1 | //===-- Common utilities for half-precision exponential functions ---------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #ifndef LLVM_LIBC_SRC_MATH_GENERIC_EXPXF16_H |
10 | #define LLVM_LIBC_SRC_MATH_GENERIC_EXPXF16_H |
11 | |
12 | #include "src/__support/CPP/array.h" |
13 | #include "src/__support/FPUtil/FPBits.h" |
14 | #include "src/__support/FPUtil/PolyEval.h" |
15 | #include "src/__support/FPUtil/cast.h" |
16 | #include "src/__support/FPUtil/multiply_add.h" |
17 | #include "src/__support/FPUtil/nearest_integer.h" |
18 | #include "src/__support/macros/attributes.h" |
19 | #include "src/__support/macros/config.h" |
20 | #include <stdint.h> |
21 | |
22 | namespace LIBC_NAMESPACE_DECL { |
23 | |
24 | // Generated by Sollya with the following commands: |
25 | // > display = hexadecimal; |
26 | // > for i from -18 to 12 do print(round(exp(i), SG, RN)); |
27 | static constexpr cpp::array<float, 31> EXP_HI = { |
28 | 0x1.05a628p-26f, 0x1.639e32p-25f, 0x1.e355bcp-24f, 0x1.4875cap-22f, |
29 | 0x1.be6c7p-21f, 0x1.2f6054p-19f, 0x1.9c54c4p-18f, 0x1.183542p-16f, |
30 | 0x1.7cd79cp-15f, 0x1.02cf22p-13f, 0x1.5fc21p-12f, 0x1.de16bap-11f, |
31 | 0x1.44e52p-9f, 0x1.b993fep-8f, 0x1.2c155cp-6f, 0x1.97db0cp-5f, |
32 | 0x1.152aaap-3f, 0x1.78b564p-2f, 0x1p+0f, 0x1.5bf0a8p+1f, |
33 | 0x1.d8e64cp+2f, 0x1.415e5cp+4f, 0x1.b4c902p+5f, 0x1.28d38ap+7f, |
34 | 0x1.936dc6p+8f, 0x1.122886p+10f, 0x1.749ea8p+11f, 0x1.fa7158p+12f, |
35 | 0x1.5829dcp+14f, 0x1.d3c448p+15f, 0x1.3de166p+17f, |
36 | }; |
37 | |
38 | // Generated by Sollya with the following commands: |
39 | // > display = hexadecimal; |
40 | // > for i from 0 to 7 do print(round(exp(i * 2^-3), SG, RN)); |
41 | static constexpr cpp::array<float, 8> EXP_MID = { |
42 | 0x1p+0f, 0x1.221604p+0f, 0x1.48b5e4p+0f, 0x1.747a52p+0f, |
43 | 0x1.a61298p+0f, 0x1.de455ep+0f, 0x1.0ef9dcp+1f, 0x1.330e58p+1f, |
44 | }; |
45 | |
46 | struct ExpRangeReduction { |
47 | float exp_hi_mid; |
48 | float exp_lo; |
49 | }; |
50 | |
51 | LIBC_INLINE ExpRangeReduction exp_range_reduction(float16 x) { |
52 | // For -18 < x < 12, to compute exp(x), we perform the following range |
53 | // reduction: find hi, mid, lo, such that: |
54 | // x = hi + mid + lo, in which |
55 | // hi is an integer, |
56 | // mid * 2^3 is an integer, |
57 | // -2^(-4) <= lo < 2^(-4). |
58 | // In particular, |
59 | // hi + mid = round(x * 2^3) * 2^(-3). |
60 | // Then, |
61 | // exp(x) = exp(hi + mid + lo) = exp(hi) * exp(mid) * exp(lo). |
62 | // We store exp(hi) and exp(mid) in the lookup tables EXP_HI and EXP_MID |
63 | // respectively. exp(lo) is computed using a degree-3 minimax polynomial |
64 | // generated by Sollya. |
65 | |
66 | float xf = x; |
67 | float kf = fputil::nearest_integer(xf * 0x1.0p+3f); |
68 | int x_hi_mid = static_cast<int>(kf); |
69 | int x_hi = x_hi_mid >> 3; |
70 | int x_mid = x_hi_mid & 0x7; |
71 | // lo = x - (hi + mid) = round(x * 2^3) * (-2^(-3)) + x |
72 | float lo = fputil::multiply_add(kf, -0x1.0p-3f, xf); |
73 | |
74 | float exp_hi = EXP_HI[x_hi + 18]; |
75 | float exp_mid = EXP_MID[x_mid]; |
76 | // Degree-3 minimax polynomial generated by Sollya with the following |
77 | // commands: |
78 | // > display = hexadecimal; |
79 | // > P = fpminimax(expm1(x)/x, 2, [|SG...|], [-2^-4, 2^-4]); |
80 | // > 1 + x * P; |
81 | float exp_lo = |
82 | fputil::polyeval(lo, 0x1p+0f, 0x1p+0f, 0x1.001p-1f, 0x1.555ddep-3f); |
83 | return {exp_hi * exp_mid, exp_lo}; |
84 | } |
85 | |
86 | // Generated by Sollya with the following commands: |
87 | // > display = hexadecimal; |
88 | // > for i from 0 to 7 do printsingle(round(2^(i * 2^-3), SG, RN)); |
89 | constexpr cpp::array<uint32_t, 8> EXP2_MID_BITS = { |
90 | 0x3f80'0000U, 0x3f8b'95c2U, 0x3f98'37f0U, 0x3fa5'fed7U, |
91 | 0x3fb5'04f3U, 0x3fc5'672aU, 0x3fd7'44fdU, 0x3fea'c0c7U, |
92 | }; |
93 | |
94 | LIBC_INLINE ExpRangeReduction exp2_range_reduction(float16 x) { |
95 | // For -25 < x < 16, to compute 2^x, we perform the following range reduction: |
96 | // find hi, mid, lo, such that: |
97 | // x = hi + mid + lo, in which |
98 | // hi is an integer, |
99 | // mid * 2^3 is an integer, |
100 | // -2^(-4) <= lo < 2^(-4). |
101 | // In particular, |
102 | // hi + mid = round(x * 2^3) * 2^(-3). |
103 | // Then, |
104 | // 2^x = 2^(hi + mid + lo) = 2^hi * 2^mid * 2^lo. |
105 | // We store 2^mid in the lookup table EXP2_MID_BITS, and compute 2^hi * 2^mid |
106 | // by adding hi to the exponent field of 2^mid. 2^lo is computed using a |
107 | // degree-3 minimax polynomial generated by Sollya. |
108 | |
109 | float xf = x; |
110 | float kf = fputil::nearest_integer(xf * 0x1.0p+3f); |
111 | int x_hi_mid = static_cast<int>(kf); |
112 | unsigned x_hi = static_cast<unsigned>(x_hi_mid) >> 3; |
113 | unsigned x_mid = static_cast<unsigned>(x_hi_mid) & 0x7; |
114 | // lo = x - (hi + mid) = round(x * 2^3) * (-2^(-3)) + x |
115 | float lo = fputil::multiply_add(kf, -0x1.0p-3f, xf); |
116 | |
117 | uint32_t exp2_hi_mid_bits = |
118 | EXP2_MID_BITS[x_mid] + |
119 | static_cast<uint32_t>(x_hi << fputil::FPBits<float>::FRACTION_LEN); |
120 | float exp2_hi_mid = fputil::FPBits<float>(exp2_hi_mid_bits).get_val(); |
121 | // Degree-3 minimax polynomial generated by Sollya with the following |
122 | // commands: |
123 | // > display = hexadecimal; |
124 | // > P = fpminimax((2^x - 1)/x, 2, [|SG...|], [-2^-4, 2^-4]); |
125 | // > 1 + x * P; |
126 | float exp2_lo = fputil::polyeval(lo, 0x1p+0f, 0x1.62e43p-1f, 0x1.ec0aa6p-3f, |
127 | 0x1.c6b4a6p-5f); |
128 | return {exp2_hi_mid, exp2_lo}; |
129 | } |
130 | |
131 | // Generated by Sollya with the following commands: |
132 | // > display = hexadecimal; |
133 | // > round(log2(10), SG, RN); |
134 | static constexpr float LOG2F_10 = 0x1.a934fp+1f; |
135 | |
136 | // Generated by Sollya with the following commands: |
137 | // > display = hexadecimal; |
138 | // > round(log10(2), SG, RN); |
139 | static constexpr float LOG10F_2 = 0x1.344136p-2f; |
140 | |
141 | LIBC_INLINE ExpRangeReduction exp10_range_reduction(float16 x) { |
142 | // For -8 < x < 5, to compute 10^x, we perform the following range reduction: |
143 | // find hi, mid, lo, such that: |
144 | // x = (hi + mid) * log2(10) + lo, in which |
145 | // hi is an integer, |
146 | // mid * 2^3 is an integer, |
147 | // -2^(-4) <= lo < 2^(-4). |
148 | // In particular, |
149 | // hi + mid = round(x * 2^3) * 2^(-3). |
150 | // Then, |
151 | // 10^x = 10^(hi + mid + lo) = 2^((hi + mid) * log2(10)) + 10^lo |
152 | // We store 2^mid in the lookup table EXP2_MID_BITS, and compute 2^hi * 2^mid |
153 | // by adding hi to the exponent field of 2^mid. 10^lo is computed using a |
154 | // degree-4 minimax polynomial generated by Sollya. |
155 | |
156 | float xf = x; |
157 | float kf = fputil::nearest_integer(xf * (LOG2F_10 * 0x1.0p+3f)); |
158 | int x_hi_mid = static_cast<int>(kf); |
159 | unsigned x_hi = static_cast<unsigned>(x_hi_mid) >> 3; |
160 | unsigned x_mid = static_cast<unsigned>(x_hi_mid) & 0x7; |
161 | // lo = x - (hi + mid) = round(x * 2^3 * log2(10)) * log10(2) * (-2^(-3)) + x |
162 | float lo = fputil::multiply_add(kf, LOG10F_2 * -0x1.0p-3f, xf); |
163 | |
164 | uint32_t exp2_hi_mid_bits = |
165 | EXP2_MID_BITS[x_mid] + |
166 | static_cast<uint32_t>(x_hi << fputil::FPBits<float>::FRACTION_LEN); |
167 | float exp2_hi_mid = fputil::FPBits<float>(exp2_hi_mid_bits).get_val(); |
168 | // Degree-4 minimax polynomial generated by Sollya with the following |
169 | // commands: |
170 | // > display = hexadecimal; |
171 | // > P = fpminimax((10^x - 1)/x, 3, [|SG...|], [-2^-4, 2^-4]); |
172 | // > 1 + x * P; |
173 | float exp10_lo = fputil::polyeval(lo, 0x1p+0f, 0x1.26bb14p+1f, 0x1.53526p+1f, |
174 | 0x1.04b434p+1f, 0x1.2bcf9ep+0f); |
175 | return {exp2_hi_mid, exp10_lo}; |
176 | } |
177 | |
178 | // Generated by Sollya with the following commands: |
179 | // > display = hexadecimal; |
180 | // > round(log2(exp(1)), SG, RN); |
181 | static constexpr float LOG2F_E = 0x1.715476p+0f; |
182 | |
183 | // Generated by Sollya with the following commands: |
184 | // > display = hexadecimal; |
185 | // > round(log(2), SG, RN); |
186 | static constexpr float LOGF_2 = 0x1.62e43p-1f; |
187 | |
188 | // Generated by Sollya with the following commands: |
189 | // > display = hexadecimal; |
190 | // > for i from 0 to 31 do printsingle(round(2^(i * 2^-5), SG, RN)); |
191 | static constexpr cpp::array<uint32_t, 32> EXP2_MID_5_BITS = { |
192 | 0x3f80'0000U, 0x3f82'cd87U, 0x3f85'aac3U, 0x3f88'980fU, 0x3f8b'95c2U, |
193 | 0x3f8e'a43aU, 0x3f91'c3d3U, 0x3f94'f4f0U, 0x3f98'37f0U, 0x3f9b'8d3aU, |
194 | 0x3f9e'f532U, 0x3fa2'7043U, 0x3fa5'fed7U, 0x3fa9'a15bU, 0x3fad'583fU, |
195 | 0x3fb1'23f6U, 0x3fb5'04f3U, 0x3fb8'fbafU, 0x3fbd'08a4U, 0x3fc1'2c4dU, |
196 | 0x3fc5'672aU, 0x3fc9'b9beU, 0x3fce'248cU, 0x3fd2'a81eU, 0x3fd7'44fdU, |
197 | 0x3fdb'fbb8U, 0x3fe0'ccdfU, 0x3fe5'b907U, 0x3fea'c0c7U, 0x3fef'e4baU, |
198 | 0x3ff5'257dU, 0x3ffa'83b3U, |
199 | }; |
200 | |
201 | // This function correctly calculates sinh(x) and cosh(x) by calculating exp(x) |
202 | // and exp(-x) simultaneously. |
203 | // To compute e^x, we perform the following range reduction: |
204 | // find hi, mid, lo such that: |
205 | // x = (hi + mid) * log(2) + lo, in which |
206 | // hi is an integer, |
207 | // 0 <= mid * 2^5 < 32 is an integer |
208 | // -2^(-5) <= lo * log2(e) <= 2^-5. |
209 | // In particular, |
210 | // hi + mid = round(x * log2(e) * 2^5) * 2^(-5). |
211 | // Then, |
212 | // e^x = 2^(hi + mid) * e^lo = 2^hi * 2^mid * e^lo. |
213 | // We store 2^mid in the lookup table EXP2_MID_5_BITS, and compute 2^hi * 2^mid |
214 | // by adding hi to the exponent field of 2^mid. |
215 | // e^lo is computed using a degree-3 minimax polynomial generated by Sollya: |
216 | // e^lo ~ P(lo) |
217 | // = 1 + lo + c2 * lo^2 + ... + c5 * lo^5 |
218 | // = (1 + c2*lo^2 + c4*lo^4) + lo * (1 + c3*lo^2 + c5*lo^4) |
219 | // = P_even + lo * P_odd |
220 | // To compute e^(-x), notice that: |
221 | // e^(-x) = 2^(-(hi + mid)) * e^(-lo) |
222 | // ~ 2^(-(hi + mid)) * P(-lo) |
223 | // = 2^(-(hi + mid)) * (P_even - lo * P_odd) |
224 | // So: |
225 | // sinh(x) = (e^x - e^(-x)) / 2 |
226 | // ~ 0.5 * (2^(hi + mid) * (P_even + lo * P_odd) - |
227 | // 2^(-(hi + mid)) * (P_even - lo * P_odd)) |
228 | // = 0.5 * (P_even * (2^(hi + mid) - 2^(-(hi + mid))) + |
229 | // lo * P_odd * (2^(hi + mid) + 2^(-(hi + mid)))) |
230 | // And similarly: |
231 | // cosh(x) = (e^x + e^(-x)) / 2 |
232 | // ~ 0.5 * (P_even * (2^(hi + mid) + 2^(-(hi + mid))) + |
233 | // lo * P_odd * (2^(hi + mid) - 2^(-(hi + mid)))) |
234 | // The main point of these formulas is that the expensive part of calculating |
235 | // the polynomials approximating lower parts of e^x and e^(-x) is shared and |
236 | // only done once. |
237 | template <bool IsSinh> LIBC_INLINE float16 eval_sinh_or_cosh(float16 x) { |
238 | float xf = x; |
239 | float kf = fputil::nearest_integer(xf * (LOG2F_E * 0x1.0p+5f)); |
240 | int x_hi_mid_p = static_cast<int>(kf); |
241 | int x_hi_mid_m = -x_hi_mid_p; |
242 | |
243 | unsigned x_hi_p = static_cast<unsigned>(x_hi_mid_p) >> 5; |
244 | unsigned x_hi_m = static_cast<unsigned>(x_hi_mid_m) >> 5; |
245 | unsigned x_mid_p = static_cast<unsigned>(x_hi_mid_p) & 0x1f; |
246 | unsigned x_mid_m = static_cast<unsigned>(x_hi_mid_m) & 0x1f; |
247 | |
248 | uint32_t exp2_hi_mid_bits_p = |
249 | EXP2_MID_5_BITS[x_mid_p] + |
250 | static_cast<uint32_t>(x_hi_p << fputil::FPBits<float>::FRACTION_LEN); |
251 | uint32_t exp2_hi_mid_bits_m = |
252 | EXP2_MID_5_BITS[x_mid_m] + |
253 | static_cast<uint32_t>(x_hi_m << fputil::FPBits<float>::FRACTION_LEN); |
254 | // exp2_hi_mid_p = 2^(hi + mid) |
255 | float exp2_hi_mid_p = fputil::FPBits<float>(exp2_hi_mid_bits_p).get_val(); |
256 | // exp2_hi_mid_m = 2^(-(hi + mid)) |
257 | float exp2_hi_mid_m = fputil::FPBits<float>(exp2_hi_mid_bits_m).get_val(); |
258 | |
259 | // exp2_hi_mid_sum = 2^(hi + mid) + 2^(-(hi + mid)) |
260 | float exp2_hi_mid_sum = exp2_hi_mid_p + exp2_hi_mid_m; |
261 | // exp2_hi_mid_diff = 2^(hi + mid) - 2^(-(hi + mid)) |
262 | float exp2_hi_mid_diff = exp2_hi_mid_p - exp2_hi_mid_m; |
263 | |
264 | // lo = x - (hi + mid) = round(x * log2(e) * 2^5) * log(2) * (-2^(-5)) + x |
265 | float lo = fputil::multiply_add(kf, LOGF_2 * -0x1.0p-5f, xf); |
266 | float lo_sq = lo * lo; |
267 | |
268 | // Degree-3 minimax polynomial generated by Sollya with the following |
269 | // commands: |
270 | // > display = hexadecimal; |
271 | // > P = fpminimax(expm1(x)/x, 2, [|SG...|], [-2^-5, 2^-5]); |
272 | // > 1 + x * P; |
273 | constexpr cpp::array<float, 4> COEFFS = {0x1p+0f, 0x1p+0f, 0x1.0004p-1f, |
274 | 0x1.555778p-3f}; |
275 | float half_p_odd = |
276 | fputil::polyeval(lo_sq, COEFFS[1] * 0.5f, COEFFS[3] * 0.5f); |
277 | float half_p_even = |
278 | fputil::polyeval(lo_sq, COEFFS[0] * 0.5f, COEFFS[2] * 0.5f); |
279 | |
280 | // sinh(x) = lo * (0.5 * P_odd * (2^(hi + mid) + 2^(-(hi + mid)))) + |
281 | // (0.5 * P_even * (2^(hi + mid) - 2^(-(hi + mid)))) |
282 | if constexpr (IsSinh) |
283 | return fputil::cast<float16>(fputil::multiply_add( |
284 | lo, half_p_odd * exp2_hi_mid_sum, half_p_even * exp2_hi_mid_diff)); |
285 | // cosh(x) = lo * (0.5 * P_odd * (2^(hi + mid) - 2^(-(hi + mid)))) + |
286 | // (0.5 * P_even * (2^(hi + mid) + 2^(-(hi + mid)))) |
287 | return fputil::cast<float16>(fputil::multiply_add( |
288 | lo, half_p_odd * exp2_hi_mid_diff, half_p_even * exp2_hi_mid_sum)); |
289 | } |
290 | |
291 | // Generated by Sollya with the following commands: |
292 | // > display = hexadecimal; |
293 | // > for i from 0 to 31 do print(round(log(1 + i * 2^-5), SG, RN)); |
294 | constexpr cpp::array<float, 32> LOGF_F = { |
295 | 0x0p+0f, 0x1.f829bp-6f, 0x1.f0a30cp-5f, 0x1.6f0d28p-4f, |
296 | 0x1.e27076p-4f, 0x1.29553p-3f, 0x1.5ff308p-3f, 0x1.9525aap-3f, |
297 | 0x1.c8ff7cp-3f, 0x1.fb9186p-3f, 0x1.1675cap-2f, 0x1.2e8e2cp-2f, |
298 | 0x1.4618bcp-2f, 0x1.5d1bdcp-2f, 0x1.739d8p-2f, 0x1.89a338p-2f, |
299 | 0x1.9f323ep-2f, 0x1.b44f78p-2f, 0x1.c8ff7cp-2f, 0x1.dd46ap-2f, |
300 | 0x1.f128f6p-2f, 0x1.02552ap-1f, 0x1.0be72ep-1f, 0x1.154c3ep-1f, |
301 | 0x1.1e85f6p-1f, 0x1.2795e2p-1f, 0x1.307d74p-1f, 0x1.393e0ep-1f, |
302 | 0x1.41d8fep-1f, 0x1.4a4f86p-1f, 0x1.52a2d2p-1f, 0x1.5ad404p-1f, |
303 | }; |
304 | |
305 | // Generated by Sollya with the following commands: |
306 | // > display = hexadecimal; |
307 | // > for i from 0 to 31 do print(round(log2(1 + i * 2^-5), SG, RN)); |
308 | constexpr cpp::array<float, 32> LOG2F_F = { |
309 | 0x0p+0f, 0x1.6bad38p-5f, 0x1.663f7p-4f, 0x1.08c588p-3f, |
310 | 0x1.5c01a4p-3f, 0x1.acf5e2p-3f, 0x1.fbc16cp-3f, 0x1.24407ap-2f, |
311 | 0x1.49a784p-2f, 0x1.6e221cp-2f, 0x1.91bba8p-2f, 0x1.b47ecp-2f, |
312 | 0x1.d6753ep-2f, 0x1.f7a856p-2f, 0x1.0c105p-1f, 0x1.1bf312p-1f, |
313 | 0x1.2b8034p-1f, 0x1.3abb4p-1f, 0x1.49a784p-1f, 0x1.584822p-1f, |
314 | 0x1.66a008p-1f, 0x1.74b1fep-1f, 0x1.82809ep-1f, 0x1.900e62p-1f, |
315 | 0x1.9d5dap-1f, 0x1.aa709p-1f, 0x1.b74948p-1f, 0x1.c3e9cap-1f, |
316 | 0x1.d053f6p-1f, 0x1.dc899ap-1f, 0x1.e88c6cp-1f, 0x1.f45e08p-1f, |
317 | }; |
318 | |
319 | // Generated by Sollya with the following commands: |
320 | // > display = hexadecimal; |
321 | // > for i from 0 to 31 do print(round(log10(1 + i * 2^-5), SG, RN)); |
322 | constexpr cpp::array<float, 32> LOG10F_F = { |
323 | 0x0p+0f, 0x1.b5e908p-7f, 0x1.af5f92p-6f, 0x1.3ed11ap-5f, |
324 | 0x1.a30a9ep-5f, 0x1.02428cp-4f, 0x1.31b306p-4f, 0x1.5fe804p-4f, |
325 | 0x1.8cf184p-4f, 0x1.b8de4ep-4f, 0x1.e3bc1ap-4f, 0x1.06cbd6p-3f, |
326 | 0x1.1b3e72p-3f, 0x1.2f3b6ap-3f, 0x1.42c7e8p-3f, 0x1.55e8c6p-3f, |
327 | 0x1.68a288p-3f, 0x1.7af974p-3f, 0x1.8cf184p-3f, 0x1.9e8e7cp-3f, |
328 | 0x1.afd3e4p-3f, 0x1.c0c514p-3f, 0x1.d1653p-3f, 0x1.e1b734p-3f, |
329 | 0x1.f1bdeep-3f, 0x1.00be06p-2f, 0x1.087a08p-2f, 0x1.101432p-2f, |
330 | 0x1.178da6p-2f, 0x1.1ee778p-2f, 0x1.2622bp-2f, 0x1.2d404cp-2f, |
331 | }; |
332 | |
333 | // Generated by Sollya with the following commands: |
334 | // > display = hexadecimal; |
335 | // > for i from 0 to 31 do print(round(1 / (1 + i * 2^-5), SG, RN)); |
336 | constexpr cpp::array<float, 32> ONE_OVER_F_F = { |
337 | 0x1p+0f, 0x1.f07c2p-1f, 0x1.e1e1e2p-1f, 0x1.d41d42p-1f, |
338 | 0x1.c71c72p-1f, 0x1.bacf92p-1f, 0x1.af286cp-1f, 0x1.a41a42p-1f, |
339 | 0x1.99999ap-1f, 0x1.8f9c18p-1f, 0x1.861862p-1f, 0x1.7d05f4p-1f, |
340 | 0x1.745d18p-1f, 0x1.6c16c2p-1f, 0x1.642c86p-1f, 0x1.5c9882p-1f, |
341 | 0x1.555556p-1f, 0x1.4e5e0ap-1f, 0x1.47ae14p-1f, 0x1.414142p-1f, |
342 | 0x1.3b13b2p-1f, 0x1.3521dp-1f, 0x1.2f684cp-1f, 0x1.29e412p-1f, |
343 | 0x1.24924ap-1f, 0x1.1f7048p-1f, 0x1.1a7b96p-1f, 0x1.15b1e6p-1f, |
344 | 0x1.111112p-1f, 0x1.0c9714p-1f, 0x1.08421p-1f, 0x1.041042p-1f, |
345 | }; |
346 | |
347 | } // namespace LIBC_NAMESPACE_DECL |
348 | |
349 | #endif // LLVM_LIBC_SRC_MATH_GENERIC_EXPXF16_H |
350 | |