| 1 | //===-- Single-precision sincos function ----------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "src/math/sincosf.h" |
| 10 | #include "sincosf_utils.h" |
| 11 | #include "src/__support/FPUtil/FEnvImpl.h" |
| 12 | #include "src/__support/FPUtil/FPBits.h" |
| 13 | #include "src/__support/FPUtil/multiply_add.h" |
| 14 | #include "src/__support/FPUtil/rounding_mode.h" |
| 15 | #include "src/__support/common.h" |
| 16 | #include "src/__support/macros/config.h" |
| 17 | #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY |
| 18 | #include "src/__support/macros/properties/cpu_features.h" // LIBC_TARGET_CPU_HAS_FMA |
| 19 | |
| 20 | namespace LIBC_NAMESPACE_DECL { |
| 21 | |
| 22 | #ifndef LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| 23 | // Exceptional values |
| 24 | static constexpr int N_EXCEPTS = 6; |
| 25 | |
| 26 | static constexpr uint32_t EXCEPT_INPUTS[N_EXCEPTS] = { |
| 27 | 0x46199998, // x = 0x1.33333p13 x |
| 28 | 0x55325019, // x = 0x1.64a032p43 x |
| 29 | 0x5922aa80, // x = 0x1.4555p51 x |
| 30 | 0x5f18b878, // x = 0x1.3170fp63 x |
| 31 | 0x6115cb11, // x = 0x1.2b9622p67 x |
| 32 | 0x7beef5ef, // x = 0x1.ddebdep120 x |
| 33 | }; |
| 34 | |
| 35 | static constexpr uint32_t EXCEPT_OUTPUTS_SIN[N_EXCEPTS][4] = { |
| 36 | {0xbeb1fa5d, 0, 1, 0}, // x = 0x1.33333p13, sin(x) = -0x1.63f4bap-2 (RZ) |
| 37 | {0xbf171adf, 0, 1, 1}, // x = 0x1.64a032p43, sin(x) = -0x1.2e35bep-1 (RZ) |
| 38 | {0xbf587521, 0, 1, 1}, // x = 0x1.4555p51, sin(x) = -0x1.b0ea42p-1 (RZ) |
| 39 | {0x3dad60f6, 1, 0, 1}, // x = 0x1.3170fp63, sin(x) = 0x1.5ac1ecp-4 (RZ) |
| 40 | {0xbe7cc1e0, 0, 1, 1}, // x = 0x1.2b9622p67, sin(x) = -0x1.f983cp-3 (RZ) |
| 41 | {0xbf587d1b, 0, 1, 1}, // x = 0x1.ddebdep120, sin(x) = -0x1.b0fa36p-1 (RZ) |
| 42 | }; |
| 43 | |
| 44 | static constexpr uint32_t EXCEPT_OUTPUTS_COS[N_EXCEPTS][4] = { |
| 45 | {0xbf70090b, 0, 1, 0}, // x = 0x1.33333p13, cos(x) = -0x1.e01216p-1 (RZ) |
| 46 | {0x3f4ea5d2, 1, 0, 0}, // x = 0x1.64a032p43, cos(x) = 0x1.9d4ba4p-1 (RZ) |
| 47 | {0x3f08aebe, 1, 0, 1}, // x = 0x1.4555p51, cos(x) = 0x1.115d7cp-1 (RZ) |
| 48 | {0x3f7f14bb, 1, 0, 0}, // x = 0x1.3170fp63, cos(x) = 0x1.fe2976p-1 (RZ) |
| 49 | {0x3f78142e, 1, 0, 1}, // x = 0x1.2b9622p67, cos(x) = 0x1.f0285cp-1 (RZ) |
| 50 | {0x3f08a21c, 1, 0, 0}, // x = 0x1.ddebdep120, cos(x) = 0x1.114438p-1 (RZ) |
| 51 | }; |
| 52 | #endif // !LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| 53 | |
| 54 | LLVM_LIBC_FUNCTION(void, sincosf, (float x, float *sinp, float *cosp)) { |
| 55 | using FPBits = typename fputil::FPBits<float>; |
| 56 | FPBits xbits(x); |
| 57 | |
| 58 | uint32_t x_abs = xbits.uintval() & 0x7fff'ffffU; |
| 59 | double xd = static_cast<double>(x); |
| 60 | |
| 61 | // Range reduction: |
| 62 | // For |x| >= 2^-12, we perform range reduction as follows: |
| 63 | // Find k and y such that: |
| 64 | // x = (k + y) * pi/32 |
| 65 | // k is an integer |
| 66 | // |y| < 0.5 |
| 67 | // For small range (|x| < 2^45 when FMA instructions are available, 2^22 |
| 68 | // otherwise), this is done by performing: |
| 69 | // k = round(x * 32/pi) |
| 70 | // y = x * 32/pi - k |
| 71 | // For large range, we will omit all the higher parts of 32/pi such that the |
| 72 | // least significant bits of their full products with x are larger than 63, |
| 73 | // since: |
| 74 | // sin((k + y + 64*i) * pi/32) = sin(x + i * 2pi) = sin(x), and |
| 75 | // cos((k + y + 64*i) * pi/32) = cos(x + i * 2pi) = cos(x). |
| 76 | // |
| 77 | // When FMA instructions are not available, we store the digits of 32/pi in |
| 78 | // chunks of 28-bit precision. This will make sure that the products: |
| 79 | // x * THIRTYTWO_OVER_PI_28[i] are all exact. |
| 80 | // When FMA instructions are available, we simply store the digits of326/pi in |
| 81 | // chunks of doubles (53-bit of precision). |
| 82 | // So when multiplying by the largest values of single precision, the |
| 83 | // resulting output should be correct up to 2^(-208 + 128) ~ 2^-80. By the |
| 84 | // worst-case analysis of range reduction, |y| >= 2^-38, so this should give |
| 85 | // us more than 40 bits of accuracy. For the worst-case estimation of range |
| 86 | // reduction, see for instances: |
| 87 | // Elementary Functions by J-M. Muller, Chapter 11, |
| 88 | // Handbook of Floating-Point Arithmetic by J-M. Muller et. al., |
| 89 | // Chapter 10.2. |
| 90 | // |
| 91 | // Once k and y are computed, we then deduce the answer by the sine and cosine |
| 92 | // of sum formulas: |
| 93 | // sin(x) = sin((k + y)*pi/32) |
| 94 | // = sin(y*pi/32) * cos(k*pi/32) + cos(y*pi/32) * sin(k*pi/32) |
| 95 | // cos(x) = cos((k + y)*pi/32) |
| 96 | // = cos(y*pi/32) * cos(k*pi/32) - sin(y*pi/32) * sin(k*pi/32) |
| 97 | // The values of sin(k*pi/32) and cos(k*pi/32) for k = 0..63 are precomputed |
| 98 | // and stored using a vector of 32 doubles. Sin(y*pi/32) and cos(y*pi/32) are |
| 99 | // computed using degree-7 and degree-6 minimax polynomials generated by |
| 100 | // Sollya respectively. |
| 101 | |
| 102 | // |x| < 0x1.0p-12f |
| 103 | if (LIBC_UNLIKELY(x_abs < 0x3980'0000U)) { |
| 104 | if (LIBC_UNLIKELY(x_abs == 0U)) { |
| 105 | // For signed zeros. |
| 106 | *sinp = x; |
| 107 | *cosp = 1.0f; |
| 108 | return; |
| 109 | } |
| 110 | // When |x| < 2^-12, the relative errors of the approximations |
| 111 | // sin(x) ~ x, cos(x) ~ 1 |
| 112 | // are: |
| 113 | // |sin(x) - x| / |sin(x)| < |x^3| / (6|x|) |
| 114 | // = x^2 / 6 |
| 115 | // < 2^-25 |
| 116 | // < epsilon(1)/2. |
| 117 | // |cos(x) - 1| < |x^2 / 2| = 2^-25 < epsilon(1)/2. |
| 118 | // So the correctly rounded values of sin(x) and cos(x) are: |
| 119 | // sin(x) = x - sign(x)*eps(x) if rounding mode = FE_TOWARDZERO, |
| 120 | // or (rounding mode = FE_UPWARD and x is |
| 121 | // negative), |
| 122 | // = x otherwise. |
| 123 | // cos(x) = 1 - eps(x) if rounding mode = FE_TOWARDZERO or FE_DOWWARD, |
| 124 | // = 1 otherwise. |
| 125 | // To simplify the rounding decision and make it more efficient and to |
| 126 | // prevent compiler to perform constant folding, we use |
| 127 | // sin(x) = fma(x, -2^-25, x), |
| 128 | // cos(x) = fma(x*0.5f, -x, 1) |
| 129 | // instead. |
| 130 | // Note: to use the formula x - 2^-25*x to decide the correct rounding, we |
| 131 | // do need fma(x, -2^-25, x) to prevent underflow caused by -2^-25*x when |
| 132 | // |x| < 2^-125. For targets without FMA instructions, we simply use |
| 133 | // double for intermediate results as it is more efficient than using an |
| 134 | // emulated version of FMA. |
| 135 | #if defined(LIBC_TARGET_CPU_HAS_FMA_FLOAT) |
| 136 | *sinp = fputil::multiply_add(x, -0x1.0p-25f, x); |
| 137 | *cosp = fputil::multiply_add(FPBits(x_abs).get_val(), -0x1.0p-25f, 1.0f); |
| 138 | #else |
| 139 | *sinp = static_cast<float>(fputil::multiply_add(xd, -0x1.0p-25, xd)); |
| 140 | *cosp = static_cast<float>(fputil::multiply_add( |
| 141 | static_cast<double>(FPBits(x_abs).get_val()), -0x1.0p-25, 1.0)); |
| 142 | #endif // LIBC_TARGET_CPU_HAS_FMA_FLOAT |
| 143 | return; |
| 144 | } |
| 145 | |
| 146 | // x is inf or nan. |
| 147 | if (LIBC_UNLIKELY(x_abs >= 0x7f80'0000U)) { |
| 148 | if (xbits.is_signaling_nan()) { |
| 149 | fputil::raise_except_if_required(FE_INVALID); |
| 150 | *sinp = *cosp = FPBits::quiet_nan().get_val(); |
| 151 | return; |
| 152 | } |
| 153 | |
| 154 | if (x_abs == 0x7f80'0000U) { |
| 155 | fputil::set_errno_if_required(EDOM); |
| 156 | fputil::raise_except_if_required(FE_INVALID); |
| 157 | } |
| 158 | *sinp = FPBits::quiet_nan().get_val(); |
| 159 | *cosp = *sinp; |
| 160 | return; |
| 161 | } |
| 162 | |
| 163 | #ifndef LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| 164 | // Check exceptional values. |
| 165 | for (int i = 0; i < N_EXCEPTS; ++i) { |
| 166 | if (LIBC_UNLIKELY(x_abs == EXCEPT_INPUTS[i])) { |
| 167 | uint32_t s = EXCEPT_OUTPUTS_SIN[i][0]; // FE_TOWARDZERO |
| 168 | uint32_t c = EXCEPT_OUTPUTS_COS[i][0]; // FE_TOWARDZERO |
| 169 | bool x_sign = x < 0; |
| 170 | switch (fputil::quick_get_round()) { |
| 171 | case FE_UPWARD: |
| 172 | s += x_sign ? EXCEPT_OUTPUTS_SIN[i][2] : EXCEPT_OUTPUTS_SIN[i][1]; |
| 173 | c += EXCEPT_OUTPUTS_COS[i][1]; |
| 174 | break; |
| 175 | case FE_DOWNWARD: |
| 176 | s += x_sign ? EXCEPT_OUTPUTS_SIN[i][1] : EXCEPT_OUTPUTS_SIN[i][2]; |
| 177 | c += EXCEPT_OUTPUTS_COS[i][2]; |
| 178 | break; |
| 179 | case FE_TONEAREST: |
| 180 | s += EXCEPT_OUTPUTS_SIN[i][3]; |
| 181 | c += EXCEPT_OUTPUTS_COS[i][3]; |
| 182 | break; |
| 183 | } |
| 184 | *sinp = x_sign ? -FPBits(s).get_val() : FPBits(s).get_val(); |
| 185 | *cosp = FPBits(c).get_val(); |
| 186 | |
| 187 | return; |
| 188 | } |
| 189 | } |
| 190 | #endif // !LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| 191 | |
| 192 | // Combine the results with the sine and cosine of sum formulas: |
| 193 | // sin(x) = sin((k + y)*pi/32) |
| 194 | // = sin(y*pi/32) * cos(k*pi/32) + cos(y*pi/32) * sin(k*pi/32) |
| 195 | // = sin_y * cos_k + (1 + cosm1_y) * sin_k |
| 196 | // = sin_y * cos_k + (cosm1_y * sin_k + sin_k) |
| 197 | // cos(x) = cos((k + y)*pi/32) |
| 198 | // = cos(y*pi/32) * cos(k*pi/32) - sin(y*pi/32) * sin(k*pi/32) |
| 199 | // = cosm1_y * cos_k + sin_y * sin_k |
| 200 | // = (cosm1_y * cos_k + cos_k) + sin_y * sin_k |
| 201 | double sin_k, cos_k, sin_y, cosm1_y; |
| 202 | |
| 203 | sincosf_eval(xd, x_abs, sin_k, cos_k, sin_y, cosm1_y); |
| 204 | |
| 205 | *sinp = static_cast<float>(fputil::multiply_add( |
| 206 | sin_y, cos_k, fputil::multiply_add(cosm1_y, sin_k, sin_k))); |
| 207 | *cosp = static_cast<float>(fputil::multiply_add( |
| 208 | sin_y, -sin_k, fputil::multiply_add(cosm1_y, cos_k, cos_k))); |
| 209 | } |
| 210 | |
| 211 | } // namespace LIBC_NAMESPACE_DECL |
| 212 | |