1 | //===-- Half-precision sinpif function ------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "src/math/sinpif16.h" |
10 | #include "hdr/errno_macros.h" |
11 | #include "hdr/fenv_macros.h" |
12 | #include "sincosf16_utils.h" |
13 | #include "src/__support/FPUtil/FEnvImpl.h" |
14 | #include "src/__support/FPUtil/FPBits.h" |
15 | #include "src/__support/FPUtil/cast.h" |
16 | #include "src/__support/FPUtil/multiply_add.h" |
17 | |
18 | namespace LIBC_NAMESPACE_DECL { |
19 | |
20 | LLVM_LIBC_FUNCTION(float16, sinpif16, (float16 x)) { |
21 | using FPBits = typename fputil::FPBits<float16>; |
22 | FPBits xbits(x); |
23 | |
24 | uint16_t x_u = xbits.uintval(); |
25 | uint16_t x_abs = x_u & 0x7fff; |
26 | float xf = x; |
27 | |
28 | // Range reduction: |
29 | // For |x| > 1/32, we perform range reduction as follows: |
30 | // Find k and y such that: |
31 | // x = (k + y) * 1/32 |
32 | // k is an integer |
33 | // |y| < 0.5 |
34 | // |
35 | // This is done by performing: |
36 | // k = round(x * 32) |
37 | // y = x * 32 - k |
38 | // |
39 | // Once k and y are computed, we then deduce the answer by the sine of sum |
40 | // formula: |
41 | // sin(x * pi) = sin((k + y) * pi/32) |
42 | // = sin(k * pi/32) * cos(y * pi/32) + |
43 | // sin(y * pi/32) * cos(k * pi/32) |
44 | |
45 | // For signed zeros |
46 | if (LIBC_UNLIKELY(x_abs == 0U)) |
47 | return x; |
48 | |
49 | // Numbers greater or equal to 2^10 are integers, or infinity, or NaN |
50 | if (LIBC_UNLIKELY(x_abs >= 0x6400)) { |
51 | // Check for NaN or infinity values |
52 | if (LIBC_UNLIKELY(x_abs >= 0x7c00)) { |
53 | if (xbits.is_signaling_nan()) { |
54 | fputil::raise_except_if_required(FE_INVALID); |
55 | return FPBits::quiet_nan().get_val(); |
56 | } |
57 | // If value is equal to infinity |
58 | if (x_abs == 0x7c00) { |
59 | fputil::set_errno_if_required(EDOM); |
60 | fputil::raise_except_if_required(FE_INVALID); |
61 | } |
62 | |
63 | return x + FPBits::quiet_nan().get_val(); |
64 | } |
65 | return FPBits::zero(xbits.sign()).get_val(); |
66 | } |
67 | |
68 | float sin_k, cos_k, sin_y, cosm1_y; |
69 | sincospif16_eval(xf, sin_k, cos_k, sin_y, cosm1_y); |
70 | |
71 | if (LIBC_UNLIKELY(sin_y == 0 && sin_k == 0)) |
72 | return FPBits::zero(xbits.sign()).get_val(); |
73 | |
74 | // Since, cosm1_y = cos_y - 1, therefore: |
75 | // sin(x * pi) = cos_k * sin_y + sin_k + (cosm1_y * sin_k) |
76 | return fputil::cast<float16>(fputil::multiply_add( |
77 | sin_y, cos_k, fputil::multiply_add(cosm1_y, sin_k, sin_k))); |
78 | } |
79 | |
80 | } // namespace LIBC_NAMESPACE_DECL |
81 | |