1 | //===-- Implementation of sqrtf128 function -------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "src/math/sqrtf128.h" |
10 | #include "src/__support/CPP/bit.h" |
11 | #include "src/__support/FPUtil/FEnvImpl.h" |
12 | #include "src/__support/FPUtil/FPBits.h" |
13 | #include "src/__support/FPUtil/rounding_mode.h" |
14 | #include "src/__support/common.h" |
15 | #include "src/__support/macros/optimization.h" |
16 | #include "src/__support/uint128.h" |
17 | |
18 | // Compute sqrtf128 with correct rounding for all rounding modes using integer |
19 | // arithmetic by Alexei Sibidanov (sibid@uvic.ca): |
20 | // https://github.com/sibidanov/llvm-project/tree/as_sqrt_v2 |
21 | // https://github.com/sibidanov/llvm-project/tree/as_sqrt_v3 |
22 | // TODO: Update the reference once Alexei's implementation is in the CORE-MATH |
23 | // project. https://github.com/llvm/llvm-project/issues/126794 |
24 | |
25 | // Let the input be expressed as x = 2^e * m_x, |
26 | // - Step 1: Range reduction |
27 | // Let x_reduced = 2^(e % 2) * m_x, |
28 | // Then sqrt(x) = 2^(e / 2) * sqrt(x_reduced), with |
29 | // 1 <= x_reduced < 4. |
30 | // - Step 2: Polynomial approximation |
31 | // Approximate 1/sqrt(x_reduced) using polynomial approximation with the |
32 | // result errors bounded by: |
33 | // |r0 - 1/sqrt(x_reduced)| < 2^-32. |
34 | // The computations are done in uint64_t. |
35 | // - Step 3: First Newton iteration |
36 | // Let the scaled error defined by: |
37 | // h0 = r0^2 * x_reduced - 1. |
38 | // Then we compute the first Newton iteration: |
39 | // r1 = r0 - r0 * h0 / 2. |
40 | // The result is then bounded by: |
41 | // |r1 - 1 / sqrt(x_reduced)| < 2^-62. |
42 | // - Step 4: Second Newton iteration |
43 | // We calculate the scaled error from Step 3: |
44 | // h1 = r1^2 * x_reduced - 1. |
45 | // Then the second Newton iteration is computed by: |
46 | // r2 = x_reduced * (r1 - r1 * h0 / 2) |
47 | // ~ x_reduced * (1/sqrt(x_reduced)) = sqrt(x_reduced) |
48 | // - Step 5: Perform rounding test and correction if needed. |
49 | // Rounding correction is done by computing the exact rounding errors: |
50 | // x_reduced - r2^2. |
51 | |
52 | namespace LIBC_NAMESPACE_DECL { |
53 | |
54 | using FPBits = fputil::FPBits<float128>; |
55 | |
56 | namespace { |
57 | |
58 | template <typename T, typename U = T> static inline constexpr T prod_hi(T, U); |
59 | |
60 | // Get high part of integer multiplications. |
61 | // Use template to prevent implicit conversion. |
62 | template <> |
63 | inline constexpr uint64_t prod_hi<uint64_t>(uint64_t x, uint64_t y) { |
64 | return static_cast<uint64_t>( |
65 | (static_cast<UInt128>(x) * static_cast<UInt128>(y)) >> 64); |
66 | } |
67 | |
68 | // Get high part of unsigned 128x64 bit multiplication. |
69 | template <> |
70 | inline constexpr UInt128 prod_hi<UInt128, uint64_t>(UInt128 x, uint64_t y) { |
71 | uint64_t x_lo = static_cast<uint64_t>(x); |
72 | uint64_t x_hi = static_cast<uint64_t>(x >> 64); |
73 | UInt128 xyl = static_cast<UInt128>(x_lo) * static_cast<UInt128>(y); |
74 | UInt128 xyh = static_cast<UInt128>(x_hi) * static_cast<UInt128>(y); |
75 | return xyh + (xyl >> 64); |
76 | } |
77 | |
78 | // Get high part of signed 64x64 bit multiplication. |
79 | template <> inline constexpr int64_t prod_hi<int64_t>(int64_t x, int64_t y) { |
80 | return static_cast<int64_t>( |
81 | (static_cast<Int128>(x) * static_cast<Int128>(y)) >> 64); |
82 | } |
83 | |
84 | // Get high 128-bit part of unsigned 128x128 bit multiplication. |
85 | template <> inline constexpr UInt128 prod_hi<UInt128>(UInt128 x, UInt128 y) { |
86 | uint64_t x_lo = static_cast<uint64_t>(x); |
87 | uint64_t x_hi = static_cast<uint64_t>(x >> 64); |
88 | uint64_t y_lo = static_cast<uint64_t>(y); |
89 | uint64_t y_hi = static_cast<uint64_t>(y >> 64); |
90 | |
91 | UInt128 xh_yh = static_cast<UInt128>(x_hi) * static_cast<UInt128>(y_hi); |
92 | UInt128 xh_yl = static_cast<UInt128>(x_hi) * static_cast<UInt128>(y_lo); |
93 | UInt128 xl_yh = static_cast<UInt128>(x_lo) * static_cast<UInt128>(y_hi); |
94 | |
95 | xh_yh += xh_yl >> 64; |
96 | |
97 | return xh_yh + (xl_yh >> 64); |
98 | } |
99 | |
100 | // Get high 128-bit part of mixed sign 128x128 bit multiplication. |
101 | template <> |
102 | inline constexpr Int128 prod_hi<Int128, UInt128>(Int128 x, UInt128 y) { |
103 | UInt128 mask = static_cast<UInt128>(x >> 127); |
104 | UInt128 negative_part = y & mask; |
105 | UInt128 prod = prod_hi(static_cast<UInt128>(x), y); |
106 | return static_cast<Int128>(prod - negative_part); |
107 | } |
108 | |
109 | // Newton-Raphson first order step to improve accuracy of the result. |
110 | // For the initial approximation r0 ~ 1/sqrt(x), let |
111 | // h = r0^2 * x - 1 |
112 | // be its scaled error. Then the first-order Newton-Raphson iteration is: |
113 | // r1 = r0 - r0 * h / 2 |
114 | // which has error bounded by: |
115 | // |r1 - 1/sqrt(x)| < h^2 / 2. |
116 | LIBC_INLINE uint64_t rsqrt_newton_raphson(uint64_t m, uint64_t r) { |
117 | uint64_t r2 = prod_hi(r, r); |
118 | // h = r0^2*x - 1. |
119 | int64_t h = static_cast<int64_t>(prod_hi(m, r2) + r2); |
120 | // hr = r * h / 2 |
121 | int64_t hr = prod_hi(h, static_cast<int64_t>(r >> 1)); |
122 | return r - hr; |
123 | } |
124 | |
125 | #ifdef LIBC_MATH_HAS_SMALL_TABLES |
126 | // Degree-12 minimax polynomials for 1/sqrt(x) on [1, 2]. |
127 | constexpr uint32_t RSQRT_COEFFS[12] = { |
128 | 0xb5947a4a, 0x2d651e32, 0x9ad50532, 0x2d28d093, 0x0d8be653, 0x04239014, |
129 | 0x01492449, 0x0066ff7d, 0x001e74a1, 0x000984cc, 0x00049abc, 0x00018340, |
130 | }; |
131 | |
132 | LIBC_INLINE uint64_t rsqrt_approx(uint64_t m) { |
133 | int64_t x = static_cast<uint64_t>(m) ^ (uint64_t(1) << 63); |
134 | int64_t x_26 = x >> 2; |
135 | int64_t z = x >> 31; |
136 | |
137 | if (LIBC_UNLIKELY(z <= -4294967296)) |
138 | return ~(m >> 1); |
139 | |
140 | uint64_t x2 = static_cast<uint64_t>(z) * static_cast<uint64_t>(z); |
141 | uint64_t x2_26 = x2 >> 5; |
142 | x2 >>= 32; |
143 | // Calculate the odd part of the polynomial using Horner's method. |
144 | uint64_t c0 = RSQRT_COEFFS[8] + ((x2 * RSQRT_COEFFS[10]) >> 32); |
145 | uint64_t c1 = RSQRT_COEFFS[6] + ((x2 * c0) >> 32); |
146 | uint64_t c2 = RSQRT_COEFFS[4] + ((x2 * c1) >> 32); |
147 | uint64_t c3 = RSQRT_COEFFS[2] + ((x2 * c2) >> 32); |
148 | uint64_t c4 = RSQRT_COEFFS[0] + ((x2 * c3) >> 32); |
149 | uint64_t odd = |
150 | static_cast<uint64_t>((x >> 34) * static_cast<int64_t>(c4 >> 3)) + x_26; |
151 | // Calculate the even part of the polynomial using Horner's method. |
152 | uint64_t d0 = RSQRT_COEFFS[9] + ((x2 * RSQRT_COEFFS[11]) >> 32); |
153 | uint64_t d1 = RSQRT_COEFFS[7] + ((x2 * d0) >> 32); |
154 | uint64_t d2 = RSQRT_COEFFS[5] + ((x2 * d1) >> 32); |
155 | uint64_t d3 = RSQRT_COEFFS[3] + ((x2 * d2) >> 32); |
156 | uint64_t d4 = RSQRT_COEFFS[1] + ((x2 * d3) >> 32); |
157 | uint64_t even = 0xd105eb806655d608ul + ((x2 * d4) >> 6) + x2_26; |
158 | |
159 | uint64_t r = even - odd; // error < 1.5e-10 |
160 | // Newton-Raphson first order step to improve accuracy of the result to almost |
161 | // 64 bits. |
162 | return rsqrt_newton_raphson(m, r); |
163 | } |
164 | |
165 | #else |
166 | // Cubic minimax polynomials for 1/sqrt(x) on [1 + k/64, 1 + (k + 1)/64] |
167 | // for k = 0..63. |
168 | constexpr uint32_t RSQRT_COEFFS[64][4] = { |
169 | {0xffffffff, 0xfffff780, 0xbff55815, 0x9bb5b6e7}, |
170 | {0xfc0bd889, 0xfa1d6e7d, 0xb8a95a89, 0x938bf8f0}, |
171 | {0xf82ec882, 0xf473bea9, 0xb1bf4705, 0x8bed0079}, |
172 | {0xf467f280, 0xeefff2a1, 0xab309d4a, 0x84cdb431}, |
173 | {0xf0b6848c, 0xe9bf46f4, 0xa4f76232, 0x7e24037b}, |
174 | {0xed19b75e, 0xe4af2628, 0x9f0e1340, 0x77e6ca62}, |
175 | {0xe990cdad, 0xdfcd2521, 0x996f9b96, 0x720db8df}, |
176 | {0xe61b138e, 0xdb16ffde, 0x94174a00, 0x6c913cff}, |
177 | {0xe2b7dddf, 0xd68a967b, 0x8f00c812, 0x676a6f92}, |
178 | {0xdf6689b7, 0xd225ea80, 0x8a281226, 0x62930308}, |
179 | {0xdc267bea, 0xcde71c63, 0x8589702c, 0x5e05343e}, |
180 | {0xd8f7208e, 0xc9cc6948, 0x81216f2e, 0x59bbbcf8}, |
181 | {0xd5d7ea91, 0xc5d428ee, 0x7cecdb76, 0x55b1c7d6}, |
182 | {0xd2c8534e, 0xc1fccbc9, 0x78e8bb45, 0x51e2e592}, |
183 | {0xcfc7da32, 0xbe44d94a, 0x75124a0a, 0x4e4b0369}, |
184 | {0xccd6045f, 0xbaaaee41, 0x7166f40f, 0x4ae66284}, |
185 | {0xc9f25c5c, 0xb72dbb69, 0x6de45288, 0x47b19045}, |
186 | {0xc71c71c7, 0xb3cc040f, 0x6a882804, 0x44a95f5f}, |
187 | {0xc453d90f, 0xb0849cd4, 0x67505d2a, 0x41cae1a0}, |
188 | {0xc1982b2e, 0xad566a85, 0x643afdc8, 0x3f13625c}, |
189 | {0xbee9056f, 0xaa406113, 0x6146361f, 0x3c806169}, |
190 | {0xbc46092e, 0xa7418293, 0x5e70506d, 0x3a0f8e8e}, |
191 | {0xb9aedba5, 0xa458de58, 0x5bb7b2b1, 0x37bec572}, |
192 | {0xb72325b7, 0xa1859022, 0x591adc9a, 0x358c09e2}, |
193 | {0xb4a293c2, 0x9ec6bf52, 0x569865a7, 0x33758476}, |
194 | {0xb22cd56d, 0x9c1b9e36, 0x542efb6a, 0x31797f8a}, |
195 | {0xafc19d86, 0x9983695c, 0x51dd5ffb, 0x2f96647a}, |
196 | {0xad60a1d1, 0x96fd66f7, 0x4fa2687c, 0x2dcab91f}, |
197 | {0xab099ae9, 0x9488e64b, 0x4d7cfbc9, 0x2c151d8a}, |
198 | {0xa8bc441a, 0x92253f20, 0x4b6c1139, 0x2a7449ef}, |
199 | {0xa6785b42, 0x8fd1d14a, 0x496eaf82, 0x28e70cc3}, |
200 | {0xa43da0ae, 0x8d8e042a, 0x4783eba7, 0x276c4900}, |
201 | {0xa20bd701, 0x8b594648, 0x45aae80a, 0x2602f493}, |
202 | {0x9fe2c315, 0x89330ce4, 0x43e2d382, 0x24aa16ec}, |
203 | {0x9dc22be4, 0x871ad399, 0x422ae88c, 0x2360c7af}, |
204 | {0x9ba9da6c, 0x85101c05, 0x40826c88, 0x22262d7b}, |
205 | {0x99999999, 0x83126d70, 0x3ee8af07, 0x20f97cd2}, |
206 | {0x97913630, 0x81215480, 0x3d5d0922, 0x1fd9f714}, |
207 | {0x95907eb8, 0x7f3c62ef, 0x3bdedce0, 0x1ec6e994}, |
208 | {0x93974369, 0x7d632f45, 0x3a6d94a9, 0x1dbfacbb}, |
209 | {0x91a55615, 0x7b955498, 0x3908a2be, 0x1cc3a33b}, |
210 | {0x8fba8a1c, 0x79d2724e, 0x37af80bf, 0x1bd23960}, |
211 | {0x8dd6b456, 0x781a2be4, 0x3661af39, 0x1aeae458}, |
212 | {0x8bf9ab07, 0x766c28ba, 0x351eb539, 0x1a0d21a2}, |
213 | {0x8a2345cc, 0x74c813dd, 0x33e61feb, 0x19387676}, |
214 | {0x88535d90, 0x732d9bdc, 0x32b7823a, 0x186c6f3e}, |
215 | {0x8689cc7e, 0x719c7297, 0x3192747d, 0x17a89f21}, |
216 | {0x84c66df1, 0x70144d19, 0x30769424, 0x16ec9f89}, |
217 | {0x83091e6a, 0x6e94e36c, 0x2f63836f, 0x16380fbf}, |
218 | {0x8151bb87, 0x6d1df079, 0x2e58e925, 0x158a9484}, |
219 | {0x7fa023f1, 0x6baf31de, 0x2d567053, 0x14e3d7ba}, |
220 | {0x7df43758, 0x6a4867d3, 0x2c5bc811, 0x1443880e}, |
221 | {0x7c4dd664, 0x68e95508, 0x2b68a346, 0x13a958ab}, |
222 | {0x7aace2b0, 0x6791be86, 0x2a7cb871, 0x131500ee}, |
223 | {0x79113ebc, 0x66416b95, 0x2997c17a, 0x12863c29}, |
224 | {0x777acde8, 0x64f825a1, 0x28b97b82, 0x11fcc95c}, |
225 | {0x75e9746a, 0x63b5b822, 0x27e1a6b4, 0x11786b03}, |
226 | {0x745d1746, 0x6279f081, 0x2710061d, 0x10f8e6da}, |
227 | {0x72d59c46, 0x61449e06, 0x26445f86, 0x107e05ac}, |
228 | {0x7152e9f4, 0x601591be, 0x257e7b4d, 0x10079327}, |
229 | {0x6fd4e793, 0x5eec9e6b, 0x24be2445, 0x0f955da9}, |
230 | {0x6e5b7d16, 0x5dc9986e, 0x24032795, 0x0f273620}, |
231 | {0x6ce6931d, 0x5cac55b7, 0x234d5496, 0x0ebcefdb}, |
232 | {0x6b7612ec, 0x5b94adb2, 0x229c7cbc, 0x0e56606e}, |
233 | }; |
234 | |
235 | // Approximate rsqrt with cubic polynomials. |
236 | // The range [1,2] is splitted into 64 equal sub-ranges and the reciprocal |
237 | // square root is approximated by a cubic polynomial by the minimax method in |
238 | // each subrange. The approximation accuracy fits into 32-33 bits and thus it is |
239 | // natural to round coefficients into 32 bit. The constant coefficient can be |
240 | // rounded to 33 bits since the most significant bit is always 1 and implicitly |
241 | // assumed in the table. |
242 | LIBC_INLINE uint64_t rsqrt_approx(uint64_t m) { |
243 | // ULP(m) = 2^-64. |
244 | // Use the top 6 bits as index for looking up polynomial coeffs. |
245 | uint64_t indx = m >> 58; |
246 | |
247 | uint64_t c0 = static_cast<uint64_t>(RSQRT_COEFFS[indx][0]); |
248 | c0 <<= 31; // to 64 bit with the space for the implicit bit |
249 | c0 |= 1ull << 63; // add implicit bit |
250 | |
251 | uint64_t c1 = static_cast<uint64_t>(RSQRT_COEFFS[indx][1]); |
252 | c1 <<= 25; // to 64 bit format |
253 | |
254 | uint64_t c2 = static_cast<uint64_t>(RSQRT_COEFFS[indx][2]); |
255 | uint64_t c3 = static_cast<uint64_t>(RSQRT_COEFFS[indx][3]); |
256 | |
257 | uint64_t d = (m << 6) >> 32; // local coordinate in the subrange [0, 2^32] |
258 | uint64_t d2 = (d * d) >> 32; // square of the local coordinate |
259 | uint64_t re = c0 + (d2 * c2 >> 13); // even part of the polynomial (positive) |
260 | uint64_t ro = d * ((c1 + ((d2 * c3) >> 19)) >> 26) >> |
261 | 6; // odd part of the polynomial (negative) |
262 | uint64_t r = re - ro; // maximal error < 1.55e-10 and it is less than 2^-32 |
263 | // Newton-Raphson first order step to improve accuracy of the result to almost |
264 | // 64 bits. |
265 | r = rsqrt_newton_raphson(m, r); |
266 | // Adjust in the unlucky case x~1; |
267 | if (LIBC_UNLIKELY(!r)) |
268 | --r; |
269 | return r; |
270 | } |
271 | #endif // LIBC_MATH_HAS_SMALL_TABLES |
272 | |
273 | } // anonymous namespace |
274 | |
275 | LLVM_LIBC_FUNCTION(float128, sqrtf128, (float128 x)) { |
276 | using FPBits = fputil::FPBits<float128>; |
277 | // Get rounding mode. |
278 | uint32_t rm = fputil::get_round(); |
279 | |
280 | FPBits xbits(x); |
281 | UInt128 x_u = xbits.uintval(); |
282 | // Bring leading bit of the mantissa to the highest bit. |
283 | // ulp(x_frac) = 2^-128. |
284 | UInt128 x_frac = xbits.get_mantissa() << (FPBits::EXP_LEN + 1); |
285 | |
286 | int sign_exp = static_cast<int>(x_u >> FPBits::FRACTION_LEN); |
287 | |
288 | if (LIBC_UNLIKELY(sign_exp == 0 || sign_exp >= 0x7fff)) { |
289 | // Special cases: NAN, inf, negative numbers |
290 | if (sign_exp >= 0x7fff) { |
291 | // x = -0 or x = inf |
292 | if (xbits.is_zero() || xbits == xbits.inf()) |
293 | return x; |
294 | // x is nan |
295 | if (xbits.is_nan()) { |
296 | // pass through quiet nan |
297 | if (xbits.is_quiet_nan()) |
298 | return x; |
299 | // transform signaling nan to quiet and return |
300 | return xbits.quiet_nan().get_val(); |
301 | } |
302 | // x < 0 or x = -inf |
303 | fputil::set_errno_if_required(EDOM); |
304 | fputil::raise_except_if_required(FE_INVALID); |
305 | return xbits.quiet_nan().get_val(); |
306 | } |
307 | // Now x is subnormal or x = +0. |
308 | |
309 | // x is +0. |
310 | if (x_frac == 0) |
311 | return x; |
312 | |
313 | // Normalize subnormal inputs. |
314 | sign_exp = -cpp::countl_zero(x_frac); |
315 | int normal_shifts = 1 - sign_exp; |
316 | x_frac <<= normal_shifts; |
317 | } |
318 | |
319 | // For sign_exp = biased exponent of x = real_exponent + 16383, |
320 | // let f be the real exponent of the output: |
321 | // f = floor(real_exponent / 2) |
322 | // Then: |
323 | // floor((sign_exp + 1) / 2) = f + 8192 |
324 | // Hence, the biased exponent of the final result is: |
325 | // f + 16383 = floor((sign_exp + 1) / 2) + 8191. |
326 | // Since the output mantissa will include the hidden bit, we can define the |
327 | // output exponent part: |
328 | // e2 = floor((sign_exp + 1) / 2) + 8190 |
329 | unsigned i = static_cast<unsigned>(1 - (sign_exp & 1)); |
330 | uint32_t q2 = (sign_exp + 1) >> 1; |
331 | // Exponent of the final result |
332 | uint32_t e2 = q2 + 8190; |
333 | |
334 | constexpr uint64_t RSQRT_2[2] = {~0ull, |
335 | 0xb504f333f9de6484 /* 2^64/sqrt(2) */}; |
336 | |
337 | // Approximate 1/sqrt(1 + x_frac) |
338 | // Error: |r_1 - 1/sqrt(x)| < 2^-62. |
339 | uint64_t r1 = rsqrt_approx(static_cast<uint64_t>(x_frac >> 64)); |
340 | // Adjust for the even/odd exponent. |
341 | uint64_t r2 = prod_hi(r1, RSQRT_2[i]); |
342 | unsigned shift = 2 - i; |
343 | |
344 | // Normalized input: |
345 | // 1 <= x_reduced < 4 |
346 | UInt128 x_reduced = (x_frac >> shift) | (UInt128(1) << (126 + i)); |
347 | // With r2 ~ 1/sqrt(x) up to 2^-63, we perform another round of Newton-Raphson |
348 | // iteration: |
349 | // r3 = r2 - r2 * h / 2, |
350 | // for h = r2^2 * x - 1. |
351 | // Then: |
352 | // sqrt(x) = x * (1 / sqrt(x)) |
353 | // ~ x * r3 |
354 | // = x * (r2 - r2 * h / 2) |
355 | // = (x * r2) - (x * r2) * h / 2 |
356 | UInt128 sx = prod_hi(x_reduced, r2); |
357 | UInt128 h = prod_hi(sx, r2) << 2; |
358 | UInt128 ds = static_cast<UInt128>(prod_hi(static_cast<Int128>(h), sx)); |
359 | UInt128 v = (sx << 1) - ds; |
360 | |
361 | uint32_t nrst = rm == FE_TONEAREST; |
362 | // The result lies within (-2,5) of true square root so we now |
363 | // test that we can correctly round the result taking into account |
364 | // the rounding mode. |
365 | // Check the lowest 14 bits (by clearing and sign-extending the top |
366 | // 32 - 14 = 18 bits). |
367 | int dd = (static_cast<int>(v) << 18) >> 18; |
368 | |
369 | if (LIBC_UNLIKELY(dd < 4 && dd >= -8)) { // can round correctly? |
370 | // m is almost the final result it can be only 1 ulp off so we |
371 | // just need to test both possibilities. We square it and |
372 | // compare with the initial argument. |
373 | UInt128 m = v >> 15; |
374 | UInt128 m2 = m * m; |
375 | // The difference of the squared result and the argument |
376 | Int128 t0 = static_cast<Int128>(m2 - (x_reduced << 98)); |
377 | if (t0 == 0) { |
378 | // the square root is exact |
379 | v = m << 15; |
380 | } else { |
381 | // Add +-1 ulp to m depend on the sign of the difference. Here |
382 | // we do not need to square again since (m+1)^2 = m^2 + 2*m + |
383 | // 1 so just need to add shifted m and 1. |
384 | Int128 t1 = t0; |
385 | Int128 sgn = t0 >> 127; // sign of the difference |
386 | Int128 m_xor_sgn = static_cast<Int128>(m << 1) ^ sgn; |
387 | t1 -= m_xor_sgn; |
388 | t1 += Int128(1) + sgn; |
389 | |
390 | Int128 sgn1 = t1 >> 127; |
391 | if (LIBC_UNLIKELY(sgn == sgn1)) { |
392 | t0 = t1; |
393 | v -= sgn << 15; |
394 | t1 -= m_xor_sgn; |
395 | t1 += Int128(1) + sgn; |
396 | } |
397 | |
398 | if (t1 == 0) { |
399 | // 1 ulp offset brings again an exact root |
400 | v = (m - static_cast<UInt128>((sgn << 1) + 1)) << 15; |
401 | } else { |
402 | t1 += t0; |
403 | Int128 side = t1 >> 127; // select what is closer m or m+-1 |
404 | v &= ~UInt128(0) << 15; // wipe the fractional bits |
405 | v -= ((sgn & side) | (~sgn & 1)) << (15 + static_cast<int>(side)); |
406 | v |= 1; // add sticky bit since we cannot have an exact mid-point |
407 | // situation |
408 | } |
409 | } |
410 | } |
411 | |
412 | unsigned frac = static_cast<unsigned>(v) & 0x7fff; // fractional part |
413 | unsigned rnd; // round bit |
414 | if (LIBC_LIKELY(nrst != 0)) { |
415 | rnd = frac >> 14; // round to nearest tie to even |
416 | } else if (rm == FE_UPWARD) { |
417 | rnd = !!frac; // round up |
418 | } else { |
419 | rnd = 0; // round down or round to zero |
420 | } |
421 | |
422 | v >>= 15; // position mantissa |
423 | v += rnd; // round |
424 | |
425 | // Set inexact flag only if square root is inexact |
426 | // TODO: We will have to raise FE_INEXACT most of the time, but this |
427 | // operation is very costly, especially in x86-64, since technically, it |
428 | // needs to synchronize both SSE and x87 flags. Need to investigate |
429 | // further to see how we can make this performant. |
430 | // https://github.com/llvm/llvm-project/issues/126753 |
431 | |
432 | // if(frac) fputil::raise_except_if_required(FE_INEXACT); |
433 | |
434 | v += static_cast<UInt128>(e2) << FPBits::FRACTION_LEN; // place exponent |
435 | return cpp::bit_cast<float128>(v); |
436 | } |
437 | |
438 | } // namespace LIBC_NAMESPACE_DECL |
439 | |