| 1 | //===-- Double-precision atan function ------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "src/math/atan.h" |
| 10 | #include "atan_utils.h" |
| 11 | #include "src/__support/FPUtil/FEnvImpl.h" |
| 12 | #include "src/__support/FPUtil/FPBits.h" |
| 13 | #include "src/__support/FPUtil/double_double.h" |
| 14 | #include "src/__support/FPUtil/multiply_add.h" |
| 15 | #include "src/__support/FPUtil/nearest_integer.h" |
| 16 | #include "src/__support/macros/config.h" |
| 17 | #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY |
| 18 | |
| 19 | namespace LIBC_NAMESPACE_DECL { |
| 20 | |
| 21 | // To compute atan(x), we divided it into the following cases: |
| 22 | // * |x| < 2^-26: |
| 23 | // Since |x| > atan(|x|) > |x| - |x|^3/3, and |x|^3/3 < ulp(x)/2, we simply |
| 24 | // return atan(x) = x - sign(x) * epsilon. |
| 25 | // * 2^-26 <= |x| < 1: |
| 26 | // We perform range reduction mod 2^-6 = 1/64 as follow: |
| 27 | // Let k = 2^(-6) * round(|x| * 2^6), then |
| 28 | // atan(x) = sign(x) * atan(|x|) |
| 29 | // = sign(x) * (atan(k) + atan((|x| - k) / (1 + |x|*k)). |
| 30 | // We store atan(k) in a look up table, and perform intermediate steps in |
| 31 | // double-double. |
| 32 | // * 1 < |x| < 2^53: |
| 33 | // First we perform the transformation y = 1/|x|: |
| 34 | // atan(x) = sign(x) * (pi/2 - atan(1/|x|)) |
| 35 | // = sign(x) * (pi/2 - atan(y)). |
| 36 | // Then we compute atan(y) using range reduction mod 2^-6 = 1/64 as the |
| 37 | // previous case: |
| 38 | // Let k = 2^(-6) * round(y * 2^6), then |
| 39 | // atan(y) = atan(k) + atan((y - k) / (1 + y*k)) |
| 40 | // = atan(k) + atan((1/|x| - k) / (1 + k/|x|) |
| 41 | // = atan(k) + atan((1 - k*|x|) / (|x| + k)). |
| 42 | // * |x| >= 2^53: |
| 43 | // Using the reciprocal transformation: |
| 44 | // atan(x) = sign(x) * (pi/2 - atan(1/|x|)). |
| 45 | // We have that: |
| 46 | // atan(1/|x|) <= 1/|x| <= 2^-53, |
| 47 | // which is smaller than ulp(pi/2) / 2. |
| 48 | // So we can return: |
| 49 | // atan(x) = sign(x) * (pi/2 - epsilon) |
| 50 | |
| 51 | LLVM_LIBC_FUNCTION(double, atan, (double x)) { |
| 52 | using FPBits = fputil::FPBits<double>; |
| 53 | |
| 54 | constexpr double IS_NEG[2] = {1.0, -1.0}; |
| 55 | constexpr DoubleDouble PI_OVER_2 = {0x1.1a62633145c07p-54, |
| 56 | 0x1.921fb54442d18p0}; |
| 57 | constexpr DoubleDouble MPI_OVER_2 = {-0x1.1a62633145c07p-54, |
| 58 | -0x1.921fb54442d18p0}; |
| 59 | |
| 60 | FPBits xbits(x); |
| 61 | bool x_sign = xbits.is_neg(); |
| 62 | xbits = xbits.abs(); |
| 63 | uint64_t x_abs = xbits.uintval(); |
| 64 | int x_exp = |
| 65 | static_cast<int>(x_abs >> FPBits::FRACTION_LEN) - FPBits::EXP_BIAS; |
| 66 | |
| 67 | // |x| < 1. |
| 68 | if (x_exp < 0) { |
| 69 | if (LIBC_UNLIKELY(x_exp < -26)) { |
| 70 | #ifdef LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| 71 | return x; |
| 72 | #else |
| 73 | if (x == 0.0) |
| 74 | return x; |
| 75 | // |x| < 2^-26 |
| 76 | return fputil::multiply_add(-0x1.0p-54, x, x); |
| 77 | #endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| 78 | } |
| 79 | |
| 80 | double x_d = xbits.get_val(); |
| 81 | // k = 2^-6 * round(2^6 * |x|) |
| 82 | double k = fputil::nearest_integer(0x1.0p6 * x_d); |
| 83 | unsigned idx = static_cast<unsigned>(k); |
| 84 | k *= 0x1.0p-6; |
| 85 | |
| 86 | // numerator = |x| - k |
| 87 | DoubleDouble num, den; |
| 88 | num.lo = 0.0; |
| 89 | num.hi = x_d - k; |
| 90 | |
| 91 | // denominator = 1 - k * |x| |
| 92 | den.hi = fputil::multiply_add(x_d, k, 1.0); |
| 93 | DoubleDouble prod = fputil::exact_mult(x_d, k); |
| 94 | // Using Dekker's 2SUM algorithm to compute the lower part. |
| 95 | den.lo = ((1.0 - den.hi) + prod.hi) + prod.lo; |
| 96 | |
| 97 | // x_r = (|x| - k) / (1 + k * |x|) |
| 98 | DoubleDouble x_r = fputil::div(num, den); |
| 99 | |
| 100 | // Approximating atan(x_r) using Taylor polynomial. |
| 101 | DoubleDouble p = atan_eval(x_r); |
| 102 | |
| 103 | // atan(x) = sign(x) * (atan(k) + atan(x_r)) |
| 104 | // = sign(x) * (atan(k) + atan( (|x| - k) / (1 + k * |x|) )) |
| 105 | #ifdef LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| 106 | return IS_NEG[x_sign] * (ATAN_I[idx].hi + (p.hi + (p.lo + ATAN_I[idx].lo))); |
| 107 | #else |
| 108 | |
| 109 | DoubleDouble c0 = fputil::exact_add(ATAN_I[idx].hi, p.hi); |
| 110 | double c1 = c0.lo + (ATAN_I[idx].lo + p.lo); |
| 111 | double r = IS_NEG[x_sign] * (c0.hi + c1); |
| 112 | |
| 113 | return r; |
| 114 | #endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| 115 | } |
| 116 | |
| 117 | // |x| >= 2^53 or x is NaN. |
| 118 | if (LIBC_UNLIKELY(x_exp >= 53)) { |
| 119 | // x is nan |
| 120 | if (xbits.is_nan()) { |
| 121 | if (xbits.is_signaling_nan()) { |
| 122 | fputil::raise_except_if_required(FE_INVALID); |
| 123 | return FPBits::quiet_nan().get_val(); |
| 124 | } |
| 125 | return x; |
| 126 | } |
| 127 | // |x| >= 2^53 |
| 128 | // atan(x) ~ sign(x) * pi/2. |
| 129 | if (x_exp >= 53) |
| 130 | #ifdef LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| 131 | return IS_NEG[x_sign] * PI_OVER_2.hi; |
| 132 | #else |
| 133 | return fputil::multiply_add(IS_NEG[x_sign], PI_OVER_2.hi, |
| 134 | IS_NEG[x_sign] * PI_OVER_2.lo); |
| 135 | #endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| 136 | } |
| 137 | |
| 138 | double x_d = xbits.get_val(); |
| 139 | double y = 1.0 / x_d; |
| 140 | |
| 141 | // k = 2^-6 * round(2^6 / |x|) |
| 142 | double k = fputil::nearest_integer(0x1.0p6 * y); |
| 143 | unsigned idx = static_cast<unsigned>(k); |
| 144 | k *= 0x1.0p-6; |
| 145 | |
| 146 | // denominator = |x| + k |
| 147 | DoubleDouble den = fputil::exact_add(x_d, k); |
| 148 | // numerator = 1 - k * |x| |
| 149 | DoubleDouble num; |
| 150 | num.hi = fputil::multiply_add(-x_d, k, 1.0); |
| 151 | DoubleDouble prod = fputil::exact_mult(x_d, k); |
| 152 | // Using Dekker's 2SUM algorithm to compute the lower part. |
| 153 | num.lo = ((1.0 - num.hi) - prod.hi) - prod.lo; |
| 154 | |
| 155 | // x_r = (1/|x| - k) / (1 - k/|x|) |
| 156 | // = (1 - k * |x|) / (|x| - k) |
| 157 | DoubleDouble x_r = fputil::div(num, den); |
| 158 | |
| 159 | // Approximating atan(x_r) using Taylor polynomial. |
| 160 | DoubleDouble p = atan_eval(x_r); |
| 161 | |
| 162 | // atan(x) = sign(x) * (pi/2 - atan(1/|x|)) |
| 163 | // = sign(x) * (pi/2 - atan(k) - atan(x_r)) |
| 164 | // = (-sign(x)) * (-pi/2 + atan(k) + atan((1 - k*|x|)/(|x| - k))) |
| 165 | #ifdef LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| 166 | double lo_part = p.lo + ATAN_I[idx].lo + MPI_OVER_2.lo; |
| 167 | return IS_NEG[!x_sign] * (MPI_OVER_2.hi + ATAN_I[idx].hi + (p.hi + lo_part)); |
| 168 | #else |
| 169 | DoubleDouble c0 = fputil::exact_add(MPI_OVER_2.hi, ATAN_I[idx].hi); |
| 170 | DoubleDouble c1 = fputil::exact_add(c0.hi, p.hi); |
| 171 | double c2 = c1.lo + (c0.lo + p.lo) + (ATAN_I[idx].lo + MPI_OVER_2.lo); |
| 172 | |
| 173 | double r = IS_NEG[!x_sign] * (c1.hi + c2); |
| 174 | |
| 175 | return r; |
| 176 | #endif |
| 177 | } |
| 178 | |
| 179 | } // namespace LIBC_NAMESPACE_DECL |
| 180 | |