1 | //===-- Unittests for strtof ----------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "src/__support/FPUtil/FPBits.h" |
10 | #include "src/errno/libc_errno.h" |
11 | #include "src/stdlib/strtof.h" |
12 | |
13 | #include "test/UnitTest/FPMatcher.h" |
14 | #include "test/UnitTest/RoundingModeUtils.h" |
15 | #include "test/UnitTest/Test.h" |
16 | |
17 | #include <stddef.h> |
18 | |
19 | using LIBC_NAMESPACE::fputil::testing::ForceRoundingModeTest; |
20 | using LIBC_NAMESPACE::fputil::testing::RoundingMode; |
21 | |
22 | class LlvmLibcStrToFTest : public LIBC_NAMESPACE::testing::Test, |
23 | ForceRoundingModeTest<RoundingMode::Nearest> { |
24 | public: |
25 | void run_test(const char *inputString, const ptrdiff_t expectedStrLen, |
26 | const uint32_t expectedRawData, const int expectedErrno = 0) { |
27 | // expectedRawData is the expected float result as a uint32_t, organized |
28 | // according to IEEE754: |
29 | // |
30 | // +-- 1 Sign Bit +-- 23 Mantissa bits |
31 | // | | |
32 | // | +----------+----------+ |
33 | // | | | |
34 | // SEEEEEEEEMMMMMMMMMMMMMMMMMMMMMMM |
35 | // | | |
36 | // +--+---+ |
37 | // | |
38 | // +-- 8 Exponent Bits |
39 | // |
40 | // This is so that the result can be compared in parts. |
41 | char *str_end = nullptr; |
42 | |
43 | LIBC_NAMESPACE::fputil::FPBits<float> expected_fp = |
44 | LIBC_NAMESPACE::fputil::FPBits<float>(expectedRawData); |
45 | |
46 | LIBC_NAMESPACE::libc_errno = 0; |
47 | float result = LIBC_NAMESPACE::strtof(str: inputString, str_end: &str_end); |
48 | |
49 | EXPECT_EQ(str_end - inputString, expectedStrLen); |
50 | EXPECT_FP_EQ(result, expected_fp.get_val()); |
51 | ASSERT_ERRNO_EQ(expectedErrno); |
52 | } |
53 | }; |
54 | |
55 | // This is the set of tests that I have working (verified correct when compared |
56 | // to system libc). This is here so I don't break more things when I try to fix |
57 | // them. |
58 | |
59 | TEST_F(LlvmLibcStrToFTest, BasicDecimalTests) { |
60 | run_test(inputString: "1" , expectedStrLen: 1, expectedRawData: 0x3f800000); |
61 | run_test(inputString: "123" , expectedStrLen: 3, expectedRawData: 0x42f60000); |
62 | run_test(inputString: "1234567890" , expectedStrLen: 10, expectedRawData: 0x4e932c06u); |
63 | run_test(inputString: "123456789012345678901" , expectedStrLen: 21, expectedRawData: 0x60d629d4); |
64 | run_test(inputString: "0.1" , expectedStrLen: 3, expectedRawData: 0x3dcccccdu); |
65 | run_test(inputString: ".1" , expectedStrLen: 2, expectedRawData: 0x3dcccccdu); |
66 | run_test(inputString: "-0.123456789" , expectedStrLen: 12, expectedRawData: 0xbdfcd6eau); |
67 | run_test(inputString: "0.11111111111111111111" , expectedStrLen: 22, expectedRawData: 0x3de38e39u); |
68 | run_test(inputString: "0.0000000000000000000000001" , expectedStrLen: 27, expectedRawData: 0x15f79688u); |
69 | } |
70 | |
71 | TEST_F(LlvmLibcStrToFTest, DecimalOutOfRangeTests) { |
72 | run_test(inputString: "555E36" , expectedStrLen: 6, expectedRawData: 0x7f800000, ERANGE); |
73 | run_test(inputString: "1e-10000" , expectedStrLen: 8, expectedRawData: 0x0, ERANGE); |
74 | } |
75 | |
76 | TEST_F(LlvmLibcStrToFTest, DecimalsWithRoundingProblems) { |
77 | run_test(inputString: "20040229" , expectedStrLen: 8, expectedRawData: 0x4b98e512); |
78 | run_test(inputString: "20040401" , expectedStrLen: 8, expectedRawData: 0x4b98e568); |
79 | run_test(inputString: "9E9" , expectedStrLen: 3, expectedRawData: 0x50061c46); |
80 | } |
81 | |
82 | TEST_F(LlvmLibcStrToFTest, DecimalSubnormals) { |
83 | run_test(inputString: "1.4012984643248170709237295832899161312802619418765e-45" , expectedStrLen: 55, expectedRawData: 0x1, |
84 | ERANGE); |
85 | } |
86 | |
87 | TEST_F(LlvmLibcStrToFTest, DecimalWithLongExponent) { |
88 | run_test(inputString: "1e2147483648" , expectedStrLen: 12, expectedRawData: 0x7f800000, ERANGE); |
89 | run_test(inputString: "1e2147483646" , expectedStrLen: 12, expectedRawData: 0x7f800000, ERANGE); |
90 | run_test(inputString: "100e2147483646" , expectedStrLen: 14, expectedRawData: 0x7f800000, ERANGE); |
91 | run_test(inputString: "1e-2147483647" , expectedStrLen: 13, expectedRawData: 0x0, ERANGE); |
92 | run_test(inputString: "1e-2147483649" , expectedStrLen: 13, expectedRawData: 0x0, ERANGE); |
93 | } |
94 | |
95 | TEST_F(LlvmLibcStrToFTest, BasicHexadecimalTests) { |
96 | run_test(inputString: "0x1" , expectedStrLen: 3, expectedRawData: 0x3f800000); |
97 | run_test(inputString: "0x10" , expectedStrLen: 4, expectedRawData: 0x41800000); |
98 | run_test(inputString: "0x11" , expectedStrLen: 4, expectedRawData: 0x41880000); |
99 | run_test(inputString: "0x0.1234" , expectedStrLen: 8, expectedRawData: 0x3d91a000); |
100 | } |
101 | |
102 | TEST_F(LlvmLibcStrToFTest, HexadecimalSubnormalTests) { |
103 | run_test(inputString: "0x0.0000000000000000000000000000000002" , expectedStrLen: 38, expectedRawData: 0x4000, ERANGE); |
104 | |
105 | // This is the largest subnormal number as represented in hex |
106 | run_test(inputString: "0x0.00000000000000000000000000000003fffff8" , expectedStrLen: 42, expectedRawData: 0x7fffff, ERANGE); |
107 | } |
108 | |
109 | TEST_F(LlvmLibcStrToFTest, HexadecimalSubnormalRoundingTests) { |
110 | // This is the largest subnormal number that gets rounded down to 0 (as a |
111 | // float) |
112 | run_test(inputString: "0x0.00000000000000000000000000000000000004" , expectedStrLen: 42, expectedRawData: 0x0, ERANGE); |
113 | |
114 | // This is slightly larger, and thus rounded up |
115 | run_test(inputString: "0x0.000000000000000000000000000000000000041" , expectedStrLen: 43, expectedRawData: 0x00000001, |
116 | ERANGE); |
117 | |
118 | // These check that we're rounding to even properly |
119 | run_test(inputString: "0x0.0000000000000000000000000000000000000b" , expectedStrLen: 42, expectedRawData: 0x00000001, |
120 | ERANGE); |
121 | run_test(inputString: "0x0.0000000000000000000000000000000000000c" , expectedStrLen: 42, expectedRawData: 0x00000002, |
122 | ERANGE); |
123 | |
124 | // These check that we're rounding to even properly even when the input bits |
125 | // are longer than the bit fields can contain. |
126 | run_test(inputString: "0x1.000000000000000000000p-150" , expectedStrLen: 30, expectedRawData: 0x00000000, ERANGE); |
127 | run_test(inputString: "0x1.000010000000000001000p-150" , expectedStrLen: 30, expectedRawData: 0x00000001, ERANGE); |
128 | run_test(inputString: "0x1.000100000000000001000p-134" , expectedStrLen: 30, expectedRawData: 0x00008001, ERANGE); |
129 | run_test(inputString: "0x1.FFFFFC000000000001000p-127" , expectedStrLen: 30, expectedRawData: 0x007FFFFF, ERANGE); |
130 | run_test(inputString: "0x1.FFFFFE000000000000000p-127" , expectedStrLen: 30, expectedRawData: 0x00800000); |
131 | } |
132 | |
133 | TEST_F(LlvmLibcStrToFTest, HexadecimalNormalRoundingTests) { |
134 | // This also checks the round to even behavior by checking three adjacent |
135 | // numbers. |
136 | // This gets rounded down to even |
137 | run_test(inputString: "0x123456500" , expectedStrLen: 11, expectedRawData: 0x4f91a2b2); |
138 | // This doesn't get rounded at all |
139 | run_test(inputString: "0x123456600" , expectedStrLen: 11, expectedRawData: 0x4f91a2b3); |
140 | // This gets rounded up to even |
141 | run_test(inputString: "0x123456700" , expectedStrLen: 11, expectedRawData: 0x4f91a2b4); |
142 | // Correct rounding for long input |
143 | run_test(inputString: "0x1.000001000000000000000" , expectedStrLen: 25, expectedRawData: 0x3f800000); |
144 | run_test(inputString: "0x1.000001000000000000100" , expectedStrLen: 25, expectedRawData: 0x3f800001); |
145 | } |
146 | |
147 | TEST_F(LlvmLibcStrToFTest, HexadecimalsWithRoundingProblems) { |
148 | run_test(inputString: "0xFFFFFFFF" , expectedStrLen: 10, expectedRawData: 0x4f800000); |
149 | } |
150 | |
151 | TEST_F(LlvmLibcStrToFTest, HexadecimalOutOfRangeTests) { |
152 | run_test(inputString: "0x123456789123456789123456789123456789" , expectedStrLen: 38, expectedRawData: 0x7f800000, ERANGE); |
153 | run_test(inputString: "-0x123456789123456789123456789123456789" , expectedStrLen: 39, expectedRawData: 0xff800000, ERANGE); |
154 | run_test(inputString: "0x0.00000000000000000000000000000000000001" , expectedStrLen: 42, expectedRawData: 0x0, ERANGE); |
155 | } |
156 | |
157 | TEST_F(LlvmLibcStrToFTest, InfTests) { |
158 | run_test(inputString: "INF" , expectedStrLen: 3, expectedRawData: 0x7f800000); |
159 | run_test(inputString: "INFinity" , expectedStrLen: 8, expectedRawData: 0x7f800000); |
160 | run_test(inputString: "infnity" , expectedStrLen: 3, expectedRawData: 0x7f800000); |
161 | run_test(inputString: "infinit" , expectedStrLen: 3, expectedRawData: 0x7f800000); |
162 | run_test(inputString: "infinfinit" , expectedStrLen: 3, expectedRawData: 0x7f800000); |
163 | run_test(inputString: "innf" , expectedStrLen: 0, expectedRawData: 0x0); |
164 | run_test(inputString: "-inf" , expectedStrLen: 4, expectedRawData: 0xff800000); |
165 | run_test(inputString: "-iNfInItY" , expectedStrLen: 9, expectedRawData: 0xff800000); |
166 | } |
167 | |
168 | TEST_F(LlvmLibcStrToFTest, SimpleNaNTests) { |
169 | run_test(inputString: "NaN" , expectedStrLen: 3, expectedRawData: 0x7fc00000); |
170 | run_test(inputString: "-nAn" , expectedStrLen: 4, expectedRawData: 0xffc00000); |
171 | } |
172 | |
173 | // These NaNs are of the form `NaN(n-character-sequence)` where the |
174 | // n-character-sequence is 0 or more letters or numbers. If there is anything |
175 | // other than a letter or a number, then the valid number is just `NaN`. If |
176 | // the sequence is valid, then the interpretation of them is implementation |
177 | // defined, in this case it's passed to strtoll with an automatic base, and |
178 | // the result is put into the mantissa if it takes up the whole width of the |
179 | // parentheses. |
180 | TEST_F(LlvmLibcStrToFTest, NaNWithParenthesesEmptyTest) { |
181 | run_test(inputString: "NaN()" , expectedStrLen: 5, expectedRawData: 0x7fc00000); |
182 | } |
183 | |
184 | TEST_F(LlvmLibcStrToFTest, NaNWithParenthesesValidNumberTests) { |
185 | run_test(inputString: "NaN(1234)" , expectedStrLen: 9, expectedRawData: 0x7fc004d2); |
186 | run_test(inputString: "NaN(0x1234)" , expectedStrLen: 11, expectedRawData: 0x7fc01234); |
187 | run_test(inputString: "NaN(01234)" , expectedStrLen: 10, expectedRawData: 0x7fc0029c); |
188 | } |
189 | |
190 | TEST_F(LlvmLibcStrToFTest, NaNWithParenthesesInvalidSequenceTests) { |
191 | run_test(inputString: "NaN( 1234)" , expectedStrLen: 3, expectedRawData: 0x7fc00000); |
192 | run_test(inputString: "NaN(-1234)" , expectedStrLen: 3, expectedRawData: 0x7fc00000); |
193 | run_test(inputString: "NaN(asd&f)" , expectedStrLen: 3, expectedRawData: 0x7fc00000); |
194 | run_test(inputString: "NaN(123 )" , expectedStrLen: 3, expectedRawData: 0x7fc00000); |
195 | run_test(inputString: "NaN(123+asdf)" , expectedStrLen: 3, expectedRawData: 0x7fc00000); |
196 | run_test(inputString: "NaN(123" , expectedStrLen: 3, expectedRawData: 0x7fc00000); |
197 | } |
198 | |
199 | TEST_F(LlvmLibcStrToFTest, NaNWithParenthesesValidSequenceInvalidNumberTests) { |
200 | run_test(inputString: "NaN(1a)" , expectedStrLen: 7, expectedRawData: 0x7fc00000); |
201 | run_test(inputString: "NaN(asdf)" , expectedStrLen: 9, expectedRawData: 0x7fc00000); |
202 | run_test(inputString: "NaN(1A1)" , expectedStrLen: 8, expectedRawData: 0x7fc00000); |
203 | run_test(inputString: "NaN(why_does_this_work)" , expectedStrLen: 23, expectedRawData: 0x7fc00000); |
204 | run_test( |
205 | inputString: "NaN(1234567890qwertyuiopasdfghjklzxcvbnmQWERTYUIOPASDFGHJKLZXCVBNM_)" , |
206 | expectedStrLen: 68, expectedRawData: 0x7fc00000); |
207 | } |
208 | |