1 | //===----------------------------------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | // UNSUPPORTED: c++03, c++11, c++14, c++17 |
10 | |
11 | // <algorithm> |
12 | |
13 | // template<forward_iterator I1, sentinel_for<I1> S1, forward_iterator I2, |
14 | // sentinel_for<I2> S2, class Proj1 = identity, class Proj2 = identity, |
15 | // indirect_equivalence_relation<projected<I1, Proj1>, |
16 | // projected<I2, Proj2>> Pred = ranges::equal_to> |
17 | // constexpr bool ranges::is_permutation(I1 first1, S1 last1, I2 first2, S2 last2, |
18 | // Pred pred = {}, |
19 | // Proj1 proj1 = {}, Proj2 proj2 = {}); // Since C++20 |
20 | // |
21 | // template<forward_range R1, forward_range R2, |
22 | // class Proj1 = identity, class Proj2 = identity, |
23 | // indirect_equivalence_relation<projected<iterator_t<R1>, Proj1>, |
24 | // projected<iterator_t<R2>, Proj2>> Pred = ranges::equal_to> |
25 | // constexpr bool ranges::is_permutation(R1&& r1, R2&& r2, Pred pred = {}, |
26 | // Proj1 proj1 = {}, Proj2 proj2 = {}); // Since C++20 |
27 | |
28 | #include <algorithm> |
29 | #include <array> |
30 | #include <concepts> |
31 | #include <list> |
32 | #include <ranges> |
33 | |
34 | #include "almost_satisfies_types.h" |
35 | #include "counting_predicates.h" |
36 | #include "counting_projection.h" |
37 | #include "test_iterators.h" |
38 | |
39 | template <class Iter1, class Sent1 = int*, class Iter2 = int*, class Sent2 = int*> |
40 | concept HasIsPermutationIt = requires(Iter1 first1, Sent1 last1, Iter2 first2, Sent2 last2) { |
41 | std::ranges::is_permutation(first1, last1, first2, last2); |
42 | }; |
43 | |
44 | template <class Range1, class Range2 = UncheckedRange<int*>> |
45 | concept HasIsPermutationR = requires(Range1 range1, Range2 range2) { |
46 | std::ranges::is_permutation(range1, range2); |
47 | }; |
48 | |
49 | static_assert(HasIsPermutationIt<int*>); |
50 | static_assert(!HasIsPermutationIt<ForwardIteratorNotDerivedFrom>); |
51 | static_assert(!HasIsPermutationIt<ForwardIteratorNotIncrementable>); |
52 | static_assert(!HasIsPermutationIt<int*, SentinelForNotSemiregular>); |
53 | static_assert(!HasIsPermutationIt<int*, SentinelForNotWeaklyEqualityComparableWith>); |
54 | static_assert(!HasIsPermutationIt<int*, int*, ForwardIteratorNotDerivedFrom>); |
55 | static_assert(!HasIsPermutationIt<int*, int*, ForwardIteratorNotIncrementable>); |
56 | static_assert(!HasIsPermutationIt<int*, int*, int*, SentinelForNotSemiregular>); |
57 | static_assert(!HasIsPermutationIt<int*, int*, int*, SentinelForNotWeaklyEqualityComparableWith>); |
58 | // !indirect_equivalence_relation<Pred, projected<I1, Proj1>, projected<I2, Proj2>>; |
59 | static_assert(!HasIsPermutationIt<int*, int*, int**, int**>); |
60 | |
61 | static_assert(HasIsPermutationR<UncheckedRange<int*>>); |
62 | static_assert(!HasIsPermutationR<ForwardRangeNotDerivedFrom>); |
63 | static_assert(!HasIsPermutationR<ForwardRangeNotIncrementable>); |
64 | static_assert(!HasIsPermutationR<int*, ForwardRangeNotSentinelSemiregular>); |
65 | static_assert(!HasIsPermutationR<int*, ForwardRangeNotSentinelEqualityComparableWith>); |
66 | static_assert(!HasIsPermutationR<UncheckedRange<int*>, ForwardRangeNotDerivedFrom>); |
67 | static_assert(!HasIsPermutationR<UncheckedRange<int*>, ForwardRangeNotIncrementable>); |
68 | static_assert(!HasIsPermutationR<UncheckedRange<int*>, ForwardRangeNotSentinelSemiregular>); |
69 | static_assert(!HasIsPermutationR<UncheckedRange<int*>, ForwardRangeNotSentinelEqualityComparableWith>); |
70 | // !indirect_equivalence_relation<Pred, projected<iterator_t<I1>, Proj1>, projected<iterator_t<I2>, Proj2>>; |
71 | static_assert(!HasIsPermutationIt<UncheckedRange<int*>, UncheckedRange<int**>>); |
72 | |
73 | template <int N, int M> |
74 | struct Data { |
75 | std::array<int, N> input1; |
76 | std::array<int, M> input2; |
77 | bool expected; |
78 | }; |
79 | |
80 | template <class Iter1, class Sent1, class Iter2, class Sent2, int N, int M> |
81 | constexpr void test(Data<N, M> d) { |
82 | { |
83 | std::same_as<bool> decltype(auto) ret = std::ranges::is_permutation(Iter1(d.input1.data()), |
84 | Sent1(Iter1(d.input1.data() + N)), |
85 | Iter1(d.input2.data()), |
86 | Sent1(Iter1(d.input2.data() + M))); |
87 | assert(ret == d.expected); |
88 | } |
89 | { |
90 | auto range1 = std::ranges::subrange(Iter1(d.input1.data()), Sent1(Iter1(d.input1.data() + N))); |
91 | auto range2 = std::ranges::subrange(Iter1(d.input2.data()), Sent1(Iter1(d.input2.data() + M))); |
92 | std::same_as<bool> decltype(auto) ret = std::ranges::is_permutation(range1, range2); |
93 | assert(ret == d.expected); |
94 | } |
95 | } |
96 | |
97 | template <class Iter1, class Sent1, class Iter2, class Sent2 = Iter2> |
98 | constexpr void test_iterators() { |
99 | // Ranges are identical. |
100 | test<Iter1, Sent1, Iter2, Sent2, 4, 4>({.input1 = {1, 2, 3, 4}, .input2 = {1, 2, 3, 4}, .expected = true}); |
101 | |
102 | // Ranges are reversed. |
103 | test<Iter1, Sent1, Iter2, Sent2, 4, 4>({.input1 = {1, 2, 3, 4}, .input2 = {4, 3, 2, 1}, .expected = true}); |
104 | |
105 | // Two elements are swapped. |
106 | test<Iter1, Sent1, Iter2, Sent2, 4, 4>({.input1 = {4, 2, 3, 1}, .input2 = {1, 2, 3, 4}, .expected = true}); |
107 | |
108 | // The first range is shorter. |
109 | test<Iter1, Sent1, Iter2, Sent2, 4, 5>({.input1 = {4, 2, 3, 1}, .input2 = {4, 3, 2, 1, 5}, .expected = false}); |
110 | |
111 | // The first range is longer. |
112 | test<Iter1, Sent1, Iter2, Sent2, 5, 4>({.input1 = {4, 2, 3, 1, 5}, .input2 = {4, 3, 2, 1}, .expected = false}); |
113 | |
114 | // The first range is empty. |
115 | test<Iter1, Sent1, Iter2, Sent2, 0, 4>({.input1 = {}, .input2 = {4, 3, 2, 1}, .expected = false}); |
116 | |
117 | // The second range is empty. |
118 | test<Iter1, Sent1, Iter2, Sent2, 5, 0>({.input1 = {4, 2, 3, 1, 5}, .input2 = {}, .expected = false}); |
119 | |
120 | // Both ranges are empty. |
121 | test<Iter1, Sent1, Iter2, Sent2, 0, 0>({.input1 = {}, .input2 = {}, .expected = true}); |
122 | |
123 | // 1-element range, same value. |
124 | test<Iter1, Sent1, Iter2, Sent2, 1, 1>({.input1 = {1}, .input2 = {1}, .expected = true}); |
125 | |
126 | // 1-element range, different values. |
127 | test<Iter1, Sent1, Iter2, Sent2, 1, 1>({.input1 = {1}, .input2 = {2}, .expected = false}); |
128 | } |
129 | |
130 | template <class Iter1, class Sent1 = Iter1> |
131 | constexpr void test_iterators1() { |
132 | test_iterators<Iter1, Sent1, forward_iterator<int*>, sentinel_wrapper<forward_iterator<int*>>>(); |
133 | test_iterators<Iter1, Sent1, forward_iterator<int*>>(); |
134 | test_iterators<Iter1, Sent1, bidirectional_iterator<int*>>(); |
135 | test_iterators<Iter1, Sent1, random_access_iterator<int*>>(); |
136 | test_iterators<Iter1, Sent1, contiguous_iterator<int*>>(); |
137 | test_iterators<Iter1, Sent1, int*>(); |
138 | test_iterators<Iter1, Sent1, const int*>(); |
139 | } |
140 | |
141 | constexpr bool test() { |
142 | test_iterators1<forward_iterator<int*>, sentinel_wrapper<forward_iterator<int*>>>(); |
143 | test_iterators1<forward_iterator<int*>>(); |
144 | test_iterators1<bidirectional_iterator<int*>>(); |
145 | test_iterators1<random_access_iterator<int*>>(); |
146 | test_iterators1<contiguous_iterator<int*>>(); |
147 | test_iterators1<int*>(); |
148 | test_iterators1<const int*>(); |
149 | |
150 | { // A custom comparator works. |
151 | struct A { |
152 | int a; |
153 | constexpr bool pred(const A& rhs) const { return a == rhs.a; } |
154 | }; |
155 | |
156 | std::array in1 = {A{.a: 2}, A{.a: 3}, A{.a: 1}}; |
157 | std::array in2 = {A{.a: 1}, A{.a: 2}, A{.a: 3}}; |
158 | |
159 | { |
160 | auto ret = std::ranges::is_permutation(in1.begin(), in1.end(), in2.begin(), in2.end(), &A::pred); |
161 | assert(ret); |
162 | } |
163 | |
164 | { |
165 | auto ret = std::ranges::is_permutation(in1, in2, &A::pred); |
166 | assert(ret); |
167 | } |
168 | } |
169 | |
170 | { // A custom projection works. |
171 | struct A { |
172 | int a; |
173 | |
174 | constexpr bool operator==(const A&) const = default; |
175 | |
176 | constexpr A x2() const { return A{.a: a * 2}; } |
177 | constexpr A div2() const { return A{.a: a / 2}; } |
178 | }; |
179 | |
180 | std::array in1 = {A{.a: 1}, A{.a: 2}, A{.a: 3}}; // [2, 4, 6] after applying `x2`. |
181 | std::array in2 = {A{.a: 4}, A{.a: 8}, A{.a: 12}}; // [2, 4, 6] after applying `div2`. |
182 | |
183 | { |
184 | auto ret = std::ranges::is_permutation( |
185 | in1.begin(), in1.end(), in2.begin(), in2.end(), {}, &A::x2, &A::div2); |
186 | assert(ret); |
187 | } |
188 | |
189 | { |
190 | auto ret = std::ranges::is_permutation(in1, in2, {}, &A::x2, &A::div2); |
191 | assert(ret); |
192 | } |
193 | } |
194 | |
195 | |
196 | { // Check that complexity requirements are met. |
197 | int predCount = 0; |
198 | int proj1Count = 0; |
199 | int proj2Count = 0; |
200 | auto reset_counters = [&] { |
201 | predCount = proj1Count = proj2Count = 0; |
202 | }; |
203 | |
204 | counting_predicate pred(std::ranges::equal_to{}, predCount); |
205 | counting_projection<> proj1(proj1Count); |
206 | counting_projection<> proj2(proj2Count); |
207 | |
208 | { |
209 | // 1. No applications of the corresponding predicate if `ForwardIterator1` and `ForwardIterator2` meet the |
210 | // requirements of random access iterators and `last1 - first1 != last2 - first2`. |
211 | int a[] = {1, 2, 3, 4, 5}; |
212 | int b[] = {1, 2, 3, 4}; |
213 | // Make sure that the iterators have different types. |
214 | auto b_begin = random_access_iterator<int*>(std::begin(arr&: b)); |
215 | auto b_end = random_access_iterator<int*>(std::end(arr&: b)); |
216 | |
217 | { |
218 | auto ret = std::ranges::is_permutation(a, a + 5, b_begin, b_end, pred, proj1, proj2); |
219 | assert(!ret); |
220 | |
221 | assert(predCount == 0); |
222 | assert(proj1Count == 0); |
223 | assert(proj2Count == 0); |
224 | reset_counters(); |
225 | } |
226 | |
227 | { |
228 | auto ret = std::ranges::is_permutation(a, std::ranges::subrange(b_begin, b_end), pred, proj1, proj2); |
229 | assert(!ret); |
230 | |
231 | assert(predCount == 0); |
232 | assert(proj1Count == 0); |
233 | assert(proj2Count == 0); |
234 | reset_counters(); |
235 | } |
236 | } |
237 | |
238 | // 2. Otherwise, exactly last1 - first1 applications of the corresponding predicate if |
239 | // `equal(first1, last1, first2, last2, pred)` would return true. |
240 | { |
241 | int a[] = {1, 2, 3, 4, 5}; |
242 | int b[] = {1, 2, 3, 4, 5}; |
243 | int expected = 5; |
244 | |
245 | { |
246 | auto ret = std::ranges::is_permutation(a, a + 5, b, b + 5, pred, proj1, proj2); |
247 | assert(ret); |
248 | |
249 | assert(predCount == expected); |
250 | assert(proj1Count == expected); |
251 | assert(proj2Count == expected); |
252 | reset_counters(); |
253 | } |
254 | |
255 | { |
256 | auto ret = std::ranges::is_permutation(a, b, pred, proj1, proj2); |
257 | assert(ret); |
258 | |
259 | assert(predCount == expected); |
260 | assert(proj1Count == expected); |
261 | assert(proj2Count == expected); |
262 | reset_counters(); |
263 | } |
264 | } |
265 | |
266 | // Note: we currently don't have the setup to test big-O complexity, but copying the requirement for completeness' |
267 | // sake. |
268 | // 3. Otherwise, at worst `O(N^2)`, where `N` has the value `last1 - first1`. |
269 | } |
270 | |
271 | |
272 | return true; |
273 | } |
274 | |
275 | int main(int, char**) { |
276 | test(); |
277 | static_assert(test()); |
278 | |
279 | return 0; |
280 | } |
281 | |