1 | //===-- Single-precision sinpif function ----------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "src/math/sinpif.h" |
10 | #include "sincosf_utils.h" |
11 | #include "src/__support/FPUtil/FEnvImpl.h" |
12 | #include "src/__support/FPUtil/FPBits.h" |
13 | #include "src/__support/FPUtil/PolyEval.h" |
14 | #include "src/__support/FPUtil/multiply_add.h" |
15 | #include "src/__support/common.h" |
16 | #include "src/__support/macros/config.h" |
17 | #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY |
18 | |
19 | namespace LIBC_NAMESPACE_DECL { |
20 | |
21 | LLVM_LIBC_FUNCTION(float, sinpif, (float x)) { |
22 | using FPBits = typename fputil::FPBits<float>; |
23 | FPBits xbits(x); |
24 | |
25 | uint32_t x_u = xbits.uintval(); |
26 | uint32_t x_abs = x_u & 0x7fff'ffffU; |
27 | double xd = static_cast<double>(x); |
28 | |
29 | // Range reduction: |
30 | // For |x| > 1/32, we perform range reduction as follows: |
31 | // Find k and y such that: |
32 | // x = (k + y) * 1/32 |
33 | // k is an integer |
34 | // |y| < 0.5 |
35 | // |
36 | // This is done by performing: |
37 | // k = round(x * 32) |
38 | // y = x * 32 - k |
39 | // |
40 | // Once k and y are computed, we then deduce the answer by the sine of sum |
41 | // formula: |
42 | // sin(x * pi) = sin((k + y)*pi/32) |
43 | // = sin(y*pi/32) * cos(k*pi/32) + cos(y*pi/32) * sin(k*pi/32) |
44 | // The values of sin(k*pi/32) and cos(k*pi/32) for k = 0..31 are precomputed |
45 | // and stored using a vector of 32 doubles. Sin(y*pi/32) and cos(y*pi/32) are |
46 | // computed using degree-7 and degree-6 minimax polynomials generated by |
47 | // Sollya respectively. |
48 | |
49 | // |x| <= 1/16 |
50 | if (LIBC_UNLIKELY(x_abs <= 0x3d80'0000U)) { |
51 | |
52 | if (LIBC_UNLIKELY(x_abs < 0x33CD'01D7U)) { |
53 | if (LIBC_UNLIKELY(x_abs == 0U)) { |
54 | // For signed zeros. |
55 | return x; |
56 | } |
57 | |
58 | // For very small values we can approximate sinpi(x) with x * pi |
59 | // An exhaustive test shows that this is accurate for |x| < 9.546391 × |
60 | // 10-8 |
61 | double xdpi = xd * 0x1.921fb54442d18p1; |
62 | return static_cast<float>(xdpi); |
63 | } |
64 | |
65 | // |x| < 1/16. |
66 | double xsq = xd * xd; |
67 | |
68 | // Degree-9 polynomial approximation: |
69 | // sinpi(x) ~ x + a_3 x^3 + a_5 x^5 + a_7 x^7 + a_9 x^9 |
70 | // = x (1 + a_3 x^2 + ... + a_9 x^8) |
71 | // = x * P(x^2) |
72 | // generated by Sollya with the following commands: |
73 | // > display = hexadecimal; |
74 | // > Q = fpminimax(sin(pi * x)/x, [|0, 2, 4, 6, 8|], [|D...|], [0, 1/16]); |
75 | double result = fputil::polyeval( |
76 | xsq, 0x1.921fb54442d18p1, -0x1.4abbce625bbf2p2, 0x1.466bc675e116ap1, |
77 | -0x1.32d2c0b62d41cp-1, 0x1.501ec4497cb7dp-4); |
78 | return static_cast<float>(xd * result); |
79 | } |
80 | |
81 | // Numbers greater or equal to 2^23 are always integers or NaN |
82 | if (LIBC_UNLIKELY(x_abs >= 0x4B00'0000)) { |
83 | |
84 | // check for NaN values |
85 | if (LIBC_UNLIKELY(x_abs >= 0x7f80'0000U)) { |
86 | if (xbits.is_signaling_nan()) { |
87 | fputil::raise_except_if_required(FE_INVALID); |
88 | return FPBits::quiet_nan().get_val(); |
89 | } |
90 | |
91 | if (x_abs == 0x7f80'0000U) { |
92 | fputil::set_errno_if_required(EDOM); |
93 | fputil::raise_except_if_required(FE_INVALID); |
94 | } |
95 | |
96 | return x + FPBits::quiet_nan().get_val(); |
97 | } |
98 | |
99 | return FPBits::zero(xbits.sign()).get_val(); |
100 | } |
101 | |
102 | // Combine the results with the sine of sum formula: |
103 | // sin(x * pi) = sin((k + y)*pi/32) |
104 | // = sin(y*pi/32) * cos(k*pi/32) + cos(y*pi/32) * sin(k*pi/32) |
105 | // = sin_y * cos_k + (1 + cosm1_y) * sin_k |
106 | // = sin_y * cos_k + (cosm1_y * sin_k + sin_k) |
107 | double sin_k, cos_k, sin_y, cosm1_y; |
108 | sincospif_eval(xd, sin_k, cos_k, sin_y, cosm1_y); |
109 | |
110 | if (LIBC_UNLIKELY(sin_y == 0 && sin_k == 0)) |
111 | return FPBits::zero(xbits.sign()).get_val(); |
112 | |
113 | return static_cast<float>(fputil::multiply_add( |
114 | sin_y, cos_k, fputil::multiply_add(cosm1_y, sin_k, sin_k))); |
115 | } |
116 | |
117 | } // namespace LIBC_NAMESPACE_DECL |
118 | |