| 1 | //===-- Single-precision general inverse trigonometric functions ----------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #ifndef LLVM_LIBC_SRC_MATH_GENERIC_INV_TRIGF_UTILS_H |
| 10 | #define LLVM_LIBC_SRC_MATH_GENERIC_INV_TRIGF_UTILS_H |
| 11 | |
| 12 | #include "src/__support/FPUtil/PolyEval.h" |
| 13 | #include "src/__support/FPUtil/multiply_add.h" |
| 14 | #include "src/__support/common.h" |
| 15 | #include "src/__support/macros/config.h" |
| 16 | |
| 17 | namespace LIBC_NAMESPACE_DECL { |
| 18 | |
| 19 | // PI and PI / 2 |
| 20 | static constexpr double M_MATH_PI = 0x1.921fb54442d18p+1; |
| 21 | static constexpr double M_MATH_PI_2 = 0x1.921fb54442d18p+0; |
| 22 | |
| 23 | extern double ATAN_COEFFS[17][9]; |
| 24 | |
| 25 | // Look-up table for atan(k/16) with k = 0..16. |
| 26 | static constexpr double ATAN_K_OVER_16[17] = { |
| 27 | 0.0, |
| 28 | 0x1.ff55bb72cfdeap-5, |
| 29 | 0x1.fd5ba9aac2f6ep-4, |
| 30 | 0x1.7b97b4bce5b02p-3, |
| 31 | 0x1.f5b75f92c80ddp-3, |
| 32 | 0x1.362773707ebccp-2, |
| 33 | 0x1.6f61941e4def1p-2, |
| 34 | 0x1.a64eec3cc23fdp-2, |
| 35 | 0x1.dac670561bb4fp-2, |
| 36 | 0x1.0657e94db30dp-1, |
| 37 | 0x1.1e00babdefeb4p-1, |
| 38 | 0x1.345f01cce37bbp-1, |
| 39 | 0x1.4978fa3269ee1p-1, |
| 40 | 0x1.5d58987169b18p-1, |
| 41 | 0x1.700a7c5784634p-1, |
| 42 | 0x1.819d0b7158a4dp-1, |
| 43 | 0x1.921fb54442d18p-1, |
| 44 | }; |
| 45 | |
| 46 | // For |x| <= 1/32 and 0 <= i <= 16, return Q(x) such that: |
| 47 | // Q(x) ~ (atan(x + i/16) - atan(i/16)) / x. |
| 48 | LIBC_INLINE static double atan_eval(double x, unsigned i) { |
| 49 | double x2 = x * x; |
| 50 | |
| 51 | double c0 = fputil::multiply_add(x, ATAN_COEFFS[i][2], ATAN_COEFFS[i][1]); |
| 52 | double c1 = fputil::multiply_add(x, ATAN_COEFFS[i][4], ATAN_COEFFS[i][3]); |
| 53 | double c2 = fputil::multiply_add(x, ATAN_COEFFS[i][6], ATAN_COEFFS[i][5]); |
| 54 | double c3 = fputil::multiply_add(x, ATAN_COEFFS[i][8], ATAN_COEFFS[i][7]); |
| 55 | |
| 56 | double x4 = x2 * x2; |
| 57 | double d1 = fputil::multiply_add(x2, c1, c0); |
| 58 | double d2 = fputil::multiply_add(x2, c3, c2); |
| 59 | double p = fputil::multiply_add(x4, d2, d1); |
| 60 | return p; |
| 61 | } |
| 62 | |
| 63 | // Evaluate atan without big lookup table. |
| 64 | // atan(n/d) - atan(k/16) = atan((n/d - k/16) / (1 + (n/d) * (k/16))) |
| 65 | // = atan((n - d * k/16)) / (d + n * k/16)) |
| 66 | // So we let q = (n - d * k/16) / (d + n * k/16), |
| 67 | // and approximate with Taylor polynomial: |
| 68 | // atan(q) ~ q - q^3/3 + q^5/5 - q^7/7 + q^9/9 |
| 69 | LIBC_INLINE static double atan_eval_no_table(double num, double den, |
| 70 | double k_over_16) { |
| 71 | double num_r = fputil::multiply_add(den, -k_over_16, num); |
| 72 | double den_r = fputil::multiply_add(num, k_over_16, den); |
| 73 | double q = num_r / den_r; |
| 74 | |
| 75 | constexpr double ATAN_TAYLOR[] = { |
| 76 | -0x1.5555555555555p-2, |
| 77 | 0x1.999999999999ap-3, |
| 78 | -0x1.2492492492492p-3, |
| 79 | 0x1.c71c71c71c71cp-4, |
| 80 | }; |
| 81 | double q2 = q * q; |
| 82 | double q3 = q2 * q; |
| 83 | double q4 = q2 * q2; |
| 84 | double c0 = fputil::multiply_add(q2, ATAN_TAYLOR[1], ATAN_TAYLOR[0]); |
| 85 | double c1 = fputil::multiply_add(q2, ATAN_TAYLOR[3], ATAN_TAYLOR[2]); |
| 86 | double d = fputil::multiply_add(q4, c1, c0); |
| 87 | return fputil::multiply_add(q3, d, q); |
| 88 | } |
| 89 | |
| 90 | // > Q = fpminimax(asin(x)/x, [|0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20|], |
| 91 | // [|1, D...|], [0, 0.5]); |
| 92 | static constexpr double ASIN_COEFFS[10] = { |
| 93 | 0x1.5555555540fa1p-3, 0x1.333333512edc2p-4, 0x1.6db6cc1541b31p-5, |
| 94 | 0x1.f1caff324770ep-6, 0x1.6e43899f5f4f4p-6, 0x1.1f847cf652577p-6, |
| 95 | 0x1.9b60f47f87146p-7, 0x1.259e2634c494fp-6, -0x1.df946fa875ddp-8, |
| 96 | 0x1.02311ecf99c28p-5}; |
| 97 | |
| 98 | // Evaluate P(x^2) - 1, where P(x^2) ~ asin(x)/x |
| 99 | LIBC_INLINE static double asin_eval(double xsq) { |
| 100 | double x4 = xsq * xsq; |
| 101 | double r1 = fputil::polyeval(x4, ASIN_COEFFS[0], ASIN_COEFFS[2], |
| 102 | ASIN_COEFFS[4], ASIN_COEFFS[6], ASIN_COEFFS[8]); |
| 103 | double r2 = fputil::polyeval(x4, ASIN_COEFFS[1], ASIN_COEFFS[3], |
| 104 | ASIN_COEFFS[5], ASIN_COEFFS[7], ASIN_COEFFS[9]); |
| 105 | return fputil::multiply_add(xsq, r2, r1); |
| 106 | } |
| 107 | |
| 108 | } // namespace LIBC_NAMESPACE_DECL |
| 109 | |
| 110 | #endif // LLVM_LIBC_SRC_MATH_GENERIC_INV_TRIGF_UTILS_H |
| 111 | |