| 1 | //===-- Single-precision log1p(x) function --------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "src/math/log1pf.h" |
| 10 | #include "common_constants.h" // Lookup table for (1/f) and log(f) |
| 11 | #include "src/__support/FPUtil/FEnvImpl.h" |
| 12 | #include "src/__support/FPUtil/FMA.h" |
| 13 | #include "src/__support/FPUtil/FPBits.h" |
| 14 | #include "src/__support/FPUtil/PolyEval.h" |
| 15 | #include "src/__support/FPUtil/except_value_utils.h" |
| 16 | #include "src/__support/FPUtil/multiply_add.h" |
| 17 | #include "src/__support/common.h" |
| 18 | #include "src/__support/macros/config.h" |
| 19 | #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY |
| 20 | #include "src/__support/macros/properties/cpu_features.h" |
| 21 | |
| 22 | // This is an algorithm for log10(x) in single precision which is |
| 23 | // correctly rounded for all rounding modes. |
| 24 | // - An exhaustive test show that when x >= 2^45, log1pf(x) == logf(x) |
| 25 | // for all rounding modes. |
| 26 | // - When 2^(-6) <= |x| < 2^45, the sum (double(x) + 1.0) is exact, |
| 27 | // so we can adapt the correctly rounded algorithm of logf to compute |
| 28 | // log(double(x) + 1.0) correctly. For more information about the logf |
| 29 | // algorithm, see `libc/src/math/generic/logf.cpp`. |
| 30 | // - When |x| < 2^(-6), we use a degree-8 polynomial in double precision |
| 31 | // generated with Sollya using the following command: |
| 32 | // fpminimax(log(1 + x)/x, 7, [|D...|], [-2^-6; 2^-6]); |
| 33 | |
| 34 | namespace LIBC_NAMESPACE_DECL { |
| 35 | |
| 36 | namespace internal { |
| 37 | |
| 38 | // We don't need to treat denormal and 0 |
| 39 | LIBC_INLINE float log(double x) { |
| 40 | constexpr double LOG_2 = 0x1.62e42fefa39efp-1; |
| 41 | |
| 42 | using FPBits = typename fputil::FPBits<double>; |
| 43 | FPBits xbits(x); |
| 44 | |
| 45 | uint64_t x_u = xbits.uintval(); |
| 46 | |
| 47 | if (LIBC_UNLIKELY(x_u > FPBits::max_normal().uintval())) { |
| 48 | if (xbits.is_neg() && !xbits.is_nan()) { |
| 49 | fputil::set_errno_if_required(EDOM); |
| 50 | fputil::raise_except_if_required(FE_INVALID); |
| 51 | return fputil::FPBits<float>::quiet_nan().get_val(); |
| 52 | } |
| 53 | return static_cast<float>(x); |
| 54 | } |
| 55 | |
| 56 | double m = static_cast<double>(xbits.get_exponent()); |
| 57 | |
| 58 | // Get the 8 highest bits, use 7 bits (excluding the implicit hidden bit) for |
| 59 | // lookup tables. |
| 60 | int f_index = static_cast<int>(xbits.get_mantissa() >> |
| 61 | (fputil::FPBits<double>::FRACTION_LEN - 7)); |
| 62 | |
| 63 | // Set bits to 1.m |
| 64 | xbits.set_biased_exponent(0x3FF); |
| 65 | FPBits f = xbits; |
| 66 | |
| 67 | // Clear the lowest 45 bits. |
| 68 | f.set_uintval(f.uintval() & ~0x0000'1FFF'FFFF'FFFFULL); |
| 69 | |
| 70 | double d = xbits.get_val() - f.get_val(); |
| 71 | d *= ONE_OVER_F[f_index]; |
| 72 | |
| 73 | double = fputil::multiply_add(m, LOG_2, LOG_F[f_index]); |
| 74 | |
| 75 | double r = fputil::polyeval(d, extra_factor, 0x1.fffffffffffacp-1, |
| 76 | -0x1.fffffffef9cb2p-2, 0x1.5555513bc679ap-2, |
| 77 | -0x1.fff4805ea441p-3, 0x1.930180dbde91ap-3); |
| 78 | |
| 79 | return static_cast<float>(r); |
| 80 | } |
| 81 | |
| 82 | } // namespace internal |
| 83 | |
| 84 | LLVM_LIBC_FUNCTION(float, log1pf, (float x)) { |
| 85 | using FPBits = typename fputil::FPBits<float>; |
| 86 | FPBits xbits(x); |
| 87 | uint32_t x_u = xbits.uintval(); |
| 88 | uint32_t x_a = x_u & 0x7fff'ffffU; |
| 89 | double xd = static_cast<double>(x); |
| 90 | |
| 91 | // Use log1p(x) = log(1 + x) for |x| > 2^-6; |
| 92 | if (x_a > 0x3c80'0000U) { |
| 93 | #ifndef LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| 94 | // Hard-to-round cases. |
| 95 | switch (x_u) { |
| 96 | case 0x41078febU: // x = 0x1.0f1fd6p3 |
| 97 | return fputil::round_result_slightly_up(0x1.1fcbcep1f); |
| 98 | case 0x5cd69e88U: // x = 0x1.ad3d1p+58f |
| 99 | return fputil::round_result_slightly_up(0x1.45c146p+5f); |
| 100 | case 0x65d890d3U: // x = 0x1.b121a6p+76f |
| 101 | return fputil::round_result_slightly_down(0x1.a9a3f2p+5f); |
| 102 | case 0x6f31a8ecU: // x = 0x1.6351d8p+95f |
| 103 | return fputil::round_result_slightly_down(0x1.08b512p+6f); |
| 104 | case 0x7a17f30aU: // x = 0x1.2fe614p+117f |
| 105 | return fputil::round_result_slightly_up(0x1.451436p+6f); |
| 106 | case 0xbd1d20afU: // x = -0x1.3a415ep-5f |
| 107 | return fputil::round_result_slightly_up(-0x1.407112p-5f); |
| 108 | case 0xbf800000U: // x = -1.0 |
| 109 | fputil::set_errno_if_required(ERANGE); |
| 110 | fputil::raise_except_if_required(FE_DIVBYZERO); |
| 111 | return FPBits::inf(Sign::NEG).get_val(); |
| 112 | #ifndef LIBC_TARGET_CPU_HAS_FMA_DOUBLE |
| 113 | case 0x4cc1c80bU: // x = 0x1.839016p+26f |
| 114 | return fputil::round_result_slightly_down(0x1.26fc04p+4f); |
| 115 | case 0x5ee8984eU: // x = 0x1.d1309cp+62f |
| 116 | return fputil::round_result_slightly_up(0x1.5c9442p+5f); |
| 117 | case 0x665e7ca6U: // x = 0x1.bcf94cp+77f |
| 118 | return fputil::round_result_slightly_up(0x1.af66cp+5f); |
| 119 | case 0x79e7ec37U: // x = 0x1.cfd86ep+116f |
| 120 | return fputil::round_result_slightly_up(0x1.43ff6ep+6f); |
| 121 | #endif // LIBC_TARGET_CPU_HAS_FMA_DOUBLE |
| 122 | } |
| 123 | #else |
| 124 | if (x == -1.0f) { |
| 125 | fputil::set_errno_if_required(ERANGE); |
| 126 | fputil::raise_except_if_required(FE_DIVBYZERO); |
| 127 | return FPBits::inf(Sign::NEG).get_val(); |
| 128 | } |
| 129 | #endif // !LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| 130 | |
| 131 | return internal::log(xd + 1.0); |
| 132 | } |
| 133 | |
| 134 | // |x| <= 2^-6. |
| 135 | #ifndef LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| 136 | // Hard-to round cases. |
| 137 | switch (x_u) { |
| 138 | case 0x35400003U: // x = 0x1.800006p-21f |
| 139 | return fputil::round_result_slightly_down(0x1.7ffffep-21f); |
| 140 | case 0x3710001bU: // x = 0x1.200036p-17f |
| 141 | return fputil::round_result_slightly_down(0x1.1fffe6p-17f); |
| 142 | case 0xb53ffffdU: // x = -0x1.7ffffap-21 |
| 143 | return fputil::round_result_slightly_down(-0x1.800002p-21f); |
| 144 | case 0xb70fffe5U: // x = -0x1.1fffcap-17 |
| 145 | return fputil::round_result_slightly_down(-0x1.20001ap-17f); |
| 146 | case 0xbb0ec8c4U: // x = -0x1.1d9188p-9 |
| 147 | return fputil::round_result_slightly_up(-0x1.1de14ap-9f); |
| 148 | } |
| 149 | #endif // !LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| 150 | |
| 151 | // Polymial generated by Sollya with: |
| 152 | // > fpminimax(log(1 + x)/x, 7, [|D...|], [-2^-6; 2^-6]); |
| 153 | const double COEFFS[7] = {-0x1.0000000000000p-1, 0x1.5555555556aadp-2, |
| 154 | -0x1.000000000181ap-2, 0x1.999998998124ep-3, |
| 155 | -0x1.55555452e2a2bp-3, 0x1.24adb8cde4aa7p-3, |
| 156 | -0x1.0019db915ef6fp-3}; |
| 157 | |
| 158 | double xsq = xd * xd; |
| 159 | double c0 = fputil::multiply_add(xd, COEFFS[1], COEFFS[0]); |
| 160 | double c1 = fputil::multiply_add(xd, COEFFS[3], COEFFS[2]); |
| 161 | double c2 = fputil::multiply_add(xd, COEFFS[5], COEFFS[4]); |
| 162 | double r = fputil::polyeval(xsq, xd, c0, c1, c2, COEFFS[6]); |
| 163 | |
| 164 | return static_cast<float>(r); |
| 165 | } |
| 166 | |
| 167 | } // namespace LIBC_NAMESPACE_DECL |
| 168 | |