| 1 | //===-- Unittests for strtof ----------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "src/__support/FPUtil/FPBits.h" |
| 10 | #include "src/stdlib/strtof.h" |
| 11 | |
| 12 | #include "test/UnitTest/ErrnoCheckingTest.h" |
| 13 | #include "test/UnitTest/FPMatcher.h" |
| 14 | #include "test/UnitTest/RoundingModeUtils.h" |
| 15 | #include "test/UnitTest/Test.h" |
| 16 | |
| 17 | #include <stddef.h> |
| 18 | |
| 19 | using LIBC_NAMESPACE::fputil::testing::ForceRoundingModeTest; |
| 20 | using LIBC_NAMESPACE::fputil::testing::RoundingMode; |
| 21 | |
| 22 | class LlvmLibcStrToFTest : public LIBC_NAMESPACE::testing::ErrnoCheckingTest, |
| 23 | ForceRoundingModeTest<RoundingMode::Nearest> { |
| 24 | public: |
| 25 | void run_test(const char *inputString, const ptrdiff_t expectedStrLen, |
| 26 | const uint32_t expectedRawData, const int expectedErrno = 0) { |
| 27 | // expectedRawData is the expected float result as a uint32_t, organized |
| 28 | // according to IEEE754: |
| 29 | // |
| 30 | // +-- 1 Sign Bit +-- 23 Mantissa bits |
| 31 | // | | |
| 32 | // | +----------+----------+ |
| 33 | // | | | |
| 34 | // SEEEEEEEEMMMMMMMMMMMMMMMMMMMMMMM |
| 35 | // | | |
| 36 | // +--+---+ |
| 37 | // | |
| 38 | // +-- 8 Exponent Bits |
| 39 | // |
| 40 | // This is so that the result can be compared in parts. |
| 41 | char *str_end = nullptr; |
| 42 | |
| 43 | LIBC_NAMESPACE::fputil::FPBits<float> expected_fp = |
| 44 | LIBC_NAMESPACE::fputil::FPBits<float>(expectedRawData); |
| 45 | |
| 46 | float result = LIBC_NAMESPACE::strtof(inputString, &str_end); |
| 47 | |
| 48 | EXPECT_EQ(str_end - inputString, expectedStrLen); |
| 49 | EXPECT_FP_EQ(result, expected_fp.get_val()); |
| 50 | ASSERT_ERRNO_EQ(expectedErrno); |
| 51 | } |
| 52 | }; |
| 53 | |
| 54 | // This is the set of tests that I have working (verified correct when compared |
| 55 | // to system libc). This is here so I don't break more things when I try to fix |
| 56 | // them. |
| 57 | |
| 58 | TEST_F(LlvmLibcStrToFTest, BasicDecimalTests) { |
| 59 | run_test("1" , 1, 0x3f800000); |
| 60 | run_test("123" , 3, 0x42f60000); |
| 61 | run_test("1234567890" , 10, 0x4e932c06u); |
| 62 | run_test("123456789012345678901" , 21, 0x60d629d4); |
| 63 | run_test("0.1" , 3, 0x3dcccccdu); |
| 64 | run_test(".1" , 2, 0x3dcccccdu); |
| 65 | run_test("-0.123456789" , 12, 0xbdfcd6eau); |
| 66 | run_test("0.11111111111111111111" , 22, 0x3de38e39u); |
| 67 | run_test("0.0000000000000000000000001" , 27, 0x15f79688u); |
| 68 | } |
| 69 | |
| 70 | TEST_F(LlvmLibcStrToFTest, DecimalOutOfRangeTests) { |
| 71 | run_test("555E36" , 6, 0x7f800000, ERANGE); |
| 72 | run_test("1e-10000" , 8, 0x0, ERANGE); |
| 73 | } |
| 74 | |
| 75 | TEST_F(LlvmLibcStrToFTest, DecimalsWithRoundingProblems) { |
| 76 | run_test("20040229" , 8, 0x4b98e512); |
| 77 | run_test("20040401" , 8, 0x4b98e568); |
| 78 | run_test("9E9" , 3, 0x50061c46); |
| 79 | } |
| 80 | |
| 81 | TEST_F(LlvmLibcStrToFTest, DecimalSubnormals) { |
| 82 | run_test("1.4012984643248170709237295832899161312802619418765e-45" , 55, 0x1, |
| 83 | ERANGE); |
| 84 | } |
| 85 | |
| 86 | TEST_F(LlvmLibcStrToFTest, DecimalWithLongExponent) { |
| 87 | run_test("1e2147483648" , 12, 0x7f800000, ERANGE); |
| 88 | run_test("1e2147483646" , 12, 0x7f800000, ERANGE); |
| 89 | run_test("100e2147483646" , 14, 0x7f800000, ERANGE); |
| 90 | run_test("1e-2147483647" , 13, 0x0, ERANGE); |
| 91 | run_test("1e-2147483649" , 13, 0x0, ERANGE); |
| 92 | } |
| 93 | |
| 94 | TEST_F(LlvmLibcStrToFTest, BasicHexadecimalTests) { |
| 95 | run_test("0x1" , 3, 0x3f800000); |
| 96 | run_test("0x10" , 4, 0x41800000); |
| 97 | run_test("0x11" , 4, 0x41880000); |
| 98 | run_test("0x0.1234" , 8, 0x3d91a000); |
| 99 | } |
| 100 | |
| 101 | TEST_F(LlvmLibcStrToFTest, HexadecimalSubnormalTests) { |
| 102 | run_test("0x0.0000000000000000000000000000000002" , 38, 0x4000, ERANGE); |
| 103 | |
| 104 | // This is the largest subnormal number as represented in hex |
| 105 | run_test("0x0.00000000000000000000000000000003fffff8" , 42, 0x7fffff, ERANGE); |
| 106 | } |
| 107 | |
| 108 | TEST_F(LlvmLibcStrToFTest, HexadecimalSubnormalRoundingTests) { |
| 109 | // This is the largest subnormal number that gets rounded down to 0 (as a |
| 110 | // float) |
| 111 | run_test("0x0.00000000000000000000000000000000000004" , 42, 0x0, ERANGE); |
| 112 | |
| 113 | // This is slightly larger, and thus rounded up |
| 114 | run_test("0x0.000000000000000000000000000000000000041" , 43, 0x00000001, |
| 115 | ERANGE); |
| 116 | |
| 117 | // These check that we're rounding to even properly |
| 118 | run_test("0x0.0000000000000000000000000000000000000b" , 42, 0x00000001, |
| 119 | ERANGE); |
| 120 | run_test("0x0.0000000000000000000000000000000000000c" , 42, 0x00000002, |
| 121 | ERANGE); |
| 122 | |
| 123 | // These check that we're rounding to even properly even when the input bits |
| 124 | // are longer than the bit fields can contain. |
| 125 | run_test("0x1.000000000000000000000p-150" , 30, 0x00000000, ERANGE); |
| 126 | run_test("0x1.000010000000000001000p-150" , 30, 0x00000001, ERANGE); |
| 127 | run_test("0x1.000100000000000001000p-134" , 30, 0x00008001, ERANGE); |
| 128 | run_test("0x1.FFFFFC000000000001000p-127" , 30, 0x007FFFFF, ERANGE); |
| 129 | run_test("0x1.FFFFFE000000000000000p-127" , 30, 0x00800000); |
| 130 | } |
| 131 | |
| 132 | TEST_F(LlvmLibcStrToFTest, HexadecimalNormalRoundingTests) { |
| 133 | // This also checks the round to even behavior by checking three adjacent |
| 134 | // numbers. |
| 135 | // This gets rounded down to even |
| 136 | run_test("0x123456500" , 11, 0x4f91a2b2); |
| 137 | // This doesn't get rounded at all |
| 138 | run_test("0x123456600" , 11, 0x4f91a2b3); |
| 139 | // This gets rounded up to even |
| 140 | run_test("0x123456700" , 11, 0x4f91a2b4); |
| 141 | // Correct rounding for long input |
| 142 | run_test("0x1.000001000000000000000" , 25, 0x3f800000); |
| 143 | run_test("0x1.000001000000000000100" , 25, 0x3f800001); |
| 144 | } |
| 145 | |
| 146 | TEST_F(LlvmLibcStrToFTest, HexadecimalsWithRoundingProblems) { |
| 147 | run_test("0xFFFFFFFF" , 10, 0x4f800000); |
| 148 | } |
| 149 | |
| 150 | TEST_F(LlvmLibcStrToFTest, HexadecimalOutOfRangeTests) { |
| 151 | run_test("0x123456789123456789123456789123456789" , 38, 0x7f800000, ERANGE); |
| 152 | run_test("-0x123456789123456789123456789123456789" , 39, 0xff800000, ERANGE); |
| 153 | run_test("0x0.00000000000000000000000000000000000001" , 42, 0x0, ERANGE); |
| 154 | } |
| 155 | |
| 156 | TEST_F(LlvmLibcStrToFTest, InfTests) { |
| 157 | run_test("INF" , 3, 0x7f800000); |
| 158 | run_test("INFinity" , 8, 0x7f800000); |
| 159 | run_test("infnity" , 3, 0x7f800000); |
| 160 | run_test("infinit" , 3, 0x7f800000); |
| 161 | run_test("infinfinit" , 3, 0x7f800000); |
| 162 | run_test("innf" , 0, 0x0); |
| 163 | run_test("-inf" , 4, 0xff800000); |
| 164 | run_test("-iNfInItY" , 9, 0xff800000); |
| 165 | } |
| 166 | |
| 167 | TEST_F(LlvmLibcStrToFTest, SimpleNaNTests) { |
| 168 | run_test("NaN" , 3, 0x7fc00000); |
| 169 | run_test("-nAn" , 4, 0xffc00000); |
| 170 | } |
| 171 | |
| 172 | // These NaNs are of the form `NaN(n-character-sequence)` where the |
| 173 | // n-character-sequence is 0 or more letters or numbers. If there is anything |
| 174 | // other than a letter or a number, then the valid number is just `NaN`. If |
| 175 | // the sequence is valid, then the interpretation of them is implementation |
| 176 | // defined, in this case it's passed to strtoll with an automatic base, and |
| 177 | // the result is put into the mantissa if it takes up the whole width of the |
| 178 | // parentheses. |
| 179 | TEST_F(LlvmLibcStrToFTest, NaNWithParenthesesEmptyTest) { |
| 180 | run_test("NaN()" , 5, 0x7fc00000); |
| 181 | } |
| 182 | |
| 183 | TEST_F(LlvmLibcStrToFTest, NaNWithParenthesesValidNumberTests) { |
| 184 | run_test("NaN(1234)" , 9, 0x7fc004d2); |
| 185 | run_test("NaN(0x1234)" , 11, 0x7fc01234); |
| 186 | run_test("NaN(01234)" , 10, 0x7fc0029c); |
| 187 | } |
| 188 | |
| 189 | TEST_F(LlvmLibcStrToFTest, NaNWithParenthesesInvalidSequenceTests) { |
| 190 | run_test("NaN( 1234)" , 3, 0x7fc00000); |
| 191 | run_test("NaN(-1234)" , 3, 0x7fc00000); |
| 192 | run_test("NaN(asd&f)" , 3, 0x7fc00000); |
| 193 | run_test("NaN(123 )" , 3, 0x7fc00000); |
| 194 | run_test("NaN(123+asdf)" , 3, 0x7fc00000); |
| 195 | run_test("NaN(123" , 3, 0x7fc00000); |
| 196 | } |
| 197 | |
| 198 | TEST_F(LlvmLibcStrToFTest, NaNWithParenthesesValidSequenceInvalidNumberTests) { |
| 199 | run_test("NaN(1a)" , 7, 0x7fc00000); |
| 200 | run_test("NaN(asdf)" , 9, 0x7fc00000); |
| 201 | run_test("NaN(1A1)" , 8, 0x7fc00000); |
| 202 | run_test("NaN(underscores_are_ok)" , 23, 0x7fc00000); |
| 203 | run_test( |
| 204 | "NaN(1234567890qwertyuiopasdfghjklzxcvbnmQWERTYUIOPASDFGHJKLZXCVBNM_)" , |
| 205 | 68, 0x7fc00000); |
| 206 | } |
| 207 | |