| 1 | //===-- Half-precision tan(x) function ------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception. |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "src/math/tanf16.h" |
| 10 | #include "hdr/errno_macros.h" |
| 11 | #include "hdr/fenv_macros.h" |
| 12 | #include "sincosf16_utils.h" |
| 13 | #include "src/__support/FPUtil/FEnvImpl.h" |
| 14 | #include "src/__support/FPUtil/FPBits.h" |
| 15 | #include "src/__support/FPUtil/cast.h" |
| 16 | #include "src/__support/FPUtil/except_value_utils.h" |
| 17 | #include "src/__support/FPUtil/multiply_add.h" |
| 18 | #include "src/__support/macros/optimization.h" |
| 19 | |
| 20 | namespace LIBC_NAMESPACE_DECL { |
| 21 | |
| 22 | #ifndef LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| 23 | constexpr size_t N_EXCEPTS = 9; |
| 24 | |
| 25 | constexpr fputil::ExceptValues<float16, N_EXCEPTS> TANF16_EXCEPTS{{ |
| 26 | // (input, RZ output, RU offset, RD offset, RN offset) |
| 27 | {0x2894, 0x2894, 1, 0, 1}, |
| 28 | {0x3091, 0x3099, 1, 0, 0}, |
| 29 | {0x3098, 0x30a0, 1, 0, 0}, |
| 30 | {0x55ed, 0x3911, 1, 0, 0}, |
| 31 | {0x607b, 0xc638, 0, 1, 1}, |
| 32 | {0x674e, 0x3b7d, 1, 0, 0}, |
| 33 | {0x6807, 0x4014, 1, 0, 1}, |
| 34 | {0x6f4d, 0xbe19, 0, 1, 1}, |
| 35 | {0x7330, 0xcb62, 0, 1, 0}, |
| 36 | }}; |
| 37 | #endif // !LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| 38 | |
| 39 | LLVM_LIBC_FUNCTION(float16, tanf16, (float16 x)) { |
| 40 | using FPBits = fputil::FPBits<float16>; |
| 41 | FPBits xbits(x); |
| 42 | |
| 43 | uint16_t x_u = xbits.uintval(); |
| 44 | uint16_t x_abs = x_u & 0x7fff; |
| 45 | float xf = x; |
| 46 | |
| 47 | #ifndef LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| 48 | bool x_sign = x_u >> 15; |
| 49 | // Handle exceptional values |
| 50 | if (auto r = TANF16_EXCEPTS.lookup_odd(x_abs, x_sign); |
| 51 | LIBC_UNLIKELY(r.has_value())) |
| 52 | return r.value(); |
| 53 | #endif // !LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| 54 | |
| 55 | // |x| <= 0x1.d1p-5 |
| 56 | if (LIBC_UNLIKELY(x_abs <= 0x2b44)) { |
| 57 | // |x| <= 0x1.398p-11 |
| 58 | if (LIBC_UNLIKELY(x_abs <= 0x10e6)) { |
| 59 | // tan(+/-0) = +/-0 |
| 60 | if (LIBC_UNLIKELY(x_abs == 0)) |
| 61 | return x; |
| 62 | |
| 63 | int rounding = fputil::quick_get_round(); |
| 64 | |
| 65 | // Exhaustive tests show that, when: |
| 66 | // x > 0, and rounding upward or |
| 67 | // x < 0, and rounding downward then, |
| 68 | // tan(x) = x * 2^-11 + x |
| 69 | if ((xbits.is_pos() && rounding == FE_UPWARD) || |
| 70 | (xbits.is_neg() && rounding == FE_DOWNWARD)) |
| 71 | return fputil::cast<float16>(fputil::multiply_add(xf, 0x1.0p-11f, xf)); |
| 72 | return x; |
| 73 | } |
| 74 | |
| 75 | float xsq = xf * xf; |
| 76 | |
| 77 | // Degree-6 minimax odd polynomial of tan(x) generated by Sollya with: |
| 78 | // > P = fpminimax(tan(x)/x, [|0, 2, 4, 6|], [|1, SG...|], [0, pi/32]); |
| 79 | float result = fputil::polyeval(xsq, 0x1p0f, 0x1.555556p-2f, 0x1.110ee4p-3f, |
| 80 | 0x1.be80f6p-5f); |
| 81 | |
| 82 | return fputil::cast<float16>(xf * result); |
| 83 | } |
| 84 | |
| 85 | // tan(+/-inf) = NaN, and tan(NaN) = NaN |
| 86 | if (LIBC_UNLIKELY(x_abs >= 0x7c00)) { |
| 87 | if (xbits.is_signaling_nan()) { |
| 88 | fputil::raise_except_if_required(FE_INVALID); |
| 89 | return FPBits::quiet_nan().get_val(); |
| 90 | } |
| 91 | // x = +/-inf |
| 92 | if (x_abs == 0x7c00) { |
| 93 | fputil::set_errno_if_required(EDOM); |
| 94 | fputil::raise_except_if_required(FE_INVALID); |
| 95 | } |
| 96 | |
| 97 | return x + FPBits::quiet_nan().get_val(); |
| 98 | } |
| 99 | |
| 100 | // Range reduction: |
| 101 | // For |x| > pi/32, we perform range reduction as follows: |
| 102 | // Find k and y such that: |
| 103 | // x = (k + y) * pi/32; |
| 104 | // k is an integer, |y| < 0.5 |
| 105 | // |
| 106 | // This is done by performing: |
| 107 | // k = round(x * 32/pi) |
| 108 | // y = x * 32/pi - k |
| 109 | // |
| 110 | // Once k and y are computed, we then deduce the answer by the formula: |
| 111 | // tan(x) = sin(x) / cos(x) |
| 112 | // = (sin_y * cos_k + cos_y * sin_k) / (cos_y * cos_k - sin_y * sin_k) |
| 113 | float sin_k, cos_k, sin_y, cosm1_y; |
| 114 | sincosf16_eval(xf, sin_k, cos_k, sin_y, cosm1_y); |
| 115 | |
| 116 | // Note that, cosm1_y = cos_y - 1: |
| 117 | using fputil::multiply_add; |
| 118 | return fputil::cast<float16>( |
| 119 | multiply_add(sin_y, cos_k, multiply_add(cosm1_y, sin_k, sin_k)) / |
| 120 | multiply_add(sin_y, -sin_k, multiply_add(cosm1_y, cos_k, cos_k))); |
| 121 | } |
| 122 | |
| 123 | } // namespace LIBC_NAMESPACE_DECL |
| 124 | |