| 1 | //===----------------------------------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #ifndef TEST_BENCHMARKS_CONTAINERS_ASSOCIATIVE_CONTAINER_BENCHMARKS_H |
| 10 | #define TEST_BENCHMARKS_CONTAINERS_ASSOCIATIVE_CONTAINER_BENCHMARKS_H |
| 11 | |
| 12 | #include <algorithm> |
| 13 | #include <iterator> |
| 14 | #include <random> |
| 15 | #include <string> |
| 16 | #include <type_traits> |
| 17 | #include <utility> |
| 18 | #include <vector> |
| 19 | |
| 20 | #include "benchmark/benchmark.h" |
| 21 | #include "../../GenerateInput.h" |
| 22 | |
| 23 | namespace support { |
| 24 | |
| 25 | template <class Container> |
| 26 | struct adapt_operations { |
| 27 | // using ValueType = ...; |
| 28 | // using KeyType = ...; |
| 29 | // static ValueType value_from_key(KeyType const& k); |
| 30 | // static KeyType key_from_value(ValueType const& value); |
| 31 | |
| 32 | // using InsertionResult = ...; |
| 33 | // static Container::iterator get_iterator(InsertionResult const&); |
| 34 | }; |
| 35 | |
| 36 | template <class Container> |
| 37 | void associative_container_benchmarks(std::string container) { |
| 38 | using Key = typename Container::key_type; |
| 39 | using Value = typename Container::value_type; |
| 40 | |
| 41 | auto generate_unique_keys = [=](std::size_t n) { |
| 42 | std::set<Key> keys; |
| 43 | while (keys.size() < n) { |
| 44 | Key k = Generate<Key>::random(); |
| 45 | keys.insert(k); |
| 46 | } |
| 47 | return std::vector<Key>(keys.begin(), keys.end()); |
| 48 | }; |
| 49 | |
| 50 | auto make_value_types = [](std::vector<Key> const& keys) { |
| 51 | std::vector<Value> kv; |
| 52 | for (Key const& k : keys) |
| 53 | kv.push_back(adapt_operations<Container>::value_from_key(k)); |
| 54 | return kv; |
| 55 | }; |
| 56 | |
| 57 | auto get_key = [](Value const& v) { return adapt_operations<Container>::key_from_value(v); }; |
| 58 | |
| 59 | auto bench = [&](std::string operation, auto f) { |
| 60 | benchmark::RegisterBenchmark(container + "::" + operation, f)->Arg(32)->Arg(1024)->Arg(8192); |
| 61 | }; |
| 62 | |
| 63 | static constexpr bool is_multi_key_container = |
| 64 | !std::is_same_v<typename adapt_operations<Container>::InsertionResult, |
| 65 | std::pair<typename Container::iterator, bool>>; |
| 66 | |
| 67 | static constexpr bool is_ordered_container = requires(Container c, Key k) { c.lower_bound(k); }; |
| 68 | |
| 69 | // These benchmarks are structured to perform the operation being benchmarked |
| 70 | // a small number of times at each iteration, in order to offset the cost of |
| 71 | // PauseTiming() and ResumeTiming(). |
| 72 | static constexpr std::size_t BatchSize = 32; |
| 73 | |
| 74 | struct alignas(Container) ScratchSpace { |
| 75 | char storage[sizeof(Container)]; |
| 76 | }; |
| 77 | |
| 78 | ///////////////////////// |
| 79 | // Constructors |
| 80 | ///////////////////////// |
| 81 | bench("ctor(const&)" , [=](auto& st) { |
| 82 | const std::size_t size = st.range(0); |
| 83 | std::vector<Value> in = make_value_types(generate_unique_keys(size)); |
| 84 | Container src(in.begin(), in.end()); |
| 85 | ScratchSpace c[BatchSize]; |
| 86 | |
| 87 | while (st.KeepRunningBatch(BatchSize)) { |
| 88 | for (std::size_t i = 0; i != BatchSize; ++i) { |
| 89 | new (c + i) Container(src); |
| 90 | benchmark::DoNotOptimize(c + i); |
| 91 | benchmark::ClobberMemory(); |
| 92 | } |
| 93 | |
| 94 | st.PauseTiming(); |
| 95 | for (std::size_t i = 0; i != BatchSize; ++i) { |
| 96 | reinterpret_cast<Container*>(c + i)->~Container(); |
| 97 | } |
| 98 | st.ResumeTiming(); |
| 99 | } |
| 100 | }); |
| 101 | |
| 102 | bench("ctor(iterator, iterator) (unsorted sequence)" , [=](auto& st) { |
| 103 | const std::size_t size = st.range(0); |
| 104 | std::mt19937 randomness; |
| 105 | std::vector<Key> keys = generate_unique_keys(size); |
| 106 | std::shuffle(keys.begin(), keys.end(), randomness); |
| 107 | std::vector<Value> in = make_value_types(keys); |
| 108 | ScratchSpace c[BatchSize]; |
| 109 | |
| 110 | while (st.KeepRunningBatch(BatchSize)) { |
| 111 | for (std::size_t i = 0; i != BatchSize; ++i) { |
| 112 | new (c + i) Container(in.begin(), in.end()); |
| 113 | benchmark::DoNotOptimize(c + i); |
| 114 | benchmark::ClobberMemory(); |
| 115 | } |
| 116 | |
| 117 | st.PauseTiming(); |
| 118 | for (std::size_t i = 0; i != BatchSize; ++i) { |
| 119 | reinterpret_cast<Container*>(c + i)->~Container(); |
| 120 | } |
| 121 | st.ResumeTiming(); |
| 122 | } |
| 123 | }); |
| 124 | |
| 125 | bench("ctor(iterator, iterator) (sorted sequence)" , [=](auto& st) { |
| 126 | const std::size_t size = st.range(0); |
| 127 | std::vector<Key> keys = generate_unique_keys(size); |
| 128 | std::sort(keys.begin(), keys.end()); |
| 129 | std::vector<Value> in = make_value_types(keys); |
| 130 | ScratchSpace c[BatchSize]; |
| 131 | |
| 132 | while (st.KeepRunningBatch(BatchSize)) { |
| 133 | for (std::size_t i = 0; i != BatchSize; ++i) { |
| 134 | new (c + i) Container(in.begin(), in.end()); |
| 135 | benchmark::DoNotOptimize(c + i); |
| 136 | benchmark::ClobberMemory(); |
| 137 | } |
| 138 | |
| 139 | st.PauseTiming(); |
| 140 | for (std::size_t i = 0; i != BatchSize; ++i) { |
| 141 | reinterpret_cast<Container*>(c + i)->~Container(); |
| 142 | } |
| 143 | st.ResumeTiming(); |
| 144 | } |
| 145 | }); |
| 146 | |
| 147 | ///////////////////////// |
| 148 | // Assignment |
| 149 | ///////////////////////// |
| 150 | bench("operator=(const&)" , [=](auto& st) { |
| 151 | const std::size_t size = st.range(0); |
| 152 | std::vector<Value> in = make_value_types(generate_unique_keys(size)); |
| 153 | Container src(in.begin(), in.end()); |
| 154 | Container c[BatchSize]; |
| 155 | |
| 156 | while (st.KeepRunningBatch(BatchSize)) { |
| 157 | for (std::size_t i = 0; i != BatchSize; ++i) { |
| 158 | c[i] = src; |
| 159 | benchmark::DoNotOptimize(c[i]); |
| 160 | benchmark::ClobberMemory(); |
| 161 | } |
| 162 | |
| 163 | st.PauseTiming(); |
| 164 | for (std::size_t i = 0; i != BatchSize; ++i) { |
| 165 | c[i].clear(); |
| 166 | } |
| 167 | st.ResumeTiming(); |
| 168 | } |
| 169 | }); |
| 170 | |
| 171 | ///////////////////////// |
| 172 | // Insertion |
| 173 | ///////////////////////// |
| 174 | bench("insert(value) (already present)" , [=](auto& st) { |
| 175 | const std::size_t size = st.range(0); |
| 176 | std::vector<Value> in = make_value_types(generate_unique_keys(size)); |
| 177 | Value to_insert = in[in.size() / 2]; // pick any existing value |
| 178 | std::vector<Container> c(BatchSize, Container(in.begin(), in.end())); |
| 179 | typename Container::iterator inserted[BatchSize]; |
| 180 | |
| 181 | while (st.KeepRunningBatch(BatchSize)) { |
| 182 | for (std::size_t i = 0; i != BatchSize; ++i) { |
| 183 | inserted[i] = adapt_operations<Container>::get_iterator(c[i].insert(to_insert)); |
| 184 | benchmark::DoNotOptimize(inserted[i]); |
| 185 | benchmark::DoNotOptimize(c[i]); |
| 186 | benchmark::ClobberMemory(); |
| 187 | } |
| 188 | |
| 189 | if constexpr (is_multi_key_container) { |
| 190 | st.PauseTiming(); |
| 191 | for (std::size_t i = 0; i != BatchSize; ++i) { |
| 192 | c[i].erase(inserted[i]); |
| 193 | } |
| 194 | st.ResumeTiming(); |
| 195 | } |
| 196 | } |
| 197 | }); |
| 198 | |
| 199 | bench("insert(value) (new value)" , [=](auto& st) { |
| 200 | const std::size_t size = st.range(0); |
| 201 | std::vector<Value> in = make_value_types(generate_unique_keys(size + 1)); |
| 202 | Value to_insert = in.back(); |
| 203 | in.pop_back(); |
| 204 | std::vector<Container> c(BatchSize, Container(in.begin(), in.end())); |
| 205 | |
| 206 | while (st.KeepRunningBatch(BatchSize)) { |
| 207 | for (std::size_t i = 0; i != BatchSize; ++i) { |
| 208 | auto result = c[i].insert(to_insert); |
| 209 | benchmark::DoNotOptimize(result); |
| 210 | benchmark::DoNotOptimize(c[i]); |
| 211 | benchmark::ClobberMemory(); |
| 212 | } |
| 213 | |
| 214 | st.PauseTiming(); |
| 215 | for (std::size_t i = 0; i != BatchSize; ++i) { |
| 216 | c[i].erase(get_key(to_insert)); |
| 217 | } |
| 218 | st.ResumeTiming(); |
| 219 | } |
| 220 | }); |
| 221 | |
| 222 | // The insert(hint, ...) methods are only relevant for ordered containers, and we lack |
| 223 | // a good way to compute a hint for unordered ones. |
| 224 | if constexpr (is_ordered_container) { |
| 225 | bench("insert(hint, value) (good hint)" , [=](auto& st) { |
| 226 | const std::size_t size = st.range(0); |
| 227 | std::vector<Value> in = make_value_types(generate_unique_keys(size + 1)); |
| 228 | Value to_insert = in.back(); |
| 229 | in.pop_back(); |
| 230 | |
| 231 | std::vector<Container> c(BatchSize, Container(in.begin(), in.end())); |
| 232 | typename Container::iterator hints[BatchSize]; |
| 233 | for (std::size_t i = 0; i != BatchSize; ++i) { |
| 234 | hints[i] = c[i].lower_bound(get_key(to_insert)); |
| 235 | } |
| 236 | |
| 237 | while (st.KeepRunningBatch(BatchSize)) { |
| 238 | for (std::size_t i = 0; i != BatchSize; ++i) { |
| 239 | auto result = c[i].insert(hints[i], to_insert); |
| 240 | benchmark::DoNotOptimize(result); |
| 241 | benchmark::DoNotOptimize(c[i]); |
| 242 | benchmark::ClobberMemory(); |
| 243 | } |
| 244 | |
| 245 | st.PauseTiming(); |
| 246 | for (std::size_t i = 0; i != BatchSize; ++i) { |
| 247 | c[i].erase(get_key(to_insert)); |
| 248 | hints[i] = c[i].lower_bound(get_key(to_insert)); // refresh hints in case of invalidation |
| 249 | } |
| 250 | st.ResumeTiming(); |
| 251 | } |
| 252 | }); |
| 253 | |
| 254 | bench("insert(hint, value) (bad hint)" , [=](auto& st) { |
| 255 | const std::size_t size = st.range(0); |
| 256 | std::vector<Value> in = make_value_types(generate_unique_keys(size + 1)); |
| 257 | Value to_insert = in.back(); |
| 258 | in.pop_back(); |
| 259 | std::vector<Container> c(BatchSize, Container(in.begin(), in.end())); |
| 260 | |
| 261 | while (st.KeepRunningBatch(BatchSize)) { |
| 262 | for (std::size_t i = 0; i != BatchSize; ++i) { |
| 263 | auto result = c[i].insert(c[i].begin(), to_insert); |
| 264 | benchmark::DoNotOptimize(result); |
| 265 | benchmark::DoNotOptimize(c[i]); |
| 266 | benchmark::ClobberMemory(); |
| 267 | } |
| 268 | |
| 269 | st.PauseTiming(); |
| 270 | for (std::size_t i = 0; i != BatchSize; ++i) { |
| 271 | c[i].erase(get_key(to_insert)); |
| 272 | } |
| 273 | st.ResumeTiming(); |
| 274 | } |
| 275 | }); |
| 276 | } |
| 277 | |
| 278 | bench("insert(iterator, iterator) (all new keys)" , [=](auto& st) { |
| 279 | const std::size_t size = st.range(0); |
| 280 | std::vector<Value> in = make_value_types(generate_unique_keys(size + (size / 10))); |
| 281 | |
| 282 | // Populate a container with a small number of elements, that's what containers will start with. |
| 283 | std::vector<Value> small; |
| 284 | for (std::size_t i = 0; i != (size / 10); ++i) { |
| 285 | small.push_back(in.back()); |
| 286 | in.pop_back(); |
| 287 | } |
| 288 | Container c(small.begin(), small.end()); |
| 289 | |
| 290 | for ([[maybe_unused]] auto _ : st) { |
| 291 | c.insert(in.begin(), in.end()); |
| 292 | benchmark::DoNotOptimize(c); |
| 293 | benchmark::ClobberMemory(); |
| 294 | |
| 295 | st.PauseTiming(); |
| 296 | c = Container(small.begin(), small.end()); |
| 297 | st.ResumeTiming(); |
| 298 | } |
| 299 | }); |
| 300 | |
| 301 | bench("insert(iterator, iterator) (half new keys)" , [=](auto& st) { |
| 302 | const std::size_t size = st.range(0); |
| 303 | std::vector<Value> in = make_value_types(generate_unique_keys(size)); |
| 304 | |
| 305 | // Populate a container that already contains half the elements we'll try inserting, |
| 306 | // that's what our container will start with. |
| 307 | std::vector<Value> small; |
| 308 | for (std::size_t i = 0; i != size / 2; ++i) { |
| 309 | small.push_back(in.at(i * 2)); |
| 310 | } |
| 311 | Container c(small.begin(), small.end()); |
| 312 | |
| 313 | for ([[maybe_unused]] auto _ : st) { |
| 314 | c.insert(in.begin(), in.end()); |
| 315 | benchmark::DoNotOptimize(c); |
| 316 | benchmark::ClobberMemory(); |
| 317 | |
| 318 | st.PauseTiming(); |
| 319 | c = Container(small.begin(), small.end()); |
| 320 | st.ResumeTiming(); |
| 321 | } |
| 322 | }); |
| 323 | |
| 324 | ///////////////////////// |
| 325 | // Erasure |
| 326 | ///////////////////////// |
| 327 | bench("erase(key) (existent)" , [=](auto& st) { |
| 328 | const std::size_t size = st.range(0); |
| 329 | std::vector<Value> in = make_value_types(generate_unique_keys(size)); |
| 330 | Value element = in[in.size() / 2]; // pick any element |
| 331 | std::vector<Container> c(BatchSize, Container(in.begin(), in.end())); |
| 332 | |
| 333 | while (st.KeepRunningBatch(BatchSize)) { |
| 334 | for (std::size_t i = 0; i != BatchSize; ++i) { |
| 335 | auto result = c[i].erase(get_key(element)); |
| 336 | benchmark::DoNotOptimize(result); |
| 337 | benchmark::DoNotOptimize(c[i]); |
| 338 | benchmark::ClobberMemory(); |
| 339 | } |
| 340 | |
| 341 | st.PauseTiming(); |
| 342 | for (std::size_t i = 0; i != BatchSize; ++i) { |
| 343 | c[i].insert(element); |
| 344 | } |
| 345 | st.ResumeTiming(); |
| 346 | } |
| 347 | }); |
| 348 | |
| 349 | bench("erase(key) (non-existent)" , [=](auto& st) { |
| 350 | const std::size_t size = st.range(0); |
| 351 | std::vector<Value> in = make_value_types(generate_unique_keys(size + BatchSize)); |
| 352 | std::vector<Key> keys; |
| 353 | for (std::size_t i = 0; i != BatchSize; ++i) { |
| 354 | keys.push_back(get_key(in.back())); |
| 355 | in.pop_back(); |
| 356 | } |
| 357 | Container c(in.begin(), in.end()); |
| 358 | |
| 359 | while (st.KeepRunningBatch(BatchSize)) { |
| 360 | for (std::size_t i = 0; i != BatchSize; ++i) { |
| 361 | auto result = c.erase(keys[i]); |
| 362 | benchmark::DoNotOptimize(result); |
| 363 | benchmark::DoNotOptimize(c); |
| 364 | benchmark::ClobberMemory(); |
| 365 | } |
| 366 | |
| 367 | // no cleanup required because we erased a non-existent element |
| 368 | } |
| 369 | }); |
| 370 | |
| 371 | bench("erase(iterator)" , [=](auto& st) { |
| 372 | const std::size_t size = st.range(0); |
| 373 | std::vector<Value> in = make_value_types(generate_unique_keys(size)); |
| 374 | Value element = in[in.size() / 2]; // pick any element |
| 375 | |
| 376 | std::vector<Container> c; |
| 377 | std::vector<typename Container::iterator> iterators; |
| 378 | for (std::size_t i = 0; i != BatchSize; ++i) { |
| 379 | c.push_back(Container(in.begin(), in.end())); |
| 380 | iterators.push_back(c[i].find(get_key(element))); |
| 381 | } |
| 382 | |
| 383 | while (st.KeepRunningBatch(BatchSize)) { |
| 384 | for (std::size_t i = 0; i != BatchSize; ++i) { |
| 385 | auto result = c[i].erase(iterators[i]); |
| 386 | benchmark::DoNotOptimize(result); |
| 387 | benchmark::DoNotOptimize(c[i]); |
| 388 | benchmark::ClobberMemory(); |
| 389 | } |
| 390 | |
| 391 | st.PauseTiming(); |
| 392 | for (std::size_t i = 0; i != BatchSize; ++i) { |
| 393 | iterators[i] = adapt_operations<Container>::get_iterator(c[i].insert(element)); |
| 394 | } |
| 395 | st.ResumeTiming(); |
| 396 | } |
| 397 | }); |
| 398 | |
| 399 | bench("erase(iterator, iterator) (erase half the container)" , [=](auto& st) { |
| 400 | const std::size_t size = st.range(0); |
| 401 | std::vector<Value> in = make_value_types(generate_unique_keys(size)); |
| 402 | Container c(in.begin(), in.end()); |
| 403 | |
| 404 | auto first = std::next(c.begin(), c.size() / 4); |
| 405 | auto last = std::next(c.begin(), 3 * (c.size() / 4)); |
| 406 | for ([[maybe_unused]] auto _ : st) { |
| 407 | auto result = c.erase(first, last); |
| 408 | benchmark::DoNotOptimize(result); |
| 409 | benchmark::DoNotOptimize(c); |
| 410 | benchmark::ClobberMemory(); |
| 411 | |
| 412 | st.PauseTiming(); |
| 413 | c = Container(in.begin(), in.end()); |
| 414 | first = std::next(c.begin(), c.size() / 4); |
| 415 | last = std::next(c.begin(), 3 * (c.size() / 4)); |
| 416 | st.ResumeTiming(); |
| 417 | } |
| 418 | }); |
| 419 | |
| 420 | bench("clear()" , [=](auto& st) { |
| 421 | const std::size_t size = st.range(0); |
| 422 | std::vector<Value> in = make_value_types(generate_unique_keys(size)); |
| 423 | Container c(in.begin(), in.end()); |
| 424 | |
| 425 | for ([[maybe_unused]] auto _ : st) { |
| 426 | c.clear(); |
| 427 | benchmark::DoNotOptimize(c); |
| 428 | benchmark::ClobberMemory(); |
| 429 | |
| 430 | st.PauseTiming(); |
| 431 | c = Container(in.begin(), in.end()); |
| 432 | st.ResumeTiming(); |
| 433 | } |
| 434 | }); |
| 435 | |
| 436 | ///////////////////////// |
| 437 | // Query |
| 438 | ///////////////////////// |
| 439 | auto with_existent_key = [=](auto func) { |
| 440 | return [=](auto& st) { |
| 441 | const std::size_t size = st.range(0); |
| 442 | std::vector<Value> in = make_value_types(generate_unique_keys(size)); |
| 443 | // Pick any `BatchSize` number of elements |
| 444 | std::vector<Key> keys; |
| 445 | for (std::size_t i = 0; i < in.size(); i += (in.size() / BatchSize)) { |
| 446 | keys.push_back(get_key(in.at(i))); |
| 447 | } |
| 448 | Container c(in.begin(), in.end()); |
| 449 | |
| 450 | while (st.KeepRunningBatch(BatchSize)) { |
| 451 | for (std::size_t i = 0; i != BatchSize; ++i) { |
| 452 | auto result = func(c, keys[i]); |
| 453 | benchmark::DoNotOptimize(c); |
| 454 | benchmark::DoNotOptimize(result); |
| 455 | benchmark::ClobberMemory(); |
| 456 | } |
| 457 | } |
| 458 | }; |
| 459 | }; |
| 460 | |
| 461 | auto with_nonexistent_key = [=](auto func) { |
| 462 | return [=](auto& st) { |
| 463 | const std::size_t size = st.range(0); |
| 464 | std::vector<Value> in = make_value_types(generate_unique_keys(size + BatchSize)); |
| 465 | std::vector<Key> keys; |
| 466 | for (std::size_t i = 0; i != BatchSize; ++i) { |
| 467 | keys.push_back(get_key(in.back())); |
| 468 | in.pop_back(); |
| 469 | } |
| 470 | Container c(in.begin(), in.end()); |
| 471 | |
| 472 | while (st.KeepRunningBatch(BatchSize)) { |
| 473 | for (std::size_t i = 0; i != BatchSize; ++i) { |
| 474 | auto result = func(c, keys[i]); |
| 475 | benchmark::DoNotOptimize(c); |
| 476 | benchmark::DoNotOptimize(result); |
| 477 | benchmark::ClobberMemory(); |
| 478 | } |
| 479 | } |
| 480 | }; |
| 481 | }; |
| 482 | |
| 483 | auto find = [](Container const& c, Key const& key) { return c.find(key); }; |
| 484 | bench("find(key) (existent)" , with_existent_key(find)); |
| 485 | bench("find(key) (non-existent)" , with_nonexistent_key(find)); |
| 486 | |
| 487 | auto count = [](Container const& c, Key const& key) { return c.count(key); }; |
| 488 | bench("count(key) (existent)" , with_existent_key(count)); |
| 489 | bench("count(key) (non-existent)" , with_nonexistent_key(count)); |
| 490 | |
| 491 | auto contains = [](Container const& c, Key const& key) { return c.contains(key); }; |
| 492 | bench("contains(key) (existent)" , with_existent_key(contains)); |
| 493 | bench("contains(key) (non-existent)" , with_nonexistent_key(contains)); |
| 494 | |
| 495 | if constexpr (is_ordered_container) { |
| 496 | auto lower_bound = [](Container const& c, Key const& key) { return c.lower_bound(key); }; |
| 497 | bench("lower_bound(key) (existent)" , with_existent_key(lower_bound)); |
| 498 | bench("lower_bound(key) (non-existent)" , with_nonexistent_key(lower_bound)); |
| 499 | |
| 500 | auto upper_bound = [](Container const& c, Key const& key) { return c.upper_bound(key); }; |
| 501 | bench("upper_bound(key) (existent)" , with_existent_key(upper_bound)); |
| 502 | bench("upper_bound(key) (non-existent)" , with_nonexistent_key(upper_bound)); |
| 503 | |
| 504 | auto equal_range = [](Container const& c, Key const& key) { return c.equal_range(key); }; |
| 505 | bench("equal_range(key) (existent)" , with_existent_key(equal_range)); |
| 506 | bench("equal_range(key) (non-existent)" , with_nonexistent_key(equal_range)); |
| 507 | } |
| 508 | } |
| 509 | |
| 510 | } // namespace support |
| 511 | |
| 512 | #endif // TEST_BENCHMARKS_CONTAINERS_ASSOCIATIVE_CONTAINER_BENCHMARKS_H |
| 513 | |