1 | //===-- Half-precision acosf16(x) function --------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception. |
6 | // |
7 | // |
8 | //===----------------------------------------------------------------------===// |
9 | |
10 | #include "src/math/acosf16.h" |
11 | #include "hdr/errno_macros.h" |
12 | #include "hdr/fenv_macros.h" |
13 | #include "src/__support/FPUtil/FEnvImpl.h" |
14 | #include "src/__support/FPUtil/FPBits.h" |
15 | #include "src/__support/FPUtil/PolyEval.h" |
16 | #include "src/__support/FPUtil/cast.h" |
17 | #include "src/__support/FPUtil/except_value_utils.h" |
18 | #include "src/__support/FPUtil/multiply_add.h" |
19 | #include "src/__support/FPUtil/sqrt.h" |
20 | #include "src/__support/macros/optimization.h" |
21 | |
22 | namespace LIBC_NAMESPACE_DECL { |
23 | |
24 | // Generated by Sollya using the following command: |
25 | // > round(pi/2, SG, RN); |
26 | // > round(pi, SG, RN); |
27 | static constexpr float PI_OVER_2 = 0x1.921fb6p0f; |
28 | static constexpr float PI = 0x1.921fb6p1f; |
29 | |
30 | #ifndef LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
31 | static constexpr size_t N_EXCEPTS = 2; |
32 | |
33 | static constexpr fputil::ExceptValues<float16, N_EXCEPTS> ACOSF16_EXCEPTS{{ |
34 | // (input, RZ output, RU offset, RD offset, RN offset) |
35 | {0xacaf, 0x3e93, 1, 0, 0}, |
36 | {0xb874, 0x4052, 1, 0, 1}, |
37 | }}; |
38 | #endif // !LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
39 | |
40 | LLVM_LIBC_FUNCTION(float16, acosf16, (float16 x)) { |
41 | using FPBits = fputil::FPBits<float16>; |
42 | FPBits xbits(x); |
43 | |
44 | uint16_t x_u = xbits.uintval(); |
45 | uint16_t x_abs = x_u & 0x7fff; |
46 | uint16_t x_sign = x_u >> 15; |
47 | |
48 | // |x| > 0x1p0, |x| > 1, or x is NaN. |
49 | if (LIBC_UNLIKELY(x_abs > 0x3c00)) { |
50 | // acosf16(NaN) = NaN |
51 | if (xbits.is_nan()) { |
52 | if (xbits.is_signaling_nan()) { |
53 | fputil::raise_except_if_required(FE_INVALID); |
54 | return FPBits::quiet_nan().get_val(); |
55 | } |
56 | |
57 | return x; |
58 | } |
59 | |
60 | // 1 < |x| <= +/-inf |
61 | fputil::raise_except_if_required(FE_INVALID); |
62 | fputil::set_errno_if_required(EDOM); |
63 | |
64 | return FPBits::quiet_nan().get_val(); |
65 | } |
66 | |
67 | float xf = x; |
68 | |
69 | #ifndef LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
70 | // Handle exceptional values |
71 | if (auto r = ACOSF16_EXCEPTS.lookup(x_u); LIBC_UNLIKELY(r.has_value())) |
72 | return r.value(); |
73 | #endif // !LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
74 | |
75 | // |x| == 0x1p0, x is 1 or -1 |
76 | // if x is (-)1, return pi, else |
77 | // if x is (+)1, return 0 |
78 | if (LIBC_UNLIKELY(x_abs == 0x3c00)) |
79 | return fputil::cast<float16>(x_sign ? PI : 0.0f); |
80 | |
81 | float xsq = xf * xf; |
82 | |
83 | // |x| <= 0x1p-1, |x| <= 0.5 |
84 | if (x_abs <= 0x3800) { |
85 | // if x is 0, return pi/2 |
86 | if (LIBC_UNLIKELY(x_abs == 0)) |
87 | return fputil::cast<float16>(PI_OVER_2); |
88 | |
89 | // Note that: acos(x) = pi/2 + asin(-x) = pi/2 - asin(x) |
90 | // Degree-6 minimax polynomial of asin(x) generated by Sollya with: |
91 | // > P = fpminimax(asin(x)/x, [|0, 2, 4, 6, 8|], [|SG...|], [0, 0.5]); |
92 | float interm = |
93 | fputil::polyeval(xsq, 0x1.000002p0f, 0x1.554c2ap-3f, 0x1.3541ccp-4f, |
94 | 0x1.43b2d6p-5f, 0x1.a0d73ep-5f); |
95 | return fputil::cast<float16>(fputil::multiply_add(-xf, interm, PI_OVER_2)); |
96 | } |
97 | |
98 | // When |x| > 0.5, assume that 0.5 < |x| <= 1 |
99 | // |
100 | // Step-by-step range-reduction proof: |
101 | // 1: Let y = asin(x), such that, x = sin(y) |
102 | // 2: From complimentary angle identity: |
103 | // x = sin(y) = cos(pi/2 - y) |
104 | // 3: Let z = pi/2 - y, such that x = cos(z) |
105 | // 4: From double angle formula; cos(2A) = 1 - 2 * sin^2(A): |
106 | // z = 2A, z/2 = A |
107 | // cos(z) = 1 - 2 * sin^2(z/2) |
108 | // 5: Make sin(z/2) subject of the formula: |
109 | // sin(z/2) = sqrt((1 - cos(z))/2) |
110 | // 6: Recall [3]; x = cos(z). Therefore: |
111 | // sin(z/2) = sqrt((1 - x)/2) |
112 | // 7: Let u = (1 - x)/2 |
113 | // 8: Therefore: |
114 | // asin(sqrt(u)) = z/2 |
115 | // 2 * asin(sqrt(u)) = z |
116 | // 9: Recall [3]; z = pi/2 - y. Therefore: |
117 | // y = pi/2 - z |
118 | // y = pi/2 - 2 * asin(sqrt(u)) |
119 | // 10: Recall [1], y = asin(x). Therefore: |
120 | // asin(x) = pi/2 - 2 * asin(sqrt(u)) |
121 | // 11: Recall that: acos(x) = pi/2 + asin(-x) = pi/2 - asin(x) |
122 | // Therefore: |
123 | // acos(x) = pi/2 - (pi/2 - 2 * asin(sqrt(u))) |
124 | // acos(x) = 2 * asin(sqrt(u)) |
125 | // |
126 | // THE RANGE REDUCTION, HOW? |
127 | // 12: Recall [7], u = (1 - x)/2 |
128 | // 13: Since 0.5 < x <= 1, therefore: |
129 | // 0 <= u <= 0.25 and 0 <= sqrt(u) <= 0.5 |
130 | // |
131 | // Hence, we can reuse the same [0, 0.5] domain polynomial approximation for |
132 | // Step [11] as `sqrt(u)` is in range. |
133 | // When -1 < x <= -0.5, the identity: |
134 | // acos(x) = pi - acos(-x) |
135 | // allows us to compute for the negative x value (lhs) |
136 | // with a positive x value instead (rhs). |
137 | |
138 | float xf_abs = (xf < 0 ? -xf : xf); |
139 | float u = fputil::multiply_add(-0.5f, xf_abs, 0.5f); |
140 | float sqrt_u = fputil::sqrt<float>(u); |
141 | |
142 | // Degree-6 minimax polynomial of asin(x) generated by Sollya with: |
143 | // > P = fpminimax(asin(x)/x, [|0, 2, 4, 6, 8|], [|SG...|], [0, 0.5]); |
144 | float asin_sqrt_u = |
145 | sqrt_u * fputil::polyeval(u, 0x1.000002p0f, 0x1.554c2ap-3f, |
146 | 0x1.3541ccp-4f, 0x1.43b2d6p-5f, 0x1.a0d73ep-5f); |
147 | |
148 | return fputil::cast<float16>( |
149 | x_sign ? fputil::multiply_add(-2.0f, asin_sqrt_u, PI) : 2 * asin_sqrt_u); |
150 | } |
151 | } // namespace LIBC_NAMESPACE_DECL |
152 | |