1 | //===-- High Precision Decimal ----------------------------------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See httpss//llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #ifndef LLVM_LIBC_SRC___SUPPORT_HIGH_PRECISION_DECIMAL_H |
10 | #define LLVM_LIBC_SRC___SUPPORT_HIGH_PRECISION_DECIMAL_H |
11 | |
12 | #include "src/__support/CPP/limits.h" |
13 | #include "src/__support/ctype_utils.h" |
14 | #include "src/__support/str_to_integer.h" |
15 | #include <stdint.h> |
16 | |
17 | namespace LIBC_NAMESPACE { |
18 | namespace internal { |
19 | |
20 | struct LShiftTableEntry { |
21 | uint32_t new_digits; |
22 | char const *power_of_five; |
23 | }; |
24 | |
25 | // This is used in both this file and in the main str_to_float.h. |
26 | // TODO: Figure out where to put this. |
27 | enum class RoundDirection { Up, Down, Nearest }; |
28 | |
29 | // This is based on the HPD data structure described as part of the Simple |
30 | // Decimal Conversion algorithm by Nigel Tao, described at this link: |
31 | // https://nigeltao.github.io/blog/2020/parse-number-f64-simple.html |
32 | class HighPrecisionDecimal { |
33 | |
34 | // This precomputed table speeds up left shifts by having the number of new |
35 | // digits that will be added by multiplying 5^i by 2^i. If the number is less |
36 | // than 5^i then it will add one fewer digit. There are only 60 entries since |
37 | // that's the max shift amount. |
38 | // This table was generated by the script at |
39 | // libc/utils/mathtools/GenerateHPDConstants.py |
40 | static constexpr LShiftTableEntry LEFT_SHIFT_DIGIT_TABLE[] = { |
41 | {.new_digits: 0, .power_of_five: "" }, |
42 | {.new_digits: 1, .power_of_five: "5" }, |
43 | {.new_digits: 1, .power_of_five: "25" }, |
44 | {.new_digits: 1, .power_of_five: "125" }, |
45 | {.new_digits: 2, .power_of_five: "625" }, |
46 | {.new_digits: 2, .power_of_five: "3125" }, |
47 | {.new_digits: 2, .power_of_five: "15625" }, |
48 | {.new_digits: 3, .power_of_five: "78125" }, |
49 | {.new_digits: 3, .power_of_five: "390625" }, |
50 | {.new_digits: 3, .power_of_five: "1953125" }, |
51 | {.new_digits: 4, .power_of_five: "9765625" }, |
52 | {.new_digits: 4, .power_of_five: "48828125" }, |
53 | {.new_digits: 4, .power_of_five: "244140625" }, |
54 | {.new_digits: 4, .power_of_five: "1220703125" }, |
55 | {.new_digits: 5, .power_of_five: "6103515625" }, |
56 | {.new_digits: 5, .power_of_five: "30517578125" }, |
57 | {.new_digits: 5, .power_of_five: "152587890625" }, |
58 | {.new_digits: 6, .power_of_five: "762939453125" }, |
59 | {.new_digits: 6, .power_of_five: "3814697265625" }, |
60 | {.new_digits: 6, .power_of_five: "19073486328125" }, |
61 | {.new_digits: 7, .power_of_five: "95367431640625" }, |
62 | {.new_digits: 7, .power_of_five: "476837158203125" }, |
63 | {.new_digits: 7, .power_of_five: "2384185791015625" }, |
64 | {.new_digits: 7, .power_of_five: "11920928955078125" }, |
65 | {.new_digits: 8, .power_of_five: "59604644775390625" }, |
66 | {.new_digits: 8, .power_of_five: "298023223876953125" }, |
67 | {.new_digits: 8, .power_of_five: "1490116119384765625" }, |
68 | {.new_digits: 9, .power_of_five: "7450580596923828125" }, |
69 | {.new_digits: 9, .power_of_five: "37252902984619140625" }, |
70 | {.new_digits: 9, .power_of_five: "186264514923095703125" }, |
71 | {.new_digits: 10, .power_of_five: "931322574615478515625" }, |
72 | {.new_digits: 10, .power_of_five: "4656612873077392578125" }, |
73 | {.new_digits: 10, .power_of_five: "23283064365386962890625" }, |
74 | {.new_digits: 10, .power_of_five: "116415321826934814453125" }, |
75 | {.new_digits: 11, .power_of_five: "582076609134674072265625" }, |
76 | {.new_digits: 11, .power_of_five: "2910383045673370361328125" }, |
77 | {.new_digits: 11, .power_of_five: "14551915228366851806640625" }, |
78 | {.new_digits: 12, .power_of_five: "72759576141834259033203125" }, |
79 | {.new_digits: 12, .power_of_five: "363797880709171295166015625" }, |
80 | {.new_digits: 12, .power_of_five: "1818989403545856475830078125" }, |
81 | {.new_digits: 13, .power_of_five: "9094947017729282379150390625" }, |
82 | {.new_digits: 13, .power_of_five: "45474735088646411895751953125" }, |
83 | {.new_digits: 13, .power_of_five: "227373675443232059478759765625" }, |
84 | {.new_digits: 13, .power_of_five: "1136868377216160297393798828125" }, |
85 | {.new_digits: 14, .power_of_five: "5684341886080801486968994140625" }, |
86 | {.new_digits: 14, .power_of_five: "28421709430404007434844970703125" }, |
87 | {.new_digits: 14, .power_of_five: "142108547152020037174224853515625" }, |
88 | {.new_digits: 15, .power_of_five: "710542735760100185871124267578125" }, |
89 | {.new_digits: 15, .power_of_five: "3552713678800500929355621337890625" }, |
90 | {.new_digits: 15, .power_of_five: "17763568394002504646778106689453125" }, |
91 | {.new_digits: 16, .power_of_five: "88817841970012523233890533447265625" }, |
92 | {.new_digits: 16, .power_of_five: "444089209850062616169452667236328125" }, |
93 | {.new_digits: 16, .power_of_five: "2220446049250313080847263336181640625" }, |
94 | {.new_digits: 16, .power_of_five: "11102230246251565404236316680908203125" }, |
95 | {.new_digits: 17, .power_of_five: "55511151231257827021181583404541015625" }, |
96 | {.new_digits: 17, .power_of_five: "277555756156289135105907917022705078125" }, |
97 | {.new_digits: 17, .power_of_five: "1387778780781445675529539585113525390625" }, |
98 | {.new_digits: 18, .power_of_five: "6938893903907228377647697925567626953125" }, |
99 | {.new_digits: 18, .power_of_five: "34694469519536141888238489627838134765625" }, |
100 | {.new_digits: 18, .power_of_five: "173472347597680709441192448139190673828125" }, |
101 | {.new_digits: 19, .power_of_five: "867361737988403547205962240695953369140625" }, |
102 | }; |
103 | |
104 | // The maximum amount we can shift is the number of bits used in the |
105 | // accumulator, minus the number of bits needed to represent the base (in this |
106 | // case 4). |
107 | static constexpr uint32_t MAX_SHIFT_AMOUNT = sizeof(uint64_t) - 4; |
108 | |
109 | // 800 is an arbitrary number of digits, but should be |
110 | // large enough for any practical number. |
111 | static constexpr uint32_t MAX_NUM_DIGITS = 800; |
112 | |
113 | uint32_t num_digits = 0; |
114 | int32_t decimal_point = 0; |
115 | bool truncated = false; |
116 | uint8_t digits[MAX_NUM_DIGITS]; |
117 | |
118 | private: |
119 | LIBC_INLINE bool should_round_up(int32_t round_to_digit, |
120 | RoundDirection round) { |
121 | if (round_to_digit < 0 || |
122 | static_cast<uint32_t>(round_to_digit) >= this->num_digits) { |
123 | return false; |
124 | } |
125 | |
126 | // The above condition handles all cases where all of the trailing digits |
127 | // are zero. In that case, if the rounding mode is up, then this number |
128 | // should be rounded up. Similarly, if the rounding mode is down, then it |
129 | // should always round down. |
130 | if (round == RoundDirection::Up) { |
131 | return true; |
132 | } else if (round == RoundDirection::Down) { |
133 | return false; |
134 | } |
135 | // Else round to nearest. |
136 | |
137 | // If we're right in the middle and there are no extra digits |
138 | if (this->digits[round_to_digit] == 5 && |
139 | static_cast<uint32_t>(round_to_digit + 1) == this->num_digits) { |
140 | |
141 | // Round up if we've truncated (since that means the result is slightly |
142 | // higher than what's represented.) |
143 | if (this->truncated) { |
144 | return true; |
145 | } |
146 | |
147 | // If this exactly halfway, round to even. |
148 | if (round_to_digit == 0) |
149 | // When the input is ".5". |
150 | return false; |
151 | return this->digits[round_to_digit - 1] % 2 != 0; |
152 | } |
153 | // If there are digits after round_to_digit, they must be non-zero since we |
154 | // trim trailing zeroes after all operations that change digits. |
155 | return this->digits[round_to_digit] >= 5; |
156 | } |
157 | |
158 | // Takes an amount to left shift and returns the number of new digits needed |
159 | // to store the result based on LEFT_SHIFT_DIGIT_TABLE. |
160 | LIBC_INLINE uint32_t get_num_new_digits(uint32_t lshift_amount) { |
161 | const char *power_of_five = |
162 | LEFT_SHIFT_DIGIT_TABLE[lshift_amount].power_of_five; |
163 | uint32_t new_digits = LEFT_SHIFT_DIGIT_TABLE[lshift_amount].new_digits; |
164 | uint32_t digit_index = 0; |
165 | while (power_of_five[digit_index] != 0) { |
166 | if (digit_index >= this->num_digits) { |
167 | return new_digits - 1; |
168 | } |
169 | if (this->digits[digit_index] != power_of_five[digit_index] - '0') { |
170 | return new_digits - |
171 | ((this->digits[digit_index] < power_of_five[digit_index] - '0') |
172 | ? 1 |
173 | : 0); |
174 | } |
175 | ++digit_index; |
176 | } |
177 | return new_digits; |
178 | } |
179 | |
180 | // Trim all trailing 0s |
181 | LIBC_INLINE void trim_trailing_zeroes() { |
182 | while (this->num_digits > 0 && this->digits[this->num_digits - 1] == 0) { |
183 | --this->num_digits; |
184 | } |
185 | if (this->num_digits == 0) { |
186 | this->decimal_point = 0; |
187 | } |
188 | } |
189 | |
190 | // Perform a digitwise binary non-rounding right shift on this value by |
191 | // shift_amount. The shift_amount can't be more than MAX_SHIFT_AMOUNT to |
192 | // prevent overflow. |
193 | LIBC_INLINE void right_shift(uint32_t shift_amount) { |
194 | uint32_t read_index = 0; |
195 | uint32_t write_index = 0; |
196 | |
197 | uint64_t accumulator = 0; |
198 | |
199 | const uint64_t shift_mask = (uint64_t(1) << shift_amount) - 1; |
200 | |
201 | // Warm Up phase: we don't have enough digits to start writing, so just |
202 | // read them into the accumulator. |
203 | while (accumulator >> shift_amount == 0) { |
204 | uint64_t read_digit = 0; |
205 | // If there are still digits to read, read the next one, else the digit is |
206 | // assumed to be 0. |
207 | if (read_index < this->num_digits) { |
208 | read_digit = this->digits[read_index]; |
209 | } |
210 | accumulator = accumulator * 10 + read_digit; |
211 | ++read_index; |
212 | } |
213 | |
214 | // Shift the decimal point by the number of digits it took to fill the |
215 | // accumulator. |
216 | this->decimal_point -= read_index - 1; |
217 | |
218 | // Middle phase: we have enough digits to write, as well as more digits to |
219 | // read. Keep reading until we run out of digits. |
220 | while (read_index < this->num_digits) { |
221 | uint64_t read_digit = this->digits[read_index]; |
222 | uint64_t write_digit = accumulator >> shift_amount; |
223 | accumulator &= shift_mask; |
224 | this->digits[write_index] = static_cast<uint8_t>(write_digit); |
225 | accumulator = accumulator * 10 + read_digit; |
226 | ++read_index; |
227 | ++write_index; |
228 | } |
229 | |
230 | // Cool Down phase: All of the readable digits have been read, so just write |
231 | // the remainder, while treating any more digits as 0. |
232 | while (accumulator > 0) { |
233 | uint64_t write_digit = accumulator >> shift_amount; |
234 | accumulator &= shift_mask; |
235 | if (write_index < MAX_NUM_DIGITS) { |
236 | this->digits[write_index] = static_cast<uint8_t>(write_digit); |
237 | ++write_index; |
238 | } else if (write_digit > 0) { |
239 | this->truncated = true; |
240 | } |
241 | accumulator = accumulator * 10; |
242 | } |
243 | this->num_digits = write_index; |
244 | this->trim_trailing_zeroes(); |
245 | } |
246 | |
247 | // Perform a digitwise binary non-rounding left shift on this value by |
248 | // shift_amount. The shift_amount can't be more than MAX_SHIFT_AMOUNT to |
249 | // prevent overflow. |
250 | LIBC_INLINE void left_shift(uint32_t shift_amount) { |
251 | uint32_t new_digits = this->get_num_new_digits(lshift_amount: shift_amount); |
252 | |
253 | int32_t read_index = this->num_digits - 1; |
254 | uint32_t write_index = this->num_digits + new_digits; |
255 | |
256 | uint64_t accumulator = 0; |
257 | |
258 | // No Warm Up phase. Since we're putting digits in at the top and taking |
259 | // digits from the bottom we don't have to wait for the accumulator to fill. |
260 | |
261 | // Middle phase: while we have more digits to read, keep reading as well as |
262 | // writing. |
263 | while (read_index >= 0) { |
264 | accumulator += static_cast<uint64_t>(this->digits[read_index]) |
265 | << shift_amount; |
266 | uint64_t next_accumulator = accumulator / 10; |
267 | uint64_t write_digit = accumulator - (10 * next_accumulator); |
268 | --write_index; |
269 | if (write_index < MAX_NUM_DIGITS) { |
270 | this->digits[write_index] = static_cast<uint8_t>(write_digit); |
271 | } else if (write_digit != 0) { |
272 | this->truncated = true; |
273 | } |
274 | accumulator = next_accumulator; |
275 | --read_index; |
276 | } |
277 | |
278 | // Cool Down phase: there are no more digits to read, so just write the |
279 | // remaining digits in the accumulator. |
280 | while (accumulator > 0) { |
281 | uint64_t next_accumulator = accumulator / 10; |
282 | uint64_t write_digit = accumulator - (10 * next_accumulator); |
283 | --write_index; |
284 | if (write_index < MAX_NUM_DIGITS) { |
285 | this->digits[write_index] = static_cast<uint8_t>(write_digit); |
286 | } else if (write_digit != 0) { |
287 | this->truncated = true; |
288 | } |
289 | accumulator = next_accumulator; |
290 | } |
291 | |
292 | this->num_digits += new_digits; |
293 | if (this->num_digits > MAX_NUM_DIGITS) { |
294 | this->num_digits = MAX_NUM_DIGITS; |
295 | } |
296 | this->decimal_point += new_digits; |
297 | this->trim_trailing_zeroes(); |
298 | } |
299 | |
300 | public: |
301 | // num_string is assumed to be a string of numeric characters. It doesn't |
302 | // handle leading spaces. |
303 | LIBC_INLINE |
304 | HighPrecisionDecimal( |
305 | const char *__restrict num_string, |
306 | const size_t num_len = cpp::numeric_limits<size_t>::max()) { |
307 | bool saw_dot = false; |
308 | size_t num_cur = 0; |
309 | // This counts the digits in the number, even if there isn't space to store |
310 | // them all. |
311 | uint32_t total_digits = 0; |
312 | while (num_cur < num_len && |
313 | (isdigit(ch: num_string[num_cur]) || num_string[num_cur] == '.')) { |
314 | if (num_string[num_cur] == '.') { |
315 | if (saw_dot) { |
316 | break; |
317 | } |
318 | this->decimal_point = total_digits; |
319 | saw_dot = true; |
320 | } else { |
321 | if (num_string[num_cur] == '0' && this->num_digits == 0) { |
322 | --this->decimal_point; |
323 | ++num_cur; |
324 | continue; |
325 | } |
326 | ++total_digits; |
327 | if (this->num_digits < MAX_NUM_DIGITS) { |
328 | this->digits[this->num_digits] = |
329 | static_cast<uint8_t>(num_string[num_cur] - '0'); |
330 | ++this->num_digits; |
331 | } else if (num_string[num_cur] != '0') { |
332 | this->truncated = true; |
333 | } |
334 | } |
335 | ++num_cur; |
336 | } |
337 | |
338 | if (!saw_dot) |
339 | this->decimal_point = total_digits; |
340 | |
341 | if (num_cur < num_len && ((num_string[num_cur] | 32) == 'e')) { |
342 | ++num_cur; |
343 | if (isdigit(ch: num_string[num_cur]) || num_string[num_cur] == '+' || |
344 | num_string[num_cur] == '-') { |
345 | auto result = |
346 | strtointeger<int32_t>(src: num_string + num_cur, base: 10, src_len: num_len - num_cur); |
347 | if (result.has_error()) { |
348 | // TODO: handle error |
349 | } |
350 | int32_t add_to_exponent = result.value; |
351 | |
352 | // Here we do this operation as int64 to avoid overflow. |
353 | int64_t temp_exponent = static_cast<int64_t>(this->decimal_point) + |
354 | static_cast<int64_t>(add_to_exponent); |
355 | |
356 | // Theoretically these numbers should be MAX_BIASED_EXPONENT for long |
357 | // double, but that should be ~16,000 which is much less than 1 << 30. |
358 | if (temp_exponent > (1 << 30)) { |
359 | temp_exponent = (1 << 30); |
360 | } else if (temp_exponent < -(1 << 30)) { |
361 | temp_exponent = -(1 << 30); |
362 | } |
363 | this->decimal_point = static_cast<int32_t>(temp_exponent); |
364 | } |
365 | } |
366 | |
367 | this->trim_trailing_zeroes(); |
368 | } |
369 | |
370 | // Binary shift left (shift_amount > 0) or right (shift_amount < 0) |
371 | LIBC_INLINE void shift(int shift_amount) { |
372 | if (shift_amount == 0) { |
373 | return; |
374 | } |
375 | // Left |
376 | else if (shift_amount > 0) { |
377 | while (static_cast<uint32_t>(shift_amount) > MAX_SHIFT_AMOUNT) { |
378 | this->left_shift(shift_amount: MAX_SHIFT_AMOUNT); |
379 | shift_amount -= MAX_SHIFT_AMOUNT; |
380 | } |
381 | this->left_shift(shift_amount); |
382 | } |
383 | // Right |
384 | else { |
385 | while (static_cast<uint32_t>(shift_amount) < -MAX_SHIFT_AMOUNT) { |
386 | this->right_shift(shift_amount: MAX_SHIFT_AMOUNT); |
387 | shift_amount += MAX_SHIFT_AMOUNT; |
388 | } |
389 | this->right_shift(shift_amount: -shift_amount); |
390 | } |
391 | } |
392 | |
393 | // Round the number represented to the closest value of unsigned int type T. |
394 | // This is done ignoring overflow. |
395 | template <class T> |
396 | LIBC_INLINE T |
397 | round_to_integer_type(RoundDirection round = RoundDirection::Nearest) { |
398 | T result = 0; |
399 | uint32_t cur_digit = 0; |
400 | |
401 | while (static_cast<int32_t>(cur_digit) < this->decimal_point && |
402 | cur_digit < this->num_digits) { |
403 | result = result * 10 + (this->digits[cur_digit]); |
404 | ++cur_digit; |
405 | } |
406 | |
407 | // If there are implicit 0s at the end of the number, include those. |
408 | while (static_cast<int32_t>(cur_digit) < this->decimal_point) { |
409 | result *= 10; |
410 | ++cur_digit; |
411 | } |
412 | return result + this->should_round_up(round_to_digit: this->decimal_point, round); |
413 | } |
414 | |
415 | // Extra functions for testing. |
416 | |
417 | LIBC_INLINE uint8_t *get_digits() { return this->digits; } |
418 | LIBC_INLINE uint32_t get_num_digits() { return this->num_digits; } |
419 | LIBC_INLINE int32_t get_decimal_point() { return this->decimal_point; } |
420 | LIBC_INLINE void set_truncated(bool trunc) { this->truncated = trunc; } |
421 | }; |
422 | |
423 | } // namespace internal |
424 | } // namespace LIBC_NAMESPACE |
425 | |
426 | #endif // LLVM_LIBC_SRC___SUPPORT_HIGH_PRECISION_DECIMAL_H |
427 | |