1 | //===-- Resizable Monotonic HashTable ---------------------------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #ifndef LLVM_LIBC_SRC___SUPPORT_HASHTABLE_TABLE_H |
10 | #define LLVM_LIBC_SRC___SUPPORT_HASHTABLE_TABLE_H |
11 | |
12 | #include "include/llvm-libc-types/ENTRY.h" |
13 | #include "src/__support/CPP/bit.h" // bit_ceil |
14 | #include "src/__support/CPP/new.h" |
15 | #include "src/__support/HashTable/bitmask.h" |
16 | #include "src/__support/hash.h" |
17 | #include "src/__support/macros/attributes.h" |
18 | #include "src/__support/macros/optimization.h" |
19 | #include "src/__support/memory_size.h" |
20 | #include "src/string/memset.h" |
21 | #include "src/string/strcmp.h" |
22 | #include "src/string/strlen.h" |
23 | #include <stddef.h> |
24 | #include <stdint.h> |
25 | |
26 | namespace LIBC_NAMESPACE { |
27 | namespace internal { |
28 | |
29 | LIBC_INLINE uint8_t secondary_hash(uint64_t hash) { |
30 | // top 7 bits of the hash. |
31 | return static_cast<uint8_t>(hash >> 57); |
32 | } |
33 | |
34 | // Probe sequence based on triangular numbers, which is guaranteed (since our |
35 | // table size is a power of two) to visit every group of elements exactly once. |
36 | // |
37 | // A triangular probe has us jump by 1 more group every time. So first we |
38 | // jump by 1 group (meaning we just continue our linear scan), then 2 groups |
39 | // (skipping over 1 group), then 3 groups (skipping over 2 groups), and so on. |
40 | // |
41 | // If we set sizeof(Group) to be one unit: |
42 | // T[k] = sum {1 + 2 + ... + k} = k * (k + 1) / 2 |
43 | // It is provable that T[k] mod 2^m generates a permutation of |
44 | // 0, 1, 2, 3, ..., 2^m - 2, 2^m - 1 |
45 | // Detailed proof is available at: |
46 | // https://fgiesen.wordpress.com/2015/02/22/triangular-numbers-mod-2n/ |
47 | struct ProbeSequence { |
48 | size_t position; |
49 | size_t stride; |
50 | size_t entries_mask; |
51 | |
52 | LIBC_INLINE size_t next() { |
53 | position += stride; |
54 | position &= entries_mask; |
55 | stride += sizeof(Group); |
56 | return position; |
57 | } |
58 | }; |
59 | |
60 | // The number of entries is at least group width: we do not |
61 | // need to do the fixup when we set the control bytes. |
62 | // The number of entries is at least 8: we don't have to worry |
63 | // about special sizes when check the fullness of the table. |
64 | LIBC_INLINE size_t capacity_to_entries(size_t cap) { |
65 | if (8 >= sizeof(Group) && cap < 8) |
66 | return 8; |
67 | if (16 >= sizeof(Group) && cap < 15) |
68 | return 16; |
69 | if (cap < sizeof(Group)) |
70 | cap = sizeof(Group); |
71 | // overflow is always checked in allocate() |
72 | return cpp::bit_ceil(value: cap * 8 / 7); |
73 | } |
74 | |
75 | // The heap memory layout for N buckets HashTable is as follows: |
76 | // |
77 | // ======================= |
78 | // | N * Entry | |
79 | // ======================= <- align boundary |
80 | // | Header | |
81 | // ======================= <- align boundary (for fast resize) |
82 | // | (N + 1) * Byte | |
83 | // ======================= |
84 | // |
85 | // The trailing group part is to make sure we can always load |
86 | // a whole group of control bytes. |
87 | |
88 | struct HashTable { |
89 | HashState state; |
90 | size_t entries_mask; // number of buckets - 1 |
91 | size_t available_slots; // less than capacity |
92 | private: |
93 | // How many entries are there in the table. |
94 | LIBC_INLINE size_t num_of_entries() const { return entries_mask + 1; } |
95 | |
96 | // How many entries can we store in the table before resizing. |
97 | LIBC_INLINE size_t full_capacity() const { return num_of_entries() / 8 * 7; } |
98 | |
99 | // The alignment of the whole memory area is the maximum of the alignment |
100 | // among the following types: |
101 | // - HashTable |
102 | // - ENTRY |
103 | // - Group |
104 | LIBC_INLINE constexpr static size_t table_alignment() { |
105 | size_t left_align = alignof(HashTable) > alignof(ENTRY) ? alignof(HashTable) |
106 | : alignof(ENTRY); |
107 | return left_align > alignof(Group) ? left_align : alignof(Group); |
108 | } |
109 | |
110 | LIBC_INLINE bool is_full() const { return available_slots == 0; } |
111 | |
112 | LIBC_INLINE size_t offset_from_entries() const { |
113 | size_t entries_size = num_of_entries() * sizeof(ENTRY); |
114 | return entries_size + |
115 | SafeMemSize::offset_to(val: entries_size, align: table_alignment()); |
116 | } |
117 | |
118 | LIBC_INLINE constexpr static size_t offset_to_groups() { |
119 | size_t = sizeof(HashTable); |
120 | return header_size + SafeMemSize::offset_to(val: header_size, align: table_alignment()); |
121 | } |
122 | |
123 | LIBC_INLINE ENTRY &entry(size_t i) { |
124 | return reinterpret_cast<ENTRY *>(this)[-i - 1]; |
125 | } |
126 | |
127 | LIBC_INLINE const ENTRY &entry(size_t i) const { |
128 | return reinterpret_cast<const ENTRY *>(this)[-i - 1]; |
129 | } |
130 | |
131 | LIBC_INLINE uint8_t &control(size_t i) { |
132 | uint8_t *ptr = reinterpret_cast<uint8_t *>(this) + offset_to_groups(); |
133 | return ptr[i]; |
134 | } |
135 | |
136 | LIBC_INLINE const uint8_t &control(size_t i) const { |
137 | const uint8_t *ptr = |
138 | reinterpret_cast<const uint8_t *>(this) + offset_to_groups(); |
139 | return ptr[i]; |
140 | } |
141 | |
142 | // We duplicate a group of control bytes to the end. Thus, it is possible that |
143 | // we need to set two control bytes at the same time. |
144 | LIBC_INLINE void set_ctrl(size_t index, uint8_t value) { |
145 | size_t index2 = ((index - sizeof(Group)) & entries_mask) + sizeof(Group); |
146 | control(i: index) = value; |
147 | control(i: index2) = value; |
148 | } |
149 | |
150 | LIBC_INLINE size_t find(const char *key, uint64_t primary) { |
151 | uint8_t secondary = secondary_hash(hash: primary); |
152 | ProbeSequence sequence{.position: static_cast<size_t>(primary), .stride: 0, .entries_mask: entries_mask}; |
153 | while (true) { |
154 | size_t pos = sequence.next(); |
155 | Group ctrls = Group::load(addr: &control(i: pos)); |
156 | IteratableBitMask masks = ctrls.match_byte(byte: secondary); |
157 | for (size_t i : masks) { |
158 | size_t index = (pos + i) & entries_mask; |
159 | ENTRY &entry = this->entry(i: index); |
160 | if (LIBC_LIKELY(entry.key != nullptr && strcmp(entry.key, key) == 0)) |
161 | return index; |
162 | } |
163 | BitMask available = ctrls.mask_available(); |
164 | // Since there is no deletion, the first time we find an available slot |
165 | // it is also ready to be used as an insertion point. Therefore, we also |
166 | // return the first available slot we find. If such entry is empty, the |
167 | // key will be nullptr. |
168 | if (LIBC_LIKELY(available.any_bit_set())) { |
169 | size_t index = |
170 | (pos + available.lowest_set_bit_nonzero()) & entries_mask; |
171 | return index; |
172 | } |
173 | } |
174 | } |
175 | |
176 | LIBC_INLINE uint64_t oneshot_hash(const char *key) const { |
177 | LIBC_NAMESPACE::internal::HashState hasher = state; |
178 | hasher.update(ptr: key, size: strlen(src: key)); |
179 | return hasher.finish(); |
180 | } |
181 | |
182 | // A fast insertion routine without checking if a key already exists. |
183 | // Nor does the routine check if the table is full. |
184 | // This is only to be used in grow() where we insert all existing entries |
185 | // into a new table. Hence, the requirements are naturally satisfied. |
186 | LIBC_INLINE ENTRY *unsafe_insert(ENTRY item) { |
187 | uint64_t primary = oneshot_hash(key: item.key); |
188 | uint8_t secondary = secondary_hash(hash: primary); |
189 | ProbeSequence sequence{.position: static_cast<size_t>(primary), .stride: 0, .entries_mask: entries_mask}; |
190 | while (true) { |
191 | size_t pos = sequence.next(); |
192 | Group ctrls = Group::load(addr: &control(i: pos)); |
193 | BitMask available = ctrls.mask_available(); |
194 | if (available.any_bit_set()) { |
195 | size_t index = |
196 | (pos + available.lowest_set_bit_nonzero()) & entries_mask; |
197 | set_ctrl(index, value: secondary); |
198 | entry(i: index).key = item.key; |
199 | entry(i: index).data = item.data; |
200 | available_slots--; |
201 | return &entry(i: index); |
202 | } |
203 | } |
204 | } |
205 | |
206 | LIBC_INLINE HashTable *grow() const { |
207 | size_t hint = full_capacity() + 1; |
208 | HashState state = this->state; |
209 | // migrate to a new random state |
210 | state.update(ptr: &hint, size: sizeof(hint)); |
211 | HashTable *new_table = allocate(capacity: hint, randomness: state.finish()); |
212 | // It is safe to call unsafe_insert() because we know that: |
213 | // - the new table has enough capacity to hold all the entries |
214 | // - there is no duplicate key in the old table |
215 | if (new_table != nullptr) |
216 | for (ENTRY e : *this) |
217 | new_table->unsafe_insert(item: e); |
218 | return new_table; |
219 | } |
220 | |
221 | LIBC_INLINE static ENTRY *insert(HashTable *&table, ENTRY item, |
222 | uint64_t primary) { |
223 | auto index = table->find(key: item.key, primary); |
224 | auto slot = &table->entry(i: index); |
225 | // SVr4 and POSIX.1-2001 specify that action is significant only for |
226 | // unsuccessful searches, so that an ENTER should not do anything |
227 | // for a successful search. |
228 | if (slot->key != nullptr) |
229 | return slot; |
230 | |
231 | // if table of full, we try to grow the table |
232 | if (table->is_full()) { |
233 | HashTable *new_table = table->grow(); |
234 | // allocation failed, return nullptr to indicate failure |
235 | if (new_table == nullptr) |
236 | return nullptr; |
237 | // resized sccuessfully: clean up the old table and use the new one |
238 | deallocate(table); |
239 | table = new_table; |
240 | // it is still valid to use the fastpath insertion. |
241 | return table->unsafe_insert(item); |
242 | } |
243 | |
244 | table->set_ctrl(index, value: secondary_hash(hash: primary)); |
245 | slot->key = item.key; |
246 | slot->data = item.data; |
247 | table->available_slots--; |
248 | return slot; |
249 | } |
250 | |
251 | public: |
252 | LIBC_INLINE static void deallocate(HashTable *table) { |
253 | if (table) { |
254 | void *ptr = |
255 | reinterpret_cast<uint8_t *>(table) - table->offset_from_entries(); |
256 | operator delete(ptr, std::align_val_t{table_alignment()}); |
257 | } |
258 | } |
259 | |
260 | LIBC_INLINE static HashTable *allocate(size_t capacity, uint64_t randomness) { |
261 | // check if capacity_to_entries overflows MAX_MEM_SIZE |
262 | if (capacity > size_t{1} << (8 * sizeof(size_t) - 1 - 3)) |
263 | return nullptr; |
264 | SafeMemSize entries{capacity_to_entries(cap: capacity)}; |
265 | SafeMemSize entries_size = entries * SafeMemSize{sizeof(ENTRY)}; |
266 | SafeMemSize align_boundary = entries_size.align_up(alignment: table_alignment()); |
267 | SafeMemSize ctrl_sizes = entries + SafeMemSize{sizeof(Group)}; |
268 | SafeMemSize {offset_to_groups()}; |
269 | SafeMemSize total_size = |
270 | (align_boundary + header_size + ctrl_sizes).align_up(alignment: table_alignment()); |
271 | if (!total_size.valid()) |
272 | return nullptr; |
273 | AllocChecker ac; |
274 | |
275 | void *mem = operator new(size: total_size, align: std::align_val_t{table_alignment()}, |
276 | ac); |
277 | |
278 | HashTable *table = reinterpret_cast<HashTable *>( |
279 | static_cast<uint8_t *>(mem) + align_boundary); |
280 | if (ac) { |
281 | table->entries_mask = entries - 1u; |
282 | table->available_slots = entries / 8 * 7; |
283 | table->state = HashState{randomness}; |
284 | memset(ptr: &table->control(i: 0), value: 0x80, count: ctrl_sizes); |
285 | memset(ptr: mem, value: 0, count: table->offset_from_entries()); |
286 | } |
287 | return table; |
288 | } |
289 | |
290 | struct FullTableIterator { |
291 | size_t current_offset; |
292 | size_t remaining; |
293 | IteratableBitMask current_mask; |
294 | const HashTable &table; |
295 | |
296 | // It is fine to use remaining to represent the iterator: |
297 | // - this comparison only happens with the same table |
298 | // - hashtable will not be mutated during the iteration |
299 | LIBC_INLINE bool operator==(const FullTableIterator &other) const { |
300 | return remaining == other.remaining; |
301 | } |
302 | LIBC_INLINE bool operator!=(const FullTableIterator &other) const { |
303 | return remaining != other.remaining; |
304 | } |
305 | |
306 | LIBC_INLINE FullTableIterator &operator++() { |
307 | this->ensure_valid_group(); |
308 | current_mask.remove_lowest_bit(); |
309 | remaining--; |
310 | return *this; |
311 | } |
312 | LIBC_INLINE const ENTRY &operator*() { |
313 | this->ensure_valid_group(); |
314 | return table.entry( |
315 | i: (current_offset + current_mask.lowest_set_bit_nonzero()) & |
316 | table.entries_mask); |
317 | } |
318 | |
319 | private: |
320 | LIBC_INLINE void ensure_valid_group() { |
321 | while (!current_mask.any_bit_set()) { |
322 | current_offset += sizeof(Group); |
323 | // It is ensured that the load will only happen at aligned boundaries. |
324 | current_mask = |
325 | Group::load_aligned(addr: &table.control(i: current_offset)).occupied(); |
326 | } |
327 | } |
328 | }; |
329 | |
330 | using value_type = ENTRY; |
331 | using iterator = FullTableIterator; |
332 | iterator begin() const { |
333 | return {.current_offset: 0, .remaining: full_capacity() - available_slots, |
334 | .current_mask: Group::load_aligned(addr: &control(i: 0)).occupied(), .table: *this}; |
335 | } |
336 | iterator end() const { return {.current_offset: 0, .remaining: 0, .current_mask: {BitMask{.word: 0}}, .table: *this}; } |
337 | |
338 | LIBC_INLINE ENTRY *find(const char *key) { |
339 | uint64_t primary = oneshot_hash(key); |
340 | ENTRY &entry = this->entry(i: find(key, primary)); |
341 | if (entry.key == nullptr) |
342 | return nullptr; |
343 | return &entry; |
344 | } |
345 | |
346 | LIBC_INLINE static ENTRY *insert(HashTable *&table, ENTRY item) { |
347 | uint64_t primary = table->oneshot_hash(key: item.key); |
348 | return insert(table, item, primary); |
349 | } |
350 | }; |
351 | } // namespace internal |
352 | } // namespace LIBC_NAMESPACE |
353 | |
354 | #endif // LLVM_LIBC_SRC___SUPPORT_HASHTABLE_TABLE_H |
355 | |