = static_cast<unsigned char>(c); |
278 | } |
279 | |
280 | eof = false; // There is atleast one character that can be read now. |
281 | err = false; // This operation was a success. |
282 | return c; |
283 | } |
284 | |
285 | ErrorOr<int> File::seek(long offset, int whence) { |
286 | FileLock lock(this); |
287 | if (prev_op == FileOp::WRITE && pos > 0) { |
288 | |
289 | auto buf_result = platform_write(this, buf, pos); |
290 | if (buf_result.has_error() || buf_result.value < pos) { |
291 | err = true; |
292 | return Error(buf_result.error); |
293 | } |
294 | } else if (prev_op == FileOp::READ && whence == SEEK_CUR) { |
295 | // More data could have been read out from the platform file than was |
296 | // required. So, we have to adjust the offset we pass to platform seek |
297 | // function. Note that read_limit >= pos is always true. |
298 | offset -= (read_limit - pos); |
299 | } |
300 | pos = read_limit = 0; |
301 | prev_op = FileOp::SEEK; |
302 | // Reset the eof flag as a seek might move the file positon to some place |
303 | // readable. |
304 | eof = false; |
305 | auto result = platform_seek(this, offset, whence); |
306 | if (!result.has_value()) |
307 | return Error(result.error()); |
308 | else |
309 | return 0; |
310 | } |
311 | |
312 | ErrorOr<long> File::tell() { |
313 | FileLock lock(this); |
314 | auto seek_target = eof ? SEEK_END : SEEK_CUR; |
315 | auto result = platform_seek(this, 0, seek_target); |
316 | if (!result.has_value() || result.value() < 0) |
317 | return Error(result.error()); |
318 | long platform_offset = result.value(); |
319 | if (prev_op == FileOp::READ) |
320 | return platform_offset - (read_limit - pos); |
321 | else if (prev_op == FileOp::WRITE) |
322 | return platform_offset + pos; |
323 | else |
324 | return platform_offset; |
325 | } |
326 | |
327 | int File::flush_unlocked() { |
328 | if (prev_op == FileOp::WRITE && pos > 0) { |
329 | auto buf_result = platform_write(this, buf, pos); |
330 | if (buf_result.has_error() || buf_result.value < pos) { |
331 | err = true; |
332 | return buf_result.error; |
333 | } |
334 | pos = 0; |
335 | } |
336 | // TODO: Add POSIX behavior for input streams. |
337 | return 0; |
338 | } |
339 | |
340 | int File::set_buffer(void *buffer, size_t size, int buffer_mode) { |
341 | // We do not need to lock the file as this method should be called before |
342 | // other operations are performed on the file. |
343 | if (buffer != nullptr && size == 0) |
344 | return EINVAL; |
345 | |
346 | switch (buffer_mode) { |
347 | case _IOFBF: |
348 | case _IOLBF: |
349 | case _IONBF: |
350 | break; |
351 | default: |
352 | return EINVAL; |
353 | } |
354 | |
355 | if (buffer == nullptr && size != 0 && buffer_mode != _IONBF) { |
356 | // We exclude the case of buffer_mode == _IONBF in this branch |
357 | // because we don't need to allocate buffer in such a case. |
358 | if (own_buf) { |
359 | // This is one of the places where use a C allocation functon |
360 | // as C++ does not have an equivalent of realloc. |
361 | buf = reinterpret_cast<uint8_t *>(realloc(ptr: buf, size: size)); |
362 | if (buf == nullptr) |
363 | return ENOMEM; |
364 | } else { |
365 | AllocChecker ac; |
366 | buf = new (ac) uint8_t[size]; |
367 | if (!ac) |
368 | return ENOMEM; |
369 | own_buf = true; |
370 | } |
371 | bufsize = size; |
372 | // TODO: Handle allocation failures. |
373 | } else { |
374 | if (own_buf) |
375 | delete buf; |
376 | if (buffer_mode != _IONBF) { |
377 | buf = static_cast<uint8_t *>(buffer); |
378 | bufsize = size; |
379 | } else { |
380 | // We don't need any buffer. |
381 | buf = nullptr; |
382 | bufsize = 0; |
383 | } |
384 | own_buf = false; |
385 | } |
386 | bufmode = buffer_mode; |
387 | adjust_buf(); |
388 | return 0; |
389 | } |
390 | |
391 | File::ModeFlags File::mode_flags(const char *mode) { |
392 | // First character in |mode| should be 'a', 'r' or 'w'. |
393 | if (*mode != 'a' && *mode != 'r' && *mode != 'w') |
394 | return 0; |
395 | |
396 | // There should be exaclty one main mode ('a', 'r' or 'w') character. |
397 | // If there are more than one main mode characters listed, then |
398 | // we will consider |mode| as incorrect and return 0; |
399 | int main_mode_count = 0; |
400 | |
401 | ModeFlags flags = 0; |
402 | for (; *mode != '\0'; ++mode) { |
403 | switch (*mode) { |
404 | case 'r': |
405 | flags |= static_cast<ModeFlags>(OpenMode::READ); |
406 | ++main_mode_count; |
407 | break; |
408 | case 'w': |
409 | flags |= static_cast<ModeFlags>(OpenMode::WRITE); |
410 | ++main_mode_count; |
411 | break; |
412 | case '+': |
413 | flags |= static_cast<ModeFlags>(OpenMode::PLUS); |
414 | break; |
415 | case 'b': |
416 | flags |= static_cast<ModeFlags>(ContentType::BINARY); |
417 | break; |
418 | case 'a': |
419 | flags |= static_cast<ModeFlags>(OpenMode::APPEND); |
420 | ++main_mode_count; |
421 | break; |
422 | case 'x': |
423 | flags |= static_cast<ModeFlags>(CreateType::EXCLUSIVE); |
424 | break; |
425 | default: |
426 | return 0; |
427 | } |
428 | } |
429 | |
430 | if (main_mode_count != 1) |
431 | return 0; |
432 | |
433 | return flags; |
434 | } |
435 | |
436 | } // namespace LIBC_NAMESPACE |
437 | |