1 | //===-- Memory utils --------------------------------------------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #ifndef LLVM_LIBC_SRC_STRING_MEMORY_UTILS_UTILS_H |
10 | #define LLVM_LIBC_SRC_STRING_MEMORY_UTILS_UTILS_H |
11 | |
12 | #include "src/__support/CPP/bit.h" |
13 | #include "src/__support/CPP/cstddef.h" |
14 | #include "src/__support/CPP/type_traits.h" |
15 | #include "src/__support/endian.h" |
16 | #include "src/__support/macros/attributes.h" // LIBC_INLINE |
17 | #include "src/__support/macros/properties/architectures.h" |
18 | |
19 | #include <stddef.h> // size_t |
20 | #include <stdint.h> // intptr_t / uintptr_t / INT32_MAX / INT32_MIN |
21 | |
22 | namespace LIBC_NAMESPACE { |
23 | |
24 | // Returns the number of bytes to substract from ptr to get to the previous |
25 | // multiple of alignment. If ptr is already aligned returns 0. |
26 | template <size_t alignment> |
27 | LIBC_INLINE uintptr_t distance_to_align_down(const void *ptr) { |
28 | static_assert(cpp::has_single_bit(value: alignment), |
29 | "alignment must be a power of 2" ); |
30 | return reinterpret_cast<uintptr_t>(ptr) & (alignment - 1U); |
31 | } |
32 | |
33 | // Returns the number of bytes to add to ptr to get to the next multiple of |
34 | // alignment. If ptr is already aligned returns 0. |
35 | template <size_t alignment> |
36 | LIBC_INLINE uintptr_t distance_to_align_up(const void *ptr) { |
37 | static_assert(cpp::has_single_bit(value: alignment), |
38 | "alignment must be a power of 2" ); |
39 | // The logic is not straightforward and involves unsigned modulo arithmetic |
40 | // but the generated code is as fast as it can be. |
41 | return -reinterpret_cast<uintptr_t>(ptr) & (alignment - 1U); |
42 | } |
43 | |
44 | // Returns the number of bytes to add to ptr to get to the next multiple of |
45 | // alignment. If ptr is already aligned returns alignment. |
46 | template <size_t alignment> |
47 | LIBC_INLINE uintptr_t distance_to_next_aligned(const void *ptr) { |
48 | return alignment - distance_to_align_down<alignment>(ptr); |
49 | } |
50 | |
51 | // Returns the same pointer but notifies the compiler that it is aligned. |
52 | template <size_t alignment, typename T> LIBC_INLINE T *assume_aligned(T *ptr) { |
53 | return reinterpret_cast<T *>(__builtin_assume_aligned(ptr, alignment)); |
54 | } |
55 | |
56 | // Returns true iff memory regions [p1, p1 + size] and [p2, p2 + size] are |
57 | // disjoint. |
58 | LIBC_INLINE bool is_disjoint(const void *p1, const void *p2, size_t size) { |
59 | const ptrdiff_t sdiff = |
60 | static_cast<const char *>(p1) - static_cast<const char *>(p2); |
61 | // We use bit_cast to make sure that we don't run into accidental integer |
62 | // promotion. Notably the unary minus operator goes through integer promotion |
63 | // at the expression level. We assume arithmetic to be two's complement (i.e., |
64 | // bit_cast has the same behavior as a regular signed to unsigned cast). |
65 | static_assert(-1 == ~0, "not 2's complement" ); |
66 | const size_t udiff = cpp::bit_cast<size_t>(from: sdiff); |
67 | // Integer promition would be caught here. |
68 | const size_t neg_udiff = cpp::bit_cast<size_t>(from: -sdiff); |
69 | // This is expected to compile a conditional move. |
70 | return sdiff >= 0 ? size <= udiff : size <= neg_udiff; |
71 | } |
72 | |
73 | #if __has_builtin(__builtin_memcpy_inline) |
74 | #define LLVM_LIBC_HAS_BUILTIN_MEMCPY_INLINE |
75 | #endif |
76 | |
77 | #if __has_builtin(__builtin_memset_inline) |
78 | #define LLVM_LIBC_HAS_BUILTIN_MEMSET_INLINE |
79 | #endif |
80 | |
81 | // Performs a constant count copy. |
82 | template <size_t Size> |
83 | LIBC_INLINE void memcpy_inline(void *__restrict dst, |
84 | const void *__restrict src) { |
85 | #ifdef LLVM_LIBC_HAS_BUILTIN_MEMCPY_INLINE |
86 | __builtin_memcpy_inline(dst, src, Size); |
87 | #else |
88 | // In memory functions `memcpy_inline` is instantiated several times with |
89 | // different value of the Size parameter. This doesn't play well with GCC's |
90 | // Value Range Analysis that wrongly detects out of bounds accesses. We |
91 | // disable these warnings for the purpose of this function. |
92 | #pragma GCC diagnostic push |
93 | #pragma GCC diagnostic ignored "-Warray-bounds" |
94 | #pragma GCC diagnostic ignored "-Wstringop-overread" |
95 | #pragma GCC diagnostic ignored "-Wstringop-overflow" |
96 | for (size_t i = 0; i < Size; ++i) |
97 | static_cast<char *>(dst)[i] = static_cast<const char *>(src)[i]; |
98 | #pragma GCC diagnostic pop |
99 | #endif |
100 | } |
101 | |
102 | using Ptr = cpp::byte *; // Pointer to raw data. |
103 | using CPtr = const cpp::byte *; // Const pointer to raw data. |
104 | |
105 | // This type makes sure that we don't accidentally promote an integral type to |
106 | // another one. It is only constructible from the exact T type. |
107 | template <typename T> struct StrictIntegralType { |
108 | static_assert(cpp::is_integral_v<T>); |
109 | |
110 | // Can only be constructed from a T. |
111 | template <typename U, cpp::enable_if_t<cpp::is_same_v<U, T>, bool> = 0> |
112 | LIBC_INLINE StrictIntegralType(U value) : value(value) {} |
113 | |
114 | // Allows using the type in an if statement. |
115 | LIBC_INLINE explicit operator bool() const { return value; } |
116 | |
117 | // If type is unsigned (bcmp) we allow bitwise OR operations. |
118 | LIBC_INLINE StrictIntegralType |
119 | operator|(const StrictIntegralType &Rhs) const { |
120 | static_assert(!cpp::is_signed_v<T>); |
121 | return value | Rhs.value; |
122 | } |
123 | |
124 | // For interation with the C API we allow explicit conversion back to the |
125 | // `int` type. |
126 | LIBC_INLINE explicit operator int() const { |
127 | // bit_cast makes sure that T and int have the same size. |
128 | return cpp::bit_cast<int>(value); |
129 | } |
130 | |
131 | // Helper to get the zero value. |
132 | LIBC_INLINE static constexpr StrictIntegralType zero() { return {T(0)}; } |
133 | LIBC_INLINE static constexpr StrictIntegralType nonzero() { return {T(1)}; } |
134 | |
135 | private: |
136 | T value; |
137 | }; |
138 | |
139 | using MemcmpReturnType = StrictIntegralType<int32_t>; |
140 | using BcmpReturnType = StrictIntegralType<uint32_t>; |
141 | |
142 | // This implements the semantic of 'memcmp' returning a negative value when 'a' |
143 | // is less than 'b', '0' when 'a' equals 'b' and a positive number otherwise. |
144 | LIBC_INLINE MemcmpReturnType cmp_uint32_t(uint32_t a, uint32_t b) { |
145 | // We perform the difference as an int64_t. |
146 | const int64_t diff = static_cast<int64_t>(a) - static_cast<int64_t>(b); |
147 | // For the int64_t to int32_t conversion we want the following properties: |
148 | // - int32_t[31:31] == 1 iff diff < 0 |
149 | // - int32_t[31:0] == 0 iff diff == 0 |
150 | |
151 | // We also observe that: |
152 | // - When diff < 0: diff[63:32] == 0xffffffff and diff[31:0] != 0 |
153 | // - When diff > 0: diff[63:32] == 0 and diff[31:0] != 0 |
154 | // - When diff == 0: diff[63:32] == 0 and diff[31:0] == 0 |
155 | // - https://godbolt.org/z/8W7qWP6e5 |
156 | // - This implies that we can only look at diff[32:32] for determining the |
157 | // sign bit for the returned int32_t. |
158 | |
159 | // So, we do the following: |
160 | // - int32_t[31:31] = diff[32:32] |
161 | // - int32_t[30:0] = diff[31:0] == 0 ? 0 : non-0. |
162 | |
163 | // And, we can achieve the above by the expression below. We could have also |
164 | // used (diff64 >> 1) | (diff64 & 0x1) but (diff64 & 0xFFFF) is faster than |
165 | // (diff64 & 0x1). https://godbolt.org/z/j3b569rW1 |
166 | return static_cast<int32_t>((diff >> 1) | (diff & 0xFFFF)); |
167 | } |
168 | |
169 | // Returns a negative value if 'a' is less than 'b' and a positive value |
170 | // otherwise. This implements the semantic of 'memcmp' when we know that 'a' and |
171 | // 'b' differ. |
172 | LIBC_INLINE MemcmpReturnType cmp_neq_uint64_t(uint64_t a, uint64_t b) { |
173 | #if defined(LIBC_TARGET_ARCH_IS_X86_64) |
174 | // On x86, the best strategy would be to use 'INT32_MAX' and 'INT32_MIN' for |
175 | // positive and negative value respectively as they are one value apart: |
176 | // xor eax, eax <- free |
177 | // cmp rdi, rsi <- serializing |
178 | // adc eax, 2147483647 <- serializing |
179 | |
180 | // Unfortunately we found instances of client code that negate the result of |
181 | // 'memcmp' to reverse ordering. Because signed integers are not symmetric |
182 | // (e.g., int8_t ∈ [-128, 127]) returning 'INT_MIN' would break such code as |
183 | // `-INT_MIN` is not representable as an int32_t. |
184 | |
185 | // As a consequence, we use 5 and -5 which is still OK nice in terms of |
186 | // latency. |
187 | // cmp rdi, rsi <- serializing |
188 | // mov ecx, -5 <- can be done in parallel |
189 | // mov eax, 5 <- can be done in parallel |
190 | // cmovb eax, ecx <- serializing |
191 | static constexpr int32_t POSITIVE = 5; |
192 | static constexpr int32_t NEGATIVE = -5; |
193 | #else |
194 | // On RISC-V we simply use '1' and '-1' as it leads to branchless code. |
195 | // On ARMv8, both strategies lead to the same performance. |
196 | static constexpr int32_t POSITIVE = 1; |
197 | static constexpr int32_t NEGATIVE = -1; |
198 | #endif |
199 | static_assert(POSITIVE > 0); |
200 | static_assert(NEGATIVE < 0); |
201 | return a < b ? NEGATIVE : POSITIVE; |
202 | } |
203 | |
204 | // Loads bytes from memory (possibly unaligned) and materializes them as |
205 | // type. |
206 | template <typename T> LIBC_INLINE T load(CPtr ptr) { |
207 | T out; |
208 | memcpy_inline<sizeof(T)>(&out, ptr); |
209 | return out; |
210 | } |
211 | |
212 | // Stores a value of type T in memory (possibly unaligned). |
213 | template <typename T> LIBC_INLINE void store(Ptr ptr, T value) { |
214 | memcpy_inline<sizeof(T)>(ptr, &value); |
215 | } |
216 | |
217 | // On architectures that do not allow for unaligned access we perform several |
218 | // aligned accesses and recombine them through shifts and logicals operations. |
219 | // For instance, if we know that the pointer is 2-byte aligned we can decompose |
220 | // a 64-bit operation into four 16-bit operations. |
221 | |
222 | // Loads a 'ValueType' by decomposing it into several loads that are assumed to |
223 | // be aligned. |
224 | // e.g. load_aligned<uint32_t, uint16_t, uint16_t>(ptr); |
225 | template <typename ValueType, typename T, typename... TS> |
226 | LIBC_INLINE ValueType load_aligned(CPtr src) { |
227 | static_assert(sizeof(ValueType) >= (sizeof(T) + ... + sizeof(TS))); |
228 | const ValueType value = load<T>(assume_aligned<sizeof(T)>(src)); |
229 | if constexpr (sizeof...(TS) > 0) { |
230 | constexpr size_t SHIFT = sizeof(T) * 8; |
231 | const ValueType next = load_aligned<ValueType, TS...>(src + sizeof(T)); |
232 | if constexpr (Endian::IS_LITTLE) |
233 | return value | (next << SHIFT); |
234 | else if constexpr (Endian::IS_BIG) |
235 | return (value << SHIFT) | next; |
236 | else |
237 | static_assert(cpp::always_false<T>, "Invalid endianness" ); |
238 | } else { |
239 | return value; |
240 | } |
241 | } |
242 | |
243 | // Alias for loading a 'uint32_t'. |
244 | template <typename T, typename... TS> |
245 | LIBC_INLINE auto load32_aligned(CPtr src, size_t offset) { |
246 | static_assert((sizeof(T) + ... + sizeof(TS)) == sizeof(uint32_t)); |
247 | return load_aligned<uint32_t, T, TS...>(src + offset); |
248 | } |
249 | |
250 | // Alias for loading a 'uint64_t'. |
251 | template <typename T, typename... TS> |
252 | LIBC_INLINE auto load64_aligned(CPtr src, size_t offset) { |
253 | static_assert((sizeof(T) + ... + sizeof(TS)) == sizeof(uint64_t)); |
254 | return load_aligned<uint64_t, T, TS...>(src + offset); |
255 | } |
256 | |
257 | // Stores a 'ValueType' by decomposing it into several stores that are assumed |
258 | // to be aligned. |
259 | // e.g. store_aligned<uint32_t, uint16_t, uint16_t>(value, ptr); |
260 | template <typename ValueType, typename T, typename... TS> |
261 | LIBC_INLINE void store_aligned(ValueType value, Ptr dst) { |
262 | static_assert(sizeof(ValueType) >= (sizeof(T) + ... + sizeof(TS))); |
263 | constexpr size_t SHIFT = sizeof(T) * 8; |
264 | if constexpr (Endian::IS_LITTLE) { |
265 | store<T>(assume_aligned<sizeof(T)>(dst), value & ~T(0)); |
266 | if constexpr (sizeof...(TS) > 0) |
267 | store_aligned<ValueType, TS...>(value >> SHIFT, dst + sizeof(T)); |
268 | } else if constexpr (Endian::IS_BIG) { |
269 | constexpr size_t OFFSET = (0 + ... + sizeof(TS)); |
270 | store<T>(assume_aligned<sizeof(T)>(dst + OFFSET), value & ~T(0)); |
271 | if constexpr (sizeof...(TS) > 0) |
272 | store_aligned<ValueType, TS...>(value >> SHIFT, dst); |
273 | } else { |
274 | static_assert(cpp::always_false<T>, "Invalid endianness" ); |
275 | } |
276 | } |
277 | |
278 | // Alias for storing a 'uint32_t'. |
279 | template <typename T, typename... TS> |
280 | LIBC_INLINE void store32_aligned(uint32_t value, Ptr dst, size_t offset) { |
281 | static_assert((sizeof(T) + ... + sizeof(TS)) == sizeof(uint32_t)); |
282 | store_aligned<uint32_t, T, TS...>(value, dst + offset); |
283 | } |
284 | |
285 | // Alias for storing a 'uint64_t'. |
286 | template <typename T, typename... TS> |
287 | LIBC_INLINE void store64_aligned(uint64_t value, Ptr dst, size_t offset) { |
288 | static_assert((sizeof(T) + ... + sizeof(TS)) == sizeof(uint64_t)); |
289 | store_aligned<uint64_t, T, TS...>(value, dst + offset); |
290 | } |
291 | |
292 | // Advances the pointers p1 and p2 by offset bytes and decrease count by the |
293 | // same amount. |
294 | template <typename T1, typename T2> |
295 | LIBC_INLINE void adjust(ptrdiff_t offset, T1 *__restrict &p1, |
296 | T2 *__restrict &p2, size_t &count) { |
297 | p1 += offset; |
298 | p2 += offset; |
299 | count -= offset; |
300 | } |
301 | |
302 | // Advances p1 and p2 so p1 gets aligned to the next SIZE bytes boundary |
303 | // and decrease count by the same amount. |
304 | // We make sure the compiler knows about the adjusted pointer alignment. |
305 | template <size_t SIZE, typename T1, typename T2> |
306 | void align_p1_to_next_boundary(T1 *__restrict &p1, T2 *__restrict &p2, |
307 | size_t &count) { |
308 | adjust(distance_to_next_aligned<SIZE>(p1), p1, p2, count); |
309 | p1 = assume_aligned<SIZE>(p1); |
310 | } |
311 | |
312 | // Same as align_p1_to_next_boundary above but with a single pointer instead. |
313 | template <size_t SIZE, typename T> |
314 | LIBC_INLINE void align_to_next_boundary(T *&p1, size_t &count) { |
315 | const T *dummy = p1; |
316 | align_p1_to_next_boundary<SIZE>(p1, dummy, count); |
317 | } |
318 | |
319 | // An enum class that discriminates between the first and second pointer. |
320 | enum class Arg { P1, P2, Dst = P1, Src = P2 }; |
321 | |
322 | // Same as align_p1_to_next_boundary but allows for aligning p2 instead of p1. |
323 | // Precondition: &p1 != &p2 |
324 | template <size_t SIZE, Arg AlignOn, typename T1, typename T2> |
325 | LIBC_INLINE void align_to_next_boundary(T1 *__restrict &p1, T2 *__restrict &p2, |
326 | size_t &count) { |
327 | if constexpr (AlignOn == Arg::P1) |
328 | align_p1_to_next_boundary<SIZE>(p1, p2, count); |
329 | else if constexpr (AlignOn == Arg::P2) |
330 | align_p1_to_next_boundary<SIZE>(p2, p1, count); // swapping p1 and p2. |
331 | else |
332 | static_assert(cpp::always_false<T1>, |
333 | "AlignOn must be either Arg::P1 or Arg::P2" ); |
334 | } |
335 | |
336 | template <size_t SIZE> struct AlignHelper { |
337 | LIBC_INLINE AlignHelper(CPtr ptr) |
338 | : offset(distance_to_next_aligned<SIZE>(ptr)) {} |
339 | |
340 | LIBC_INLINE bool not_aligned() const { return offset != SIZE; } |
341 | uintptr_t offset; |
342 | }; |
343 | |
344 | LIBC_INLINE void prefetch_for_write(CPtr dst) { |
345 | __builtin_prefetch(dst, /*write*/ 1, /*max locality*/ 3); |
346 | } |
347 | |
348 | LIBC_INLINE void prefetch_to_local_cache(CPtr dst) { |
349 | __builtin_prefetch(dst, /*read*/ 0, /*max locality*/ 3); |
350 | } |
351 | |
352 | } // namespace LIBC_NAMESPACE |
353 | |
354 | #endif // LLVM_LIBC_SRC_STRING_MEMORY_UTILS_UTILS_H |
355 | |