1 | //===-- Double-precision asin function ------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "src/math/asin.h" |
10 | #include "asin_utils.h" |
11 | #include "src/__support/FPUtil/FEnvImpl.h" |
12 | #include "src/__support/FPUtil/FPBits.h" |
13 | #include "src/__support/FPUtil/PolyEval.h" |
14 | #include "src/__support/FPUtil/double_double.h" |
15 | #include "src/__support/FPUtil/dyadic_float.h" |
16 | #include "src/__support/FPUtil/multiply_add.h" |
17 | #include "src/__support/FPUtil/sqrt.h" |
18 | #include "src/__support/macros/config.h" |
19 | #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY |
20 | #include "src/__support/macros/properties/cpu_features.h" // LIBC_TARGET_CPU_HAS_FMA |
21 | |
22 | namespace LIBC_NAMESPACE_DECL { |
23 | |
24 | using DoubleDouble = fputil::DoubleDouble; |
25 | using Float128 = fputil::DyadicFloat<128>; |
26 | |
27 | LLVM_LIBC_FUNCTION(double, asin, (double x)) { |
28 | using FPBits = fputil::FPBits<double>; |
29 | |
30 | FPBits xbits(x); |
31 | int x_exp = xbits.get_biased_exponent(); |
32 | |
33 | // |x| < 0.5. |
34 | if (x_exp < FPBits::EXP_BIAS - 1) { |
35 | // |x| < 2^-26. |
36 | if (LIBC_UNLIKELY(x_exp < FPBits::EXP_BIAS - 26)) { |
37 | // When |x| < 2^-26, the relative error of the approximation asin(x) ~ x |
38 | // is: |
39 | // |asin(x) - x| / |asin(x)| < |x^3| / (6|x|) |
40 | // = x^2 / 6 |
41 | // < 2^-54 |
42 | // < epsilon(1)/2. |
43 | // So the correctly rounded values of asin(x) are: |
44 | // = x + sign(x)*eps(x) if rounding mode = FE_TOWARDZERO, |
45 | // or (rounding mode = FE_UPWARD and x is |
46 | // negative), |
47 | // = x otherwise. |
48 | // To simplify the rounding decision and make it more efficient, we use |
49 | // fma(x, 2^-54, x) instead. |
50 | // Note: to use the formula x + 2^-54*x to decide the correct rounding, we |
51 | // do need fma(x, 2^-54, x) to prevent underflow caused by 2^-54*x when |
52 | // |x| < 2^-1022. For targets without FMA instructions, when x is close to |
53 | // denormal range, we normalize x, |
54 | #if defined(LIBC_MATH_HAS_SKIP_ACCURATE_PASS) |
55 | return x; |
56 | #elif defined(LIBC_TARGET_CPU_HAS_FMA_DOUBLE) |
57 | return fputil::multiply_add(x, 0x1.0p-54, x); |
58 | #else |
59 | if (xbits.abs().uintval() == 0) |
60 | return x; |
61 | // Get sign(x) * min_normal. |
62 | FPBits eps_bits = FPBits::min_normal(); |
63 | eps_bits.set_sign(xbits.sign()); |
64 | double eps = eps_bits.get_val(); |
65 | double normalize_const = (x_exp == 0) ? eps : 0.0; |
66 | double scaled_normal = |
67 | fputil::multiply_add(x + normalize_const, 0x1.0p54, eps); |
68 | return fputil::multiply_add(scaled_normal, 0x1.0p-54, -normalize_const); |
69 | #endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
70 | } |
71 | |
72 | #ifdef LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
73 | return x * asin_eval(x * x); |
74 | #else |
75 | unsigned idx; |
76 | DoubleDouble x_sq = fputil::exact_mult(x, x); |
77 | double err = xbits.abs().get_val() * 0x1.0p-51; |
78 | // Polynomial approximation: |
79 | // p ~ asin(x)/x |
80 | |
81 | DoubleDouble p = asin_eval(x_sq, idx, err); |
82 | // asin(x) ~ x * (ASIN_COEFFS[idx][0] + p) |
83 | DoubleDouble r0 = fputil::exact_mult(x, p.hi); |
84 | double r_lo = fputil::multiply_add(x, p.lo, r0.lo); |
85 | |
86 | // Ziv's accuracy test. |
87 | |
88 | double r_upper = r0.hi + (r_lo + err); |
89 | double r_lower = r0.hi + (r_lo - err); |
90 | |
91 | if (LIBC_LIKELY(r_upper == r_lower)) |
92 | return r_upper; |
93 | |
94 | // Ziv's accuracy test failed, perform 128-bit calculation. |
95 | |
96 | // Recalculate mod 1/64. |
97 | idx = static_cast<unsigned>(fputil::nearest_integer(x_sq.hi * 0x1.0p6)); |
98 | |
99 | // Get x^2 - idx/64 exactly. When FMA is available, double-double |
100 | // multiplication will be correct for all rounding modes. Otherwise we use |
101 | // Float128 directly. |
102 | Float128 x_f128(x); |
103 | |
104 | #ifdef LIBC_TARGET_CPU_HAS_FMA_DOUBLE |
105 | // u = x^2 - idx/64 |
106 | Float128 u_hi( |
107 | fputil::multiply_add(static_cast<double>(idx), -0x1.0p-6, x_sq.hi)); |
108 | Float128 u = fputil::quick_add(u_hi, Float128(x_sq.lo)); |
109 | #else |
110 | Float128 x_sq_f128 = fputil::quick_mul(x_f128, x_f128); |
111 | Float128 u = fputil::quick_add( |
112 | x_sq_f128, Float128(static_cast<double>(idx) * (-0x1.0p-6))); |
113 | #endif // LIBC_TARGET_CPU_HAS_FMA_DOUBLE |
114 | |
115 | Float128 p_f128 = asin_eval(u, idx); |
116 | Float128 r = fputil::quick_mul(x_f128, p_f128); |
117 | |
118 | return static_cast<double>(r); |
119 | #endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
120 | } |
121 | // |x| >= 0.5 |
122 | |
123 | double x_abs = xbits.abs().get_val(); |
124 | |
125 | // Maintaining the sign: |
126 | constexpr double SIGN[2] = {1.0, -1.0}; |
127 | double x_sign = SIGN[xbits.is_neg()]; |
128 | |
129 | // |x| >= 1 |
130 | if (LIBC_UNLIKELY(x_exp >= FPBits::EXP_BIAS)) { |
131 | // x = +-1, asin(x) = +- pi/2 |
132 | if (x_abs == 1.0) { |
133 | // return +- pi/2 |
134 | return fputil::multiply_add(x_sign, PI_OVER_TWO.hi, |
135 | x_sign * PI_OVER_TWO.lo); |
136 | } |
137 | // |x| > 1, return NaN. |
138 | if (xbits.is_quiet_nan()) |
139 | return x; |
140 | |
141 | // Set domain error for non-NaN input. |
142 | if (!xbits.is_nan()) |
143 | fputil::set_errno_if_required(EDOM); |
144 | |
145 | fputil::raise_except_if_required(FE_INVALID); |
146 | return FPBits::quiet_nan().get_val(); |
147 | } |
148 | |
149 | // When |x| >= 0.5, we perform range reduction as follow: |
150 | // |
151 | // Assume further that 0.5 <= x < 1, and let: |
152 | // y = asin(x) |
153 | // We will use the double angle formula: |
154 | // cos(2y) = 1 - 2 sin^2(y) |
155 | // and the complement angle identity: |
156 | // x = sin(y) = cos(pi/2 - y) |
157 | // = 1 - 2 sin^2 (pi/4 - y/2) |
158 | // So: |
159 | // sin(pi/4 - y/2) = sqrt( (1 - x)/2 ) |
160 | // And hence: |
161 | // pi/4 - y/2 = asin( sqrt( (1 - x)/2 ) ) |
162 | // Equivalently: |
163 | // asin(x) = y = pi/2 - 2 * asin( sqrt( (1 - x)/2 ) ) |
164 | // Let u = (1 - x)/2, then: |
165 | // asin(x) = pi/2 - 2 * asin( sqrt(u) ) |
166 | // Moreover, since 0.5 <= x < 1: |
167 | // 0 < u <= 1/4, and 0 < sqrt(u) <= 0.5, |
168 | // And hence we can reuse the same polynomial approximation of asin(x) when |
169 | // |x| <= 0.5: |
170 | // asin(x) ~ pi/2 - 2 * sqrt(u) * P(u), |
171 | |
172 | // u = (1 - |x|)/2 |
173 | double u = fputil::multiply_add(x_abs, -0.5, 0.5); |
174 | // v_hi + v_lo ~ sqrt(u). |
175 | // Let: |
176 | // h = u - v_hi^2 = (sqrt(u) - v_hi) * (sqrt(u) + v_hi) |
177 | // Then: |
178 | // sqrt(u) = v_hi + h / (sqrt(u) + v_hi) |
179 | // ~ v_hi + h / (2 * v_hi) |
180 | // So we can use: |
181 | // v_lo = h / (2 * v_hi). |
182 | // Then, |
183 | // asin(x) ~ pi/2 - 2*(v_hi + v_lo) * P(u) |
184 | double v_hi = fputil::sqrt<double>(u); |
185 | |
186 | #ifdef LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
187 | double p = asin_eval(u); |
188 | double r = x_sign * fputil::multiply_add(-2.0 * v_hi, p, PI_OVER_TWO.hi); |
189 | return r; |
190 | #else |
191 | |
192 | #ifdef LIBC_TARGET_CPU_HAS_FMA_DOUBLE |
193 | double h = fputil::multiply_add(v_hi, -v_hi, u); |
194 | #else |
195 | DoubleDouble v_hi_sq = fputil::exact_mult(v_hi, v_hi); |
196 | double h = (u - v_hi_sq.hi) - v_hi_sq.lo; |
197 | #endif // LIBC_TARGET_CPU_HAS_FMA_DOUBLE |
198 | |
199 | // Scale v_lo and v_hi by 2 from the formula: |
200 | // vh = v_hi * 2 |
201 | // vl = 2*v_lo = h / v_hi. |
202 | double vh = v_hi * 2.0; |
203 | double vl = h / v_hi; |
204 | |
205 | // Polynomial approximation: |
206 | // p ~ asin(sqrt(u))/sqrt(u) |
207 | unsigned idx; |
208 | double err = vh * 0x1.0p-51; |
209 | |
210 | DoubleDouble p = asin_eval(DoubleDouble{0.0, u}, idx, err); |
211 | |
212 | // Perform computations in double-double arithmetic: |
213 | // asin(x) = pi/2 - (v_hi + v_lo) * (ASIN_COEFFS[idx][0] + p) |
214 | DoubleDouble r0 = fputil::quick_mult(DoubleDouble{vl, vh}, p); |
215 | DoubleDouble r = fputil::exact_add(PI_OVER_TWO.hi, -r0.hi); |
216 | |
217 | double r_lo = PI_OVER_TWO.lo - r0.lo + r.lo; |
218 | |
219 | // Ziv's accuracy test. |
220 | |
221 | #ifdef LIBC_TARGET_CPU_HAS_FMA_DOUBLE |
222 | double r_upper = fputil::multiply_add( |
223 | r.hi, x_sign, fputil::multiply_add(r_lo, x_sign, err)); |
224 | double r_lower = fputil::multiply_add( |
225 | r.hi, x_sign, fputil::multiply_add(r_lo, x_sign, -err)); |
226 | #else |
227 | r_lo *= x_sign; |
228 | r.hi *= x_sign; |
229 | double r_upper = r.hi + (r_lo + err); |
230 | double r_lower = r.hi + (r_lo - err); |
231 | #endif // LIBC_TARGET_CPU_HAS_FMA_DOUBLE |
232 | |
233 | if (LIBC_LIKELY(r_upper == r_lower)) |
234 | return r_upper; |
235 | |
236 | // Ziv's accuracy test failed, we redo the computations in Float128. |
237 | // Recalculate mod 1/64. |
238 | idx = static_cast<unsigned>(fputil::nearest_integer(u * 0x1.0p6)); |
239 | |
240 | // After the first step of Newton-Raphson approximating v = sqrt(u), we have |
241 | // that: |
242 | // sqrt(u) = v_hi + h / (sqrt(u) + v_hi) |
243 | // v_lo = h / (2 * v_hi) |
244 | // With error: |
245 | // sqrt(u) - (v_hi + v_lo) = h * ( 1/(sqrt(u) + v_hi) - 1/(2*v_hi) ) |
246 | // = -h^2 / (2*v * (sqrt(u) + v)^2). |
247 | // Since: |
248 | // (sqrt(u) + v_hi)^2 ~ (2sqrt(u))^2 = 4u, |
249 | // we can add another correction term to (v_hi + v_lo) that is: |
250 | // v_ll = -h^2 / (2*v_hi * 4u) |
251 | // = -v_lo * (h / 4u) |
252 | // = -vl * (h / 8u), |
253 | // making the errors: |
254 | // sqrt(u) - (v_hi + v_lo + v_ll) = O(h^3) |
255 | // well beyond 128-bit precision needed. |
256 | |
257 | // Get the rounding error of vl = 2 * v_lo ~ h / vh |
258 | // Get full product of vh * vl |
259 | #ifdef LIBC_TARGET_CPU_HAS_FMA_DOUBLE |
260 | double vl_lo = fputil::multiply_add(-v_hi, vl, h) / v_hi; |
261 | #else |
262 | DoubleDouble vh_vl = fputil::exact_mult(v_hi, vl); |
263 | double vl_lo = ((h - vh_vl.hi) - vh_vl.lo) / v_hi; |
264 | #endif // LIBC_TARGET_CPU_HAS_FMA_DOUBLE |
265 | // vll = 2*v_ll = -vl * (h / (4u)). |
266 | double t = h * (-0.25) / u; |
267 | double vll = fputil::multiply_add(vl, t, vl_lo); |
268 | // m_v = -(v_hi + v_lo + v_ll). |
269 | Float128 m_v = fputil::quick_add( |
270 | Float128(vh), fputil::quick_add(Float128(vl), Float128(vll))); |
271 | m_v.sign = Sign::NEG; |
272 | |
273 | // Perform computations in Float128: |
274 | // asin(x) = pi/2 - (v_hi + v_lo + vll) * P(u). |
275 | Float128 y_f128(fputil::multiply_add(static_cast<double>(idx), -0x1.0p-6, u)); |
276 | |
277 | Float128 p_f128 = asin_eval(y_f128, idx); |
278 | Float128 r0_f128 = fputil::quick_mul(m_v, p_f128); |
279 | Float128 r_f128 = fputil::quick_add(PI_OVER_TWO_F128, r0_f128); |
280 | |
281 | if (xbits.is_neg()) |
282 | r_f128.sign = Sign::NEG; |
283 | |
284 | return static_cast<double>(r_f128); |
285 | #endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
286 | } |
287 | |
288 | } // namespace LIBC_NAMESPACE_DECL |
289 | |