| 1 | //===-- Unittests for the UInt integer class ------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "src/__support/CPP/optional.h" |
| 10 | #include "src/__support/big_int.h" |
| 11 | #include "src/__support/integer_literals.h" // parse_unsigned_bigint |
| 12 | #include "src/__support/macros/config.h" |
| 13 | #include "src/__support/macros/properties/types.h" // LIBC_TYPES_HAS_INT128 |
| 14 | |
| 15 | #include "hdr/math_macros.h" // HUGE_VALF, HUGE_VALF |
| 16 | #include "test/UnitTest/Test.h" |
| 17 | |
| 18 | namespace LIBC_NAMESPACE_DECL { |
| 19 | |
| 20 | enum Value { ZERO, ONE, TWO, MIN, MAX }; |
| 21 | |
| 22 | template <typename T> auto create(Value value) { |
| 23 | switch (value) { |
| 24 | case ZERO: |
| 25 | return T(0); |
| 26 | case ONE: |
| 27 | return T(1); |
| 28 | case TWO: |
| 29 | return T(2); |
| 30 | case MIN: |
| 31 | return T::min(); |
| 32 | case MAX: |
| 33 | return T::max(); |
| 34 | } |
| 35 | __builtin_unreachable(); |
| 36 | } |
| 37 | |
| 38 | using Types = testing::TypeList< // |
| 39 | #ifdef LIBC_TYPES_HAS_INT64 |
| 40 | BigInt<64, false, uint64_t>, // 64-bits unsigned (1 x uint64_t) |
| 41 | BigInt<64, true, uint64_t>, // 64-bits signed (1 x uint64_t) |
| 42 | #endif |
| 43 | #ifdef LIBC_TYPES_HAS_INT128 |
| 44 | BigInt<128, false, __uint128_t>, // 128-bits unsigned (1 x __uint128_t) |
| 45 | BigInt<128, true, __uint128_t>, // 128-bits signed (1 x __uint128_t) |
| 46 | #endif |
| 47 | BigInt<16, false, uint16_t>, // 16-bits unsigned (1 x uint16_t) |
| 48 | BigInt<16, true, uint16_t>, // 16-bits signed (1 x uint16_t) |
| 49 | BigInt<64, false, uint16_t>, // 64-bits unsigned (4 x uint16_t) |
| 50 | BigInt<64, true, uint16_t> // 64-bits signed (4 x uint16_t) |
| 51 | >; |
| 52 | |
| 53 | #define ASSERT_SAME(A, B) ASSERT_TRUE((A) == (B)) |
| 54 | |
| 55 | TYPED_TEST(LlvmLibcUIntClassTest, Additions, Types) { |
| 56 | ASSERT_SAME(create<T>(ZERO) + create<T>(ZERO), create<T>(ZERO)); |
| 57 | ASSERT_SAME(create<T>(ONE) + create<T>(ZERO), create<T>(ONE)); |
| 58 | ASSERT_SAME(create<T>(ZERO) + create<T>(ONE), create<T>(ONE)); |
| 59 | ASSERT_SAME(create<T>(ONE) + create<T>(ONE), create<T>(TWO)); |
| 60 | // 2's complement addition works for signed and unsigned types. |
| 61 | // - unsigned : 0xff + 0x01 = 0x00 (255 + 1 = 0) |
| 62 | // - signed : 0xef + 0x01 = 0xf0 (127 + 1 = -128) |
| 63 | ASSERT_SAME(create<T>(MAX) + create<T>(ONE), create<T>(MIN)); |
| 64 | } |
| 65 | |
| 66 | TYPED_TEST(LlvmLibcUIntClassTest, Subtraction, Types) { |
| 67 | ASSERT_SAME(create<T>(ZERO) - create<T>(ZERO), create<T>(ZERO)); |
| 68 | ASSERT_SAME(create<T>(ONE) - create<T>(ONE), create<T>(ZERO)); |
| 69 | ASSERT_SAME(create<T>(ONE) - create<T>(ZERO), create<T>(ONE)); |
| 70 | // 2's complement subtraction works for signed and unsigned types. |
| 71 | // - unsigned : 0x00 - 0x01 = 0xff ( 0 - 1 = 255) |
| 72 | // - signed : 0xf0 - 0x01 = 0xef (-128 - 1 = 127) |
| 73 | ASSERT_SAME(create<T>(MIN) - create<T>(ONE), create<T>(MAX)); |
| 74 | } |
| 75 | |
| 76 | TYPED_TEST(LlvmLibcUIntClassTest, Multiplication, Types) { |
| 77 | ASSERT_SAME(create<T>(ZERO) * create<T>(ZERO), create<T>(ZERO)); |
| 78 | ASSERT_SAME(create<T>(ZERO) * create<T>(ONE), create<T>(ZERO)); |
| 79 | ASSERT_SAME(create<T>(ONE) * create<T>(ZERO), create<T>(ZERO)); |
| 80 | ASSERT_SAME(create<T>(ONE) * create<T>(ONE), create<T>(ONE)); |
| 81 | ASSERT_SAME(create<T>(ONE) * create<T>(TWO), create<T>(TWO)); |
| 82 | ASSERT_SAME(create<T>(TWO) * create<T>(ONE), create<T>(TWO)); |
| 83 | // - unsigned : 0xff x 0xff = 0x01 (mod 0xff) |
| 84 | // - signed : 0xef x 0xef = 0x01 (mod 0xff) |
| 85 | ASSERT_SAME(create<T>(MAX) * create<T>(MAX), create<T>(ONE)); |
| 86 | } |
| 87 | |
| 88 | template <typename T> void print(const char *msg, T value) { |
| 89 | testing::tlog << msg; |
| 90 | IntegerToString<T, radix::Hex> buffer(value); |
| 91 | testing::tlog << buffer.view() << "\n" ; |
| 92 | } |
| 93 | |
| 94 | TEST(LlvmLibcUIntClassTest, SignedAddSub) { |
| 95 | // Computations performed by https://www.wolframalpha.com/ |
| 96 | using T = BigInt<128, true, uint32_t>; |
| 97 | const T a = parse_bigint<T>("1927508279017230597" ); |
| 98 | const T b = parse_bigint<T>("278789278723478925" ); |
| 99 | const T s = parse_bigint<T>("2206297557740709522" ); |
| 100 | // Addition |
| 101 | ASSERT_SAME(a + b, s); |
| 102 | ASSERT_SAME(b + a, s); // commutative |
| 103 | // Subtraction |
| 104 | ASSERT_SAME(a - s, -b); |
| 105 | ASSERT_SAME(s - a, b); |
| 106 | } |
| 107 | |
| 108 | TEST(LlvmLibcUIntClassTest, SignedMulDiv) { |
| 109 | // Computations performed by https://www.wolframalpha.com/ |
| 110 | using T = BigInt<128, true, uint16_t>; |
| 111 | struct { |
| 112 | const char *a; |
| 113 | const char *b; |
| 114 | const char *mul; |
| 115 | } const test_cases[] = {{.a: "-4" , .b: "3" , .mul: "-12" }, |
| 116 | {.a: "-3" , .b: "-3" , .mul: "9" }, |
| 117 | {.a: "1927508279017230597" , .b: "278789278723478925" , |
| 118 | .mul: "537368642840747885329125014794668225" }}; |
| 119 | for (auto tc : test_cases) { |
| 120 | const T a = parse_bigint<T>(tc.a); |
| 121 | const T b = parse_bigint<T>(tc.b); |
| 122 | const T mul = parse_bigint<T>(tc.mul); |
| 123 | // Multiplication |
| 124 | ASSERT_SAME(a * b, mul); |
| 125 | ASSERT_SAME(b * a, mul); // commutative |
| 126 | ASSERT_SAME(a * -b, -mul); // sign |
| 127 | ASSERT_SAME(-a * b, -mul); // sign |
| 128 | ASSERT_SAME(-a * -b, mul); // sign |
| 129 | // Division |
| 130 | ASSERT_SAME(mul / a, b); |
| 131 | ASSERT_SAME(mul / b, a); |
| 132 | ASSERT_SAME(-mul / a, -b); // sign |
| 133 | ASSERT_SAME(mul / -a, -b); // sign |
| 134 | ASSERT_SAME(-mul / -a, b); // sign |
| 135 | } |
| 136 | } |
| 137 | |
| 138 | TYPED_TEST(LlvmLibcUIntClassTest, Division, Types) { |
| 139 | ASSERT_SAME(create<T>(ZERO) / create<T>(ONE), create<T>(ZERO)); |
| 140 | ASSERT_SAME(create<T>(MAX) / create<T>(ONE), create<T>(MAX)); |
| 141 | ASSERT_SAME(create<T>(MAX) / create<T>(MAX), create<T>(ONE)); |
| 142 | ASSERT_SAME(create<T>(ONE) / create<T>(ONE), create<T>(ONE)); |
| 143 | if constexpr (T::SIGNED) { |
| 144 | // Special case found by fuzzing. |
| 145 | ASSERT_SAME(create<T>(MIN) / create<T>(MIN), create<T>(ONE)); |
| 146 | } |
| 147 | // - unsigned : 0xff / 0x02 = 0x7f |
| 148 | // - signed : 0xef / 0x02 = 0x77 |
| 149 | ASSERT_SAME(create<T>(MAX) / create<T>(TWO), (create<T>(MAX) >> 1)); |
| 150 | |
| 151 | using word_type = typename T::word_type; |
| 152 | const T zero_one_repeated = T::all_ones() / T(0xff); |
| 153 | const word_type pattern = word_type(~0) / word_type(0xff); |
| 154 | for (const word_type part : zero_one_repeated.val) { |
| 155 | if constexpr (T::SIGNED == false) { |
| 156 | EXPECT_EQ(part, pattern); |
| 157 | } |
| 158 | } |
| 159 | } |
| 160 | |
| 161 | TYPED_TEST(LlvmLibcUIntClassTest, is_neg, Types) { |
| 162 | EXPECT_FALSE(create<T>(ZERO).is_neg()); |
| 163 | EXPECT_FALSE(create<T>(ONE).is_neg()); |
| 164 | EXPECT_FALSE(create<T>(TWO).is_neg()); |
| 165 | EXPECT_EQ(create<T>(MIN).is_neg(), T::SIGNED); |
| 166 | EXPECT_FALSE(create<T>(MAX).is_neg()); |
| 167 | } |
| 168 | |
| 169 | TYPED_TEST(LlvmLibcUIntClassTest, Masks, Types) { |
| 170 | if constexpr (!T::SIGNED) { |
| 171 | constexpr size_t BITS = T::BITS; |
| 172 | // mask_trailing_ones |
| 173 | ASSERT_SAME((mask_trailing_ones<T, 0>()), T::zero()); |
| 174 | ASSERT_SAME((mask_trailing_ones<T, 1>()), T::one()); |
| 175 | ASSERT_SAME((mask_trailing_ones<T, BITS - 1>()), T::all_ones() >> 1); |
| 176 | ASSERT_SAME((mask_trailing_ones<T, BITS>()), T::all_ones()); |
| 177 | // mask_leading_ones |
| 178 | ASSERT_SAME((mask_leading_ones<T, 0>()), T::zero()); |
| 179 | ASSERT_SAME((mask_leading_ones<T, 1>()), T::one() << (BITS - 1)); |
| 180 | ASSERT_SAME((mask_leading_ones<T, BITS - 1>()), T::all_ones() - T::one()); |
| 181 | ASSERT_SAME((mask_leading_ones<T, BITS>()), T::all_ones()); |
| 182 | // mask_trailing_zeros |
| 183 | ASSERT_SAME((mask_trailing_zeros<T, 0>()), T::all_ones()); |
| 184 | ASSERT_SAME((mask_trailing_zeros<T, 1>()), T::all_ones() - T::one()); |
| 185 | ASSERT_SAME((mask_trailing_zeros<T, BITS - 1>()), T::one() << (BITS - 1)); |
| 186 | ASSERT_SAME((mask_trailing_zeros<T, BITS>()), T::zero()); |
| 187 | // mask_trailing_zeros |
| 188 | ASSERT_SAME((mask_leading_zeros<T, 0>()), T::all_ones()); |
| 189 | ASSERT_SAME((mask_leading_zeros<T, 1>()), T::all_ones() >> 1); |
| 190 | ASSERT_SAME((mask_leading_zeros<T, BITS - 1>()), T::one()); |
| 191 | ASSERT_SAME((mask_leading_zeros<T, BITS>()), T::zero()); |
| 192 | } |
| 193 | } |
| 194 | |
| 195 | TYPED_TEST(LlvmLibcUIntClassTest, CountBits, Types) { |
| 196 | if constexpr (!T::SIGNED) { |
| 197 | for (size_t i = 0; i < T::BITS; ++i) { |
| 198 | const auto l_one = T::all_ones() << i; // 0b111...000 |
| 199 | const auto r_one = T::all_ones() >> i; // 0b000...111 |
| 200 | const int zeros = static_cast<int>(i); |
| 201 | const int ones = static_cast<int>(T::BITS - static_cast<size_t>(zeros)); |
| 202 | ASSERT_EQ(cpp::countr_one(r_one), ones); |
| 203 | ASSERT_EQ(cpp::countl_one(l_one), ones); |
| 204 | ASSERT_EQ(cpp::countr_zero(l_one), zeros); |
| 205 | ASSERT_EQ(cpp::countl_zero(r_one), zeros); |
| 206 | } |
| 207 | } |
| 208 | } |
| 209 | |
| 210 | using LL_UInt16 = UInt<16>; |
| 211 | using LL_UInt32 = UInt<32>; |
| 212 | using LL_UInt64 = UInt<64>; |
| 213 | // We want to test UInt<128> explicitly. So, for |
| 214 | // convenience, we use a sugar which does not conflict with the UInt128 type |
| 215 | // which can resolve to __uint128_t if the platform has it. |
| 216 | using LL_UInt128 = UInt<128>; |
| 217 | using LL_UInt192 = UInt<192>; |
| 218 | using LL_UInt256 = UInt<256>; |
| 219 | using LL_UInt320 = UInt<320>; |
| 220 | using LL_UInt512 = UInt<512>; |
| 221 | using LL_UInt1024 = UInt<1024>; |
| 222 | |
| 223 | using LL_Int128 = Int<128>; |
| 224 | using LL_Int192 = Int<192>; |
| 225 | |
| 226 | TEST(LlvmLibcUIntClassTest, BitCastToFromDouble) { |
| 227 | static_assert(cpp::is_trivially_copyable<LL_UInt64>::value); |
| 228 | static_assert(sizeof(LL_UInt64) == sizeof(double)); |
| 229 | const double inf = HUGE_VAL; |
| 230 | const double max = DBL_MAX; |
| 231 | const double array[] = {0.0, 0.1, 1.0, max, inf}; |
| 232 | for (double value : array) { |
| 233 | LL_UInt64 back = cpp::bit_cast<LL_UInt64>(value); |
| 234 | double forth = cpp::bit_cast<double>(back); |
| 235 | EXPECT_TRUE(value == forth); |
| 236 | } |
| 237 | } |
| 238 | |
| 239 | #ifdef LIBC_TYPES_HAS_INT128 |
| 240 | TEST(LlvmLibcUIntClassTest, BitCastToFromNativeUint128) { |
| 241 | static_assert(cpp::is_trivially_copyable<LL_UInt128>::value); |
| 242 | static_assert(sizeof(LL_UInt128) == sizeof(__uint128_t)); |
| 243 | const __uint128_t array[] = {0, 1, ~__uint128_t(0)}; |
| 244 | for (__uint128_t value : array) { |
| 245 | LL_UInt128 back = cpp::bit_cast<LL_UInt128>(value); |
| 246 | __uint128_t forth = cpp::bit_cast<__uint128_t>(back); |
| 247 | EXPECT_TRUE(value == forth); |
| 248 | } |
| 249 | } |
| 250 | #endif // LIBC_TYPES_HAS_INT128 |
| 251 | |
| 252 | #ifdef LIBC_TYPES_HAS_FLOAT128 |
| 253 | TEST(LlvmLibcUIntClassTest, BitCastToFromNativeFloat128) { |
| 254 | static_assert(cpp::is_trivially_copyable<LL_UInt128>::value); |
| 255 | static_assert(sizeof(LL_UInt128) == sizeof(float128)); |
| 256 | const float128 array[] = {0, 0.1, 1}; |
| 257 | for (float128 value : array) { |
| 258 | LL_UInt128 back = cpp::bit_cast<LL_UInt128>(value); |
| 259 | float128 forth = cpp::bit_cast<float128>(back); |
| 260 | EXPECT_TRUE(value == forth); |
| 261 | } |
| 262 | } |
| 263 | #endif // LIBC_TYPES_HAS_FLOAT128 |
| 264 | |
| 265 | #ifdef LIBC_TYPES_HAS_FLOAT16 |
| 266 | TEST(LlvmLibcUIntClassTest, BitCastToFromNativeFloat16) { |
| 267 | static_assert(cpp::is_trivially_copyable<LL_UInt16>::value); |
| 268 | static_assert(sizeof(LL_UInt16) == sizeof(float16)); |
| 269 | const float16 array[] = { |
| 270 | static_cast<float16>(0.0), |
| 271 | static_cast<float16>(0.1), |
| 272 | static_cast<float16>(1.0), |
| 273 | }; |
| 274 | for (float16 value : array) { |
| 275 | LL_UInt16 back = cpp::bit_cast<LL_UInt16>(value); |
| 276 | float16 forth = cpp::bit_cast<float16>(back); |
| 277 | EXPECT_TRUE(value == forth); |
| 278 | } |
| 279 | } |
| 280 | #endif // LIBC_TYPES_HAS_FLOAT16 |
| 281 | |
| 282 | TEST(LlvmLibcUIntClassTest, BasicInit) { |
| 283 | LL_UInt128 half_val(12345); |
| 284 | LL_UInt128 full_val({12345, 67890}); |
| 285 | ASSERT_TRUE(half_val != full_val); |
| 286 | } |
| 287 | |
| 288 | TEST(LlvmLibcUIntClassTest, AdditionTests) { |
| 289 | LL_UInt128 val1(12345); |
| 290 | LL_UInt128 val2(54321); |
| 291 | LL_UInt128 result1(66666); |
| 292 | EXPECT_EQ(val1 + val2, result1); |
| 293 | EXPECT_EQ((val1 + val2), (val2 + val1)); // addition is commutative |
| 294 | |
| 295 | // Test overflow |
| 296 | LL_UInt128 val3({0xf000000000000001, 0}); |
| 297 | LL_UInt128 val4({0x100000000000000f, 0}); |
| 298 | LL_UInt128 result2({0x10, 0x1}); |
| 299 | EXPECT_EQ(val3 + val4, result2); |
| 300 | EXPECT_EQ(val3 + val4, val4 + val3); |
| 301 | |
| 302 | // Test overflow |
| 303 | LL_UInt128 val5({0x0123456789abcdef, 0xfedcba9876543210}); |
| 304 | LL_UInt128 val6({0x1111222233334444, 0xaaaabbbbccccdddd}); |
| 305 | LL_UInt128 result3({0x12346789bcdf1233, 0xa987765443210fed}); |
| 306 | EXPECT_EQ(val5 + val6, result3); |
| 307 | EXPECT_EQ(val5 + val6, val6 + val5); |
| 308 | |
| 309 | // Test 192-bit addition |
| 310 | LL_UInt192 val7({0x0123456789abcdef, 0xfedcba9876543210, 0xfedcba9889abcdef}); |
| 311 | LL_UInt192 val8({0x1111222233334444, 0xaaaabbbbccccdddd, 0xeeeeffffeeeeffff}); |
| 312 | LL_UInt192 result4( |
| 313 | {0x12346789bcdf1233, 0xa987765443210fed, 0xedcbba98789acdef}); |
| 314 | EXPECT_EQ(val7 + val8, result4); |
| 315 | EXPECT_EQ(val7 + val8, val8 + val7); |
| 316 | |
| 317 | // Test 256-bit addition |
| 318 | LL_UInt256 val9({0x1f1e1d1c1b1a1918, 0xf1f2f3f4f5f6f7f8, 0x0123456789abcdef, |
| 319 | 0xfedcba9876543210}); |
| 320 | LL_UInt256 val10({0x1111222233334444, 0xaaaabbbbccccdddd, 0x1111222233334444, |
| 321 | 0xaaaabbbbccccdddd}); |
| 322 | LL_UInt256 result5({0x302f3f3e4e4d5d5c, 0x9c9dafb0c2c3d5d5, |
| 323 | 0x12346789bcdf1234, 0xa987765443210fed}); |
| 324 | EXPECT_EQ(val9 + val10, result5); |
| 325 | EXPECT_EQ(val9 + val10, val10 + val9); |
| 326 | } |
| 327 | |
| 328 | TEST(LlvmLibcUIntClassTest, SubtractionTests) { |
| 329 | LL_UInt128 val1(12345); |
| 330 | LL_UInt128 val2(54321); |
| 331 | LL_UInt128 result1({0xffffffffffff5c08, 0xffffffffffffffff}); |
| 332 | LL_UInt128 result2(0xa3f8); |
| 333 | EXPECT_EQ(val1 - val2, result1); |
| 334 | EXPECT_EQ(val1, val2 + result1); |
| 335 | EXPECT_EQ(val2 - val1, result2); |
| 336 | EXPECT_EQ(val2, val1 + result2); |
| 337 | |
| 338 | LL_UInt128 val3({0xf000000000000001, 0}); |
| 339 | LL_UInt128 val4({0x100000000000000f, 0}); |
| 340 | LL_UInt128 result3(0xdffffffffffffff2); |
| 341 | LL_UInt128 result4({0x200000000000000e, 0xffffffffffffffff}); |
| 342 | EXPECT_EQ(val3 - val4, result3); |
| 343 | EXPECT_EQ(val3, val4 + result3); |
| 344 | EXPECT_EQ(val4 - val3, result4); |
| 345 | EXPECT_EQ(val4, val3 + result4); |
| 346 | |
| 347 | LL_UInt128 val5({0x0123456789abcdef, 0xfedcba9876543210}); |
| 348 | LL_UInt128 val6({0x1111222233334444, 0xaaaabbbbccccdddd}); |
| 349 | LL_UInt128 result5({0xf0122345567889ab, 0x5431fedca9875432}); |
| 350 | LL_UInt128 result6({0x0feddcbaa9877655, 0xabce01235678abcd}); |
| 351 | EXPECT_EQ(val5 - val6, result5); |
| 352 | EXPECT_EQ(val5, val6 + result5); |
| 353 | EXPECT_EQ(val6 - val5, result6); |
| 354 | EXPECT_EQ(val6, val5 + result6); |
| 355 | } |
| 356 | |
| 357 | TEST(LlvmLibcUIntClassTest, MultiplicationTests) { |
| 358 | LL_UInt128 val1({5, 0}); |
| 359 | LL_UInt128 val2({10, 0}); |
| 360 | LL_UInt128 result1({50, 0}); |
| 361 | EXPECT_EQ((val1 * val2), result1); |
| 362 | EXPECT_EQ((val1 * val2), (val2 * val1)); // multiplication is commutative |
| 363 | |
| 364 | // Check that the multiplication works accross the whole number |
| 365 | LL_UInt128 val3({0xf, 0}); |
| 366 | LL_UInt128 val4({0x1111111111111111, 0x1111111111111111}); |
| 367 | LL_UInt128 result2({0xffffffffffffffff, 0xffffffffffffffff}); |
| 368 | EXPECT_EQ((val3 * val4), result2); |
| 369 | EXPECT_EQ((val3 * val4), (val4 * val3)); |
| 370 | |
| 371 | // Check that multiplication doesn't reorder the bits. |
| 372 | LL_UInt128 val5({2, 0}); |
| 373 | LL_UInt128 val6({0x1357024675316420, 0x0123456776543210}); |
| 374 | LL_UInt128 result3({0x26ae048cea62c840, 0x02468aceeca86420}); |
| 375 | |
| 376 | EXPECT_EQ((val5 * val6), result3); |
| 377 | EXPECT_EQ((val5 * val6), (val6 * val5)); |
| 378 | |
| 379 | // Make sure that multiplication handles overflow correctly. |
| 380 | LL_UInt128 val7(2); |
| 381 | LL_UInt128 val8({0x8000800080008000, 0x8000800080008000}); |
| 382 | LL_UInt128 result4({0x0001000100010000, 0x0001000100010001}); |
| 383 | EXPECT_EQ((val7 * val8), result4); |
| 384 | EXPECT_EQ((val7 * val8), (val8 * val7)); |
| 385 | |
| 386 | // val9 is the 128 bit mantissa of 1e60 as a float, val10 is the mantissa for |
| 387 | // 1e-60. They almost cancel on the high bits, but the result we're looking |
| 388 | // for is just the low bits. The full result would be |
| 389 | // 0x7fffffffffffffffffffffffffffffff3a4f32d17f40d08f917cf11d1e039c50 |
| 390 | LL_UInt128 val9({0x01D762422C946590, 0x9F4F2726179A2245}); |
| 391 | LL_UInt128 val10({0x3792F412CB06794D, 0xCDB02555653131B6}); |
| 392 | LL_UInt128 result5({0x917cf11d1e039c50, 0x3a4f32d17f40d08f}); |
| 393 | EXPECT_EQ((val9 * val10), result5); |
| 394 | EXPECT_EQ((val9 * val10), (val10 * val9)); |
| 395 | |
| 396 | // Test 192-bit multiplication |
| 397 | LL_UInt192 val11( |
| 398 | {0xffffffffffffffff, 0x01D762422C946590, 0x9F4F2726179A2245}); |
| 399 | LL_UInt192 val12( |
| 400 | {0xffffffffffffffff, 0x3792F412CB06794D, 0xCDB02555653131B6}); |
| 401 | |
| 402 | LL_UInt192 result6( |
| 403 | {0x0000000000000001, 0xc695a9ab08652121, 0x5de7faf698d32732}); |
| 404 | EXPECT_EQ((val11 * val12), result6); |
| 405 | EXPECT_EQ((val11 * val12), (val12 * val11)); |
| 406 | |
| 407 | LL_UInt256 val13({0xffffffffffffffff, 0x01D762422C946590, 0x9F4F2726179A2245, |
| 408 | 0xffffffffffffffff}); |
| 409 | LL_UInt256 val14({0xffffffffffffffff, 0xffffffffffffffff, 0x3792F412CB06794D, |
| 410 | 0xCDB02555653131B6}); |
| 411 | LL_UInt256 result7({0x0000000000000001, 0xfe289dbdd36b9a6f, |
| 412 | 0x291de4c71d5f646c, 0xfd37221cb06d4978}); |
| 413 | EXPECT_EQ((val13 * val14), result7); |
| 414 | EXPECT_EQ((val13 * val14), (val14 * val13)); |
| 415 | } |
| 416 | |
| 417 | TEST(LlvmLibcUIntClassTest, DivisionTests) { |
| 418 | LL_UInt128 val1({10, 0}); |
| 419 | LL_UInt128 val2({5, 0}); |
| 420 | LL_UInt128 result1({2, 0}); |
| 421 | EXPECT_EQ((val1 / val2), result1); |
| 422 | EXPECT_EQ((val1 / result1), val2); |
| 423 | |
| 424 | // Check that the division works accross the whole number |
| 425 | LL_UInt128 val3({0xffffffffffffffff, 0xffffffffffffffff}); |
| 426 | LL_UInt128 val4({0xf, 0}); |
| 427 | LL_UInt128 result2({0x1111111111111111, 0x1111111111111111}); |
| 428 | EXPECT_EQ((val3 / val4), result2); |
| 429 | EXPECT_EQ((val3 / result2), val4); |
| 430 | |
| 431 | // Check that division doesn't reorder the bits. |
| 432 | LL_UInt128 val5({0x26ae048cea62c840, 0x02468aceeca86420}); |
| 433 | LL_UInt128 val6({2, 0}); |
| 434 | LL_UInt128 result3({0x1357024675316420, 0x0123456776543210}); |
| 435 | EXPECT_EQ((val5 / val6), result3); |
| 436 | EXPECT_EQ((val5 / result3), val6); |
| 437 | |
| 438 | // Make sure that division handles inexact results correctly. |
| 439 | LL_UInt128 val7({1001, 0}); |
| 440 | LL_UInt128 val8({10, 0}); |
| 441 | LL_UInt128 result4({100, 0}); |
| 442 | EXPECT_EQ((val7 / val8), result4); |
| 443 | EXPECT_EQ((val7 / result4), val8); |
| 444 | |
| 445 | // Make sure that division handles divisors of one correctly. |
| 446 | LL_UInt128 val9({0x1234567812345678, 0x9abcdef09abcdef0}); |
| 447 | LL_UInt128 val10({1, 0}); |
| 448 | LL_UInt128 result5({0x1234567812345678, 0x9abcdef09abcdef0}); |
| 449 | EXPECT_EQ((val9 / val10), result5); |
| 450 | EXPECT_EQ((val9 / result5), val10); |
| 451 | |
| 452 | // Make sure that division handles results of slightly more than 1 correctly. |
| 453 | LL_UInt128 val11({1050, 0}); |
| 454 | LL_UInt128 val12({1030, 0}); |
| 455 | LL_UInt128 result6({1, 0}); |
| 456 | EXPECT_EQ((val11 / val12), result6); |
| 457 | |
| 458 | // Make sure that division handles dividing by zero correctly. |
| 459 | LL_UInt128 val13({1234, 0}); |
| 460 | LL_UInt128 val14({0, 0}); |
| 461 | EXPECT_FALSE(val13.div(val14).has_value()); |
| 462 | } |
| 463 | |
| 464 | TEST(LlvmLibcUIntClassTest, ModuloTests) { |
| 465 | LL_UInt128 val1({10, 0}); |
| 466 | LL_UInt128 val2({5, 0}); |
| 467 | LL_UInt128 result1({0, 0}); |
| 468 | EXPECT_EQ((val1 % val2), result1); |
| 469 | |
| 470 | LL_UInt128 val3({101, 0}); |
| 471 | LL_UInt128 val4({10, 0}); |
| 472 | LL_UInt128 result2({1, 0}); |
| 473 | EXPECT_EQ((val3 % val4), result2); |
| 474 | |
| 475 | LL_UInt128 val5({10000001, 0}); |
| 476 | LL_UInt128 val6({10, 0}); |
| 477 | LL_UInt128 result3({1, 0}); |
| 478 | EXPECT_EQ((val5 % val6), result3); |
| 479 | |
| 480 | LL_UInt128 val7({12345, 10}); |
| 481 | LL_UInt128 val8({0, 1}); |
| 482 | LL_UInt128 result4({12345, 0}); |
| 483 | EXPECT_EQ((val7 % val8), result4); |
| 484 | |
| 485 | LL_UInt128 val9({12345, 10}); |
| 486 | LL_UInt128 val10({0, 11}); |
| 487 | LL_UInt128 result5({12345, 10}); |
| 488 | EXPECT_EQ((val9 % val10), result5); |
| 489 | |
| 490 | LL_UInt128 val11({10, 10}); |
| 491 | LL_UInt128 val12({10, 10}); |
| 492 | LL_UInt128 result6({0, 0}); |
| 493 | EXPECT_EQ((val11 % val12), result6); |
| 494 | |
| 495 | LL_UInt128 val13({12345, 0}); |
| 496 | LL_UInt128 val14({1, 0}); |
| 497 | LL_UInt128 result7({0, 0}); |
| 498 | EXPECT_EQ((val13 % val14), result7); |
| 499 | |
| 500 | LL_UInt128 val15({0xffffffffffffffff, 0xffffffffffffffff}); |
| 501 | LL_UInt128 val16({0x1111111111111111, 0x111111111111111}); |
| 502 | LL_UInt128 result8({0xf, 0}); |
| 503 | EXPECT_EQ((val15 % val16), result8); |
| 504 | |
| 505 | LL_UInt128 val17({5076944270305263619, 54210108624}); // (10 ^ 30) + 3 |
| 506 | LL_UInt128 val18({10, 0}); |
| 507 | LL_UInt128 result9({3, 0}); |
| 508 | EXPECT_EQ((val17 % val18), result9); |
| 509 | } |
| 510 | |
| 511 | TEST(LlvmLibcUIntClassTest, PowerTests) { |
| 512 | LL_UInt128 val1({10, 0}); |
| 513 | val1.pow_n(30); |
| 514 | LL_UInt128 result1({5076944270305263616, 54210108624}); // (10 ^ 30) |
| 515 | EXPECT_EQ(val1, result1); |
| 516 | |
| 517 | LL_UInt128 val2({1, 0}); |
| 518 | val2.pow_n(10); |
| 519 | LL_UInt128 result2({1, 0}); |
| 520 | EXPECT_EQ(val2, result2); |
| 521 | |
| 522 | LL_UInt128 val3({0, 0}); |
| 523 | val3.pow_n(10); |
| 524 | LL_UInt128 result3({0, 0}); |
| 525 | EXPECT_EQ(val3, result3); |
| 526 | |
| 527 | LL_UInt128 val4({10, 0}); |
| 528 | val4.pow_n(0); |
| 529 | LL_UInt128 result4({1, 0}); |
| 530 | EXPECT_EQ(val4, result4); |
| 531 | |
| 532 | // Test zero to the zero. Currently it returns 1, since that's the easiest |
| 533 | // result. |
| 534 | LL_UInt128 val5({0, 0}); |
| 535 | val5.pow_n(0); |
| 536 | LL_UInt128 result5({1, 0}); |
| 537 | EXPECT_EQ(val5, result5); |
| 538 | |
| 539 | // Test a number that overflows. 100 ^ 20 is larger than 2 ^ 128. |
| 540 | LL_UInt128 val6({100, 0}); |
| 541 | val6.pow_n(20); |
| 542 | LL_UInt128 result6({0xb9f5610000000000, 0x6329f1c35ca4bfab}); |
| 543 | EXPECT_EQ(val6, result6); |
| 544 | |
| 545 | // Test that both halves of the number are being used. |
| 546 | LL_UInt128 val7({1, 1}); |
| 547 | val7.pow_n(2); |
| 548 | LL_UInt128 result7({1, 2}); |
| 549 | EXPECT_EQ(val7, result7); |
| 550 | |
| 551 | LL_UInt128 val_pow_two; |
| 552 | LL_UInt128 result_pow_two; |
| 553 | for (size_t i = 0; i < 128; ++i) { |
| 554 | val_pow_two = 2; |
| 555 | val_pow_two.pow_n(i); |
| 556 | result_pow_two = 1; |
| 557 | result_pow_two = result_pow_two << i; |
| 558 | EXPECT_EQ(val_pow_two, result_pow_two); |
| 559 | } |
| 560 | } |
| 561 | |
| 562 | TEST(LlvmLibcUIntClassTest, ShiftLeftTests) { |
| 563 | LL_UInt128 val1(0x0123456789abcdef); |
| 564 | LL_UInt128 result1(0x123456789abcdef0); |
| 565 | EXPECT_EQ((val1 << 4), result1); |
| 566 | |
| 567 | LL_UInt128 val2({0x13579bdf02468ace, 0x123456789abcdef0}); |
| 568 | LL_UInt128 result2({0x02468ace00000000, 0x9abcdef013579bdf}); |
| 569 | EXPECT_EQ((val2 << 32), result2); |
| 570 | LL_UInt128 val22 = val2; |
| 571 | val22 <<= 32; |
| 572 | EXPECT_EQ(val22, result2); |
| 573 | |
| 574 | LL_UInt128 result3({0, 0x13579bdf02468ace}); |
| 575 | EXPECT_EQ((val2 << 64), result3); |
| 576 | |
| 577 | LL_UInt128 result4({0, 0x02468ace00000000}); |
| 578 | EXPECT_EQ((val2 << 96), result4); |
| 579 | |
| 580 | LL_UInt128 result5({0, 0x2468ace000000000}); |
| 581 | EXPECT_EQ((val2 << 100), result5); |
| 582 | |
| 583 | LL_UInt192 val3({1, 0, 0}); |
| 584 | LL_UInt192 result7({0, 1, 0}); |
| 585 | EXPECT_EQ((val3 << 64), result7); |
| 586 | } |
| 587 | |
| 588 | TEST(LlvmLibcUIntClassTest, ShiftRightTests) { |
| 589 | LL_UInt128 val1(0x0123456789abcdef); |
| 590 | LL_UInt128 result1(0x00123456789abcde); |
| 591 | EXPECT_EQ((val1 >> 4), result1); |
| 592 | |
| 593 | LL_UInt128 val2({0x13579bdf02468ace, 0x123456789abcdef0}); |
| 594 | LL_UInt128 result2({0x9abcdef013579bdf, 0x0000000012345678}); |
| 595 | EXPECT_EQ((val2 >> 32), result2); |
| 596 | LL_UInt128 val22 = val2; |
| 597 | val22 >>= 32; |
| 598 | EXPECT_EQ(val22, result2); |
| 599 | |
| 600 | LL_UInt128 result3({0x123456789abcdef0, 0}); |
| 601 | EXPECT_EQ((val2 >> 64), result3); |
| 602 | |
| 603 | LL_UInt128 result4({0x0000000012345678, 0}); |
| 604 | EXPECT_EQ((val2 >> 96), result4); |
| 605 | |
| 606 | LL_UInt128 result5({0x0000000001234567, 0}); |
| 607 | EXPECT_EQ((val2 >> 100), result5); |
| 608 | |
| 609 | LL_UInt128 v1({0x1111222233334444, 0xaaaabbbbccccdddd}); |
| 610 | LL_UInt128 r1({0xaaaabbbbccccdddd, 0}); |
| 611 | EXPECT_EQ((v1 >> 64), r1); |
| 612 | |
| 613 | LL_UInt192 v2({0x1111222233334444, 0x5555666677778888, 0xaaaabbbbccccdddd}); |
| 614 | LL_UInt192 r2({0x5555666677778888, 0xaaaabbbbccccdddd, 0}); |
| 615 | LL_UInt192 r3({0xaaaabbbbccccdddd, 0, 0}); |
| 616 | EXPECT_EQ((v2 >> 64), r2); |
| 617 | EXPECT_EQ((v2 >> 128), r3); |
| 618 | EXPECT_EQ((r2 >> 64), r3); |
| 619 | |
| 620 | LL_UInt192 val3({0, 0, 1}); |
| 621 | LL_UInt192 result7({0, 1, 0}); |
| 622 | EXPECT_EQ((val3 >> 64), result7); |
| 623 | } |
| 624 | |
| 625 | TEST(LlvmLibcUIntClassTest, AndTests) { |
| 626 | LL_UInt128 base({0xffff00000000ffff, 0xffffffff00000000}); |
| 627 | LL_UInt128 val128({0xf0f0f0f00f0f0f0f, 0xff00ff0000ff00ff}); |
| 628 | uint64_t val64 = 0xf0f0f0f00f0f0f0f; |
| 629 | int val32 = 0x0f0f0f0f; |
| 630 | LL_UInt128 result128({0xf0f0000000000f0f, 0xff00ff0000000000}); |
| 631 | LL_UInt128 result64(0xf0f0000000000f0f); |
| 632 | LL_UInt128 result32(0x00000f0f); |
| 633 | EXPECT_EQ((base & val128), result128); |
| 634 | EXPECT_EQ((base & val64), result64); |
| 635 | EXPECT_EQ((base & val32), result32); |
| 636 | } |
| 637 | |
| 638 | TEST(LlvmLibcUIntClassTest, OrTests) { |
| 639 | LL_UInt128 base({0xffff00000000ffff, 0xffffffff00000000}); |
| 640 | LL_UInt128 val128({0xf0f0f0f00f0f0f0f, 0xff00ff0000ff00ff}); |
| 641 | uint64_t val64 = 0xf0f0f0f00f0f0f0f; |
| 642 | int val32 = 0x0f0f0f0f; |
| 643 | LL_UInt128 result128({0xfffff0f00f0fffff, 0xffffffff00ff00ff}); |
| 644 | LL_UInt128 result64({0xfffff0f00f0fffff, 0xffffffff00000000}); |
| 645 | LL_UInt128 result32({0xffff00000f0fffff, 0xffffffff00000000}); |
| 646 | EXPECT_EQ((base | val128), result128); |
| 647 | EXPECT_EQ((base | val64), result64); |
| 648 | EXPECT_EQ((base | val32), result32); |
| 649 | } |
| 650 | |
| 651 | TEST(LlvmLibcUIntClassTest, CompoundAssignments) { |
| 652 | LL_UInt128 x({0xffff00000000ffff, 0xffffffff00000000}); |
| 653 | LL_UInt128 b({0xf0f0f0f00f0f0f0f, 0xff00ff0000ff00ff}); |
| 654 | |
| 655 | LL_UInt128 a = x; |
| 656 | a |= b; |
| 657 | LL_UInt128 or_result({0xfffff0f00f0fffff, 0xffffffff00ff00ff}); |
| 658 | EXPECT_EQ(a, or_result); |
| 659 | |
| 660 | a = x; |
| 661 | a &= b; |
| 662 | LL_UInt128 and_result({0xf0f0000000000f0f, 0xff00ff0000000000}); |
| 663 | EXPECT_EQ(a, and_result); |
| 664 | |
| 665 | a = x; |
| 666 | a ^= b; |
| 667 | LL_UInt128 xor_result({0x0f0ff0f00f0ff0f0, 0x00ff00ff00ff00ff}); |
| 668 | EXPECT_EQ(a, xor_result); |
| 669 | |
| 670 | a = LL_UInt128(uint64_t(0x0123456789abcdef)); |
| 671 | LL_UInt128 shift_left_result(uint64_t(0x123456789abcdef0)); |
| 672 | a <<= 4; |
| 673 | EXPECT_EQ(a, shift_left_result); |
| 674 | |
| 675 | a = LL_UInt128(uint64_t(0x123456789abcdef1)); |
| 676 | LL_UInt128 shift_right_result(uint64_t(0x0123456789abcdef)); |
| 677 | a >>= 4; |
| 678 | EXPECT_EQ(a, shift_right_result); |
| 679 | |
| 680 | a = LL_UInt128({0xf000000000000001, 0}); |
| 681 | b = LL_UInt128({0x100000000000000f, 0}); |
| 682 | LL_UInt128 add_result({0x10, 0x1}); |
| 683 | a += b; |
| 684 | EXPECT_EQ(a, add_result); |
| 685 | |
| 686 | a = LL_UInt128({0xf, 0}); |
| 687 | b = LL_UInt128({0x1111111111111111, 0x1111111111111111}); |
| 688 | LL_UInt128 mul_result({0xffffffffffffffff, 0xffffffffffffffff}); |
| 689 | a *= b; |
| 690 | EXPECT_EQ(a, mul_result); |
| 691 | } |
| 692 | |
| 693 | TEST(LlvmLibcUIntClassTest, UnaryPredecrement) { |
| 694 | LL_UInt128 a = LL_UInt128({0x1111111111111111, 0x1111111111111111}); |
| 695 | ++a; |
| 696 | EXPECT_EQ(a, LL_UInt128({0x1111111111111112, 0x1111111111111111})); |
| 697 | |
| 698 | a = LL_UInt128({0xffffffffffffffff, 0x0}); |
| 699 | ++a; |
| 700 | EXPECT_EQ(a, LL_UInt128({0x0, 0x1})); |
| 701 | |
| 702 | a = LL_UInt128({0xffffffffffffffff, 0xffffffffffffffff}); |
| 703 | ++a; |
| 704 | EXPECT_EQ(a, LL_UInt128({0x0, 0x0})); |
| 705 | } |
| 706 | |
| 707 | TEST(LlvmLibcUIntClassTest, EqualsTests) { |
| 708 | LL_UInt128 a1({0xffffffff00000000, 0xffff00000000ffff}); |
| 709 | LL_UInt128 a2({0xffffffff00000000, 0xffff00000000ffff}); |
| 710 | LL_UInt128 b({0xff00ff0000ff00ff, 0xf0f0f0f00f0f0f0f}); |
| 711 | LL_UInt128 a_reversed({0xffff00000000ffff, 0xffffffff00000000}); |
| 712 | LL_UInt128 a_upper(0xffff00000000ffff); |
| 713 | LL_UInt128 a_lower(0xffffffff00000000); |
| 714 | ASSERT_TRUE(a1 == a1); |
| 715 | ASSERT_TRUE(a1 == a2); |
| 716 | ASSERT_FALSE(a1 == b); |
| 717 | ASSERT_FALSE(a1 == a_reversed); |
| 718 | ASSERT_FALSE(a1 == a_lower); |
| 719 | ASSERT_FALSE(a1 == a_upper); |
| 720 | ASSERT_TRUE(a_lower != a_upper); |
| 721 | } |
| 722 | |
| 723 | TEST(LlvmLibcUIntClassTest, ComparisonTests) { |
| 724 | LL_UInt128 a({0xffffffff00000000, 0xffff00000000ffff}); |
| 725 | LL_UInt128 b({0xff00ff0000ff00ff, 0xf0f0f0f00f0f0f0f}); |
| 726 | EXPECT_GT(a, b); |
| 727 | EXPECT_GE(a, b); |
| 728 | EXPECT_LT(b, a); |
| 729 | EXPECT_LE(b, a); |
| 730 | |
| 731 | LL_UInt128 x(0xffffffff00000000); |
| 732 | LL_UInt128 y(0x00000000ffffffff); |
| 733 | EXPECT_GT(x, y); |
| 734 | EXPECT_GE(x, y); |
| 735 | EXPECT_LT(y, x); |
| 736 | EXPECT_LE(y, x); |
| 737 | |
| 738 | EXPECT_LE(a, a); |
| 739 | EXPECT_GE(a, a); |
| 740 | } |
| 741 | |
| 742 | TEST(LlvmLibcUIntClassTest, FullMulTests) { |
| 743 | LL_UInt128 a({0xffffffffffffffffULL, 0xffffffffffffffffULL}); |
| 744 | LL_UInt128 b({0xfedcba9876543210ULL, 0xfefdfcfbfaf9f8f7ULL}); |
| 745 | LL_UInt256 r({0x0123456789abcdf0ULL, 0x0102030405060708ULL, |
| 746 | 0xfedcba987654320fULL, 0xfefdfcfbfaf9f8f7ULL}); |
| 747 | LL_UInt128 r_hi({0xfedcba987654320eULL, 0xfefdfcfbfaf9f8f7ULL}); |
| 748 | |
| 749 | EXPECT_EQ(a.ful_mul(b), r); |
| 750 | EXPECT_EQ(a.quick_mul_hi(b), r_hi); |
| 751 | |
| 752 | LL_UInt192 c( |
| 753 | {0x7766554433221101ULL, 0xffeeddccbbaa9988ULL, 0x1f2f3f4f5f6f7f8fULL}); |
| 754 | LL_UInt320 rr({0x8899aabbccddeeffULL, 0x0011223344556677ULL, |
| 755 | 0x583715f4d3b29171ULL, 0xffeeddccbbaa9988ULL, |
| 756 | 0x1f2f3f4f5f6f7f8fULL}); |
| 757 | |
| 758 | EXPECT_EQ(a.ful_mul(c), rr); |
| 759 | EXPECT_EQ(a.ful_mul(c), c.ful_mul(a)); |
| 760 | } |
| 761 | |
| 762 | #define TEST_QUICK_MUL_HI(Bits, Error) \ |
| 763 | do { \ |
| 764 | LL_UInt##Bits a = ~LL_UInt##Bits(0); \ |
| 765 | LL_UInt##Bits hi = a.quick_mul_hi(a); \ |
| 766 | LL_UInt##Bits trunc = static_cast<LL_UInt##Bits>(a.ful_mul(a) >> Bits); \ |
| 767 | uint64_t overflow = trunc.sub_overflow(hi); \ |
| 768 | EXPECT_EQ(overflow, uint64_t(0)); \ |
| 769 | EXPECT_LE(uint64_t(trunc), uint64_t(Error)); \ |
| 770 | } while (0) |
| 771 | |
| 772 | TEST(LlvmLibcUIntClassTest, QuickMulHiTests) { |
| 773 | TEST_QUICK_MUL_HI(128, 1); |
| 774 | TEST_QUICK_MUL_HI(192, 2); |
| 775 | TEST_QUICK_MUL_HI(256, 3); |
| 776 | TEST_QUICK_MUL_HI(512, 7); |
| 777 | } |
| 778 | |
| 779 | TEST(LlvmLibcUIntClassTest, ConstexprInitTests) { |
| 780 | constexpr LL_UInt128 add = LL_UInt128(1) + LL_UInt128(2); |
| 781 | ASSERT_EQ(add, LL_UInt128(3)); |
| 782 | constexpr LL_UInt128 sub = LL_UInt128(5) - LL_UInt128(4); |
| 783 | ASSERT_EQ(sub, LL_UInt128(1)); |
| 784 | } |
| 785 | |
| 786 | #define TEST_QUICK_DIV_UINT32_POW2(x, e) \ |
| 787 | do { \ |
| 788 | LL_UInt320 y({0x8899aabbccddeeffULL, 0x0011223344556677ULL, \ |
| 789 | 0x583715f4d3b29171ULL, 0xffeeddccbbaa9988ULL, \ |
| 790 | 0x1f2f3f4f5f6f7f8fULL}); \ |
| 791 | LL_UInt320 d = LL_UInt320(x); \ |
| 792 | d <<= e; \ |
| 793 | LL_UInt320 q1 = y / d; \ |
| 794 | LL_UInt320 r1 = y % d; \ |
| 795 | LL_UInt320 r2 = *y.div_uint_half_times_pow_2(x, e); \ |
| 796 | EXPECT_EQ(q1, y); \ |
| 797 | EXPECT_EQ(r1, r2); \ |
| 798 | } while (0) |
| 799 | |
| 800 | TEST(LlvmLibcUIntClassTest, DivUInt32TimesPow2Tests) { |
| 801 | for (size_t i = 0; i < 320; i += 32) { |
| 802 | TEST_QUICK_DIV_UINT32_POW2(1, i); |
| 803 | TEST_QUICK_DIV_UINT32_POW2(13151719, i); |
| 804 | } |
| 805 | |
| 806 | TEST_QUICK_DIV_UINT32_POW2(1, 75); |
| 807 | TEST_QUICK_DIV_UINT32_POW2(1, 101); |
| 808 | |
| 809 | TEST_QUICK_DIV_UINT32_POW2(1000000000, 75); |
| 810 | TEST_QUICK_DIV_UINT32_POW2(1000000000, 101); |
| 811 | } |
| 812 | |
| 813 | TEST(LlvmLibcUIntClassTest, ComparisonInt128Tests) { |
| 814 | LL_Int128 a(123); |
| 815 | LL_Int128 b(0); |
| 816 | LL_Int128 c(-1); |
| 817 | |
| 818 | ASSERT_TRUE(a == a); |
| 819 | ASSERT_TRUE(b == b); |
| 820 | ASSERT_TRUE(c == c); |
| 821 | |
| 822 | ASSERT_TRUE(a != b); |
| 823 | ASSERT_TRUE(a != c); |
| 824 | ASSERT_TRUE(b != a); |
| 825 | ASSERT_TRUE(b != c); |
| 826 | ASSERT_TRUE(c != a); |
| 827 | ASSERT_TRUE(c != b); |
| 828 | |
| 829 | ASSERT_TRUE(a > b); |
| 830 | ASSERT_TRUE(a >= b); |
| 831 | ASSERT_TRUE(a > c); |
| 832 | ASSERT_TRUE(a >= c); |
| 833 | ASSERT_TRUE(b > c); |
| 834 | ASSERT_TRUE(b >= c); |
| 835 | |
| 836 | ASSERT_TRUE(b < a); |
| 837 | ASSERT_TRUE(b <= a); |
| 838 | ASSERT_TRUE(c < a); |
| 839 | ASSERT_TRUE(c <= a); |
| 840 | ASSERT_TRUE(c < b); |
| 841 | ASSERT_TRUE(c <= b); |
| 842 | } |
| 843 | |
| 844 | TEST(LlvmLibcUIntClassTest, BasicArithmeticInt128Tests) { |
| 845 | LL_Int128 a(123); |
| 846 | LL_Int128 b(0); |
| 847 | LL_Int128 c(-3); |
| 848 | |
| 849 | ASSERT_EQ(a * a, LL_Int128(123 * 123)); |
| 850 | ASSERT_EQ(a * c, LL_Int128(-369)); |
| 851 | ASSERT_EQ(c * a, LL_Int128(-369)); |
| 852 | ASSERT_EQ(c * c, LL_Int128(9)); |
| 853 | ASSERT_EQ(a * b, b); |
| 854 | ASSERT_EQ(b * a, b); |
| 855 | ASSERT_EQ(b * c, b); |
| 856 | ASSERT_EQ(c * b, b); |
| 857 | } |
| 858 | |
| 859 | #ifdef LIBC_TYPES_HAS_INT128 |
| 860 | |
| 861 | TEST(LlvmLibcUIntClassTest, ConstructorFromUInt128Tests) { |
| 862 | __uint128_t a = (__uint128_t(123) << 64) + 1; |
| 863 | __int128_t b = -static_cast<__int128_t>(a); |
| 864 | LL_Int128 c(a); |
| 865 | LL_Int128 d(b); |
| 866 | |
| 867 | LL_Int192 e(a); |
| 868 | LL_Int192 f(b); |
| 869 | |
| 870 | ASSERT_EQ(static_cast<int>(c), 1); |
| 871 | ASSERT_EQ(static_cast<int>(c >> 64), 123); |
| 872 | ASSERT_EQ(static_cast<uint64_t>(d), static_cast<uint64_t>(b)); |
| 873 | ASSERT_EQ(static_cast<uint64_t>(d >> 64), static_cast<uint64_t>(b >> 64)); |
| 874 | ASSERT_EQ(c + d, LL_Int128(a + static_cast<__uint128_t>(b))); |
| 875 | |
| 876 | ASSERT_EQ(static_cast<int>(e), 1); |
| 877 | ASSERT_EQ(static_cast<int>(e >> 64), 123); |
| 878 | ASSERT_EQ(static_cast<uint64_t>(f), static_cast<uint64_t>(b)); |
| 879 | ASSERT_EQ(static_cast<uint64_t>(f >> 64), static_cast<uint64_t>(b >> 64)); |
| 880 | ASSERT_EQ(LL_UInt192(e + f), LL_UInt192(a + static_cast<__uint128_t>(b))); |
| 881 | } |
| 882 | |
| 883 | TEST(LlvmLibcUIntClassTest, WordTypeUInt128Tests) { |
| 884 | using LL_UInt256_128 = BigInt<256, false, __uint128_t>; |
| 885 | using LL_UInt128_128 = BigInt<128, false, __uint128_t>; |
| 886 | |
| 887 | LL_UInt256_128 a(1); |
| 888 | |
| 889 | ASSERT_EQ(static_cast<int>(a), 1); |
| 890 | a = (a << 128) + 2; |
| 891 | ASSERT_EQ(static_cast<int>(a), 2); |
| 892 | ASSERT_EQ(static_cast<uint64_t>(a), uint64_t(2)); |
| 893 | a = (a << 32) + 3; |
| 894 | ASSERT_EQ(static_cast<int>(a), 3); |
| 895 | ASSERT_EQ(static_cast<uint64_t>(a), uint64_t(0x2'0000'0003)); |
| 896 | ASSERT_EQ(static_cast<int>(a >> 32), 2); |
| 897 | ASSERT_EQ(static_cast<int>(a >> (128 + 32)), 1); |
| 898 | |
| 899 | LL_UInt128_128 b(__uint128_t(1) << 127); |
| 900 | LL_UInt128_128 c(b); |
| 901 | a = b.ful_mul(c); |
| 902 | |
| 903 | ASSERT_EQ(static_cast<int>(a >> 254), 1); |
| 904 | |
| 905 | LL_UInt256_128 d = LL_UInt256_128(123) << 4; |
| 906 | ASSERT_EQ(static_cast<int>(d), 123 << 4); |
| 907 | LL_UInt256_128 e = a / d; |
| 908 | LL_UInt256_128 f = a % d; |
| 909 | LL_UInt256_128 r = *a.div_uint_half_times_pow_2(123, 4); |
| 910 | EXPECT_TRUE(e == a); |
| 911 | EXPECT_TRUE(f == r); |
| 912 | } |
| 913 | |
| 914 | #endif // LIBC_TYPES_HAS_INT128 |
| 915 | |
| 916 | TEST(LlvmLibcUIntClassTest, OtherWordTypeTests) { |
| 917 | using LL_UInt96 = BigInt<96, false, uint32_t>; |
| 918 | |
| 919 | LL_UInt96 a(1); |
| 920 | |
| 921 | ASSERT_EQ(static_cast<int>(a), 1); |
| 922 | a = (a << 32) + 2; |
| 923 | ASSERT_EQ(static_cast<int>(a), 2); |
| 924 | ASSERT_EQ(static_cast<uint64_t>(a), uint64_t(0x1'0000'0002)); |
| 925 | a = (a << 32) + 3; |
| 926 | ASSERT_EQ(static_cast<int>(a), 3); |
| 927 | ASSERT_EQ(static_cast<int>(a >> 32), 2); |
| 928 | ASSERT_EQ(static_cast<int>(a >> 64), 1); |
| 929 | } |
| 930 | |
| 931 | TEST(LlvmLibcUIntClassTest, OtherWordTypeCastTests) { |
| 932 | using LL_UInt96 = BigInt<96, false, uint32_t>; |
| 933 | |
| 934 | LL_UInt96 a({123, 456, 789}); |
| 935 | |
| 936 | ASSERT_EQ(static_cast<int>(a), 123); |
| 937 | ASSERT_EQ(static_cast<int>(a >> 32), 456); |
| 938 | ASSERT_EQ(static_cast<int>(a >> 64), 789); |
| 939 | |
| 940 | // Bigger word with more bits to smaller word with less bits. |
| 941 | LL_UInt128 b(a); |
| 942 | |
| 943 | ASSERT_EQ(static_cast<int>(b), 123); |
| 944 | ASSERT_EQ(static_cast<int>(b >> 32), 456); |
| 945 | ASSERT_EQ(static_cast<int>(b >> 64), 789); |
| 946 | ASSERT_EQ(static_cast<int>(b >> 96), 0); |
| 947 | |
| 948 | b = (b << 32) + 987; |
| 949 | |
| 950 | ASSERT_EQ(static_cast<int>(b), 987); |
| 951 | ASSERT_EQ(static_cast<int>(b >> 32), 123); |
| 952 | ASSERT_EQ(static_cast<int>(b >> 64), 456); |
| 953 | ASSERT_EQ(static_cast<int>(b >> 96), 789); |
| 954 | |
| 955 | // Smaller word with less bits to bigger word with more bits. |
| 956 | LL_UInt96 c(b); |
| 957 | |
| 958 | ASSERT_EQ(static_cast<int>(c), 987); |
| 959 | ASSERT_EQ(static_cast<int>(c >> 32), 123); |
| 960 | ASSERT_EQ(static_cast<int>(c >> 64), 456); |
| 961 | |
| 962 | // Smaller word with more bits to bigger word with less bits |
| 963 | LL_UInt64 d(c); |
| 964 | |
| 965 | ASSERT_EQ(static_cast<int>(d), 987); |
| 966 | ASSERT_EQ(static_cast<int>(d >> 32), 123); |
| 967 | |
| 968 | // Bigger word with less bits to smaller word with more bits |
| 969 | |
| 970 | LL_UInt96 e(d); |
| 971 | |
| 972 | ASSERT_EQ(static_cast<int>(e), 987); |
| 973 | ASSERT_EQ(static_cast<int>(e >> 32), 123); |
| 974 | |
| 975 | e = (e << 32) + 654; |
| 976 | |
| 977 | ASSERT_EQ(static_cast<int>(e), 654); |
| 978 | ASSERT_EQ(static_cast<int>(e >> 32), 987); |
| 979 | ASSERT_EQ(static_cast<int>(e >> 64), 123); |
| 980 | } |
| 981 | |
| 982 | TEST(LlvmLibcUIntClassTest, SignedOtherWordTypeCastTests) { |
| 983 | using LL_Int64 = BigInt<64, true, uint64_t>; |
| 984 | using LL_Int96 = BigInt<96, true, uint32_t>; |
| 985 | |
| 986 | LL_Int64 zero_64(0); |
| 987 | LL_Int96 zero_96(0); |
| 988 | LL_Int192 zero_192(0); |
| 989 | |
| 990 | LL_Int96 plus_a({0x1234, 0x5678, 0x9ABC}); |
| 991 | |
| 992 | ASSERT_EQ(static_cast<int>(plus_a), 0x1234); |
| 993 | ASSERT_EQ(static_cast<int>(plus_a >> 32), 0x5678); |
| 994 | ASSERT_EQ(static_cast<int>(plus_a >> 64), 0x9ABC); |
| 995 | |
| 996 | LL_Int96 minus_a(-plus_a); |
| 997 | |
| 998 | // The reason that the numbers are inverted and not negated is that we're |
| 999 | // using two's complement. To negate a two's complement number you flip the |
| 1000 | // bits and add 1, so minus_a is {~0x1234, ~0x5678, ~0x9ABC} + {1,0,0}. |
| 1001 | ASSERT_EQ(static_cast<int>(minus_a), (~0x1234) + 1); |
| 1002 | ASSERT_EQ(static_cast<int>(minus_a >> 32), ~0x5678); |
| 1003 | ASSERT_EQ(static_cast<int>(minus_a >> 64), ~0x9ABC); |
| 1004 | |
| 1005 | ASSERT_TRUE(plus_a + minus_a == zero_96); |
| 1006 | |
| 1007 | // 192 so there's an extra block to get sign extended to |
| 1008 | LL_Int192 bigger_plus_a(plus_a); |
| 1009 | |
| 1010 | ASSERT_EQ(static_cast<int>(bigger_plus_a), 0x1234); |
| 1011 | ASSERT_EQ(static_cast<int>(bigger_plus_a >> 32), 0x5678); |
| 1012 | ASSERT_EQ(static_cast<int>(bigger_plus_a >> 64), 0x9ABC); |
| 1013 | ASSERT_EQ(static_cast<int>(bigger_plus_a >> 96), 0); |
| 1014 | ASSERT_EQ(static_cast<int>(bigger_plus_a >> 128), 0); |
| 1015 | ASSERT_EQ(static_cast<int>(bigger_plus_a >> 160), 0); |
| 1016 | |
| 1017 | LL_Int192 bigger_minus_a(minus_a); |
| 1018 | |
| 1019 | ASSERT_EQ(static_cast<int>(bigger_minus_a), (~0x1234) + 1); |
| 1020 | ASSERT_EQ(static_cast<int>(bigger_minus_a >> 32), ~0x5678); |
| 1021 | ASSERT_EQ(static_cast<int>(bigger_minus_a >> 64), ~0x9ABC); |
| 1022 | ASSERT_EQ(static_cast<int>(bigger_minus_a >> 96), ~0); |
| 1023 | ASSERT_EQ(static_cast<int>(bigger_minus_a >> 128), ~0); |
| 1024 | ASSERT_EQ(static_cast<int>(bigger_minus_a >> 160), ~0); |
| 1025 | |
| 1026 | ASSERT_TRUE(bigger_plus_a + bigger_minus_a == zero_192); |
| 1027 | |
| 1028 | LL_Int64 smaller_plus_a(plus_a); |
| 1029 | |
| 1030 | ASSERT_EQ(static_cast<int>(smaller_plus_a), 0x1234); |
| 1031 | ASSERT_EQ(static_cast<int>(smaller_plus_a >> 32), 0x5678); |
| 1032 | |
| 1033 | LL_Int64 smaller_minus_a(minus_a); |
| 1034 | |
| 1035 | ASSERT_EQ(static_cast<int>(smaller_minus_a), (~0x1234) + 1); |
| 1036 | ASSERT_EQ(static_cast<int>(smaller_minus_a >> 32), ~0x5678); |
| 1037 | |
| 1038 | ASSERT_TRUE(smaller_plus_a + smaller_minus_a == zero_64); |
| 1039 | |
| 1040 | // Also try going from bigger word size to smaller word size |
| 1041 | LL_Int96 smaller_back_plus_a(smaller_plus_a); |
| 1042 | |
| 1043 | ASSERT_EQ(static_cast<int>(smaller_back_plus_a), 0x1234); |
| 1044 | ASSERT_EQ(static_cast<int>(smaller_back_plus_a >> 32), 0x5678); |
| 1045 | ASSERT_EQ(static_cast<int>(smaller_back_plus_a >> 64), 0); |
| 1046 | |
| 1047 | LL_Int96 smaller_back_minus_a(smaller_minus_a); |
| 1048 | |
| 1049 | ASSERT_EQ(static_cast<int>(smaller_back_minus_a), (~0x1234) + 1); |
| 1050 | ASSERT_EQ(static_cast<int>(smaller_back_minus_a >> 32), ~0x5678); |
| 1051 | ASSERT_EQ(static_cast<int>(smaller_back_minus_a >> 64), ~0); |
| 1052 | |
| 1053 | ASSERT_TRUE(smaller_back_plus_a + smaller_back_minus_a == zero_96); |
| 1054 | |
| 1055 | LL_Int96 bigger_back_plus_a(bigger_plus_a); |
| 1056 | |
| 1057 | ASSERT_EQ(static_cast<int>(bigger_back_plus_a), 0x1234); |
| 1058 | ASSERT_EQ(static_cast<int>(bigger_back_plus_a >> 32), 0x5678); |
| 1059 | ASSERT_EQ(static_cast<int>(bigger_back_plus_a >> 64), 0x9ABC); |
| 1060 | |
| 1061 | LL_Int96 bigger_back_minus_a(bigger_minus_a); |
| 1062 | |
| 1063 | ASSERT_EQ(static_cast<int>(bigger_back_minus_a), (~0x1234) + 1); |
| 1064 | ASSERT_EQ(static_cast<int>(bigger_back_minus_a >> 32), ~0x5678); |
| 1065 | ASSERT_EQ(static_cast<int>(bigger_back_minus_a >> 64), ~0x9ABC); |
| 1066 | |
| 1067 | ASSERT_TRUE(bigger_back_plus_a + bigger_back_minus_a == zero_96); |
| 1068 | } |
| 1069 | |
| 1070 | TEST(LlvmLibcUIntClassTest, MixedSignednessOtherWordTypeCastTests) { |
| 1071 | using LL_UInt96 = BigInt<96, false, uint32_t>; |
| 1072 | LL_UInt96 x = -123; |
| 1073 | // ensure that -123 gets extended, even though the input type is signed while |
| 1074 | // the BigInt is unsigned. |
| 1075 | ASSERT_EQ(int64_t(x), int64_t(-123)); |
| 1076 | } |
| 1077 | |
| 1078 | } // namespace LIBC_NAMESPACE_DECL |
| 1079 | |