| 1 | //===-- Implementation of fmul function -----------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | #include "src/math/fmul.h" |
| 9 | #include "hdr/errno_macros.h" |
| 10 | #include "hdr/fenv_macros.h" |
| 11 | #include "src/__support/FPUtil/double_double.h" |
| 12 | #include "src/__support/FPUtil/generic/mul.h" |
| 13 | #include "src/__support/common.h" |
| 14 | #include "src/__support/macros/config.h" |
| 15 | |
| 16 | namespace LIBC_NAMESPACE_DECL { |
| 17 | |
| 18 | LLVM_LIBC_FUNCTION(float, fmul, (double x, double y)) { |
| 19 | |
| 20 | // Without FMA instructions, fputil::exact_mult is not |
| 21 | // correctly rounded for all rounding modes, so we fall |
| 22 | // back to the generic `fmul` implementation |
| 23 | |
| 24 | #ifndef LIBC_TARGET_CPU_HAS_FMA_DOUBLE |
| 25 | return fputil::generic::mul<float>(x, y); |
| 26 | #else |
| 27 | fputil::DoubleDouble prod = fputil::exact_mult(x, y); |
| 28 | using DoubleBits = fputil::FPBits<double>; |
| 29 | using DoubleStorageType = typename DoubleBits::StorageType; |
| 30 | using FloatBits = fputil::FPBits<float>; |
| 31 | using FloatStorageType = typename FloatBits::StorageType; |
| 32 | DoubleBits x_bits(x); |
| 33 | DoubleBits y_bits(y); |
| 34 | |
| 35 | Sign result_sign = x_bits.sign() == y_bits.sign() ? Sign::POS : Sign::NEG; |
| 36 | double result = prod.hi; |
| 37 | DoubleBits hi_bits(prod.hi), lo_bits(prod.lo); |
| 38 | // Check for cases where we need to propagate the sticky bits: |
| 39 | constexpr uint64_t STICKY_MASK = 0xFFF'FFF; // Lower (52 - 23 - 1 = 28 bits) |
| 40 | uint64_t sticky_bits = (hi_bits.uintval() & STICKY_MASK); |
| 41 | if (LIBC_UNLIKELY(sticky_bits == 0)) { |
| 42 | // Might need to propagate sticky bits: |
| 43 | if (!(lo_bits.is_inf_or_nan() || lo_bits.is_zero())) { |
| 44 | // Now prod.lo is nonzero and finite, we need to propagate sticky bits. |
| 45 | if (lo_bits.sign() != hi_bits.sign()) |
| 46 | result = DoubleBits(hi_bits.uintval() - 1).get_val(); |
| 47 | else |
| 48 | result = DoubleBits(hi_bits.uintval() | 1).get_val(); |
| 49 | } |
| 50 | } |
| 51 | |
| 52 | float result_f = static_cast<float>(result); |
| 53 | FloatBits rf_bits(result_f); |
| 54 | uint32_t rf_exp = rf_bits.get_biased_exponent(); |
| 55 | if (LIBC_LIKELY(rf_exp > 0 && rf_exp < 2 * FloatBits::EXP_BIAS + 1)) { |
| 56 | return result_f; |
| 57 | } |
| 58 | |
| 59 | // Now result_f is either inf/nan/zero/denormal. |
| 60 | if (x_bits.is_nan() || y_bits.is_nan()) { |
| 61 | if (x_bits.is_signaling_nan() || y_bits.is_signaling_nan()) |
| 62 | fputil::raise_except_if_required(FE_INVALID); |
| 63 | |
| 64 | if (x_bits.is_quiet_nan()) { |
| 65 | DoubleStorageType x_payload = x_bits.get_mantissa(); |
| 66 | x_payload >>= DoubleBits::FRACTION_LEN - FloatBits::FRACTION_LEN; |
| 67 | return FloatBits::quiet_nan(x_bits.sign(), |
| 68 | static_cast<FloatStorageType>(x_payload)) |
| 69 | .get_val(); |
| 70 | } |
| 71 | |
| 72 | if (y_bits.is_quiet_nan()) { |
| 73 | DoubleStorageType y_payload = y_bits.get_mantissa(); |
| 74 | y_payload >>= DoubleBits::FRACTION_LEN - FloatBits::FRACTION_LEN; |
| 75 | return FloatBits::quiet_nan(y_bits.sign(), |
| 76 | static_cast<FloatStorageType>(y_payload)) |
| 77 | .get_val(); |
| 78 | } |
| 79 | |
| 80 | return FloatBits::quiet_nan().get_val(); |
| 81 | } |
| 82 | |
| 83 | if (x_bits.is_inf()) { |
| 84 | if (y_bits.is_zero()) { |
| 85 | fputil::set_errno_if_required(EDOM); |
| 86 | fputil::raise_except_if_required(FE_INVALID); |
| 87 | |
| 88 | return FloatBits::quiet_nan().get_val(); |
| 89 | } |
| 90 | |
| 91 | return FloatBits::inf(result_sign).get_val(); |
| 92 | } |
| 93 | |
| 94 | if (y_bits.is_inf()) { |
| 95 | if (x_bits.is_zero()) { |
| 96 | fputil::set_errno_if_required(EDOM); |
| 97 | fputil::raise_except_if_required(FE_INVALID); |
| 98 | return FloatBits::quiet_nan().get_val(); |
| 99 | } |
| 100 | |
| 101 | return FloatBits::inf(result_sign).get_val(); |
| 102 | } |
| 103 | |
| 104 | // Now either x or y is zero, and the other one is finite. |
| 105 | if (rf_bits.is_inf()) { |
| 106 | fputil::set_errno_if_required(ERANGE); |
| 107 | return FloatBits::inf(result_sign).get_val(); |
| 108 | } |
| 109 | |
| 110 | if (x_bits.is_zero() || y_bits.is_zero()) |
| 111 | return FloatBits::zero(result_sign).get_val(); |
| 112 | |
| 113 | fputil::set_errno_if_required(ERANGE); |
| 114 | fputil::raise_except_if_required(FE_UNDERFLOW); |
| 115 | return result_f; |
| 116 | |
| 117 | #endif |
| 118 | } |
| 119 | } // namespace LIBC_NAMESPACE_DECL |
| 120 | |