Warning: This file is not a C or C++ file. It does not have highlighting.
1 | //===-- Calculate square root of fixed point numbers. -----*- C++ -*-=========// |
---|---|
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #ifndef LLVM_LIBC_SRC___SUPPORT_FIXEDPOINT_SQRT_H |
10 | #define LLVM_LIBC_SRC___SUPPORT_FIXEDPOINT_SQRT_H |
11 | |
12 | #include "include/llvm-libc-macros/stdfix-macros.h" |
13 | #include "src/__support/CPP/bit.h" |
14 | #include "src/__support/CPP/limits.h" // CHAR_BIT |
15 | #include "src/__support/CPP/type_traits.h" |
16 | #include "src/__support/macros/attributes.h" // LIBC_INLINE |
17 | #include "src/__support/macros/config.h" |
18 | #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY |
19 | |
20 | #include "fx_rep.h" |
21 | |
22 | #ifdef LIBC_COMPILER_HAS_FIXED_POINT |
23 | |
24 | namespace LIBC_NAMESPACE_DECL { |
25 | namespace fixed_point { |
26 | |
27 | namespace internal { |
28 | |
29 | template <typename T> struct SqrtConfig; |
30 | |
31 | template <> struct SqrtConfig<unsigned short fract> { |
32 | using Type = unsigned short fract; |
33 | static constexpr int EXTRA_STEPS = 0; |
34 | |
35 | // Linear approximation for the initial values, with errors bounded by: |
36 | // max(1.5 * 2^-11, eps) |
37 | // Generated with Sollya: |
38 | // > for i from 4 to 15 do { |
39 | // P = fpminimax(sqrt(x), 1, [|8, 8|], [i * 2^-4, (i + 1)*2^-4], |
40 | // fixed, absolute); |
41 | // print("{", coeff(P, 1), "uhr,", coeff(P, 0), "uhr},"); |
42 | // }; |
43 | static constexpr Type FIRST_APPROX[12][2] = { |
44 | {0x1.e8p-1uhr, 0x1.0cp-2uhr}, {0x1.bap-1uhr, 0x1.28p-2uhr}, |
45 | {0x1.94p-1uhr, 0x1.44p-2uhr}, {0x1.74p-1uhr, 0x1.6p-2uhr}, |
46 | {0x1.6p-1uhr, 0x1.74p-2uhr}, {0x1.4ep-1uhr, 0x1.88p-2uhr}, |
47 | {0x1.3ep-1uhr, 0x1.9cp-2uhr}, {0x1.32p-1uhr, 0x1.acp-2uhr}, |
48 | {0x1.22p-1uhr, 0x1.c4p-2uhr}, {0x1.18p-1uhr, 0x1.d4p-2uhr}, |
49 | {0x1.08p-1uhr, 0x1.fp-2uhr}, {0x1.04p-1uhr, 0x1.f8p-2uhr}, |
50 | }; |
51 | }; |
52 | |
53 | template <> struct SqrtConfig<unsigned fract> { |
54 | using Type = unsigned fract; |
55 | static constexpr int EXTRA_STEPS = 1; |
56 | |
57 | // Linear approximation for the initial values, with errors bounded by: |
58 | // max(1.5 * 2^-11, eps) |
59 | // Generated with Sollya: |
60 | // > for i from 4 to 14 do { |
61 | // P = fpminimax(sqrt(x), 1, [|16, 16|], [i * 2^-4, (i + 1)*2^-4], |
62 | // fixed, absolute); |
63 | // print("{", coeff(P, 1), "ur,", coeff(P, 0), "ur},"); |
64 | // }; |
65 | // For the last interval [15/16, 1), we choose the linear function Q such that |
66 | // Q(1) = 1 and Q(15/16) = P(15/16), |
67 | // where P is the polynomial generated by Sollya above for [14/16, 15/16]. |
68 | // This is to prevent overflow in the last interval [15/16, 1). |
69 | static constexpr Type FIRST_APPROX[12][2] = { |
70 | {0x1.e378p-1ur, 0x1.0ebp-2ur}, {0x1.b512p-1ur, 0x1.2b94p-2ur}, |
71 | {0x1.91fp-1ur, 0x1.45dcp-2ur}, {0x1.7622p-1ur, 0x1.5e24p-2ur}, |
72 | {0x1.5f5ap-1ur, 0x1.74e4p-2ur}, {0x1.4c58p-1ur, 0x1.8a4p-2ur}, |
73 | {0x1.3c1ep-1ur, 0x1.9e84p-2ur}, {0x1.2e0cp-1ur, 0x1.b1d8p-2ur}, |
74 | {0x1.21aap-1ur, 0x1.c468p-2ur}, {0x1.16bap-1ur, 0x1.d62cp-2ur}, |
75 | {0x1.0cfp-1ur, 0x1.e74cp-2ur}, {0x1.039p-1ur, 0x1.f8ep-2ur}, |
76 | }; |
77 | }; |
78 | |
79 | template <> struct SqrtConfig<unsigned long fract> { |
80 | using Type = unsigned long fract; |
81 | static constexpr int EXTRA_STEPS = 2; |
82 | |
83 | // Linear approximation for the initial values, with errors bounded by: |
84 | // max(1.5 * 2^-11, eps) |
85 | // Generated with Sollya: |
86 | // > for i from 4 to 14 do { |
87 | // P = fpminimax(sqrt(x), 1, [|32, 32|], [i * 2^-4, (i + 1)*2^-4], |
88 | // fixed, absolute); |
89 | // print("{", coeff(P, 1), "ulr,", coeff(P, 0), "ulr},"); |
90 | // }; |
91 | // For the last interval [15/16, 1), we choose the linear function Q such that |
92 | // Q(1) = 1 and Q(15/16) = P(15/16), |
93 | // where P is the polynomial generated by Sollya above for [14/16, 15/16]. |
94 | // This is to prevent overflow in the last interval [15/16, 1). |
95 | static constexpr Type FIRST_APPROX[12][2] = { |
96 | {0x1.e3779b98p-1ulr, 0x1.0eaff788p-2ulr}, |
97 | {0x1.b5167872p-1ulr, 0x1.2b908ad4p-2ulr}, |
98 | {0x1.91f195cap-1ulr, 0x1.45da800cp-2ulr}, |
99 | {0x1.761ebcb4p-1ulr, 0x1.5e27004cp-2ulr}, |
100 | {0x1.5f619986p-1ulr, 0x1.74db933cp-2ulr}, |
101 | {0x1.4c583adep-1ulr, 0x1.8a3fbfccp-2ulr}, |
102 | {0x1.3c1a591cp-1ulr, 0x1.9e88373cp-2ulr}, |
103 | {0x1.2e08545ap-1ulr, 0x1.b1dd2534p-2ulr}, |
104 | {0x1.21b05c0ap-1ulr, 0x1.c45e023p-2ulr}, |
105 | {0x1.16becd02p-1ulr, 0x1.d624031p-2ulr}, |
106 | {0x1.0cf49fep-1ulr, 0x1.e743b844p-2ulr}, |
107 | {0x1.038cdfcp-1ulr, 0x1.f8e6408p-2ulr}, |
108 | }; |
109 | }; |
110 | |
111 | template <> |
112 | struct SqrtConfig<unsigned short accum> : SqrtConfig<unsigned fract> {}; |
113 | |
114 | template <> |
115 | struct SqrtConfig<unsigned accum> : SqrtConfig<unsigned long fract> {}; |
116 | |
117 | // Integer square root |
118 | template <> struct SqrtConfig<unsigned short> { |
119 | using OutType = unsigned short accum; |
120 | using FracType = unsigned fract; |
121 | // For fast-but-less-accurate version |
122 | using FastFracType = unsigned short fract; |
123 | using HalfType = unsigned char; |
124 | }; |
125 | |
126 | template <> struct SqrtConfig<unsigned int> { |
127 | using OutType = unsigned accum; |
128 | using FracType = unsigned long fract; |
129 | // For fast-but-less-accurate version |
130 | using FastFracType = unsigned fract; |
131 | using HalfType = unsigned short; |
132 | }; |
133 | |
134 | // TODO: unsigned long accum type is 64-bit, and will need 64-bit fract type. |
135 | // Probably we will use DyadicFloat<64> for intermediate computations instead. |
136 | |
137 | } // namespace internal |
138 | |
139 | // Core computation for sqrt with normalized inputs (0.25 <= x < 1). |
140 | template <typename Config> |
141 | LIBC_INLINE constexpr typename Config::Type |
142 | sqrt_core(typename Config::Type x_frac) { |
143 | using FracType = typename Config::Type; |
144 | using FXRep = FXRep<FracType>; |
145 | using StorageType = typename FXRep::StorageType; |
146 | // Exact case: |
147 | if (x_frac == FXRep::ONE_FOURTH()) |
148 | return FXRep::ONE_HALF(); |
149 | |
150 | // Use use Newton method to approximate sqrt(a): |
151 | // x_{n + 1} = 1/2 (x_n + a / x_n) |
152 | // For the initial values, we choose x_0 |
153 | |
154 | // Use the leading 4 bits to do look up for sqrt(x). |
155 | // After normalization, 0.25 <= x_frac < 1, so the leading 4 bits of x_frac |
156 | // are between 0b0100 and 0b1111. Hence the lookup table only needs 12 |
157 | // entries, and we can get the index by subtracting the leading 4 bits of |
158 | // x_frac by 4 = 0b0100. |
159 | StorageType x_bit = cpp::bit_cast<StorageType>(x_frac); |
160 | int index = (static_cast<int>(x_bit >> (FXRep::TOTAL_LEN - 4))) - 4; |
161 | FracType a = Config::FIRST_APPROX[index][0]; |
162 | FracType b = Config::FIRST_APPROX[index][1]; |
163 | |
164 | // Initial approximation step. |
165 | // Estimated error bounds: | r - sqrt(x_frac) | < max(1.5 * 2^-11, eps). |
166 | FracType r = a * x_frac + b; |
167 | |
168 | // Further Newton-method iterations for square-root: |
169 | // x_{n + 1} = 0.5 * (x_n + a / x_n) |
170 | // We distribute and do the multiplication by 0.5 first to avoid overflow. |
171 | // TODO: Investigate the performance and accuracy of using division-free |
172 | // iterations from: |
173 | // Blanchard, J. D. and Chamberland, M., "Newton's Method Without Division", |
174 | // The American Mathematical Monthly (2023). |
175 | // https://chamberland.math.grinnell.edu/papers/newton.pdf |
176 | for (int i = 0; i < Config::EXTRA_STEPS; ++i) |
177 | r = (r >> 1) + (x_frac >> 1) / r; |
178 | |
179 | return r; |
180 | } |
181 | |
182 | template <typename T> |
183 | LIBC_INLINE constexpr cpp::enable_if_t<cpp::is_fixed_point_v<T>, T> sqrt(T x) { |
184 | using BitType = typename FXRep<T>::StorageType; |
185 | BitType x_bit = cpp::bit_cast<BitType>(x); |
186 | |
187 | if (LIBC_UNLIKELY(x_bit == 0)) |
188 | return FXRep<T>::ZERO(); |
189 | |
190 | int leading_zeros = cpp::countl_zero(x_bit); |
191 | constexpr int STORAGE_LENGTH = sizeof(BitType) * CHAR_BIT; |
192 | constexpr int EXP_ADJUSTMENT = STORAGE_LENGTH - FXRep<T>::FRACTION_LEN - 1; |
193 | // x_exp is the real exponent of the leading bit of x. |
194 | int x_exp = EXP_ADJUSTMENT - leading_zeros; |
195 | int shift = EXP_ADJUSTMENT - 1 - (x_exp & (~1)); |
196 | // Normalize. |
197 | x_bit <<= shift; |
198 | using FracType = typename internal::SqrtConfig<T>::Type; |
199 | FracType x_frac = cpp::bit_cast<FracType>(x_bit); |
200 | |
201 | // Compute sqrt(x_frac) using Newton-method. |
202 | FracType r = sqrt_core<internal::SqrtConfig<T>>(x_frac); |
203 | |
204 | // Re-scaling |
205 | r >>= EXP_ADJUSTMENT - (x_exp >> 1); |
206 | |
207 | // Return result. |
208 | return cpp::bit_cast<T>(r); |
209 | } |
210 | |
211 | // Integer square root - Accurate version: |
212 | // Absolute errors < 2^(-fraction length). |
213 | template <typename T> |
214 | LIBC_INLINE constexpr typename internal::SqrtConfig<T>::OutType isqrt(T x) { |
215 | using OutType = typename internal::SqrtConfig<T>::OutType; |
216 | using FracType = typename internal::SqrtConfig<T>::FracType; |
217 | |
218 | if (x == 0) |
219 | return FXRep<OutType>::ZERO(); |
220 | |
221 | // Normalize the leading bits to the first two bits. |
222 | // Shift and then Bit cast x to x_frac gives us: |
223 | // x = 2^(FRACTION_LEN + 1 - shift) * x_frac; |
224 | int leading_zeros = cpp::countl_zero(x); |
225 | int shift = ((leading_zeros >> 1) << 1); |
226 | x <<= shift; |
227 | // Convert to frac type and compute square root. |
228 | FracType x_frac = cpp::bit_cast<FracType>(x); |
229 | FracType r = sqrt_core<internal::SqrtConfig<FracType>>(x_frac); |
230 | // To rescale back to the OutType (Accum) |
231 | r >>= (shift >> 1); |
232 | |
233 | return cpp::bit_cast<OutType>(r); |
234 | } |
235 | |
236 | // Integer square root - Fast but less accurate version: |
237 | // Relative errors < 2^(-fraction length). |
238 | template <typename T> |
239 | LIBC_INLINE constexpr typename internal::SqrtConfig<T>::OutType |
240 | isqrt_fast(T x) { |
241 | using OutType = typename internal::SqrtConfig<T>::OutType; |
242 | using FracType = typename internal::SqrtConfig<T>::FastFracType; |
243 | using StorageType = typename FXRep<FracType>::StorageType; |
244 | |
245 | if (x == 0) |
246 | return FXRep<OutType>::ZERO(); |
247 | |
248 | // Normalize the leading bits to the first two bits. |
249 | // Shift and then Bit cast x to x_frac gives us: |
250 | // x = 2^(FRACTION_LEN + 1 - shift) * x_frac; |
251 | int leading_zeros = cpp::countl_zero(x); |
252 | int shift = (leading_zeros & (~1)); |
253 | x <<= shift; |
254 | // Convert to frac type and compute square root. |
255 | FracType x_frac = cpp::bit_cast<FracType>( |
256 | static_cast<StorageType>(x >> FXRep<FracType>::FRACTION_LEN)); |
257 | OutType r = |
258 | static_cast<OutType>(sqrt_core<internal::SqrtConfig<FracType>>(x_frac)); |
259 | // To rescale back to the OutType (Accum) |
260 | r <<= (FXRep<OutType>::INTEGRAL_LEN - (shift >> 1)); |
261 | return cpp::bit_cast<OutType>(r); |
262 | } |
263 | |
264 | } // namespace fixed_point |
265 | } // namespace LIBC_NAMESPACE_DECL |
266 | |
267 | #endif // LIBC_COMPILER_HAS_FIXED_POINT |
268 | |
269 | #endif // LLVM_LIBC_SRC___SUPPORT_FIXEDPOINT_SQRT_H |
270 |
Warning: This file is not a C or C++ file. It does not have highlighting.