1 | //===-- Utility class to test different flavors of ldexp --------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #ifndef LLVM_LIBC_TEST_SRC_MATH_LDEXPTEST_H |
10 | #define LLVM_LIBC_TEST_SRC_MATH_LDEXPTEST_H |
11 | |
12 | #include "src/__support/CPP/limits.h" // INT_MAX |
13 | #include "src/__support/FPUtil/FPBits.h" |
14 | #include "src/__support/FPUtil/NormalFloat.h" |
15 | #include "test/UnitTest/FEnvSafeTest.h" |
16 | #include "test/UnitTest/FPMatcher.h" |
17 | #include "test/UnitTest/Test.h" |
18 | |
19 | #include <stdint.h> |
20 | |
21 | using LIBC_NAMESPACE::Sign; |
22 | |
23 | template <typename T, typename U = int> |
24 | class LdExpTestTemplate : public LIBC_NAMESPACE::testing::FEnvSafeTest { |
25 | using FPBits = LIBC_NAMESPACE::fputil::FPBits<T>; |
26 | using NormalFloat = LIBC_NAMESPACE::fputil::NormalFloat<T>; |
27 | using StorageType = typename FPBits::StorageType; |
28 | |
29 | const T inf = FPBits::inf(Sign::POS).get_val(); |
30 | const T neg_inf = FPBits::inf(Sign::NEG).get_val(); |
31 | const T zero = FPBits::zero(Sign::POS).get_val(); |
32 | const T neg_zero = FPBits::zero(Sign::NEG).get_val(); |
33 | const T nan = FPBits::quiet_nan().get_val(); |
34 | |
35 | // A normalized mantissa to be used with tests. |
36 | static constexpr StorageType MANTISSA = NormalFloat::ONE + 0x123; |
37 | |
38 | public: |
39 | typedef T (*LdExpFunc)(T, U); |
40 | |
41 | void testSpecialNumbers(LdExpFunc func) { |
42 | int exp_array[5] = {INT_MIN, -10, 0, 10, INT_MAX}; |
43 | for (int exp : exp_array) { |
44 | ASSERT_FP_EQ(zero, func(zero, exp)); |
45 | ASSERT_FP_EQ(neg_zero, func(neg_zero, exp)); |
46 | ASSERT_FP_EQ(inf, func(inf, exp)); |
47 | ASSERT_FP_EQ(neg_inf, func(neg_inf, exp)); |
48 | ASSERT_FP_EQ(nan, func(nan, exp)); |
49 | } |
50 | |
51 | if constexpr (sizeof(U) < sizeof(long) || sizeof(long) == sizeof(int)) |
52 | return; |
53 | long long_exp_array[4] = {LONG_MIN, static_cast<long>(INT_MIN - 1LL), |
54 | static_cast<long>(INT_MAX + 1LL), LONG_MAX}; |
55 | for (long exp : long_exp_array) { |
56 | ASSERT_FP_EQ(zero, func(zero, exp)); |
57 | ASSERT_FP_EQ(neg_zero, func(neg_zero, exp)); |
58 | ASSERT_FP_EQ(inf, func(inf, exp)); |
59 | ASSERT_FP_EQ(neg_inf, func(neg_inf, exp)); |
60 | ASSERT_FP_EQ(nan, func(nan, exp)); |
61 | } |
62 | } |
63 | |
64 | void testPowersOfTwo(LdExpFunc func) { |
65 | int32_t exp_array[5] = {1, 2, 3, 4, 5}; |
66 | int32_t val_array[6] = {1, 2, 4, 8, 16, 32}; |
67 | for (int32_t exp : exp_array) { |
68 | for (int32_t val : val_array) { |
69 | ASSERT_FP_EQ(T(val << exp), func(T(val), exp)); |
70 | ASSERT_FP_EQ(T(-1 * (val << exp)), func(T(-val), exp)); |
71 | } |
72 | } |
73 | } |
74 | |
75 | void testOverflow(LdExpFunc func) { |
76 | NormalFloat x(Sign::POS, FPBits::MAX_BIASED_EXPONENT - 10, |
77 | NormalFloat::ONE + 0xFB); |
78 | for (int32_t exp = 10; exp < 100; ++exp) { |
79 | ASSERT_FP_EQ(inf, func(T(x), exp)); |
80 | ASSERT_FP_EQ(neg_inf, func(-T(x), exp)); |
81 | } |
82 | } |
83 | |
84 | void testUnderflowToZeroOnNormal(LdExpFunc func) { |
85 | // In this test, we pass a normal nubmer to func and expect zero |
86 | // to be returned due to underflow. |
87 | int32_t base_exponent = FPBits::EXP_BIAS + FPBits::FRACTION_LEN; |
88 | int32_t exp_array[] = {base_exponent + 5, base_exponent + 4, |
89 | base_exponent + 3, base_exponent + 2, |
90 | base_exponent + 1}; |
91 | T x = NormalFloat(Sign::POS, 0, MANTISSA); |
92 | for (int32_t exp : exp_array) { |
93 | ASSERT_FP_EQ(func(x, -exp), x > 0 ? zero : neg_zero); |
94 | } |
95 | } |
96 | |
97 | void testUnderflowToZeroOnSubnormal(LdExpFunc func) { |
98 | // In this test, we pass a normal nubmer to func and expect zero |
99 | // to be returned due to underflow. |
100 | int32_t base_exponent = FPBits::EXP_BIAS + FPBits::FRACTION_LEN; |
101 | int32_t exp_array[] = {base_exponent + 5, base_exponent + 4, |
102 | base_exponent + 3, base_exponent + 2, |
103 | base_exponent + 1}; |
104 | T x = NormalFloat(Sign::POS, -FPBits::EXP_BIAS, MANTISSA); |
105 | for (int32_t exp : exp_array) { |
106 | ASSERT_FP_EQ(func(x, -exp), x > 0 ? zero : neg_zero); |
107 | } |
108 | } |
109 | |
110 | void testNormalOperation(LdExpFunc func) { |
111 | T val_array[] = {// Normal numbers |
112 | NormalFloat(Sign::POS, 10, MANTISSA), |
113 | NormalFloat(Sign::POS, -10, MANTISSA), |
114 | NormalFloat(Sign::NEG, 10, MANTISSA), |
115 | NormalFloat(Sign::NEG, -10, MANTISSA), |
116 | // Subnormal numbers |
117 | NormalFloat(Sign::POS, -FPBits::EXP_BIAS, MANTISSA), |
118 | NormalFloat(Sign::NEG, -FPBits::EXP_BIAS, MANTISSA)}; |
119 | for (int32_t exp = 0; exp <= FPBits::FRACTION_LEN; ++exp) { |
120 | for (T x : val_array) { |
121 | // We compare the result of ldexp with the result |
122 | // of the native multiplication/division instruction. |
123 | |
124 | // We need to use a NormalFloat here (instead of 1 << exp), because |
125 | // there are 32 bit systems that don't support 128bit long ints but |
126 | // support long doubles. This test can do 1 << 64, which would fail |
127 | // in these systems. |
128 | NormalFloat two_to_exp = NormalFloat(static_cast<T>(1.L)); |
129 | two_to_exp = two_to_exp.mul2(exp); |
130 | |
131 | ASSERT_FP_EQ(func(x, exp), x * static_cast<T>(two_to_exp)); |
132 | ASSERT_FP_EQ(func(x, -exp), x / static_cast<T>(two_to_exp)); |
133 | } |
134 | } |
135 | |
136 | // Normal which trigger mantissa overflow. |
137 | T x = NormalFloat(Sign::POS, -FPBits::EXP_BIAS + 1, |
138 | StorageType(2) * NormalFloat::ONE - StorageType(1)); |
139 | ASSERT_FP_EQ(func(x, -1), x / 2); |
140 | ASSERT_FP_EQ(func(-x, -1), -x / 2); |
141 | |
142 | // Start with a normal number high exponent but pass a very low number for |
143 | // exp. The result should be a subnormal number. |
144 | x = NormalFloat(Sign::POS, FPBits::EXP_BIAS, NormalFloat::ONE); |
145 | int exp = -FPBits::MAX_BIASED_EXPONENT - 5; |
146 | T result = func(x, exp); |
147 | FPBits result_bits(result); |
148 | ASSERT_FALSE(result_bits.is_zero()); |
149 | // Verify that the result is indeed subnormal. |
150 | ASSERT_EQ(result_bits.get_biased_exponent(), uint16_t(0)); |
151 | // But if the exp is so less that normalization leads to zero, then |
152 | // the result should be zero. |
153 | result = func(x, -FPBits::MAX_BIASED_EXPONENT - FPBits::FRACTION_LEN - 5); |
154 | ASSERT_TRUE(FPBits(result).is_zero()); |
155 | |
156 | // Start with a subnormal number but pass a very high number for exponent. |
157 | // The result should not be infinity. |
158 | x = NormalFloat(Sign::POS, -FPBits::EXP_BIAS + 1, NormalFloat::ONE >> 10); |
159 | exp = FPBits::MAX_BIASED_EXPONENT + 5; |
160 | ASSERT_FALSE(FPBits(func(x, exp)).is_inf()); |
161 | // But if the exp is large enough to oversome than the normalization shift, |
162 | // then it should result in infinity. |
163 | exp = FPBits::MAX_BIASED_EXPONENT + 15; |
164 | ASSERT_FP_EQ(func(x, exp), inf); |
165 | } |
166 | }; |
167 | |
168 | #define LIST_LDEXP_TESTS(T, func) \ |
169 | using LlvmLibcLdExpTest = LdExpTestTemplate<T>; \ |
170 | TEST_F(LlvmLibcLdExpTest, SpecialNumbers) { testSpecialNumbers(&func); } \ |
171 | TEST_F(LlvmLibcLdExpTest, PowersOfTwo) { testPowersOfTwo(&func); } \ |
172 | TEST_F(LlvmLibcLdExpTest, OverFlow) { testOverflow(&func); } \ |
173 | TEST_F(LlvmLibcLdExpTest, UnderflowToZeroOnNormal) { \ |
174 | testUnderflowToZeroOnNormal(&func); \ |
175 | } \ |
176 | TEST_F(LlvmLibcLdExpTest, UnderflowToZeroOnSubnormal) { \ |
177 | testUnderflowToZeroOnSubnormal(&func); \ |
178 | } \ |
179 | TEST_F(LlvmLibcLdExpTest, NormalOperation) { testNormalOperation(&func); } \ |
180 | static_assert(true) |
181 | |
182 | #endif // LLVM_LIBC_TEST_SRC_MATH_LDEXPTEST_H |
183 | |