1 | //===-- Half-precision tan(x) function ------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception. |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "src/math/tanf16.h" |
10 | #include "hdr/errno_macros.h" |
11 | #include "hdr/fenv_macros.h" |
12 | #include "sincosf16_utils.h" |
13 | #include "src/__support/FPUtil/FEnvImpl.h" |
14 | #include "src/__support/FPUtil/FPBits.h" |
15 | #include "src/__support/FPUtil/cast.h" |
16 | #include "src/__support/FPUtil/except_value_utils.h" |
17 | #include "src/__support/FPUtil/multiply_add.h" |
18 | #include "src/__support/macros/optimization.h" |
19 | |
20 | namespace LIBC_NAMESPACE_DECL { |
21 | |
22 | #ifndef LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
23 | constexpr size_t N_EXCEPTS = 9; |
24 | |
25 | constexpr fputil::ExceptValues<float16, N_EXCEPTS> TANF16_EXCEPTS{{ |
26 | // (input, RZ output, RU offset, RD offset, RN offset) |
27 | {0x2894, 0x2894, 1, 0, 1}, |
28 | {0x3091, 0x3099, 1, 0, 0}, |
29 | {0x3098, 0x30a0, 1, 0, 0}, |
30 | {0x55ed, 0x3911, 1, 0, 0}, |
31 | {0x607b, 0xc638, 0, 1, 1}, |
32 | {0x674e, 0x3b7d, 1, 0, 0}, |
33 | {0x6807, 0x4014, 1, 0, 1}, |
34 | {0x6f4d, 0xbe19, 0, 1, 1}, |
35 | {0x7330, 0xcb62, 0, 1, 0}, |
36 | }}; |
37 | #endif // !LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
38 | |
39 | LLVM_LIBC_FUNCTION(float16, tanf16, (float16 x)) { |
40 | using FPBits = fputil::FPBits<float16>; |
41 | FPBits xbits(x); |
42 | |
43 | uint16_t x_u = xbits.uintval(); |
44 | uint16_t x_abs = x_u & 0x7fff; |
45 | float xf = x; |
46 | |
47 | #ifndef LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
48 | bool x_sign = x_u >> 15; |
49 | // Handle exceptional values |
50 | if (auto r = TANF16_EXCEPTS.lookup_odd(x_abs, x_sign); |
51 | LIBC_UNLIKELY(r.has_value())) |
52 | return r.value(); |
53 | #endif // !LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
54 | |
55 | // |x| <= 0x1.d1p-5 |
56 | if (LIBC_UNLIKELY(x_abs <= 0x2b44)) { |
57 | // |x| <= 0x1.398p-11 |
58 | if (LIBC_UNLIKELY(x_abs <= 0x10e6)) { |
59 | // tan(+/-0) = +/-0 |
60 | if (LIBC_UNLIKELY(x_abs == 0)) |
61 | return x; |
62 | |
63 | int rounding = fputil::quick_get_round(); |
64 | |
65 | // Exhaustive tests show that, when: |
66 | // x > 0, and rounding upward or |
67 | // x < 0, and rounding downward then, |
68 | // tan(x) = x * 2^-11 + x |
69 | if ((xbits.is_pos() && rounding == FE_UPWARD) || |
70 | (xbits.is_neg() && rounding == FE_DOWNWARD)) |
71 | return fputil::cast<float16>(fputil::multiply_add(xf, 0x1.0p-11f, xf)); |
72 | return x; |
73 | } |
74 | |
75 | float xsq = xf * xf; |
76 | |
77 | // Degree-6 minimax odd polynomial of tan(x) generated by Sollya with: |
78 | // > P = fpminimax(tan(x)/x, [|0, 2, 4, 6|], [|1, SG...|], [0, pi/32]); |
79 | float result = fputil::polyeval(xsq, 0x1p0f, 0x1.555556p-2f, 0x1.110ee4p-3f, |
80 | 0x1.be80f6p-5f); |
81 | |
82 | return fputil::cast<float16>(xf * result); |
83 | } |
84 | |
85 | // tan(+/-inf) = NaN, and tan(NaN) = NaN |
86 | if (LIBC_UNLIKELY(x_abs >= 0x7c00)) { |
87 | if (xbits.is_signaling_nan()) { |
88 | fputil::raise_except_if_required(FE_INVALID); |
89 | return FPBits::quiet_nan().get_val(); |
90 | } |
91 | // x = +/-inf |
92 | if (x_abs == 0x7c00) { |
93 | fputil::set_errno_if_required(EDOM); |
94 | fputil::raise_except_if_required(FE_INVALID); |
95 | } |
96 | |
97 | return x + FPBits::quiet_nan().get_val(); |
98 | } |
99 | |
100 | // Range reduction: |
101 | // For |x| > pi/32, we perform range reduction as follows: |
102 | // Find k and y such that: |
103 | // x = (k + y) * pi/32; |
104 | // k is an integer, |y| < 0.5 |
105 | // |
106 | // This is done by performing: |
107 | // k = round(x * 32/pi) |
108 | // y = x * 32/pi - k |
109 | // |
110 | // Once k and y are computed, we then deduce the answer by the formula: |
111 | // tan(x) = sin(x) / cos(x) |
112 | // = (sin_y * cos_k + cos_y * sin_k) / (cos_y * cos_k - sin_y * sin_k) |
113 | float sin_k, cos_k, sin_y, cosm1_y; |
114 | sincosf16_eval(xf, sin_k, cos_k, sin_y, cosm1_y); |
115 | |
116 | // Note that, cosm1_y = cos_y - 1: |
117 | using fputil::multiply_add; |
118 | return fputil::cast<float16>( |
119 | multiply_add(sin_y, cos_k, multiply_add(cosm1_y, sin_k, sin_k)) / |
120 | multiply_add(sin_y, -sin_k, multiply_add(cosm1_y, cos_k, cos_k))); |
121 | } |
122 | |
123 | } // namespace LIBC_NAMESPACE_DECL |
124 | |