1 | //===----------------------------------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | // UNSUPPORTED: c++03, c++11, c++14, c++17, c++20 |
10 | |
11 | // <flat_map> |
12 | |
13 | // class flat_multimap |
14 | |
15 | // friend bool operator==(const flat_multimap& x, const flat_multimap& y); |
16 | // friend synth-three-way-result<value_type> |
17 | // operator<=>(const flat_multimap& x, const flat_multimap& y); |
18 | |
19 | #include <algorithm> |
20 | #include <cassert> |
21 | #include <deque> |
22 | #include <compare> |
23 | #include <flat_map> |
24 | #include <functional> |
25 | #include <limits> |
26 | #include <vector> |
27 | |
28 | #include "MinSequenceContainer.h" |
29 | #include "test_macros.h" |
30 | #include "min_allocator.h" |
31 | #include "test_allocator.h" |
32 | #include "test_comparisons.h" |
33 | #include "test_container_comparisons.h" |
34 | |
35 | template <class KeyContainer, class ValueContainer> |
36 | void test() { |
37 | using Key = typename KeyContainer::value_type; |
38 | using Value = typename ValueContainer::value_type; |
39 | |
40 | { |
41 | using C = std::flat_multimap<Key, Value>; |
42 | C s1 = {{1, 1}}; |
43 | C s2 = {{2, 0}}; // {{1,1}} versus {{2,0}} |
44 | ASSERT_SAME_TYPE(decltype(s1 <=> s2), std::strong_ordering); |
45 | AssertComparisonsReturnBool<C>(); |
46 | assert(testComparisons(s1, s2, false, true)); |
47 | s2 = {{1, 1}}; // {{1,1}} versus {{1,1}} |
48 | assert(testComparisons(s1, s2, true, false)); |
49 | s2 = {{1, 1}, {2, 0}}; // {{1,1}} versus {{1,1},{2,0}} |
50 | assert(testComparisons(s1, s2, false, true)); |
51 | s1 = {{0, 0}, {1, 1}, {2, 2}}; // {{0,0},{1,1},{2,2}} versus {{1,1},{2,0}} |
52 | assert(testComparisons(s1, s2, false, true)); |
53 | s2 = {{0, 0}, {1, 1}, {2, 3}}; // {{0,0},{1,1},{2,2}} versus {{0,0},{1,1},{2,3}} |
54 | assert(testComparisons(s1, s2, false, true)); |
55 | |
56 | s1 = {{1, 1}, {1, 1}}; |
57 | s2 = {{1, 1}, {1, 1}}; |
58 | assert(testComparisons(s1, s2, true, false)); |
59 | |
60 | s2 = {{1, 1}, {1, 1}, {2, 2}}; |
61 | assert(testComparisons(s1, s2, false, true)); |
62 | |
63 | s2 = {{1, 1}, {2, 2}, {2, 2}}; |
64 | assert(testComparisons(s1, s2, false, true)); |
65 | |
66 | s2 = {{0, 0}, {1, 1}, {1, 1}}; |
67 | assert(testComparisons(s1, s2, false, false)); |
68 | } |
69 | { |
70 | // Comparisons use value_type's native operators, not the comparator |
71 | using C = std::flat_multimap<Key, Value, std::greater<Key>>; |
72 | C s1 = {{1, 1}}; |
73 | C s2 = {{2, 0}}; // {{1,1}} versus {{2,0}} |
74 | ASSERT_SAME_TYPE(decltype(s1 <=> s2), std::strong_ordering); |
75 | AssertComparisonsReturnBool<C>(); |
76 | assert(testComparisons(s1, s2, false, true)); |
77 | s2 = {{1, 1}}; // {{1,1}} versus {{1,1}} |
78 | assert(testComparisons(s1, s2, true, false)); |
79 | s2 = {{1, 1}, {2, 0}}; // {{1,1}} versus {{2,0},{1,1}} |
80 | assert(testComparisons(s1, s2, false, true)); |
81 | s1 = {{0, 0}, {1, 1}, {2, 2}}; // {{2,2},{1,1},{0,0}} versus {2,0},{1,1}} |
82 | assert(testComparisons(s1, s2, false, false)); |
83 | s2 = {{0, 0}, {1, 1}, {2, 3}}; // {{2,2},{1,1},{0,0}} versus {{2,3},{1,1},{0,0}} |
84 | assert(testComparisons(s1, s2, false, true)); |
85 | } |
86 | } |
87 | |
88 | int main(int, char**) { |
89 | test<std::vector<int>, std::vector<int>>(); |
90 | test<std::deque<int>, std::deque<int>>(); |
91 | test<MinSequenceContainer<int>, MinSequenceContainer<int>>(); |
92 | test<std::vector<int, min_allocator<int>>, std::vector<int, min_allocator<int>>>(); |
93 | test<std::vector<int, min_allocator<int>>, std::vector<int, min_allocator<int>>>(); |
94 | |
95 | { |
96 | using C = std::flat_multimap<double, int>; |
97 | C s1 = {{1, 1}}; |
98 | C s2 = C(std::sorted_equivalent, {{std::numeric_limits<double>::quiet_NaN(), 2}}); |
99 | ASSERT_SAME_TYPE(decltype(s1 <=> s2), std::partial_ordering); |
100 | AssertComparisonsReturnBool<C>(); |
101 | assert(testComparisonsComplete(s1, s2, false, false, false)); |
102 | } |
103 | { |
104 | using C = std::flat_multimap<int, double>; |
105 | C s1 = {{1, 1}}; |
106 | C s2 = C(std::sorted_equivalent, {{2, std::numeric_limits<double>::quiet_NaN()}}); |
107 | ASSERT_SAME_TYPE(decltype(s1 <=> s2), std::partial_ordering); |
108 | AssertComparisonsReturnBool<C>(); |
109 | assert(testComparisonsComplete(s1, s2, false, true, false)); |
110 | s2 = C(std::sorted_equivalent, {{1, std::numeric_limits<double>::quiet_NaN()}}); |
111 | assert(testComparisonsComplete(s1, s2, false, false, false)); |
112 | } |
113 | { |
114 | // Comparisons use value_type's native operators, not the comparator |
115 | struct StrongComp { |
116 | bool operator()(double a, double b) const { return std::strong_order(a, b) < 0; } |
117 | }; |
118 | using C = std::flat_multimap<double, double, StrongComp>; |
119 | C s1 = {{1, 1}}; |
120 | C s2 = {{std::numeric_limits<double>::quiet_NaN(), std::numeric_limits<double>::quiet_NaN()}}; |
121 | ASSERT_SAME_TYPE(decltype(s1 <=> s2), std::partial_ordering); |
122 | AssertComparisonsReturnBool<C>(); |
123 | assert(testComparisonsComplete(s1, s2, false, false, false)); |
124 | s1 = {{{1, 1}, {std::numeric_limits<double>::quiet_NaN(), 1}}}; |
125 | s2 = {{{std::numeric_limits<double>::quiet_NaN(), 1}, {1, 1}}}; |
126 | assert(std::lexicographical_compare_three_way( |
127 | s1.keys().begin(), s1.keys().end(), s2.keys().begin(), s2.keys().end(), std::strong_order) == |
128 | std::strong_ordering::equal); |
129 | assert(s1 != s2); |
130 | assert((s1 <=> s2) == std::partial_ordering::unordered); |
131 | } |
132 | return 0; |
133 | } |
134 | |