1 | //===-- Double-precision sin function -------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "src/math/sin.h" |
10 | #include "hdr/errno_macros.h" |
11 | #include "src/__support/FPUtil/FEnvImpl.h" |
12 | #include "src/__support/FPUtil/FPBits.h" |
13 | #include "src/__support/FPUtil/double_double.h" |
14 | #include "src/__support/FPUtil/dyadic_float.h" |
15 | #include "src/__support/FPUtil/multiply_add.h" |
16 | #include "src/__support/FPUtil/rounding_mode.h" |
17 | #include "src/__support/common.h" |
18 | #include "src/__support/macros/config.h" |
19 | #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY |
20 | #include "src/__support/macros/properties/cpu_features.h" // LIBC_TARGET_CPU_HAS_FMA |
21 | #include "src/math/generic/range_reduction_double_common.h" |
22 | #include "src/math/generic/sincos_eval.h" |
23 | |
24 | #ifdef LIBC_TARGET_CPU_HAS_FMA_DOUBLE |
25 | #include "range_reduction_double_fma.h" |
26 | #else |
27 | #include "range_reduction_double_nofma.h" |
28 | #endif // LIBC_TARGET_CPU_HAS_FMA_DOUBLE |
29 | |
30 | namespace LIBC_NAMESPACE_DECL { |
31 | |
32 | using DoubleDouble = fputil::DoubleDouble; |
33 | using Float128 = typename fputil::DyadicFloat<128>; |
34 | |
35 | LLVM_LIBC_FUNCTION(double, sin, (double x)) { |
36 | using FPBits = typename fputil::FPBits<double>; |
37 | FPBits xbits(x); |
38 | |
39 | uint16_t x_e = xbits.get_biased_exponent(); |
40 | |
41 | DoubleDouble y; |
42 | unsigned k; |
43 | LargeRangeReduction range_reduction_large{}; |
44 | |
45 | // |x| < 2^16 |
46 | if (LIBC_LIKELY(x_e < FPBits::EXP_BIAS + FAST_PASS_EXPONENT)) { |
47 | // |x| < 2^-7 |
48 | if (LIBC_UNLIKELY(x_e < FPBits::EXP_BIAS - 7)) { |
49 | // |x| < 2^-26, |sin(x) - x| < ulp(x)/2. |
50 | if (LIBC_UNLIKELY(x_e < FPBits::EXP_BIAS - 26)) { |
51 | // Signed zeros. |
52 | if (LIBC_UNLIKELY(x == 0.0)) |
53 | return x + x; // Make sure it works with FTZ/DAZ. |
54 | |
55 | #ifdef LIBC_TARGET_CPU_HAS_FMA_DOUBLE |
56 | return fputil::multiply_add(x, -0x1.0p-54, x); |
57 | #else |
58 | if (LIBC_UNLIKELY(x_e < 4)) { |
59 | int rounding_mode = fputil::quick_get_round(); |
60 | if (rounding_mode == FE_TOWARDZERO || |
61 | (xbits.sign() == Sign::POS && rounding_mode == FE_DOWNWARD) || |
62 | (xbits.sign() == Sign::NEG && rounding_mode == FE_UPWARD)) |
63 | return FPBits(xbits.uintval() - 1).get_val(); |
64 | } |
65 | return fputil::multiply_add(x, -0x1.0p-54, x); |
66 | #endif // LIBC_TARGET_CPU_HAS_FMA_DOUBLE |
67 | } |
68 | // No range reduction needed. |
69 | k = 0; |
70 | y.lo = 0.0; |
71 | y.hi = x; |
72 | } else { |
73 | // Small range reduction. |
74 | k = range_reduction_small(x, y); |
75 | } |
76 | } else { |
77 | // Inf or NaN |
78 | if (LIBC_UNLIKELY(x_e > 2 * FPBits::EXP_BIAS)) { |
79 | // sin(+-Inf) = NaN |
80 | if (xbits.is_signaling_nan()) { |
81 | fputil::raise_except_if_required(FE_INVALID); |
82 | return FPBits::quiet_nan().get_val(); |
83 | } |
84 | |
85 | if (xbits.get_mantissa() == 0) { |
86 | fputil::set_errno_if_required(EDOM); |
87 | fputil::raise_except_if_required(FE_INVALID); |
88 | } |
89 | return x + FPBits::quiet_nan().get_val(); |
90 | } |
91 | |
92 | // Large range reduction. |
93 | k = range_reduction_large.fast(x, y); |
94 | } |
95 | |
96 | DoubleDouble sin_y, cos_y; |
97 | |
98 | [[maybe_unused]] double err = generic::sincos_eval(y, sin_y, cos_y); |
99 | |
100 | // Look up sin(k * pi/128) and cos(k * pi/128) |
101 | #ifdef LIBC_MATH_HAS_SMALL_TABLES |
102 | // Memory saving versions. Use 65-entry table. |
103 | auto get_idx_dd = [](unsigned kk) -> DoubleDouble { |
104 | unsigned idx = (kk & 64) ? 64 - (kk & 63) : (kk & 63); |
105 | DoubleDouble ans = SIN_K_PI_OVER_128[idx]; |
106 | if (kk & 128) { |
107 | ans.hi = -ans.hi; |
108 | ans.lo = -ans.lo; |
109 | } |
110 | return ans; |
111 | }; |
112 | DoubleDouble sin_k = get_idx_dd(k); |
113 | DoubleDouble cos_k = get_idx_dd(k + 64); |
114 | #else |
115 | // Fast look up version, but needs 256-entry table. |
116 | // cos(k * pi/128) = sin(k * pi/128 + pi/2) = sin((k + 64) * pi/128). |
117 | DoubleDouble sin_k = SIN_K_PI_OVER_128[k & 255]; |
118 | DoubleDouble cos_k = SIN_K_PI_OVER_128[(k + 64) & 255]; |
119 | #endif |
120 | |
121 | // After range reduction, k = round(x * 128 / pi) and y = x - k * (pi / 128). |
122 | // So k is an integer and -pi / 256 <= y <= pi / 256. |
123 | // Then sin(x) = sin((k * pi/128 + y) |
124 | // = sin(y) * cos(k*pi/128) + cos(y) * sin(k*pi/128) |
125 | DoubleDouble sin_k_cos_y = fputil::quick_mult(cos_y, sin_k); |
126 | DoubleDouble cos_k_sin_y = fputil::quick_mult(sin_y, cos_k); |
127 | |
128 | DoubleDouble rr = fputil::exact_add<false>(sin_k_cos_y.hi, cos_k_sin_y.hi); |
129 | rr.lo += sin_k_cos_y.lo + cos_k_sin_y.lo; |
130 | |
131 | #ifdef LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
132 | return rr.hi + rr.lo; |
133 | #else |
134 | // Accurate test and pass for correctly rounded implementation. |
135 | |
136 | double rlp = rr.lo + err; |
137 | double rlm = rr.lo - err; |
138 | |
139 | double r_upper = rr.hi + rlp; // (rr.lo + ERR); |
140 | double r_lower = rr.hi + rlm; // (rr.lo - ERR); |
141 | |
142 | // Ziv's rounding test. |
143 | if (LIBC_LIKELY(r_upper == r_lower)) |
144 | return r_upper; |
145 | |
146 | Float128 u_f128, sin_u, cos_u; |
147 | if (LIBC_LIKELY(x_e < FPBits::EXP_BIAS + FAST_PASS_EXPONENT)) |
148 | u_f128 = range_reduction_small_f128(x); |
149 | else |
150 | u_f128 = range_reduction_large.accurate(); |
151 | |
152 | generic::sincos_eval(u_f128, sin_u, cos_u); |
153 | |
154 | auto get_sin_k = [](unsigned kk) -> Float128 { |
155 | unsigned idx = (kk & 64) ? 64 - (kk & 63) : (kk & 63); |
156 | Float128 ans = SIN_K_PI_OVER_128_F128[idx]; |
157 | if (kk & 128) |
158 | ans.sign = Sign::NEG; |
159 | return ans; |
160 | }; |
161 | |
162 | // cos(k * pi/128) = sin(k * pi/128 + pi/2) = sin((k + 64) * pi/128). |
163 | Float128 sin_k_f128 = get_sin_k(k); |
164 | Float128 cos_k_f128 = get_sin_k(k + 64); |
165 | |
166 | // sin(x) = sin(k * pi/128 + u) |
167 | // = sin(u) * cos(k*pi/128) + cos(u) * sin(k*pi/128) |
168 | Float128 r = fputil::quick_add(fputil::quick_mul(sin_k_f128, cos_u), |
169 | fputil::quick_mul(cos_k_f128, sin_u)); |
170 | |
171 | // TODO: Add assertion if Ziv's accuracy tests fail in debug mode. |
172 | // https://github.com/llvm/llvm-project/issues/96452. |
173 | |
174 | return static_cast<double>(r); |
175 | #endif // !LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
176 | } |
177 | |
178 | } // namespace LIBC_NAMESPACE_DECL |
179 | |